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Abstract

Denmark Strait Overflow Water (DSOW) constitutes the densest portion of North Atlantic
Deep Water, which feeds the lower limb of the Atlantic Meridional Overturning Circulation
(AMOC). As such, it is critical to understand how DSOW is transferred from the upstream
basins in the Nordic Seas, across the Greenland-Scotland Ridge, and to the North Atlantic
Ocean. The goal of this study is to characterize the hydrographic structure of the differ-
ent DSOW constituents at the sill before the water descends into the Irminger Sea using
temperature and salinity (T/S) data from 111 shipboard crossings in the vicinity of the sill,
collected between 1990 and 2012. The individual realizations indicate that weakly stratified
"boluses" of DSOW frequent the sill and contribute the densest water to the overflow. This
study also characterizes the structure, size, and location of the boluses and relates them to
the T/S modes found at the sill. Lastly, historical hydrographic data from the Nordic Seas
are used to make inferences regarding the origin of the boluses.
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Chapter 1

Introduction

The Atlantic Meridional Overturning Circulation (AMOC) has been the focus of scientific

study for many years, because of its important role in regulating Earth’s climate. Investiga-

tions of the circulation system of the Nordic Seas seek to understand the complex physical

processes that feed the lower limb of the AMOC. Denmark Strait Overflow Water (DSOW)

is the largest and densest contributor of the lower limb, supplying approximately half of the

dense water in the Deep Western Boundary Current (Dickson et al., 2008). Dickson et al.

(2008) defined DSOW as water with potential density values greater than 27.8 kg/m3, and

for the reasons outlined in that paper, DSOW will be defined as such in this thesis. While

the hydrographic structure and variability of DSOW have been investigated by a robust col-

lection of field observations and modeling studies, there remain gaps in our understanding

of this part of the AMOC. Many of these observational studies consist of mooring data and

a few synoptic shipboard sections. This study presents over two decades of synoptic sec-

tions across the Denmark Strait sill and characterizes the hydrography of the waters flowing

through it.

In light of the past two decades of research on the Nordic Seas circulation system,

it is thought that DSOW approaches the sill via three pathways - the East Greenland

Current (EGC), the North Icelandic Jet (NIJ), and the Separated East Greenland Current

(Separated EGC) (Figure B-1). Maruitzen (1996) proposed the first pathway, explaining

that warm Atlantic Water in the Norwegian Atlantic Current cools and densifies within the

boundary current around the Greenland and Iceland seas and demonstrated that this cooled

Atlantic Water comprises DSOW. Specifically, the Atlantic water enters the Nordic Seas east
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of Iceland, and returns southward in the shelfbreak EGC as cooler return Atlantic water.

Additionally, the shelfbreak EGC carries fresh, cool surface water called polar surface water

(Rudels et al., 2002). This water is formed by the melting of sea ice from the Arctic Ocean.

Jónsson and Valdimarsson (2004) subsequently discovered the NIJ - a deep, southward

flowing jet on the Iceland shelf. Later field studies on the transport and hydrographic

properties of the jet have revealed that it contributes the densest third of the overflow water

at the sill (Våge et al., 2011b, 2013). The overflow water in the NIJ is referred to as Arctic

origin water, since it is believed to be formed in the Iceland Sea due to wintertime convection.

Våge et al. (2011) hypothesize that the NIJ is the lower limb of a local overturning loop,

whose upper limb is the warm and salty North Icelandic Irminger Current (NIIC) (Figure

B-1).

More recently, Våge (2013) identified a third pathway of overflow water called the Sepa-

rated EGC, which is a bifurcation of the EGC. It is formed by anti-cyclones that coalesce into

a persistent, surface-intensified jet. A combination of the wind stress and the bathymetry

near the Greenland coast spins up these anti-cyclones.

The overflow water at the sill exhibits large fluctuations in its properties. Previous ob-

servational studies have demonstrated that the structure of the overflow changes on periods

of 1 to 5 days (Ross 1982; Bruce 1995; Käse et al., 2003). Using hydrographic sections south

of Denmark Strait, Cooper (1955) attributed this variability to the transit of large, cold,

intermittent masses of Norwegian Sea water called boluses. The existence of boluses was

later supported by work conducted by Worthington (1969), who observed periods of cold,

fast currents interspersed with warm, slow currents in mooring data close to the sill. Since

then, boluses have been identified in observational datasets and numerical models (Agaard

and Malmberg 1978; Bruce 1995; Krauss 1996; Spall and Price 1998; Rudels 1999; Girton

and Stanford 2003; Käse et al., 2003; Macrander et al., 2007; Koszalka and Haine 2013),

but the nature of these features remains poorly understood.

Several theories postulate bolus formation and their frequency of passage. Smith (1976)

hypothesized that boluses form from baroclinic instability of the overflow and found that the

period of the most unstable wave in an idealized flow through Denmark Strait matched the

period of variability in current meter and hydrographic records of the overflow. However,

nonlinear processes are observed south of Denmark Strait, such as the rapid descent of

DSOW over the sill and the subsequent production of surface eddies, which indicates a
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breakdown in Smith’s linear model. An alternate theory was subsequently proposed after

the discovery of an unstable, southward flowing, barotropic surface jet in Denmark Strait

(Fristedt et al., 1999). The jet has unstable growth rates comparable to the baroclinic

wave proposed by Smith (1976) and is an alternate mechanism responsible for fluctuations

in the overflow. Other numerical modeling studies have proposed different mechanisms

investigating the influence of topography and stratification on bolus formation (Jungclaus

and Backhaus, 1994; Jiang and Garwood 1996; Krauss and Käse, 1998; Spall and Price

1998; Käse and Oschlies 2000; Shi et al., 2001).

The presence of boluses in the overflow has several implications for regional and global

circulation. First, their low temperatures and salinities influence the properties of NADW

(Rudels 1999; Tanhua et al., 2005). Second, the presence of a bolus increases the thickness

and thus transport of the overflow at the sill (Ross 1982). When averaging the transport

of DSOW over times scales longer than the bolus period, however, the transport is steady

(Dickson and Brown 1994). Additionally, there does not appear to be any seasonal variability

in the overflow (Jonsson, 1999; Jochumsen et al., 2012). Finally, there is evidence in the

form of laboratory experiments, mooring and satellite observations, and modeling studies

that boluses spin up cyclones south of the sill (Smith 1975; Bruce 1995; Spall and Price

1998; von Appen, 2013). In turn, these cyclones entrain water downstream of the sill and

contribute to the mixing, and subsequent modification, of DSOW.

This study seeks to characterize the hydrographic structure of the different DSOW con-

stituents at the sill, before the water descends into the Irminger Basin. It presents tem-

perature and salinity data from 111 shipboard crossings in the vicinity of the sill, collected

between 1990 and 2012. This thesis will discuss features seen in the mean section and con-

nect them to the water masses and currents upstream of Denmark Strait. This work also

presents an objective definition to identify boluses in individual sections, characterizes their

structure, size, and location, and relates them to the volumetric T-S modes found at the

sill. Lastly, an historical dataset from the Nordic Seas is used to make inferences regarding

the origin of the boluses.
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Chapter 2

Data and Methods

2.1 The Látrabjarg Line

The data discussed in this study consist of 111 hydrographic sections taken across Den-

mark Strait between 1990 and 2012 (Table A.1, Figure B-2, Figure B-3) The data are from

conductivity-temperature-depth (CTD) stations along a section called the Látrabjarg line.

The Marine Research Institute of Reykjavik (MRI) occupied this line between 1993 and 1997

as a part of the Nordic contribution to the World Ocean Circulation Experiment (Nordic-

WOCE), whose aim was to collect data on ocean currents, hydrography, and chemistry to

inform numerical models (Nordic-World, 2009). These occupations were included in this

study. Between 1997 and 1999, MRI also participated in the Variability of Exchanges in the

Northern Seas (VEINS) program, which investigated changes in fluxes between the Arctic

and Atlantic Oceans (Variability, 2000). Additional occupations come from this program.

A total of 88 synoptic sections along the standard, MRI Látrabjarg line, and 23 synoptic

sections in the vicinity of the Látrabjarg line, comprise the data presented in this study.

The dates and cruise information are summarized in Table A.1.

For the purposes of this study, the Látrabjarg line is redefined: the line is constructed

from 5 cruise tracks rather than the traditional MRI station locations because these cruises

obtained high-resolution echo-sounder measurements to map the sea floor. The new line is

constructed using linear, least-squares regression. However, since cruise KN-194 measured

the bathymetry in two segments, the second segment is ignored while creating the regression

line (Figure B-4). The start and end points of the new line have geographic coordinates

(66∘ 46.0’N 29∘ 45.8’W, 65∘ 29.1’N 25∘ 35.9’W). The depth of the sea floor along the new
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Látrabjarg line is estimated from the echo-sounder data. All the depth measurements were

projected onto the regression line, and fluctuations in the bathymetry with wavelengths

shorter than 3.5 km were filtered out using a first order, low-pass Butterworth filter (Figure

B-4).

The bathymetry of Denmark Strait along the Látrabjarg line has some notable features

- the Greenland and Iceland shelves and their associated shelf breaks, the trough, and the

ledge (Figure B-5). In this thesis, the trough refers to the region between the Greenland

and Iceland shelf breaks that is below 250 m. Furthermore, the lower trough refers to the

region below 500 m, or the ledge immediately offshore of the Greenland shelf.

A total of 1136 CTD stations were projected onto the Látrabjarg line. Only CTD

stations within 75 km of the line are considered in this study, 90% of which fall within 5

km of the line (Figure B-3). Four cruises took CTD stations more than 20 km from the

Látrabjarg line. Of these cruises, three are shifted laterally so cast depths line up with

the bathymetry. The tendency for water to follow bathymetric contours justifies shifting

CTD stations in such a way. An example of this adjustment is shown in (Figure B-6).

For the same reason, individual station locations along the new Látrabjarg line were also

adjusted. Because of steep gradients in Denmark Strait’s bathymetry, the projected station

data sometimes extend beyond the sea floor or fall short of it. To correct this issue, each

station was shifted horizontally no more than 2 km (a distance smaller than the standard

horizontal grid spacing, which is discussed below) to minimize the distance between the

bottom of the cast and the ocean floor.

From hereon the new Látrabjarg line will be referred to as simply the Látrabjarg line.

2.2 Hydrographic Data

2.2.1 Occupations of Látrabjarg Line

The hydrographic data used in this study were collected with Sea-Bird CTDs and the data

were processed using SPE data routines (SBE, 2014). Additionally in September 1998,

three hydrographic sections were taken aboard the F/S Poseidon using expendable profilers

(XCP/XCTD). Girton and Sanford (2001) discuss the calibration of these profilers. Potential

temperature and potential density, hereafter referred to as “temperature” and “density,” are

calculated in this study from processed CTD temperature, salinity, and pressure data using
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algorithms in version 3.3 of the CSIRO Seawater Library (CSIRO, 2010).

Fluctuations in temperature, salinity, and density with wavelengths shorter than 7 m

are filtered out using a fifth order, low-pass Butterworth filter. Density inversions with

magnitudes greater than 0.02 kg/m3 are also removed by manually adjusting corresponding

values of temperature and salinity. Adjustments were made to 693 data points, which is

roughly 0.2% percent of the data. (Figure B-7).

2.2.2 Historical Hydrographic Dataset of the Nordic Seas

The historical hydrographic dataset used in this study consists of shipboard CTD measure-

ments and Argo profiles, and it covers the region between 65-71∘N and 8-28∘W from 1980

to 2015. The initial version of the database is described in detail in Våge et al. (2013), and

the updated version is described in Våge et al. (2015).

2.3 Gridding the Data

This section first presents an overall description of the interpolator used to grid the vertical

sections. Then, each step of the gridding process is discussed in detail. The process is

summarized as follows: 1) Data are extrapolated past the sea floor. 2) Data for each

occupation are interpolated onto a low, medium, or high-resolution grid according to the

station spacing, where the upper portion of the water column is gridded depth space and the

lower portion is gridded in density space. 3) After smoothing, the data are re-interpolated

onto the highest resolution grid.

2.3.1 The Interpolator

The CTD data are interpolated onto a standard grid in order to create vertical sections of

temperature, salinity, and density. These gridded sections are created using a Laplacian

spline interpolator with tension (Smith and Wessel, 1990). This interpolator grids data

onto surfaces whose curvature can be adjusted by changing a parameter called tension - the

higher the tension, the lower the curvature. Tensions ranged from 0 to 2 for temperature and

salinity and 0 to 5 for density. The same tension is assigned to temperature and salinity for

a given section, since both properties reflect the same distribution of water masses. Density

is typically assigned larger values for tension in order to create smooth density fields. Due
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to temporal variability in the hydrographic structure of Denmark Strait, tensions are set

at different values for each occupation. The interpolator also includes a parameter called

the search radius, which limits the distance (in number of grid points) within which the

interpolator searches for data around an empty grid point. This parameter is chosen to be

20 for all occupations, ensuring every grid point is assigned a value.

2.3.2 Extrapolation

Due to Denmark Strait’s steeply sloping bathymetry, the interpolator fails to assign val-

ues to grid-points close to the sea floor where only data downslope of these grid-points are

detected. Consequently, CTD cast data are extrapolated past the sea floor before interpola-

tion. Temperature, salinity, and density gradients in the trough, however, change according

to the magnitude of extrapolation. Extrapolating station data to greater depths results in

sharper and steeper gradients in water properties, while minimal extrapolation allows these

properties mix through the bottom of the ocean floor. To balance these effects, the extent

of extrapolation varied on a per cast basis and depended on the hydrography of the section.

Most cast data are extrapolated 50 m, however, 34 casts are extrapolated 100 m and 5 are

not modified.

Data are extrapolated at 1 m increments and are assigned temperature and salinity

values identical to those of the deepest measurement in the cast. This method is chosen

instead of using vertical trends to prevent the fabrication of water masses in gridded sections.

Since the data are interpolated in depth and density space (explained below), density is also

extrapolated beyond the value of the deepest cast measurement. Extrapolating density also

corrected issues associated with interpolation near Denmark Strait’s steeply sloping bottom.

Extrapolated data are assigned density values that increased by 0.0005 kg/m3 for every 1

m increase in depth. Water in the trough of Denmark Strait is typically homogeneous in

density, so a small density increment is chosen to prevent falsely creating dense, stratified

features in the synoptic sections.

2.3.3 Station Spacing and Grid Resolution

The horizontal spacing between CTD stations along the Látrabjarg Line line varies consid-

erably among occupations, ranging from approximately 6 km to 25 km. If the grid spacing

is much larger than the average station spacing, many details in the hydrographic struc-

22



ture are smoothed out. On the other hand, if the grid spacing is much smaller than the

average station spacing, large-scale features tend to fragment. For these reasons, each oc-

cupation is initially interpolated onto one of three grids with different horizontal, spatial

resolutions according to its station spacing. Most of the occupations are interpolated onto

a low-resolution (10 m × 10 km) grid. The remaining occupations are interpolated onto

either a medium-resolution (10 m × 5 km) or high-resolution (10 m × 2.5 km) grid.

All grids have the same vertical resolution, since all measurements are taken at the same

depth interval of 1 m - 2 m. Although the profiles are highly resolved, grid spacing is 10 m

in the vertical due to the nature of the interpolator’s search radius. Since the interpolator

weights adjacent grid points equally when assigning values to empty grid points, these values

are chosen to be weighted equally by water 10 m away in the vertical and 2.5 - 10 km in the

horizontal. If the depth interval is smaller, grid points are weighted more heavily by lateral

data, which striates water properties across Denmark Strait.

2.3.4 Interpolating in Density

Since water tends to flow along isopycnals, hydrographic features in Denmark Strait are

typically distributed along density surfaces. Consequently, interpolating hydrographic data

along isopycnals connects these features more effectively than interpolating along lines of

constant depth. After interpolating in density space, gridded hydrographic fields are trans-

formed into depth space in order to plot vertical sections. The specific gridding process

is as follows: data are first interpolated in both density and depth space onto grids with

the same horizontal resolution. Then, each column of data is linearly interpolated to as-

sign depths to gridded values of temperature, salinity, and density that are interpolated

in density space. More specifically, these depths are computed by interpolating density

onto depth-interpolated grids. Finally, hydrographic fields interpolated in density space are

re-interpolated in depth space in order to create grids that are evenly spaced in the vertical.

The spacing between between grid points in density space is 0.01 kg/m3. Density in-

creases approximately 0.002 kg/m3 with every 1 m - 2 m increase with depth, so this choice

in vertical grid spacing matches the vertical grid spacing in depth.
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2.3.5 Re-gridding and Smoothing

For analysis purposes, each gridded, synoptic section must have the same resolution. Con-

sequently, data originally interpolated onto the low-resolution grid are re-interpolated onto

the medium-resolution grid. Then, all medium-resolution sections are re-interpolated onto

the high-resolution grid. Density is also smoothed using an alternating, in-place 1 point

Laplacian algorithm. Temperature and salinity, however, are not smoothed in order to pre-

serve the complex features that appear in these hydrographic fields across Denmark Strait.

The smoothing algorithm is applied twice after all sections are interpolated onto their initial

grids. Furthermore, this smoothing process is repeated every time a section is re-interpolated

onto a higher resolution grid. Original data are also reinserted into the density grids after

they are transformed into depth space and before they are re-interpolated in depth space.

This step is required, since large features that are homogeneous in density are small in den-

sity space and therefore tend to be averaged out in the interpolation process. Reinserting

data ensures that these features appear in the final, gridded sections.

2.3.6 Hybrid Gridding Scheme

Interpolating in density rather than depth coordinates, however, does not always yield an

accurate distribution of water properties near the surface. Consequently, occupations are

not purely gridded in density space. Instead, the sections are gridded in depth space near

the surface (sigma ≤ 27.5) and in density space near the bottom (sigma ≥ 27.7). The

27.7 isopycnal is chosen as the upper bound for density space interpolation, because it

lies above the overflow (27.8). Consequently, this choice ensures that the entire overflow

layer is interpolated purely in depth or density space. In order to prevent discontinuities

in the hydrography between these two gridded products, another isopycnal is chosen as the

lower bound for depth space interpolation. Sigma 27.5 is chosen because it typically falls

below the stratified surface layer of Denmark Strait, and it is located sufficiently above the

27.7 isopycnal. Density and depth grids are then averaged (linearly weighted) in the region

between the two isopycnals to prevent discontinuities in water properties. Thirty occupations

are interpolated entirely in depth space, since features in the trough are averaged out in

density space (even when original data are reinserted into the gridded product).
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2.4 Defining Boluses of Overflow Water in Synoptic Sections

Boluses are objectively identified in the synoptic sections occupied across Denmark Strait

according to their homogeneity in water properties and their size. Weakly stratified overflow

water with 𝑁2 values less than or equal to 2 × 10−6 are first identified in gridded 𝑁2 and

density fields. Data points meeting this criterion are assigned 1, and the rest are assigned 0.

To create smooth boundaries that isolate these lenses of homogeneous overflow, the matrices

of 0’s and 1’s are then smoothed using a 2D filter that replaces each element with the mean

of the surrounding data points in a 5× 5 grid centered on that element. Boluses must also

meet minimum size criteria. Within the lower trough, boluses are required to extend at

least 150 meters above sill depth (650 meters). Furthermore, boluses are required to occupy

at least 65% of the lower trough. These size criteria were developed in part to comply with

the Spall and Price (1998) modeling study of DSOW, which describes boluses as 150-200 m

tall and 30 km wide. The width of the lower trough is approximately 26 km. The number

of boluses in the synoptic sections are not overly sensitive to these size constraints.
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Chapter 3

Results

3.1 Mean State of Denmark Strait

Individual vertical sections reveal the highly variable nature of the water masses passing

through Denmark Strait. By contrast, the mean temperature, salinity, density, and 𝑁2

sections tell a simpler and arguably richer story. Despite the highly variable distribution

of water properties in Denmark Strait, the mean picture captures distinct features that are

associated with regional currents. In turn, these features reveal information about the mean

locations and velocity structures of the currents. The mean state of Denmark Strait will be

addressed as follows. First, the slopes of the isopycnals and their dynamical ramifications

will be discussed. Then, each water mass will be identified and related to the deduced

currents passing through the strait. Finally, the properties and distribution of DSOW will

be described.

Via thermal wind, changes in isopycnal slopes likely indicate the locations of the currents

flowing through Denmark Strait. Two such changes occur at the Greenland and Iceland shelf

breaks which reveal the mean locations of the shelfbreak and separated EGC, respectively.

The isopycnals diverge at the Greenland shelf break (Figure B-8). On the Greenland shelf,

the isopycnals are flat, but offshore of the self break, the isopycnals >27.5 slope down while

the isopycnals ≤ 27.5 slope up. Although no velocity data are used in this study, other

studies of the current system in Denmark Strait suggest these isopycnals are indicative of

a surface intensified southward flow overlying a bottom intensified southward flow (Våge,

2013). This trend continues into the trough, and the deep sloping isopycnals steepen beyond

the ledge at 130 km until they reach the Iceland shelf. This steepening is suggestive of
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another surface intensified jet offshore of the Iceland shelf. Furthermore, the slope of the

27.6 isopycnal changes its sign at the Iceland shelf break. The isopycnal slopes down offshore

of the shelf break, but slopes up on the Iceland shelf. Since the NIIC is known to flow

northward in Denmark Strait, the upward sloping isopycnals suggest that the NIIC is bottom

intensified. Consequently, the Iceland shelf break and the strongly sloping isopycnals found

there mark the NIIC front in the mean. Additionally the 26.5 isopycnal outcrops at the

Greenland shelf break and the 27.25 isopycnal also outcrops at the Iceland shelf break.

Irminger water and polar surface water appear in the mean sections (Figure B-8).

Irminger water is the warmest and saltiest water observed in Denmark Strait and is found

primarily on the Iceland shelf within the NIIC. Some Irminger water, however, is observed

on the Greenland shelf, approximately 150 m below the surface. This water is colder and

fresher than the water on the Iceland shelf. These observations suggest that this water

branches from the NIIC north of the Látrabjarg line and returns to Denmark Strait in the

southward flowing EGC. However, it is possible that this water separates from the NIIC

downstream of the sill and flows northward through Denmark Strait. Above the remnant

Irminger water water is cold, fresh polar surface water that is located in the shelf break

EGC pathway. As seen in the mean density and 𝑁2 sections, the polar surface water is

highly stratified and contributes the lightest water to the Denmark Strait. However, while

the surface water has consistently low salinities in the mean along the entire Greenland

shelf, the coldest surface water resides immediately shoreward of the shelf break. Cold and

fresh water also appears to penetrate downward and eastward at the shelf break. Only trace

amounts of return Atlantic water are found in individual sections, which suggests that this

water mixes with surrounding water upstream of Denmark Strait. As a result, this water

mass is not detectable in the mean. The coldest water in Denmark Strait resides in the

lower trough and will be described in further detail in the following sections.

Consistent with previous studies (Dickson and Brown, 1994; Jonsson, 1999; Jochumsen,

2012), no seasonality in temperature and salinity of Denmark Strait is observed.

3.2 Synoptic Variability of Denmark Strait

The most striking variability in synoptic sections of the Látrabjarg line occurs in the trough

and is attributable to the passage of boluses of overflow water. As such, this thesis primarily
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focuses on investigating the nature of the boluses. Bolus size, location, hydrography, and

frequency of appearance in synoptic sections will first be characterized. Then, the relation-

ship between boluses and changes in the surrounding hydrographic structure of Denmark

Strait will be examined. Finally, an estimate for the transport of the overflow water by

boluses will be presented.

3.2.1 Characterizing Denmark Strait Boluses

Boluses markedly contribute to the variability of Denmark Strait’s hydrographic structure,

because they are intermittently present and vary in their location, size, and hydrography.

Consequently, these three properties of boluses - location, size, and hydrography - will now

be described.

Boluses are present in 41% (46 of the 111) of the synoptic sections, and when they are,

they mostly reside in the lower part of the trough, below 500 m (Figure B-9). The majority

of boluses are banked on the western side of the strait, which is consistent with hydraulic

theory (Pratt and Whitehead, 2008), but some are found on the eastern side of the trough.

This tendency to be banked on the west means that many boluses also tend to occupy the

ledge (100-130 km) and extend furthest into the water column west of the deepest point in

the trough (around 130 km). The offset between the top of the bolus and the bottom of

the trough is also visible in the composite bolus temperature, salinity, and density sections

(Figure B-8).

Boluses are the densest, coldest, and saltiest constituents of DSOW and appear as dis-

tinct features in synoptic sections (Table A.2). Since boluses consistently occupy a small

region of Denmark Strait, they are also strikingly visible in composite bolus sections. No-

tably, they appear in the composite potential temperature section as a cold lens of water,

with temperatures below those observed in the background mean (Figure B-10). In particu-

lar, water colder than 0∘C is observed in the composite bolus temperature section but not in

the mean background temperature section. Their presence in the composite salinity section

is subtler; they are characterized by a nearly homogeneous salinity field in the trough (below

400 m) and a doming of the 34.85 isohaline at 130 km (Figure B-11). This doming parallels

the doming of the deep isopycnals (Figure B-8).

Boluses also have an average cross sectional area of 3.86 ± 0.24 km2. This value, however,

underestimates their true size, because some sections stop short of fully resolving them.
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3.2.2 Boluses and the Hydrographic Structure of Denmark Strait

Boluses accompany changes in the overall hydrographic structure of Denmark Strait. In

particular, they are associated with shifts in the locations and properties of currents. These

changes can be seen in the composite bolus and background states and are highlighted in

anomaly sections (composite bolus sections with the background state removed). Adjust-

ments to the hydrographic structure are discussed below in detail.

First, the composite and anomaly sections suggest that the presence of boluses coincides

with an eastward shift in the NIIC. As discussed in the section describing the mean state of

Denmark Strait, the western front of the NIIC is characterized by strong horizontal density

gradients and steeply sloping isopycnals at 150 km (Figure B-8). Water on the western side

of the front (below 150 m) is denser than water on the eastern side. Consequently a large,

positive density anomaly at 150 km (and below 150 m) suggests that, in the presence of

boluses, dense water penetrates regions of Denmark Strait that are otherwise occupied by

light Irminger water (Figure B-12). A negative density anomaly, on the other hand, would

signify a westward shift in the NIIC.

A similar pattern appears in the temperature anomaly section, which is consistent with

this interpretation (Figure B-10). The NIIC contains the warmest water in Denmark Strait,

so a negative temperature anomaly at the NIIC front suggests that it shifts eastward in the

presence of boluses. It is interesting to note that these density and temperature anomalies

(caused by the shift in the NIIC) overwhelm the cold, dense bolus anomalies at the bottom

of the trough. On the other hand, the positive salinity anomaly at the bottom of the

trough is not masked by the shift in the NIIC. Instead, both the negative anomaly that is

associated with the NIIC shift and the positive anomaly that is associated with boluses are

present (Figure B-11). Both features show up in the salinity anomaly section since each has

anomalies of opposite sign.

Additionally, a region of anomalously high stratification (around 150 km and 400 m)

is adjacent to the anomalously low region occupied by boluses (Figure B-13). This dipole

pattern suggests an eastward shift in the NIIC.

Second, boluses coincide with a warming and salinificaiton of the Irminger water inflow

although the latter signal is less robust (Figure B-10, B-11). A decrease in density on the

Iceland shelf is also observed, which is consistent with this warming (Figure B-12). This
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density decrease, however, is partially explained by the eastward shift of the NIIC. Since

the isopycnals slope upward (towards Iceland) on the Iceland shelf, an eastward shift in the

NIIC would result in a negative vertical displacement of the isopycnals and lead to an overall

decrease in density in this region.

Third, the surface water west of the Iceland shelf break (above 100 m) is cooler, fresher,

lighter, and more stratified in the presence of boluses (Figure B-10, Figure B-11, Figure

B-12, Figure B-13). These observations suggest that the passage of boluses coincides with

either an increased presence of polar surface water (PSW) or a freshening and cooling of

PSW. This PSW signal extends out to 150 km, which corresponds to the mean location of

the separated EGC. PSW is also observed in the mean temperature and salinity sections of

Denmark Strait (Figure B-8).

3.2.3 Isopycnal Heaving and Transport

The results presented here indicate that boluses increase the cross sectional area of the

overflow layer at the Látrabjarg line, and may in turn increase the southward transport of

DSOW over the sill. The results also suggest that boluses coincide with a depression of

isopycnals in the NIIC. These observations will now be described in detail and the boluses’

contribution to the transport of overflow water will be estimated.

When boluses pass through Denmark Strait, the deep isopycnals are lifted up towards

the surface (Figure B-14). This lifting occurs everywhere west of the Iceland shelf break,

below 150 m. Furthermore, isopycnals are displaced upward as much as 150 at the very

bottom of the trough, in the region occupied by boluses. Since this displacement coincides

with the location of boluses, it is not surprising that magnitude of this displacement matches

the minimum height requirement for boluses (as discussed in the data and methods section).

Isopycnal heaving thickens the overflow layer, which leads to an estimated increase in

transport of 0.88 ± 0.29 Sv. This value only represents the contribution from the increase

in DSOW thickness. In other words, the contribution from the differences in the advec-

tive speed in the presence of boluses is ignored. Furthermore, two important simplifica-

tions/assumptions are made. First, DSOW on the Greenland shelf (< 100 km) is excluded

from the calculation because of the limited number of observations on the Greenland shelf,

none of which sampled it entirely. Second, since there are no concurrent velocity data, a

constant advective speed of 0.2 m/s was assumed, which is representative of the overflow
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(Våge et al., 2011). Previous studies, however, suggest that boluses are associated with

anomalously large velocities (Smith, 1976). Because of these two simplifications, this esti-

mate of the transport difference is likely an underestimate of the true value. The results

from this calculation are shown in Table A.2.

Isopycnals are also displaced downward in the NIIC and in the upper 100 m of Denmark

Strait. This picture is consistent with the modifications of the currents described in the

previous section.

3.3 Volumetric T/S Modes and the Origin of Bolus Water

3.3.1 Features Seen in Volumetric T/S Plots

A volumetric T/S plot was constructed using all of the CTD cast measurements in order to

investigate the water masses and mixing in Denmark Strait (Figure B-15). The plot reveals

that there are two regions of T/S space that contain a large percentage of data. These

regions are called modes and they are centered on 35.2 psu/6∘C and 34.9 psu/-0.5∘C. The

first represents Irminger Water carried northward in the NIIC, and the second represents

a constituent of the overflow that is nearly homogeneous in temperature and salinity. The

large fraction of water situated along the 26.7 and 27.7 isopycnals also suggests that mixing

occurs along these density surfaces. Additionally, Figure B-15 highlights a tail of cold water

that extends from the overflow mode to regions of T/S space occupied by fresh, buoyant

water (less than 0∘C and 34 psu) known as polar surface water. This tail suggests that

diapycnal mixing of these two waters occurs.

3.3.2 Comparison of Mode and Bolus Water in Denmark Strait

The existence of the overflow mode indicates that a large quantity of DSOW occupies a

narrow range of temperatures and salinities. It is therefore likely that most, if not all, of

this mode represents boluses. In order to investigate this connection, the structure of the

overflow mode in T/S space is first inspected in greater detail.

Zooming in on the overflow mode, one sees that the mode consists of a dense core (<

28.03) and a warmer “tail” (Figure B-16). The core is likely comprised of Arctic origin water

and will hereafter be referred to as the lower mode. The tail appears to be a mixture of

Arctic origin water and another, warmer source water. This other water is likely the return
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Atlantic water. The tail will be referred to as the upper mode.

To evaluate the connection between the overflow modes and boluses, the average tem-

perate and salinity of boluses were compared to the modes. Figure B-16 shows these average

temperatures and salinities generally fell within the range of temperatures and salinities of

the overflow modes. Furthermore, the locations of the boluses and overflow modes in verti-

cal sections coincide with one another. In particular, upper mode water is primarily found

on the ledge (near 130 km), lower mode water is primarily in the trough, and bolus water

encompasses these two regions (Figures B-9).

Another way to evaluate an overlap in geographic locations is by calculating the percent

composition of lower and upper mode water in boluses and vis versa. The calculation reveals

that boluses primarily consist of these mode waters and the majority of lower mode water

is found in boluses (Figure B-17, Figure B-18). Specifically, the boluses are 48.69 ± 4.24%

lower mode water and 21.34 ± 3.43% upper mode water. Additionally, on average, 71.82 ±

0.28% of the lower mode water and 28.69 ± 0.23% of the upper mode water are contained

in a bolus.

3.3.3 Origin of the Mode Water Upstream of Denmark Strait

Since boluses mostly consist of upper and lower mode water, the upstream locations of

these waters are investigated. In this section, upper and lower mode water will refer to any

water having the same temperature and salinity as the upper and lower overflow modes,

respectively. Figure B-19 shows the geographic distribution of upper and lower mode water

north of Denmark Strait. In these figures, isolated data points corresponding to mode water

are filtered out, so only coherent water masses are included in the calculation. Specifically,

if more than 20% of the water 10 meters above or below a data point did not contain the

same type of water, the data point is removed from the calculation.

The data suggest that upper mode water is found predominantly in the EGC, since the

greatest quantities of upper mode water are found west of the Kolbeinsey ridge. While this

water is also found in the Iceland gyre, it is found close to the surface in small quantities.

Therefore, it is likely that the upper mode water in the Iceland Sea is quickly transformed

during wintertime convection. Consequently, it is unlikely that the upper mode water in

Denmark Strait comes from the Iceland Sea.

On the other hand, the lower mode water appears to originate in the Iceland Sea. As
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was the case for the upper mode water, the lower mode water is found relatively close to the

surface of the Iceland Sea, but unlike the upper mode water, it is found in large quantities.

The lower mode water is also equally close to the surface along the northern portion of the

Iceland shelf (200-300 m). Close to the Látrabjarg line, the top of the lower mode water

is found at 350-450 m, or 100-200 m above sill depth. These observations are consistent

with the idea that lower mode water is carried in the NIJ and comprises the lower limb of

the Iceland Sea overturning loop (discussed in the introduction). Furthermore, the depth of

lower mode water in the vicinity of the sill is consistent with the height of boluses ( ≥150 m.

It should also be noted that a large portion of mode water is present water east of Iceland,

near 10∘W and 65∘30’N. Consequently, some of the lower mode water may originate from

this location as well.

34



Chapter 4

Conclusion

4.1 Summary

This study has investigated the hydrographic structure and variability in Denmark Strait

using 111 shipboard sections occupied between 1990 and 2012. The mean sections reveal the

presences of the of the shelfbreak EGC and the separated EGC in the strait. The sections

also show Irminger water on the Iceland shelf and, to a lesser extent, on the Greenland shelf.

Polar surface water is present in the mean sections as well, but return Atlantic water is not.

Large, cold lenses of water called boluses are observed in the bottom of the trough in

almost half of the sections, and synoptic variability in the hydrographic structure of Denmark

Strait is tied to their intermittent presence. Boluses are colder, denser, and saltier than the

background overflow water, and they are responsible for variability in the hydrographic

properties of DSOW. Furthermore, they are associated with a warming and eastward shift

in the NIIC and a freshening and cooling of surface waters west of the Iceland shelf. Boluses

also increase the thickness of the overflow water, and as a consequence, they likely increase

the southward transport of DSOW at the sill.

Hydrographic data north of Denmark Strait suggest that most of the water contained in

boluses comes from the Iceland Sea.This Arctic origin water is primarily found in the lower

trough in Denmark Strait. The data also suggest that a smaller, yet substantial, portion of

bolus water comes from the EGC. This water is found mostly on the ledge at the sill and is

likely a mixture of return Atlantic water and Arctic origin water.
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4.2 Discussion

The results also show that the properties and locations of currents and water masses change

in Denmark Strait with the passage of boluses. Boluses coincide with a warming and east-

ward shift of the NIIC. They also coincide with an amplification of the polar surface water,

which approaches Denmark Strait in the EGC. This signal extends to 170 km, which is the

hypothesized mean location of the separated EGC. More investigation is needed to deter-

mine whether this amplification is due to an increased presence of PSW, a freshening and

cooling of PSW, or a combination of both. Regardless, these changes in the currents (and

the waters advected by them) suggest that the dynamics of all the currents in Denmark

Strait - the NIJ, NIIC, shelfbreak EGC, and separated EGC - are linked.

The results presented in this study imply that boluses contribute to the transport of

DSOW in several ways. First, boluses are 0.099 ± 0.004 kg/m3 denser than the surrounding

DSOW. The numerical modeling study of Price and Baringer (1994), which investigated

deepwater outflows from marginal seas, found that a larger difference in density between the

overflow and overlying water results in stronger entrainment and an increase in transport.

The significance of this 0.099 density difference on the transport, however, has yet to be

determined.

Second, boluses contribute more than 0.88 Sv to DSOW at the sill due to the upward

heaving of the isopycnals. This displacement in isopycnals increases the cross sectional area

of the overflow and, assuming no change in the rate at which DSOW spills over the sill,

increases the transport. More hydrographic sections across the entirety of Denmark Strait,

however, are needed in order to calculate the total increase in transport (at the sill) due

to isopycnal heaving. Velocity measurements of boluses and background DSOW are also

needed to calculate the total contribution of boluses to the overflow transport.

Third, the results indicate that boluses are features frequently seen in synoptic sections

in Denmark Strait. Due to the lack of continuous, hydrographic measurements across the

sill, it is impossible to say whether boluses frequent the sill with any sort of periodicity

and, if so, what that period is. It is therefore impossible to draw a connection between

the passage of boluses and cyclone genesis. On the other hand, boluses are present in a

little under half of the sections, and this observation does not refute the possibility of such

a connection. Simultaneous CTD and velocity measurements are needed to answer this
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question. If boluses do spin up cyclones, boluses would play an important role in entraining

water and increasing the transport of NADW south of the sill.

T/S analysis of DSOW suggests that boluses primarily consist of two different upstream

sources. The majority of boluses are associated with lower mode water. The geographic

distribution of this water north of Denmark Strait suggests that it originates in the Iceland

Sea and approaches the sill in the NIJ. Furthermore, most of the lower mode in Denmark

Strait is contained in boluses. For this reason, boluses give us insight into the nature of

the NIJ. Some of the boluses include lighter, warmer upper mode water. The location of

this water in the vertical sections across Denmark Strait and in the historical, hydrographic

dataset of upstream CTD casts suggest that this water is carried southward to the sill in

the EGC.
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Appendix A

Tables
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Table A.1: List of the 111 hydrographic occupations of Denmark Strait across the Látrabjarg
Line. Part (a) contains identification information for the cruises listed in the “cruise" column
of part (b).

Abbreviation Ship Name Country
A Árni Friđriksson Iceland

AR Aranda Finland
B Bjarni Sæmundsson Iceland
D Discovery United Kingdom
JR James Clark Ross United Kingdom
KN Knorr United States
M Meteor Germany

MSM Maria S. Merian Germany
P Poseidon Germany
PS Polarstern Germany

(a)

Date Cruise Date Cruise Date Cruise
March 1990 B-03-1990 May 1998 B-06-1998 August 2005 P-327
August 1990 B-13-1990 August 1998 A-09-1998 August 2005 P-327

November 1990 B-17-1990 September 1998 B-09-1998 November 2005 B-13-2005
February 1991 B-03-1991 September 1998 P-244 February 2006 B-02-2006

May 1991 B-07-1991 September 1998 P-244 May 2006 B-04-2006
September 1991 A-12-1991 September 1998 P-244 September 2006 D-311
November 1991 B-14-1991 October 1998 PS-52 November 2006 A-11-2006
February 1992 B-02-1992 November 1998 B-12-1998 February 2007 B-03-2007

May 1992 B-07-1992 February 1999 B-02-1999 May 2007 B-08-2007
September 1992 A-08-1992 May 1999 B-07-1999 July 2007 MSM-05-4
September 1992 B-14-1992 August 1999 A-10-1999 August 2007 B-11-2007
October 1992 B-16-1992 September 1999 B-13-1999 November 2007 A-14-2007
February 1993 B-02-2003 November 1999 B-16-1999 February 2008 A-01-2008

May 1993 B-07-1993 February 2000 B-02-2000 May 2008 B-08-2008
August 1993 A-14-1993 May 2000 B-06-2000 August 2008 A-11-2008

September 1993 B-11-1993 August 2000 B-10-2000 October 2008 KN-194
October 1993 B-14-1993 November 2000 B-14-2000 November 2008 A-13-2008
February 1994 B-03-1994 February 2001 B-02-2001 February 2009 B-01-2009

May 1994 B-08-1994 May 2001 B-06-2001 May 2009 B-05-2009
September 1994 B-14-1994 August 2001 B-10-2001 June 2009 MSM-12-1
October 1994 B-17-1994 November 2001 B-14-2001 August 2009 B-10-2009
March 1995 B-03-1995 May 2002 B-05-2002 November 2009 A-14-2009
May 1995 B-07-1995 August 2002 B-09-2002 February 2010 B-04-2010

August 1995 A-11-1995 September 2002 P-294 May 2010 B-08-2012
September 1995 B-14-1995 November 2002 A-10-2002 July 2010 M-82-1
November 1995 B-17-1995 February 2003 A-02-2003 August 2010 B-12-2010
February 1996 B-03-1996 May 2003 A-09-2003 February 2011 B-01-2011
August 1996 A-11-1996 August 2003 B-03-2003 May 2011 B-04-2011
October 1996 A-14-1996 September 2003 P-303 August 2011 M-85-2
February 1997 B-03-1997 November 2003 B-10-2003 August 2011 KN-203

May 1997 B-06-1997 February 2004 B-01-2004 December 2011 B-10-2011
August 1997 A-14-1997 May 2004 B-05-2004 February 2012 B-02-2012
August 1997 AR-34 November 2004 B-15-2004 May 2012 B-05-2012

September 1997 AR-34 February 2005 B-02-2005 June 2012 MSM-21-1b
September 1997 B-10-1997 May 2005 B-06-2005 July 2012 JR-267
November 1997 B-15-1997 August 2005 A-09-2005 August 2012 P-437
February 1998 B-02-1998 August 2005 P-327 August 2012 B-09-2012

(b)
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Table A.2: Mean and standard errors of the potential temperature, salinity, and potential
density of boluses and non-bolus overflow. The last column contains transport estimates of
the total overflow water (east of the Greenland shelf) in the presence and absence of boluses.
Transports were estimated using a constant velocity of 0.2 m/s, a value characteristic of the
overflow (Våge et al., 2011).

𝜃 (∘C) Salinity (psu) 𝜎𝜃 (kg/m3) Est. Transport (Sv)
Boluses −0.087± 0.029 34.993± 0.003 28.031± 0.002 2.862± 0.141
Background DSOW 0.806± 0.040 34.853± 0.004 27.931± 0.002 1.984± 0.146
Difference (Bolus - Background) −0.894± 0.069 0.046± 0.007 0.099± 0.004 0.877± 0.287

41



42



Appendix B

Figures
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Figure B-1: Schematic of the currents flowing through Denmark Strait. The sill is located
at the Látrabjarg line (drawn in black). The 500 m and 1000 m isobaths are contoured in
grey.
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(a)

(b)

Figure B-2: The months and years of all the occupations (a) and the occupations with
boluses (b). The marker’s opacity indicates the number of occupations conducted in a given
month and year.
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Figure B-3: The Látrabjarg line (draw in black) and CTD stations in green. The CTD
stations are from 111 shipboard crossings of Denmark Strait. The 500 m and 1000 m
isobaths are contoured in grey.
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Figure B-4: The cruise tracks (a) and corresponding echo-sounder measurements (b) from
5 cruises that occupied Denmark Strait. The Látrabjarg line (black) is created from the
best-fit line of the cruise tracks. The bend in KN-194 is removed from this calculation. The
echo-sounder data are filtered to create the corresponding bathymetric contour in (b). The
500 m and 1000 m isobaths are contoured in grey in (a).

47



0 50 100 150 200 250

0

100

200

300

400

500

600

700

Distance (km)

D
ep

th
 (m

)

Bathymetry of Denmark Strait

Trough
Greenland Shelf

Iceland Shelf

Greenland Shelf Break Iceland Shelf Break
Ledge

Lower Trough

Shelfbreak EGC Separated EGC

NIIC

NIJ

Figure B-5: Locations of bathymetric features in Denmark Strait across the Látrabjarg line.
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Figure B-6: Station locations (a) and depths (b) taken on cruise P-294 in the vicinity of
the Látrabjarg line. Stations were first projected onto the Látrabjarg line (b, red) and then
shifted (b, blue). The bathymetry is contoured in grey.
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Figure B-7: The number and location (in vertical sections along the Látrabjarg line) of data
that are modified to eliminate density inversions.
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Figure B-8: The mean potential temperature (a), salinity (b), and 𝑁2 (c) of the Látrabjarg
line. Potential density is contoured in black and the 27.8 isopycnal, which indicates the top
of the overflow, is highlighted in pink. The lines above each subplot indicate the number of
independent samples across the section.
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(a)

(b)

(c)

Figure B-9: Realizations of (a) boluses, (b) lower mode water, and (c) upper mode water
identified in synoptic sections across Denmark Strait.
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Figure B-10: The composite bolus (a), background (b), and anomaly (c) sections of potential
temperature. Potential density is contoured in black and the 27.8 isopycnal, which indicates
the top of the overflow, is highlighted in pink. The lines above each subplot indicate the
number of independent samples across the section. In the anomaly subplots, the dashed
line represents the number of bolus samples and the solid line represents the number of
background samples. The grey crosses indicate regions of the plot where the spread in bolus
and background values do not overlap.
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Figure B-11: The composite bolus (a), background (b), and anomaly (c) sections of salinity.
Potential density is contoured in black and the 27.8 isopycnal, which indicates the top of
the overflow, is highlighted in pink. The lines above each subplot indicate the number of
independent samples across the section. In the anomaly subplots, the dashed line represents
the number of bolus samples and the solid line represents the number of background samples.
The grey crosses indicate regions of the plot where the spread in bolus and background values
do not overlap.

54



 26.5

   27

27.25

 27.5

 27.6

 27.7

 27.8

 27.9

27.95

   28

28.05

P
o

te
n

ti
a

l 
D

e
n

s
it

y
 (

k
g

/m
3
)

Distance (km)

D
e
p

th
 (

m
)

 

 

50 100 150 200 250

0

100

200

300

400

500

600

700

50 100 150 200 250
0

20

40

O
c
c
u

p
a
ti

o
n

s

Bolus Composite Potential Density

 

 

(a)

 26.5

   27

27.25

 27.5

 27.6

 27.7

 27.8

 27.9

27.95

   28

28.05

P
o

te
n

ti
a

l 
D

e
n

s
it

y
 (

k
g

/m
3
)

Distance (km)

D
e
p

th
 (

m
)

 

 

50 100 150 200 250

0

100

200

300

400

500

600

700

50 100 150 200 250
0

20

40

60

O
c
c
u

p
a
ti

o
n

s

Background Potential Density

 

 

(b)

 −1.5

−0.75

 −0.5

 −0.4

 −0.2

−0.15

 −0.1

−0.05

−0.04

−0.03

−0.02

−0.01

    0

 0.02

 0.04

 0.06

 0.08

  0.1

 0.15

  0.2

  0.3

∆
 P

o
te

n
ti

a
l 

D
e

n
s

it
y

 (
k

g
/m

3
)

Distance (km)

D
e
p

th
 (

m
)

 

 

27.8
27.8

50 100 150 200 250

0

100

200

300

400

500

600

700

50 100 150 200 250
0

20

40

60

O
c
c
u

p
a
ti

o
n

s

Composite Potential Density Anomaly of Boluses

 

 

(c)

Figure B-12: The composite bolus (a), background (b), and anomaly (c) sections of potential
density. The 27.8 isopycnal, which indicates the top of the overflow, is highlighted in pink.
The lines above each subplot indicate the number of independent samples across the section.
In the anomaly subplots, the dashed line represents the number of bolus samples and the
solid line represents the number of background samples. The grey crosses indicate regions
of the plot where the spread in bolus and background values do not overlap.
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(c)

Figure B-13: The composite bolus (a), background (b), and anomaly (c) sections of 𝑁2.
Potential density is contoured in black and the 27.8 isopycnal, which indicates the top of
the overflow, is highlighted in pink. The lines above each subplot indicate the number of
independent samples across the section. In the anomaly subplots, the dashed line represents
the number of bolus samples and the solid line represents the number of background samples.
The grey crosses indicate regions of the plot where the spread in bolus and background values
do not overlap.
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Figure B-14: Mean vertical displacement of the isopycnals in Denmark Strait due to the
passage of boluses (color). Overlaid on this is the potential density (contours) of the back-
ground state (in the absence of boluses). The grey crosses indicate regions of the plot where
the spread in bolus and background values do not overlap.
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Figure B-16: The volumetric T/S plot of the densest measurements from the Látrabjarg
line. In (a) The upper (warmer) and lower (colder) T/S modes are outlined in pink. In (b)
the mean temperature and salinity of each bolus is indicated by a green star.
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Figure B-17: The number of grid points representing lower mode water (upper subplot) and
upper mode water (lower subplot) and whether they are contained in boluses.
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Figure B-18: The percent composition of lower and upper mode water for each of the 46
boluses.
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(ai) (aii)

(bi) (bii)

Figure B-19: The vertical extent (i) and proximity to the surface (ii) of lower mode (a) and
upper mode (b) water in the Nordic Seas. Only water above sill depth (650 m) is considered.
The black contours denote the dynamic height of the Iceland Sea gyre, and the bathymetry
is contoured in grey.
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