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Abstract

A paleo-data compilation with 492 δ13C and δ18O observations provides the op-

portunity to better sample the Last Glacial Maximum (LGM) and infer its global

properties, such as the mean δ13C of dissolved inorganic carbon. Here, the paleo-

compilation is used to reconstruct a steady-state water-mass distribution for the

LGM, that in turn is used to map the data onto a 3D global grid. A global-mean

marine δ13C value and a self-consistent uncertainty estimate are derived using the

framework of state estimation (i.e., combining a numerical model and observa-

tions). The LGM global-mean δ13C is estimated to be 0.14h± 0.20h at the

two standard error level, giving a glacial-to-modern change of 0.32h± 0.20h.

The magnitude of the error bar is attributed to the uncertain glacial ocean circula-

tion and the lack of observational constraints in the Pacific, Indian, and Southern

Oceans. Observations in the Indian and Pacific Oceans generally have 10 times

the weight of an Atlantic point in the computation of the global mean. To halve

the error bar, roughly four times more observations are needed, although strategic

sampling may reduce this number. If dynamical constraints can be used to bet-

ter characterize the LGM circulation, the error bar can also be reduced to 0.05 to
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0.1h, emphasizing that knowledge of the circulation is vital to accurately map

δ13CDIC in three dimensions.

Keywords: Paleoceanography, Physical Oceanography, Carbon reservoirs, Last

Glacial Maximum, Inverse methods

1. Introduction1

Carbon-13 to carbon-12 ratios (i.e., δ13C) can chemically fingerprint differ-2

ent carbon reservoirs, and thus glacial-interglacial changes in δ13C of oceanic3

dissolved inorganic carbon (i.e., δ13CDIC) reflect the carbon partitioning between4

terrestrial, atmospheric, and marine reservoirs. Dramatic environmental changes5

during the Last Glacial Maximum (LGM, 23,000 to 19,000 years before present)6

altered the terrestrial biosphere, and some of the low isotopic signature of ter-7

restrial carbon (δ13C≈ −25h) was transferred to the glacial ocean, consistent8

with observations of benthic foraminiferal δ13C lower than the modern-day (e.g.,9

Shackleton, 1977; Curry et al., 1988; Duplessy et al., 1988). The glacial atmo-10

sphere held approximately 170 gigatons (Gt) less carbon (e.g., Monnin et al.,11

2001), leaving the ocean as the most readily available source of compensation12

for the other two reservoirs. Pollen records and vegetation models that more di-13

rectly reflect terrestrial carbon change yield higher estimates of glacial-to-modern14

carbon transfer (e.g., 750 to 1900 Gt C, Crowley, 1995; Adams and Faure, 1998;15

Kaplan et al., 2002) than the marine-based estimates (e.g., 330 to 650 Gt C, Shack-16

leton, 1977; Curry et al., 1988; Duplessy et al., 1988; Köhler et al., 2010), al-17

though an inert terrestrial carbon pool may reconcile the difference (Ciais et al.,18

2012). A recent compilation of benthic Cibicidoides spp. δ13C has nearly twice19

the data points of previous compilations and coverage of the Atlantic, Pacific, and20
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Indian Oceans (Peterson et al., 2014), and thus motivates the re-investigation of21

the marine-based whole-ocean δ13C estimates.22

Determining the mean value of a spatially-distributed tracer field reduces to a

linear operation in most cases (i.e., an inner vector product):

c = wT y+ c0 =
N

∑
i=1

wiyi + c0 (1)

where c is the global mean value of a tracer c, w is a vector of weights with wi for23

the ith element, T is the vector transpose, y is a vector containing N observations of24

yi, and c0 is a constant included for full generality. If all observations are assumed25

to contain equal information about the global mean and no other information is26

available (i.e., c0 = 0), the optimal weights would all be 1/N, and equation (1)27

reverts to the basic sample mean. The sparse, irregularly-spaced nature of glacial28

observations invalidates this assumption, of course. Originally, paleoceanogra-29

phers best dealt with this issue by choosing cores from what was thought to be30

the most representative oceanic regions (e.g., Shackleton, 1977). As more data31

became available, basin-wide or regional means were computed as a preliminary32

step before global averaging (e.g. Curry et al., 1988; Boyle, 1992; Matsumoto and33

Lynch-Stieglitz, 1999; Peterson et al., 2014). This multi-step process naturally34

leads to non-uniform weights on the observations in equation (1).35

When the global-mean oceanic δ13CDIC is computed as a succession of sub-36

averages, the result may be sensitive to the size and location of the chosen sub-37

domains, and only by producing δ13C maps at higher spatial resolution will this38

sensitivity be reduced. The distance between LGM observations, however, is often39

greater than the decorrelation lengthscale of oceanic property fields, and thus the40

typical method of “objectively” mapping the observations onto a regular grid (e.g.,41

optimal interpolation or objective mapping, Bretherton et al., 1976) reverts to a42
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first-guess estimate in many locations. In other words, large regions of the LGM43

ocean would be unconstrained by the data, especially at intermediate depths where44

little core coverage is available. Furthermore, the objectively-mapped estimate45

will leave local extrema in the estimated tracer field around the data points. Such46

features are undesirable because they are not physically sustainable in equilibrium47

when diffusion has sufficient time to act (e.g., for atmospheric momentum, Hide,48

1969). It is not clear, however, how equilibrated the glacial ocean was and whether49

eddy processes can be accurately modeled as a diffusive process. Computation50

of an accurate global mean is challenging even for modern-day cases, such as51

sealevel rise (e.g., Wunsch et al., 2007). A new method is needed to create a map52

with sparse LGM observations that addresses these complications.53

Here we suggest that a method originally developed for estimating the oceanic54

water-mass distribution from sparse observations (Gebbie, 2014) is also well-55

suited to make three-dimensional global maps. Specifically, we combine a tracer56

transport model (Section 2.1) with observations (Section 2.2) to produce an LGM57

state estimate. Rather than using the assumed statistics of circulation length-58

scales, like optimal interpolation, we illustrate that the circulation itself can be59

used to make a gridded field (Section 2.3). The numerical model serves a dual60

purpose: 1) a means to readily interpret the sources, sinks, and pathways of tracer,61

and 2) a kinematic interpolator and extrapolator that allows large-scale informa-62

tion to be extracted from the observations. Here we extend the state estimation63

framework by deriving a self-consistent formula for the global-mean uncertainty64

(Section 2.4).65

This work has two major results: 1) an estimate of the LGM global-mean66

δ13CDIC, and 2) its uncertainty within a explicit set of assumptions. To connect67
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these results to deglacial climate dynamics and the carbon cycle, we reconstruct68

a global map of LGM δ13CDIC and detect a largescale, coherent pattern of LGM-69

to-modern changes (Section 3). The glacial-mean δ13CDIC uncertainty is partially70

attributed to the sparsity and measurement error in the observations, but also due to71

the difficulty in accurately modeling the LGM circulation (Section 4). Our results72

are discussed in the context of previous observational techniques (Section 5), es-73

pecially how the observational weights in the averaging equation (1) are modified74

by the assumed circulation regime. We conclude by emphasizing the importance75

of circulation knowledge in the goal of further reducing the global-mean δ13CDIC76

uncertainty (Section 6).77

2. Global LGM state estimate78

The global LGM state estimate is produced by combining a kinematic tracer79

transport model with a global array of benthic foraminiferal observations of δ13C80

and δ18O. Global, three-dimensional gridded distributions are produced for mul-81

tiple tracers: δ13CDIC, seawater δ18O (i.e., δ18Ow), potential temperature, practical82

salinity, and phosphate. The model, observations, and state estimation method are83

detailed next.84

2.1. Model85

The model is a statistically steady-state conservation equation that is assumed86

to hold for, C, a general tracer: ∇ · (~FC) = Q, where ~F is the mass flux and Q is87

a local source or sink. In the statistical steady state, any temporal variability that88

has a net diffusive or advective effect is represented by the model used here.89

In practice, the model equations are discretized on a global, three-dimensional

grid. Here the grid is defined with 4◦× 4◦ horizontal resolution and 33 vertical
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levels with enhanced resolution near the surface. Glacial ocean computations are

undertaken on the same grid as a modern-day reference case, but gridcells shal-

lower than 120 meters modern-day water depth are discarded due to the sealevel

drop. After discretization, the equations are normalized by the sum of all mass

fluxes into the gridcell, φi = ∑
N
j=1 fi j, where fi j is the flux from gridcell j to i,

and there are N neighboring gridcells. Then the tracer transport equation at grid-

cell i becomes more similar to a water-mass mixing model (following Gebbie and

Huybers, 2012):
N

∑
j=1

mi jc j− ci = qi (2)

where mi j is the ratio of the inward flux from j to the total flux (mi j = fi j/φi), ci is90

the tracer concentration in cell i, and qi is equilibrium tracer source with units of91

the tracer concentration itself (qi =Q/φi). For conservative tracers, the source and92

sink vanishes (Q = 0). These algebraic manipulations lead to a well-conditioned93

set of equations that can be solved quickly, but with the tradeoff that information94

is lost regarding the absolute rate of circulation.95

The isotope variables, δ13CDIC and δ18Ow, require some further consideration.96

In particular, the sink of δ13CDIC due to remineralization is assumed to be equal97

to −0.95h/(µmol/kg) times the source of remineralized phosphate, which is ad-98

justed relative to the modern ratio of −1.1h/(µmol/kg) due to changes in whole-99

ocean δ13CDIC and upper-ocean biological fractionation (e.g., following Broecker100

and Maier-Reimer, 1992). Here we model the ratio (delta value) rather than the in-101

dividual isotopes which incurs an error (e.g., Walker, 1991), but it is small because102

the 18O/16O ratio in Vienna Standard Mean Ocean Water (VSMOW) standard is103

about 1/500, and the 13C/12C ratio in the Vienna Pee Dee Belemnite (VPDB)104

standard is about 1/90. Furthermore, this error is damped in the vicinity of obser-105
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vations by the formal data constraints.106

For reasons that should become clear below, the state vector, x, is defined to107

contain both tracer and circulation information, i.e., xT = [c;m]T , where c is a108

vector that represents all of the global three-dimensional tracer distributions and109

m describes the circulation by concatenating all of the mass-flux ratios, mi j (e.g.,110

Gebbie and Huybers, 2010). This state vector definition is not unique, but it pro-111

vides sufficient information to permit a steady-state tracer distribution to be com-112

puted, and thus is an acceptable definition of the state. All of the tracer transport113

equations are combined and symbolically represented as: L [x] = q+v, where L114

is a nonlinear operator due to the multiplication of the tracer concentration and115

flow field that encapsulates advective and diffusive processes, and v is the source116

deviation from the modern-day first-guess field, q. The model equation includes117

surface concentration (i.e., Dirichlet) boundary conditions for completeness.118

2.2. Observations119

A major extension to the work of Gebbie (2014) is the use of the paleo-data120

compilation of Peterson et al. (2014) that includes observations in the Pacific and121

Indian sectors, rather than the Atlantic-only data used previously. This compi-122

lation contains 376 δ13C and 369 δ18O measurements from benthic foraminifera123

dated to the Last Glacial Maximum from 23,000 to 19,000 years before present124

(23-19 kyr BP) following a re-derived age model for many cores (Stern and Lisiecki,125

2014). The need for inter-species and interlaboratory offsets is reduced by com-126

piling only Cibicidoides spp. δ13C data, although there are few data of this type127

in intermediate waters. Other data are added (e.g., personal communication, D.W.128

Oppo and W. Curry, Marchal and Curry, 2008; Makou et al., 2010; Hesse et al.,129

2011), including porewater salinity and δ18O data points (Adkins et al., 2002).130
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The deglacial records indicate a group of outliers where the LGM-to-Holocene131

δ18O change is less than 0.6h and can be traced to low temporal resolution in the132

cores. Therefore we have removed these values from the compilation. Observa-133

tions were also culled when the phytodetritus effect was implicated by the original134

authors (e.g., Mackensen et al., 2000) and at locations that fall more than 200 km135

outside of the model grid. When combining the Peterson et al. (2014) compilation136

with the additional data, we have 492 LGM δ13C and 492 δ18O data points that137

constrain the model simulation (locations are later shown in Figure 8).138

The collection of observational equations is expressed as one matrix equation:139

y = Ex+n, where y is a vector of observations, E predicts the observations from140

the state, x, and n is the observational error. We assume that benthic foraminiferal141

δ13C refects δ13CDIC (e.g., Duplessy et al., 1984) and that the error in this as-142

sumption is normally distributed with a standard deviation of 0.2h (Marchal and143

Curry, 2008). We check this assumption by calculating the misfit between the144

Late Holocene core data and a projection of the modern-day δ13CDIC distribution of145

Gebbie (2014) onto the core sites. The standard deviation of the misfit is 0.27h,146

suggesting that 0.2h is a reasonable guess of this unknown quantity. Systematic147

errors in this relationship will be addressed in Section 4.6.148

2.3. State estimation method149

The solution method is started with prior knowledge of the state as encap-

sulated in a first guess, x0. Here we use modern-day property distributions, but

where δ18Ow and practical salinity are adjusted higher by 1.1h and 1.1 on the

practical salinity scale, respectively, to account for glacial sealevel drop. The first-

guess constraint is equivalently written as an equation: x = x0 +u, where u is a

deviation from the first guess that is permitted to be large (see the weight matrices
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below). Then, the solution state is determined by minimizing a cost function that

combines the constraints from this and the previous two sections (2.1 and 2.2)

J = uT S−1u+nT W−1n+vT Q−1v, (3)

where S,W, and Q are matrices that provide the relative weightings (see Ap-150

pendix A for the chosen values relevant for equation 3). The three terms on the151

right hand side represent the three major constraints: 1) prior information about152

the tracer distribution and circulation, 2) proxy observations, and 3) the tracer153

transport model.154

The complete solution method for the global δ13CDIC distribution was reported155

by Gebbie (2014) and includes a number of other constraints (and, hence, terms in156

the cost function), such as gravitational stability and the non-negativity of tracer157

concentrations. To recap, this weighted, tapered least-squares problem is solved158

by transforming equation (3) into a constrained cost function by appending La-159

grange multiplier terms, and then hand-coding the adjoint equations that give160

sensitivity information. It is solved iteratively using a limited-memory quasi-161

Newton gradient descent routine (Nocedal, 1980). After solving for the δ13CDIC162

state, we seek a formula for the global-mean uncertainty that is valid in the neigh-163

borhood of the known solution. The final solution is gravitationally stable and164

has non-negative tracer distributions, indicating that the additional cost function165

terms are not actively constraining the solution at the final iteration. Thus we sim-166

plify the uncertainty problem by assuming that equation (3) represents all active167

constraints, and derive an uncertainty formula under such an assumption next.168
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2.4. Global-mean uncertainty of the state estimate169

Many methods for computing error bars are available, and we explicitly define170

what is meant by uncertainty in this work by following the development of Wun-171

sch (1996). The uncertainty, Pc, is defined as the expected squared difference be-172

tween the estimated global mean, c̃, and the true value, c (i.e., Pc ≡< (c̃− c)2 >),173

where the brackets indicate the expected value operator. For an unbiased estima-174

tor, the true solution, c, may be set equal to the expected value that would emerge175

from our estimation method over many different realizations, < c̃ >, but here we176

restrain from such an interpretation given the highly nonlinear nature of the prob-177

lem and the simplified nature of the model. Thus we are restricted to solving178

for the expected range of solutions, here defined as the dispersion of c̃− < c̃ >179

or equivalently the covariance of the global mean, Cc≡< (c̃− < c̃ >)2 >. The180

standard error, σc, is then defined as the square root of the solution covariance:181

σc≡
√

Cc. We follow the convention of Peterson et al. (2014) by quoting twice the182

standard error as our estimate of the glacial-mean δ13CDIC uncertainty, which can183

naturally be interpreted as the 95% confidence interval of a normally-distributed184

process.185

Before calculating the uncertainty of the global mean, we first define the global

mean explicitly as

c = rT x, (4)

where r is the appropriately-defined mass-weighting vector (i.e., ri =Mi/∑
J
j=1 M j186

for all i≤ J where Mi is the mass of gridcell i and the global ocean has J gridcells,187

and ri = 0 for all i > J). By construction, the sum of elements of r is equal to188

one (||r||1 ≡ 1) as is usual in averaging equations. As three-dimensional fields189

are modeled for temperature and salinity, the mass of each gridcell is determined190
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by the product of the cell volume and the seawater density as calculated by the191

international thermodynamic equation of state (IOC, 2010). Although the LGM192

density field is not well constrained, the spatial range of density has variations no193

larger than 5%, and thus volume (set by the size of the gridcells) dominates the194

calculation.195

Substituting the global-mean equation (4) into the definition of the global-

mean covariance, the uncertainty of the global mean is clearly dependent upon

the uncertainty over the entire globe:

Cc = rT Cx̃r, (5)

where Cx̃ is the full solution covariance. Thus it is necessary to determine the

uncertainty of the three-dimensional tracer distribution to calculate the uncertainty

of the global mean. Following Appendix B, the solution covariance is

Cx̃ = (S−1 +ET W−1E+LT
x̃ Q−1Lx̃)

−1, (6)

where Lx̃ is the model linearized about the state, x̃ (i.e., Lx̃ ≡ ∂L/∂x]x̃). Equa-196

tion (6) assumes that the weight matrices are chosen to be the expected second-197

moment matrices of the residuals (i.e., Rnn = W, Rqq = Q, and Rxx = S, follow-198

ing Wunsch (1996)), as well as the assumption that our simplified cost function is199

valid.200

Substitution of equation (6) into (5) permits the global-mean uncertainty to be

written explicitly in terms of the known input variables in the problem:

Cc = rT (S−1 +ET W−1E+LT
x̃ Q−1Lx̃)

−1r. (7)

Equation (7) illustrates that the three contributions to the uncertainty come from201

the three constraints: the first-guess uncertainty in the state (S−1), the uncertainty202
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related to the observations (ET W−1E), and the uncertainty related to the imperfect203

model (LT
x̃ Q−1Lx̃). While these three terms have clear contributions to the uncer-204

tainty, they are under the inverse in the equation and thus the total uncertainty is205

not simply a linear combination of the three parts.206

3. LGM δ13C and deglacial change207

3.1. Global-mean δ13C208

The glacial-mean δ13C and its uncertainty are calculated by adapting equa-209

tions (4) and (7) for δ13CDIC. The full solution uncertainty (equation 6) is never210

needed explicitly, thus avoiding the storage of a 1.8 terabyte matrix (the state has211

475773 elements and Cx̃ has this dimension squared). As r is a column vector, we212

can break equation (7) into two parts, one a matrix-vector product and one a vec-213

tor inner product, such that memory usage is minimized. We find that the LGM214

mean δ13CDIC is δ13CDIC

G
= 0.14h± 0.20h (at the 2σ uncertainty level). This215

uncertainty estimate accounts for the observational sparsity and measurement er-216

ror, but does not include errors incurred by the assumed δ13C proxy equation (to217

be addressed later in Section 4.6).218

We are motivated by the atmospheric CO2 change of 80-100ppm from the219

LGM to the pre-industrial era, and thus we seek to estimate the deglacial ma-220

rine δ13C change, here denoted ∆MG[δ
13CDIC] (i.e., modern, “M,” minus glacial,221

“G”). A modern-day reference circulation that attempts to reconstruct the pre-222

industrial ocean was produced using the same method (Gebbie, 2014) and will be223

used for comparison here. The GLODAP and CARINA seawater δ13CDIC com-224

pilation (Schmittner et al., 2013) constrained the modern-day distribution, and225

observations in the upper 1 km of the water column were downweighted to ac-226
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count for the Suess effect (e.g., Olsen et al., 2006) and to produce a pre-industrial227

gridded δ13CDIC distribution. The result is a reference modern-day estimate of228

δ13CDIC

M
= 0.47h± 0.03h. Uncertainty due to the Suess effect is not included229

in this error bar, and is revisited in more detail in Section 4.3 where we find that it230

may increase the uncertainty by approximately 0.05h.231

Under the assumption that the LGM and modern estimates are independent,232

the LGM-to-modern difference is ∆MG[δ13CDIC] = 0.32h±0.20h (at the 2σ level233

after rounding). Our estimate provides corroborating evidence for both 1) recent234

data-based estimates of 0.34h±0.26h (Ciais et al., 2012) and 0.34h±0.19h235

(Peterson et al., 2014), and 2) a forward circulation model that reproduced about236

100 observations and found a change of ∆MG[δ13CDIC] = 0.31h± 0.20h (Tagli-237

abue et al., 2009). Note that the data-based estimates were actually glacial-to-Late238

Holocene differences (here distinguished by the notation, ∆HG[δ
13CDIC]) that may239

reflect a different quantity due to the core information ending over the last few240

thousand years of the Holocene. The level of agreement is surprising, especially241

considering that our estimate results from a spatially structured pattern of change,242

shown next.243

3.2. Spatial distribution of LGM δ13C244

The glacial state estimate faithfully reproduces the LGM δ13C observations245

in all ocean basins. When comparing basin-wide zonally averaged δ13CDIC to the246

foraminiferal observations (squares versus the background colors in Figure 1),247

the spatial pattern is in broad agreement. Any visual differences are attributable248

either to an actual misfit of the data or an artifact of zonal variability (i.e., the249

collapsed third dimension). To eliminate the effect of zonal variability, the state250

estimate is projected onto the observational locations using a linear interpolation251
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or extrapolation from the 8 nearest gridpoints. The resulting δ13CDIC distribution252

fits the observations with a standard deviation of the misfit of 0.19h that is an253

acceptable fit within the expected uncertainty of 0.2h in the data. 50% of the254

points are fit within 0.02h, although outliers larger than ±0.6h exist. While not255

being the primary variable of interest here, δ18O is also fit well, with a standard256

deviation of 0.22h that is approximately equal to its expected value of 0.2h.257

The main characteristic of the LGM Atlantic δ13C distribution is a depletion258

of δ13CDIC below 2500 meters depth (upper panel, Figure 1) that conforms with259

expectations (e.g., Duplessy et al., 1988; Curry and Oppo, 2005). The North At-260

lantic is characterized by a mixing zone from 2 to 4 km depth with a nearly con-261

stant vertical gradient from 0.8h to 0h. The zonally-averaged South Atlantic,262

however, does not have a gradient as sharp as seen in the Brazil Margin data or263

the map of Curry and Oppo (2005), but can be explained by observations of lower264

δ13C values in the eastern South Atlantic between 2 and 3 km depth. Of more265

concern are the undersampled regions, where this inversion sometimes disagrees266

with the Gebbie (2014) inversion. For example, the updated state estimate has a267

much higher δ13CDIC in the Arctic (1.2h compared to 0.6h). The most depleted268

values in the Southern Ocean are about −0.8h in both inversions, but should not269

necessarily be interpreted as a robust result. The uncertainty of the estimate in270

these regions without data will be explicitly addressed in the next section.271

The state estimate permits the inference of more δ13CDIC structure in the Pa-272

cific and Indian Oceans (middle and lower panels, Figure 1) than was previously273

mapped, due in large part to the larger data compilation and the smoothing ca-274

pabilities of the model used here. The zonally-averaged Pacific picture masks275

significant zonal variability, including a deepening of the most depleted western276

14



Figure 1: Zonally-averaged, LGM δ13CDIC divided into three sections: the Atlantic and Arctic (up-

per), Indian (middle), and Pacific (lower), with all observations from the particular basin (colored

squares) and 3D gridded field (background colors and contours). The oceans are divided accord-

ing to Figure 7 of Gebbie and Huybers (2010). The colored symbols are on the same color scale

as the background field.
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Pacific δ13CDIC from 1.5 km in the modern-day to almost 3 km during the LGM277

(e.g., Matsumoto et al., 2002; Herguera et al., 2010). There are significant differ-278

ences with previous maps, however, including a closed region of depleted δ13CDIC279

due to remineralization north of 40◦N in the North Pacific not seen by Herguera280

et al. (2010). The Indian Ocean is reconstructed as a hybrid of the other oceans,281

with low-δ13CDIC Southern Ocean bottom waters like the Atlantic, but a lack of282

high-δ13CDIC waters at mid-depths like the Pacific.283

The bottom waters of the Southern Ocean have δ13CDIC differences approach-284

ing 1h between the Ross (0h) and Weddell (−0.8h) Seas that are masked by285

the zonal averages. These horizontal gradients are partially explained as the pro-286

jection of the large vertical δ13CDIC gradients into the horizontal by the patchiness287

of northern source water incursion into the Southern Ocean. The inhomogeneities288

do not appear to reflect any major shift in the transport of the Antarctic Circumpo-289

lar Current, as northern-source waters continue to spread eastward into the Indian290

Ocean over a similar range as the modern day. While major circulation changes291

are not implicated, the model reconstructs a greater filling of the abyss by the292

Ross Sea rather than the Weddell Sea. Increased glacial abyssal mixing and a293

vigorous deep circulation could explain this feature (Wunsch, 2003; Arbic et al.,294

2004; Schmittner et al., 2015), but our current model lacks absolute rate informa-295

tion and cannot directly test this hypothesis.296

Besides the δ13C distribution, the state estimate permits the diagnosis of water-297

mass distributions consistent with the seawater properties. The inferred LGM At-298

lantic water-mass geometry is similar to the previous inversion of Gebbie (2014),299

where southern source waters dominate the ocean composition only below 4 km300

depth in the North Atlantic. In other words, the southern source waters contribute301
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50% or more of the water by mass in that limited region. Significant deep rem-302

ineralization (with the addition of 12C effectively causing a sink of δ13C) was303

originally reported in the deep glacial Atlantic (Gebbie, 2014), but is less pro-304

nounced in the updated state estimate due to the use of a more spatially-coherent305

δ18O dataset (derived from LGM-to-Late Holocene differences). The estimated306

LGM Pacific has deeper North Pacific Water (down to 2 km instead of 800 m to-307

day, as defined by the 50% concentration line). Otherwise southern water masses308

fill the same part of the Pacific sector.309

3.3. Spatial pattern of δ13C change310

The difference of the modern-day and LGM δ13CDIC permits the mapping of311

a global, three dimensional field of ∆MG[δ
13CDIC], where large-scale coherent pat-312

terns emerge (Figure 2). In much of the world ocean above 1 km depth, δ13CDIC313

decreased over the deglaciation despite the increase in the global mean. Even the314

North Pacific, which was previously found to have little δ13CDIC change above 2315

km (Matsumoto et al., 2002), is estimated to contain upper ocean regions with316

deglacial δ13C decreases. In general, ∆MG[δ
13CDIC] increases with depth and to-317

ward the south, with the biggest changes reserved for the Atlantic sector of the318

Southern Ocean. From these maps, it is clear that the competing influence of many319

different regions must be included in order to accurately assess the the global320

mean.321

4. Contributions to uncertainty322

4.1. Observational sensitivity323

Obvious candidates to contribute to the uncertainty include the sparsity, mea-324

surement error, and representativeness of the observations. Here we test how the325
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Figure 2: Similar to Figure 1, but for the Atlantic, Indian, and Pacific zonal-average difference in

δ13CDIC between the modern-day and LGM (i.e., ∆MG[δ
13CDIC] = δ13CM

DIC - δ13CG
DIC).
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number of sediment core observations affects the resulting uncertainty by creating326

hypothetical cases with a range of observations from 10 to 15000. For the cases327

where the number of observations is less than observed in reality, we randomly328

select a subset of the true observations. This constraint is symbolically written:329

y̆ = Ĕx+ n̆, where the variables with the breve mark have rows deleted from the330

original E definition (second term on the right hand side of equation 7). The331

actual observational values do not matter in this calculation, but only that the ob-332

servational term is modified. For hypothetical cases with more observations than333

reality, we augment the actual observations with additional observations taken ran-334

domly from the seafloor, although this is not entirely realistic due to issues with335

carbonate preservation, species habitats, and sediment availability. Five trials are336

performed with the modified Ĕ matrix and the mean of the trials is reported to337

help make the results more robust.338

The uncertainty decreases with an increasing number of observations accord-339

ing to an apparent power law (σc ≈ 2h/
√

N), where N is the number of ob-340

servations (Figure 3). This function is consistent with the uncertainty estimate341

for the actual number of observations (2σc = 0.20h for N = 492). Between342

N = 500 and N = 1000, the slope of the power law increases, suggesting that343

the additional randomly-distributed data points potentially sample the ocean more344

efficiently than the irregularly-clustered 492 data points that are actually avail-345

able, and indicating that a strategic sampling plan (e.g., see Section 4.5) could346

produce an even greater reduction in uncertainty. Limitations on the presence of347

Cibicidoides calcite on the seafloor would also provide a constraint for a sampling348

strategy. In tests where the number of observations is increased past 15000, the349

standard error does not decrease below 0.06h, suggesting that seafloor observa-350
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Figure 3: The 2σc standard error of the glacial-mean δ13CDIC as a function of number of obser-

vations, on a log-log set of axes. Each dot represents the average of five trials. For N = 10 to

N = 400, a subset of actual observational locations is used. For N = 500 to 15000, the 492 actual

observations are augmented with observations randomly distributed along the lateral and bottom

oceanic boundaries. A power law (dashed line) approximately fits the function: σc ≈ 2h/
√

N

where N is the number of observations. The LGM state estimate is also plotted (circle with an X).

tions are eventually limited in their ability to record interior ocean signals due to351

their location and the remaining measurement error. In summary, we expect that352

the uncertainty on global-mean δ13CDIC would be halved with a fourfold increase353

in the number of observations.354

4.2. Circulation dependence355

A second major contributor to uncertainty is the circulation field because356

knowledge of the flow paths permits extrapolation over the large distances be-357

tween paleo-data. In our steady-state scenario, the mass fluxes are expressed as358

20



dimensionless mass flux ratios, m, that are bounded by 0 and 1 (recall the discus-359

sion of the model in Section 2.1). Here we calculate how the global-mean standard360

error depends upon the assumed uncertainty in the circulation. All input variables361

are kept constant in equation (7) except the part of the S−1 matrix correspond-362

ing to the circulation is adjusted. For hypothetical cases where the circulation is363

known as well or better than the modern-day (σm < 0.05), the resulting global364

mean uncertainty is small (0.03h), but it cannot be further reduced due to the ob-365

servational characteristics (Figure 4). This limit is lower than previously estimated366

(e.g., 0.26h, Ciais et al., 2012), and might result from the improved reconstruc-367

tion ability of the state estimate. For circulation uncertainties greater than 0.05,368

the standard error increases from 0.05h to 0.6h with increasing circulation un-369

certainty, and follows an approximate exponential relation (i.e., σc ≈ 0.6h σ0.9
m ).370

The prior estimate of circulation uncertainty, σm, is a difficult quantity to estimate,371

and here we have suggested that a reasonable value is 0.3. The reported error of372

global-mean δ13CDIC is sensitive to this choice, however, as is shown in Figure 4.373

The sensitive dependence originates from the use of the circulation to interpolate374

and extrapolate over the data-void regions of the globe.375

4.3. Regional analysis376

A more traditional means of analysis is to break the ocean into subdomains to377

quantify the geographic contributions to global-mean uncertainty. Here, regional378

means are calculated by taking subdomains of the global domain and recalculating379

the mass-weighting vector, r, in equation (7). Specifically, the elements of r that380

correspond to locations outside the region of interest are set to zero, and the vector381

is renormalized such that the elements sum to one. Here we select 13 regions of382

interest in order to compare to the recent work of Peterson et al. (2014).383
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Figure 4: Similar to Figure 3, but the standard error (2σc) of the glacial-mean δ13CDIC as a function

of how well the circulation is known (in terms of the uncertainty of nondimensional mass-flux

ratios, σm). An uncertainty of σm = 1 in the mass-flux ratios represents zero circulation knowledge.

The glacial circulation uncertainty is chosen to be 0.3 (circle). The function roughly asymptotes

to the function, σc ≈ 0.3h σ0.9
m (dashed line).

22



Region ∆MG[δ13CDIC] δ13CDIC

M
NM µM σM δ13CDIC

G
NG µG σG

Global 0.32 ± 0.20 0.47 ± 0.03 19922 0.09 0.27 0.14 ± 0.20 492 0.01 0.19

Deep 0.49 ± 0.23 0.37 ± 0.02 229 0.05 0.21 -0.12 ± 0.22 0 - -

Surface 0.07 ± 0.71 1.06 ± 0.07 8453 0.21 0.36 1.01 ± 0.70 6 -0.01 0.05

NW Atlantic 0.16 ± 0.67 0.96 ± 0.06 321 0.11 0.20 0.80 ± 0.67 72 -0.02 0.18

NE Atlantic 0.25 ± 0.85 0.99 ± 0.25 540 0.10 0.15 0.74 ± 0.81 155 0.01 0.22

SW Atlantic 0.41 ± 0.31 0.77 ± 0.02 836 -0.03 0.14 0.36 ± 0.31 45 0.06 0.23

SE Atlantic 0.60 ± 0.21 0.72 ± 0.05 274 0.00 0.13 0.12 ± 0.20 79 0.04 0.23

South Atlantic 0.84 ± 0.40 0.62 ± 0.06 23 0.21 0.20 -0.22 ± 0.40 23 0.02 0.27

North Pacific 0.13 ± 0.27 -0.08 ± 0.02 1254 0.03 0.22 -0.21 ± 0.27 65 -0.01 0.11

South Pacific 0.33 ± 0.33 0.35 ± 0.01 4157 0.00 0.15 0.02 ± 0.33 36 0.00 0.08

Indian 0.25 ± 0.32 0.34 ± 0.01 2735 -0.04 0.12 0.09 ± 0.32 42 0.02 0.12

Southern (AI) 1.22 ± 0.85 0.54 ± 0.03 648 0.06 0.10 -0.68 ± 0.85 0 - -

Southern (P) 0.44 ± 0.30 0.45 ± 0.02 401 0.01 0.10 0.01 ± 0.30 1 0.07 -

Table 1: Mean δ13CDIC with error estimates and statistics for 13 oceanic regions defined by Peter-

son et al. (2014). The quantities include (from left column to right): global-mean LGM-to-modern

δ13C change and 2σ uncertainty (∆MG[δ13CDIC]), modern-day mean δ13CDIC and 2σ uncertainty

(δ13CDIC
M

), number of modern-day observations (NM), mean modern-day model-data misfit (µM),

standard deviation of modern-day model-data misfit (σM), LGM mean δ13CDIC and 2σ uncertainty

(δ13CDIC
G

), number of LGM observations (NG), mean LGM model-data misfit (µG), and standard

deviation of LGM model-data misfit (σG). Three large-scale regions are included: Global, Deep

(everywhere below 5 km depth), and Surface (everywhere shallower than 500 m). The Atlantic is

split into five regions: NW (west of 33◦W, north of 0◦), NE (east of 33◦W, north of 0◦), SW (west

of 15◦W, 0◦ to 55◦S), SE (east of 15◦W, 0◦ to 55◦S), and South Atlantic (east of 22◦W, 40◦S to

55◦S). The Pacific is split into two regions: North Pacific (0◦ to 60◦N) and South Pacific (0◦ to

66◦S). The Indian Ocean is defined as one region (north of 55◦S, 30◦E to 125◦E). The Southern

Ocean is split into two parts: Atlantic-Indian (AI) sector (south of 55◦S) and the Pacific (P) sector

(south of 66◦S). See Figure 1 of Peterson et al. (2014) for complete boundaries.
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The primary geographic contributors to global-mean uncertainty are the Sur-384

face and North Atlantic regions (2σc > 0.6h in Table 1). This result does not385

straightforwardly proceed from a consideration of the number of observations in386

any given region. For example, both the Surface and Deep regions have less than387

10 observations, yet the Deep region has much more moderate uncertainty (0.23h388

versus 0.70h in the Surface). Waters that enter the Deep region must pass through389

observations at shallower depths, and are therefore somewhat constrained by the390

tracer transport model and observations. The uncertainty in the North Atlantic391

occurs despite over 200 LGM observations in those regions, and results from the392

nearly-unobserved δ13CDIC values in the Nordic, Mediterranean, and Caribbean393

Seas. The center of the North Atlantic, on the other hand, has some of the lowest394

estimated errors, but this is masked by our choice of regional boundaries.395

Up to this point, we have emphasized the agreement of our global-mean esti-396

mate with previous studies, and generally speaking, our regional results are also397

consistent with previous regional estimates (e.g., Oliver et al., 2010; Peterson398

et al., 2014). In a detailed investigation of the Deep (> 5km) region, however,399

our model reconstructs a 0.49h change, suggesting that the 0.74h estimate of400

Peterson et al. (2014) is an overestimate owing to the extrapolation by their as-401

sumed linearly-varying vertical structure. In the Surface region, there are similar-402

ities between the estimates (here: ∆MG[δ13CDIC] = 0.07h±0.71h, Peterson et al.403

(2014): ∆HG[δ13CDIC] = 0.02h±0.40h), but our more sophisticated reconstruc-404

tion technique yields larger uncertainty, suggesting that their ad-hoc error bar is405

an underestimate.406

Our large Surface region error bars indicate that the best place to isolate a407

reservoir from benthic foraminiferal detection is not the bottom ocean, but instead408
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the upper thermocline waters that primarily recirculate in the subtropics and trop-409

ics. This result points to the need to compile planktonic δ13CDIC records (e.g.,410

Broecker and McGee, 2013) so that they can be used in concert with benthic411

records. In this regard we note that there is convincing evidence indicating the412

δ13C of planktonic foraminifera shells vary with seawater carbonate ion concen-413

tration (Spero et al., 1997; Russell and Spero, 2000; Peeters et al., 2002). Al-414

though this effect has not been identified in benthic foraminifera, its pervasive415

presence among many species of planktonic foraminifera suggests that deep wa-416

ter carbonate ion variations between the modern and glacial could shift benthic417

foraminifera shell δ13C away from a 1:1 relationship with δ13CDIC and contribute418

to uncertainties in these modeled reconstructions (see Section 4.6).419

4.4. δ13C Suess effect420

The model fits the observations to an acceptable level in almost all regions, as421

evidenced by the standard deviation of the modern and glacial model-data misfits,422

σM and σG, being less than or equal to 0.2h. One exception is the modern-day423

surface (σM = 0.36h) which may be symptomatic of seasonal variations not cap-424

tured by the steady-state model. The model-data misfit also has a strong mean425

offset in the modern-day surface ocean (µM = 0.21h), where the state estimate426

has more positive δ13CDIC values than the GLODAP/CARINA observations. This427

upper ocean effect has consequences for the global statistics, as the modern-day428

state estimate is on average 0.09h more enriched in δ13CDIC than the observa-429

tions over the entire world ocean. The sign of the misfit is consistent with the430

observations being contaminated by anthropogenically-derived δ13CDIC.431

Although the state estimation methodology appears able to filter the Suess432

effect by downweighting δ13CDIC datapoints in the upper ocean (i.e., expecting433
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larger errors for these points, recall Section 3.1), we still need to consider whether434

the implied magnitude of the effect is plausible. To quantify the effect of this435

downweighting, we additionally invert a case that represents the 1990s where all436

modern-day δ13CDIC observations are weighted equally. The data is still well-fit437

for the 1990s case (σM = 0.11h), but the mean δ13CDIC is shifted to δ13CDIC

M
=438

0.41h: 0.06h less than our original modern-day (pre-industrial) estimate. The439

spatial pattern of the difference (Figure 5) shows similarities to the expected Suess440

effect, such as enhanced uptake and negative values in the North Atlantic deep441

water formation sites and the subtropical gyres. Features in the deep Pacific are442

unlikely to be the Suess effect, but more likely reflect changes in how the data443

is extrapolated into data-sparse regions. The estimated LGM-to-modern δ13CDIC444

change directly depends upon the handling of the Suess effect, and here the ac-445

counting for the contaminated δ13CDIC values (by downweighting) leads to an446

∆MG[δ13CDIC] value that is 0.06h higher than would otherwise have been esti-447

mated.448

To check whether the magnitude of our Suess effect correction is reason-449

able, another inversion is produced where the anthropogenic δ13CDIC signal is re-450

moved from seawater measurements using the “FeL” simulation of Schmittner451

et al. (2013). To do so, we first project the modeled estimate of 1990s anthro-452

pogenic δ13CDIC onto the data locations and subtract it from the observations to453

make a corrected dataset. Then the state estimate is re-derived by weighting454

all data equally. By this method, the mean pre-industrial δ13CDIC is δ13CDIC

M
=455

0.49h, not significantly different than our original estimate of δ13CDIC

M
= 0.47h±456

0.03h. Thus, state estimation methods suggest that the mean Suess effect is457

0.06h (from the previous paragraph) or 0.08h (this paragraph), both somewhat458
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Figure 5: Similar to Figure 2, but for the Atlantic, Indian, and Pacific zonal-average difference

between δ13CDIC in the 1990s and the modern (i.e., pre-industrial) case.
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smaller than a forward model (Tagliabue and Bopp, 2008) that found 0.12h when459

constrained by the observations of Gruber et al. (1999). While we believe that our460

state estimation methodology has done a reasonable job in assessing the anthro-461

pogenic signal, an uncertainty of perhaps ±0.05h (loosely based on the spread462

of the three estimates) still remains in the magnitude of the δ13C Suess effect463

and therefore should be added to the uncertainty of the LGM-to-modern δ13CDIC464

change.465

4.5. Large δ13C change scenario466

In this section, we seek to confirm that the estimated error bars are plausi-467

ble, and to visualize where the estimate glacial δ13CDIC field is least constrained.468

These issues can be addressed in greater detail by performing a test to determine469

whether a large ∆MG[δ13CDIC] is consistent with the observations and a steady-470

state circulation. To perform this test, we add an additional “observation” that the471

LGM-to-modern δ13CDIC change is just above the upper limit as given by the 2σ472

error bar: 0.6h. As in Section 4.1, this modification is handled by introducing a473

modified observational matrix, vector, and weighting: Ĕ, y̆, and W̆, that enforces474

the additional constraint with a small error: ∆MG[δ13CDIC] = 0.6h±0.01h. The475

nonlinear solution method of Section 2.3 is then run with these additions and no476

other changes.477

A second LGM state estimate (hereafter, LGM State Estimate 2) is indeed ca-478

pable of fitting the data while producing a whole-ocean change of ∆MG[δ13CDIC]=479

0.59h (Figure 6). The spatial pattern of remaining model-data misfits do not480

suggest that the phytodetritus or carbonate ion effect are at play. The implied481

circulation leads to a deep (greater than 3 km) northern-southern water-mass in-482

terface in the Atlantic Ocean, similar to that in LGM estimate 1. The standard483
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deviation of the model-data misfit is actually smaller than that for LGM estimate484

1 (LGM 1: σG = 0.19h, LGM 2: σG2 = 0.17h). The model-data misfit statistics485

of LGM state estimate 2 are consistent with what is expected from a 2σ outlier of486

LGM state estimate 1; the estimated mean model-data misfit of µG2 =−0.03h is487

insignificant at the 5% level, but just so (p = 0.06 for N = 492). The larger whole-488

ocean change is due to increased changes in specific regions, such as the Atlantic489

sector of the Southern Ocean where ∆MG[δ
13CDIC]> 1.4h. In addition, the uncon-490

strained Arctic Ocean and Mediterranean Sea have much increased ∆MG[δ
13CDIC]491

at intermediate levels.492

The difference in δ13CDIC between the two LGM state estimates, ∆GG[δ
13CDIC]493

(the difference of two glacial “G” estimates), can be thought of as the observa-494

tional null space and illustrates the ocean regions that are both unconstrained and495

important for setting the global mean. The biggest differences occur at the Pacific496

surface and the South Indian Ocean (Figure 7). Surface differences, especially497

in the Pacific Ocean, are as large as 1h, and are consistent with the large error498

bars previously detailed in Table 1. Should the planktonic δ13C records that indi-499

cate little change between the LGM and modern-day (e.g., Broecker and McGee,500

2013) be representative of the entire tropics, LGM state estimate 1 (from Sections501

3-5) would be considered more reasonable. Our map of the difference between the502

two LGM state estimates emphasizes the regions in which additional observations503

would be most useful.504

LGM State Estimate 2 may be relevant to more than just checking the ma-505

chinery for producing error bars, as there are a number of reasons to suspect that506

the LGM-to-modern δ13CDIC change might be larger than the recent marine-based507

consensus. For example, the state estimate reverts to modern-day conditions in508
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Figure 6: Atlantic (and Arctic), Indian, and Pacific zonal-average difference of δ13C between

LGM State Estimate 2 and modern-day (i.e., ∆MG[δ
13CDIC] = δ13CM

DIC - δ13CG2
DIC).
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Figure 7: Atlantic and Pacific zonal-average difference of δ13CDIC between 2 LGM Estimates

(∆GG[δ
13CDIC] = δ13CG

DIC - δ13CG2
DIC).
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the absence of any paleo-data and thus, the ∆MG[δ13CDIC] value from LGM State509

Estimate 1 could be biased low due to remnant modern-day constraints pulling the510

estimate toward no change. A low estimate may also be due to low temporal res-511

olution in the cores, as high-resolution cores can have higher ∆MG[δ
13CDIC] values512

(A. Mix, personal communication, 2014). Furthermore, if a ∆MG[δ13CDIC] value513

of 0.6h is possible, then terrestrial-based (e.g., Crowley, 1995) and marine-based514

(e.g., Tagliabue et al., 2009) carbon partitioning estimates could be brought into515

consistency without the need to invoke an inert terrestrial carbon pool (Ciais et al.,516

2012).517

4.6. Seawater-to-calcite relationship518

Here we revisit our definition of ∆MG[δ
13CDIC] and whether it significantly dif-519

fers from ∆HG[δ
13CDIC], defined as the LGM-to-Late Holocene difference. Infor-520

mation regarding ∆HG[δ
13CDIC] is more directly available through the difference of521

LGM and Late Holocene core data, as interlaboratory offsets are canceled by the522

differencing. One tradeoff is that only 365 measurements of a Late Holocene and523

LGM value from the same core are available even when the Late Holocene time524

interval is extended from 0-6 kyr BP. Using the modern-day circulation to recre-525

ate a global δ13CDIC field using the Late Holocene coretop values, we estimate a526

Late-Holocene mean value of δ13CDIC

H
= 0.55h± 0.20h that is 0.08h higher527

than the modern-day estimate. The difference directly affects the inferred LGM-528

to-modern change and is attributable to Holocene temporal variability (e.g., Oppo529

et al., 2003) and error in the seawater-to-calcite calibration, but it is difficult to530

separate the two. In particular, a systematic offset in the δ13C calcite-to-seawater531

proxy relationship could occur due to a dependence of calcite δ13C on carbonate532

ion or temperature (e.g., Spero et al., 1997; Hesse et al., 2014). To determine the533
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size of such an effect, an improved calibration between the Late Holocene δ13C534

values and the modern-day seawater characteristics including δ13CDIC, tempera-535

ture, salinity, CO2−
3 , DIC, and pH should be pursued.536

5. Discussion537

The discussion aims to put the results of this work into the context of previous538

observational methods to estimate LGM-to-modern δ13CDIC change.539

5.1. Optimal data weights540

Given a circulation field, the state estimate formulation permits the coefficients

and constants of equation (1) to be explicitly calculated. Following Appendix C,

the optimal set of data weights is

w = W−1Ê(Ŝ−1 + ÊT W−1Ê+LT
c Q−1Lc)

−1r̂, (8)

where the hat represents truncating the variables to the quantities related to the

tracer field. Interestingly, the elements of w need not sum to one, nor are they

necessarily non-negative, as occurs in linear extrapolation problems. The addi-

tional, usually-neglected constant in equation (1),

c0 = (cT
0 Ŝ−1 +qT Q−1Lc)(Ŝ−1 + ÊT W−1Ê+LT

c Q−1Lc)
−1r̂, (9)

is related to the sampling bias. If all the observations have a value of zero, the best541

estimate of the global mean has a value of c0, indicating that prior information is542

being used to calculate the global mean. Thus, the degree to which the observa-543

tions sample the global ocean in a biased way is quantified. In the case that no544

observations are available, c0 reverts to the first-guess global mean. The weights545
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and the constant are optimal in the sense that they solve a tapered, weighted least546

squares problem.547

The map of observational weights is spatially heterogeneous with eastern At-548

lantic points generally having the smallest weights (Figure 8). A point in the549

Indian Ocean is upweighted the most, with w ≈ 10/N (or 10 times the weight550

that it would be given in the basic arithmetic mean). This map generally corre-551

sponds to the upweighting of Pacific data points (due to their relative sparsity)552

and downweighting of Atlantic points. Finer detail is also present, however, such553

as the upweighting of the few points in the Nordic Seas, but a downweighting of554

nearby points that are just south of the Greenland-Iceland-Scotland ridge. Other555

details depend on the flow patterns in the glacial circulation, as observations have556

influence both up- and downstream.557

5.2. Interpreting data histograms558

Important information about ∆MG[δ13CDIC] is available by aggregating point-559

wise estimates of ∆MG[δ
13CDIC] in a histogram. Pointwise values of ∆MG[δ

13CDIC]560

are here inferred by projecting the modern-day state estimate δ13CDIC field onto561

the core sites by a linear interpolation of the 8 nearest gridpoints, then comparing562

with LGM sediment core values. In our 492 points of ∆MG[δ
13CDIC], the median563

is 0.45h and the mean is 0.39h (upper left panel Figure 9). The mode of the564

distribution is 0.6h, which suggests that Shackleton (1977) was more likely to565

estimate a number this high with a small number of cores. It is not clear from this566

analysis, however, whether the mean of the histogram is a good estimate for the567

global-mean δ13CDIC.568

To better interpret such a histogram, consider formulating a modern-day and

LGM equation of the type of equation (1) and taking their difference. For a general
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Figure 8: Optimal observational weights to construct a global mean given the glacial circulation

(LGM State Estimate 1): plan view (top), Atlantic data (middle) and Indo-Pacific data (bottom).

The colorscale is logarithmic. The weights vary from 10 times greater to 100 times lesser than the

arithmetic-mean weight and thus some values are offscale low (saturated at a value of 1/10N).
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Figure 9: Inference of LGM-to-modern δ13CDIC change from pointwise measurements. Upper

left: Histogram of the 492 observations of ∆MG[δ
13CDIC]. Upper right: Histogram modified by the

optimal weights computed for the modern-day circulation. Bottom row: Histogram modified by

the optimal weights computed for the glacial circulation (lower left: LGM State Estimate 1, lower

right: LGM State Estimate 2). The inferred ∆MG[δ13CDIC] (solid lines) results from the mean of the

histogram in the top row. In the bottom row, the mean of the histogram (dashed lines) is corrected

by the last two terms in equation (10) to produce the ∆MG[δ13CDIC] estimate (solid lines).
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tracer, we obtain

∆MG(c) = wT
∆MG(y)+∆MG(w)T y+∆MG(c0), (10)

where the ∆MG operator acts elementwise on each vector and the double overbar569

represents the temporal mean of modern-day and LGM conditions (to distinguish570

from the single overbar that is a global spatial average). The mean of the aformen-571

tioned histogram reflects the true global mean in the case that the data weights are572

based on the arithmetic mean (wi = 1/N for all i) and that the second and third573

terms of equation (10) vanish. As discussed in the Introduction, the spatially ir-574

regular distribution of observations makes these conditions improbable, and thus575

the mean of the histogram is not usually a good estimate of global-mean change.576

When a circulation is available to compute the optimal weights of equation (8)577

and the constant of equation (9), the mean LGM-to-modern change can be better578

estimated. For illustration, consider a case where it is assumed that the modern-579

day circulation is representative of the LGM. Then we can use the calculated580

modern-day weights (wM) to better approximate the first term of equation (10).581

These weights shift the mode of the distribution to ∆MG[δ
13CDIC]= 0.05h and the582

inferred global-mean decreases from 0.39h to 0.22h (visualized as a weighted583

histogram, upper right panel, Figure 9). In effect, the observations of smaller584

change are upweighted because they are located along modern-day circulation585

pathways that influence more of the ocean.586

A full interpretation of the pointwise data should also account for LGM-to-587

modern circulation change, of course. In particular, we use both the circulations588

from LGM State Estimate 1 and 2 (lower row, Figure 9). The mean of the his-589

togram is again modified, this time back toward larger values (0.23h and 0.28h,590

respectively). The two correction terms due to the changing ocean circulation591
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must also be considered (terms 2 and 3 of the right hand side of equation 10).592

For LGM State Estimate 1, the correction is 0.09h and the final estimate of593

∆MG[δ13CDIC]= 0.32h is consistent with the results showcased in Sections 3 and594

4. For LGM State Estimate 2, the correction is even larger: 0.21h (dominated595

by term 3: 0.15h). A global-mean change of ∆MG[δ13CDIC]= 0.49h is then diag-596

nosed from equation (10), smaller than the actual 0.59h, which is symptomatic597

of the breakdown of the linear assumption (i.e., equation B.4). Unfortunately, the598

correction terms are poorly known due to the uncertainty in the LGM circulation.599

We emphasize that the correction cannot be determined from the data histogram600

alone.601

6. Conclusion602

The LGM-to-modern δ13CDIC change is explicitly estimated by first mapping603

benthic foraminiferal observations onto a global grid, and then taking a mass-604

weighted average of the gridded values. The mapping process, however, requires a605

method more sophisticated than typical interpolation because of the sparsity of the606

dataset and large spatial gaps. Here we demonstrate that an LGM state estimate607

derived from a recent compilation of 492 δ13C data points combined with a tracer608

transport model can provide a reasonable globally-gridded field, as well as self-609

consistent uncertainty estimates. Our updated best estimate of LGM-to-modern610

global δ13CDIC change is 0.32± 0.20h at the 2σ uncertainty level. A coherent611

picture of the LGM δ13C distribution emerges that is consistent with previous612

Atlantic estimates and fills in the missing details of the Pacific distribution. Maps613

of the LGM-to-modern difference in δ13C also display coherent spatial patterns,614

with largest changes in the Atlantic sector of the Southern Ocean.615
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While previous investigators have used various sub-domains and multiple-616

step averaging techniques to determine how to best weight pointwise observa-617

tions to obtain the global mean, here we show that determination of the optimal618

data weights requires knowledge of the ocean circulation. The diagnosed optimal619

weights conform to expectation in many ways, such as upweighting data in re-620

gions with sparse coverage. It is very difficult, however, to determine the global621

mean change from pointwise histograms of the local δ13CDIC change unless the622

concommitant circulation change is also known. Thus, much of the existing un-623

certainty in LGM-to-modern δ13C change is due to the difficulty in determining624

the glacial ocean circulation.625

Our glacial state estimate points toward future directions to reduce the consid-626

erable remaining global-mean δ13CDIC uncertainty. For example, the addition of627

randomly-distributed hypothetical data would reduce the uncertainty of the global628

mean as N−1/2, where N is the number of observations. Furthermore, the great-629

est differences between two LGM estimates that both fit the data occur in the630

upper ocean, the Southern Ocean, and various marginal seas, pointing to regions631

where additional information would be most useful. In particular, a compilation632

of planktonic records would help reduce the uncertainty in surface regions. Pro-633

vided that challenges with interpretation regarding DIC change and species offsets634

can be overcome (e.g., Spero et al., 1997), we expect that strategic sampling can635

reduce the global-mean uncertainty at a faster rate than the hypothetical randomly-636

sampled case. A two-pronged approach appears best suited to reduce the global-637

mean uncertainty: compilation of information from strategically-placed locations,638

including planktonic records, and the implementation of a more sophisticated dy-639

namical model that can better constrain the circulation for making global maps.640
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Appendix A. Input variables641

The input variables include the weighting matrices for the different constraints642

of equation (7). The S−1 matrix is chosen to reflect prior knowledge of the δ13CDIC643

field and mass flux ratios. For example, the surface δ13CDIC is assumed to vary by644

no more than 2.4h with lengthscales no smaller than 10◦ of latitude or longitude645

(following the nondiagonal weighting matrix method of Gebbie et al. (2006)).646

The mass flux ratios, m, are given a prior uncertainty of 0.3 (relative to their647

nondimensional range of 0 to 1), chosen by the standard deviation of the m entries648

for the modern-day circulation. This choice reflects our desire to constrain the649

glacial circulation with little subjective prior information, but to require that the650

statistics of glacial transport should not fall outside the range of the modern-day651

statistics. For the modern-day circulation, on the other hand, we estimate that the652

uncertainty of the m values is about 0.05, based on the differences between various653

modern solutions. The W−1 matrix assumes that the observational uncertainty654

is 0.2h, as discussed in the body of the text. The choice of the Q−1 matrix655

agnostically assumes that the glacial source of remineralized material is the same656

magnitude as the modern day source or sink.657

Appendix B. Uncertainty derivation658

Appendix B.1. Least-squares solution659

Section 2.4 defines a cost function, J = uT S−1u+nT W−1n+vT Q−1v, that is

here written in a more complete form by substituting the equations for the first-

guess adjustment, the observational constraint, and the model:

J = (x−x0)
T S−1(x−x0)+(Ex−y)T W−1(Ex−y)+(L [x]−q)T Q−1(L [x]−q).

(B.1)
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The solution, x̃, is at the minimum of J and thus satisfies the stationary assump-

tion:

Jx̃ = 2{S−1(x−x0)+ET W−1(Ex−y)+LT
x̃ Q−1(L [x]−q)}= 0, (B.2)

where Jx̃ ≡ ∂J/∂x]x̃. We define a linearization of model in the neighborhood of

the solution:

L [x] = L [x′]+Lx′(x−x′)+ ε, (B.3)

where ε represents the higher-order terms in the expansion. The solution estimate,

x̃, satisfies

x̃=(S−1+ET W−1E+LT
x′Q
−1Lx′)

−1{S−1x0+ET W−1y+LT
x′Q
−1(q+Lx′x′−L [x′])},

(B.4)

where the higher-order terms become negligible as one approaches the solution660

and are dropped from this last equation.661

Appendix B.2. Uncertainty of tracer distribution and circulation662

Here we seek the expected solution in the hypothetical case that a perfect first-

guess, observations, and tracer source are available (x∗0, y∗, and q∗, respectively).

Defining

d0 = S−1x∗0 +ET W−1y∗+LT
x′Q
−1(q∗+Lx′x′−L [x′]), (B.5)

the expected solution is

< x̃ >= (S−1 +ET W−1E+LT
x̃ Q−1Lx̃)

−1d0. (B.6)

The dispersion of x̃−< x̃ > is equal to the solution covariance of x̃:

Cx̃ ≡< (x̃−< x̃ >)(x̃−< x̃ >)T >, (B.7)

41



and substitution of equation (B.6) into (B.7) gives

Cx̃ =(S−1+ET W−1E+LT
x̃ Q−1Lx̃)

−1 < (d−d0)(d−d0)
T > (S−1+ET W−1E+LT

x̃ Q−1Lx̃)
−1.

(B.8)

Assuming that errors in the first guess, observations, and model are uncorrelated

(i.e., Rxn = 0, Rxq = 0, etc.), the expected value in the right hand side of (B.8) is

< (d−d0)(d−d0)
T >= S−1RxxS−1 +ET W−1RnnW−1E+LT

x̃ Q−1RqqQ−1Lx̃.

(B.9)

Substituting equation (B.9) into (B.8) and assuming that the weight matrices are

equal to the expected second-moment matrices of the residuals (i.e., Rnn = W,

Rqq = Q, and Rxx = S), we obtain the solution covariance in terms of the known

input variables:

Cx̃ = (S−1 +ET W−1E+LT
x̃ Q−1Lx̃)

−1, (B.10)

that is used in the main text as equation (6). The standard error is here defined as663

±
√

Cx̃ of the diagonal elements.664

Appendix C. Calculation of the optimal observational weights665

In the case that the circulation is known exactly, the cost function equation (B.1)

can be simplified

J = (c− c0)
T Ŝ−1(c− c0)+(Êc−y)T W−1(Êc−y)+(Lcc−q)T Q−1(Lcc−q),

(C.1)

where the hat indicates truncation of the E and S matrices to the parts related

to the tracer field. Using the least-squares estimate of the tracer solution and the

following definition of the global mean, c= r̂T c, where r̂ is also a truncated vector,
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we obtain a simplified equation

c̃ = r̂T (Ŝ−1 + ÊT W−1Ê+LT
c Q−1Lc)

−1(Ŝ−1c0 + ÊT W−1y+LT
c Q−1q). (C.2)

Comparison of the equation (C.2) to equation (1) permits the identification of the

optimal data weights:

w = W−1Ê(Ŝ−1 + ÊT W−1Ê+LT
c Q−1Lc)

−1r̂, (C.3)

and the additional constant

c0 = (cT
0 Ŝ−1 +qT Q−1Lc)(Ŝ−1 + ÊT W−1Ê+LT

c Q−1Lc)
−1r̂. (C.4)
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