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Preface

The 2014 Geophysical Fluid Dynamics Summer Study Program started on June 16th, with
the topic of Climate Physics and Dynamics. The topic proved very timely and attracted an
unprecedented number of applications from brilliant students. Professors Kerry Emanuel
(MIT) and Geoff Vallis (Exeter) gave the principal lectures. They began with the simplest
energy balance models and then included adjustment of the vertical profiles by convection
(dry and moist). Kerry delved more deeply into convection and the processes found in
”cloud-permitting” models, including island effects and the spontaneous formation of clus-
ters surrounded by dry regions. Geoff discussed the larger-scale dynamics of the atmosphere
and oceans, including the transports by eddies and the thermohaline circulation. This year,
we webcast the principal lectures, with order 50 connections per day from viewers at many
universities worldwide.

Antonello Provenzale, Raffaele Ferrari, and Glenn Flierl co-directed the summer and invited
a large number of top researchers in the dynamics of climate, so that we had a broad critical
view on the status of modelling and theory. As usual, the visitors presented new ideas and
approaches to geophysical dynamics, and the visitors, staff, and fellows engaged in intense
discussions on the porch and in the lecture room. The long-term staff members ensured
that the fellows never lacked for guidance; many of them explored unfamiliar topics but
were still able to develop new insights.

This summer’s fellows were
• Jörn Callies, MIT/WHOI Joint Program in Oceanography
• Joseph Fitzgerald, Harvard University
• Shineng Hu, Yale University
• Alexis Kaminski, University of Cambridge
• Paige Martin, University of Michigan
• Daniel Mukiibi, University of Hamburg
• Ashley Payne, University of California, Irvine
• Erica Rosenblum, University of California, San Diego
• Geoff Stanley, University of Oxford
• Jim Thomas, New York University

In 2014, the Sears Public Lecture was delivered by Professor Cecilia Bitz, University of
Washington, who discussed ”The Future of Arctic and Antarctic Sea Ice.” She noted that
both the Arctic and Antarctic have experienced record sea ice coverage in the last decade.
The Arctic has experienced record losses, especially in summer, while the Antarctic has had
expanding sea ice. She considers how this is possible in an era of global climate change,
and what we can expect in the future. Cecilia overcame problems with the microphone and
engaged the audience both in answering question and in discussions at the reception and
refreshments following the talk.

Anne Doucette, Julie Hildebrandt, and Janet Fields made sure that the administrative
side of the program ran with admirable efficiency. Matt Barton ensured the webcast was
high quality. We continue to be indebted to WHOI for their support and to the Academic
Programs Office, who once more (with the cooperation of the weather!) provided a perfect
atmosphere.

hildebrandt
Typewritten Text
i



 ii  

Table of Contents 
 
 
Preface  ............................................................................................................................................ i 
GFD Staff and Visitors  ................................................................................................................. iii 
Lecture Schedule  ................................................................................................................... …..vii 
 
Principal Lectures 

Kerry Emanuel, Massachusetts Institute of Technology, and Geoff Vallis, University of  Exeter 
Lecture 1: Elements of Radiative Transfer (Kerry) ........................................................................ 1 

Lecture 2: Energy Balance and the Troposphere (Geoff) ............................................................. 14 

Lecture 3: Convective Heat Transfer I (Kerry) ............................................................................. 29 

Lecture 4: Radiative-Convective Equilibrium and Tropopause Height (Geoff)  .......................... 36 

Lecture 5: Convective Heat Transfer II (Kerry) ........................................................................... 47 

Lecture 6: Water and Radiation in the Climate System (Kerry)  .................................................. 59 

Lecture 7: Stability of RCE and Rotating RCE (Kerry)  .............................................................. 83 

Lecture 8: Horizontal Convection (Geoff)  ................................................................................. 101 

Lecture 9: The Deep Ocean Circulation (Geoff)......................................................................... 112 

Lecture 10a: The Hadley Cell (Geoff) ........................................................................................ 137 

Lecture 10b: Rossby Waves and Surface Winds (Geoff) ........................................................... 146 

 

Fellows’ Reports 
The Role of Mixed Layer Instabilities in Submesoscale Turbulence 

Jörn Callies, MIT/WHOI Joint Program in Oceanography  .................................................. 171 

Understanding Eddy Saturation in the Southern Ocean using Mean Field Theory 
Joe Fitzgerald, Harvard University  ......................................................................................  209 

Models for Tropopause Height and Radiative-Convective Equilibrium 

Shineng Hu, Yale University  ................................................................................................ 240 
An Experimental Investigation of the Rossby Two-slit Problem 

Alexis Kaminski, University of Cambridge  ......................................................................... 261 
A Study of Heat Transport and the Runaway Greenhouse Effect using an Idealized Model 

Paige Martin, University of Michigan  .................................................................................. 282 

A Numerical Study of the Downstream Development of a Baroclinic Instability 

Daniel Mukiibi University of Hamburg  ................................................................................ 300 

Conceptual Model Analysis of the Influence of Temperature Feedbacks on Polar Amplification 

Ashley Payne, University of California, Irvine  ...................................................................  317 
Thermobaric Effects on Double-Diffusive Staircases 

Erica Rosenblum, University of California, San Diego  ........................................................ 340 

The Most Minimal Seed for Transition to Turbulence in Shear Flow 
Geoffrey Stanley, University of Oxford  ................................................................... 359 

Vortex Filament Dynamics 
Jim Thomas, New York University  .......................................................................... 385 



 

2014 Geophysical Fluid Dynamics Participants 

 

STAFF AND VISITORS 
 
Abernathey, Ryan Columbia University 
Armour, Kyle Massachusetts Institute of Technology 
Barbante, Carlo University of Venice 
Bitz, Cecilia University of Washington 
Bordoni, Simona California Institute of Technology 
Caulfield, Colm-cille Cambridge University 
Cessi, Paola University of California, San Diego 
Chini, Greg University of New Hampshire 
Corti, Susanna Inst. of Atmospheric Sciences & Climate, CNR 
Cvitanovic, Predrag Georgia Institute of Technology 
Doering, Charlie University of Michigan 
Du, Hailiang University of Chicago 
Emanuel, Kerry Massachusetts Institute of Technology 
Ferrari, Raffaele Massachusetts Institute of Technology 
Flierl, Glenn Massachusetts Institute of Technology 
Fox-Kemper, Baylor Brown University 
Gentine, Pierre Columbia University 
Goluskin, David Columbia University 
Helfrich, Karl Woods Hole Oceanographic Institution 
Hussein, Aluie Johns Hopkins University 
Huybers, Peter Harvard University 
Ingersoll, Andy California Institute of Technology 
Jansen, Malte Geophysical Fluid Dynamics Laboratory, Princeton 
Johnson, Ted University College London 
Keller, Joseph Stanford University 
Kerswell, Richard University of Bristol 
Kuang, Zhiming Harvard University 
Lebovitz, Norman University of Chicago 
Levy, Marina Laboratoire d’Ocanographie et du Climat 
Mahadevan, Amala Woods Hole Oceanographic Institution 
Marshall, John Massachusetts Institute of Technology 
Meacham, Stephen National Science Foundation 
Morrison, Adele Princeton University 
Morrison, Phil University of Texas, Austin 
Muller, Caroline Lab. d’Hydrodynamique de l’cole Polytechnique 
Pedlosky, Joe Woods Hole Oceanographic Institution 
Provenzale, Antonello Inst. of Atmospheric Sciences & Climate, CNR 
Roe, Gerard University of Washington 
Schneider, Tapio ETH Zurich 
Shaw, Tiffany Columbia University 

hildebrandt
Typewritten Text
iii



 

Smith , Lenny London School of Economics 
Sobel, Adam Columbia University 
Spall, Mike Woods Hole Oceanographic Institution 
Spiegel, Edward Columbia University 
Straneo, Fiamma Woods Hole Oceanographic Institution 
Talley, Lynne Scripps Research Institute 
Taylor, John University of Cambridge 
Thiffeault, Jean-Luc University of Wisconsin 
Thomas, Jim New York University 
Thompson, Andy California Institute of Technology 
Timmermans, Mary-Louise  Yale University 
Tziperman, Eli Harvard University 
Vallis, Geoff University of Exeter 
Veronis, George Yale University 
Von Hardenberg, Jost ISAC-CNR 
von Herzen, Brian The Climate Foundation 
Weiss, Jeff University of Colorado 
White, Brian  University of North Carolina 
Wingate, Beth University of Exeter 
Wunsch, Carl Harvard University 
Yang, Da California Institute of Technology 
Yecko, Philip Montclair State 
Young, Bill University of California, San Diego 
 

GUEST STUDENTS 
 
Bebieva, Yana Yale University 
Benavides, Santiago Jose  University of Texas, Austin 
Miles, Christopher University of Michigan 
Shebley, Nicole Yale University 
Souza, Andre University of Michigan 
Wang, Lei University of Chicago 
Zhao, Mengnan Yale University 
 

hildebrandt
Typewritten Text
iv



 

 
 
 
 

2014 Principal Lecturers 
 

 
 
 

 

 
 
 

Geoff Vallis and Kerry Emanuel 

hildebrandt
Typewritten Text
v



2014 Geophysical Fluid Dynamics Summer School Participants

1st Row (L-R): Jörn Callies, Jim Thomas, Geoff Stanley, Daniel Mukiibi, Erica Rosen-
blum, Geoff Vallis, Paige Martin, Ashley Payne, Kerry Emanuel, Alexis Kaminski, Joe
Fitzgerald, Shineng Hu, Junyi Chai, Amala Mahadevan

2nd Row (L-R): Stephen Meacham (standing), Charles Doering, David Goluskin, Santiago
Benavides, Andy Ingersoll, Phil Morrison, Joseph Keller, George Veronis, Adele Morrison,
Simona Bordoni, Jeff Weiss, Rich Kerswell, Norm Lebovitz, Brian von Herzen, Mary-Louise
Timmermans

3rd Row (L-R): Greg Chini, Lei Wang, Christopher Miles, Andre Souza, Ted Johnson,
Martin Jucker, Lenny Smith, Da Yang, Glenn Flierl, Antonello Provenzale, Raffaele Ferrari,
Joe Pedlosky, Beth Wingate, Bradley Hubbard-Nelson, Karl Helfrich

Missing from photo: Ryan Abernathey, Hussein Aluie, Kyle Armour, Carlo Barbante,
Yana Bebieva, Cecilia Bitz, Colm-cille Caulfield, Paola Cessi, Susanna Corti, Predrag Cvi-
tanovic, Hailiang Du, Baylor Fox-Kemper, Pierre Gentine, Peter Huybers, Malte Jansen,
Zhiming Kuang, John Marshall, Caroline Muller, Gerard Roe, Hesam Salehipour, Tapio
Schneider, Tiffany Shaw, Nicole Shebley, Adam Sobel, Mike Spall, Ed Spiegel, Fiamma
Straneo, Lynne Talley, John Taylor, Jean-Luc Thiffeault, Andy Thompson, Eli Tziperman,
Jost von Hardenberg, Brian White, Phil Yecko, Bill Young, Mengnan Zhao

hildebrandt
Typewritten Text
vi



Schedule

Principal Lectures

Monday, June 16: Elements of Radiative Transfer
Kerry Emanuel

Tuesday, June 17: Energy Balance Models and Simple Radiative Convective Equilibria
(RCE)

Geoff Vallis
Wednesday, June 18: Convective Heat Transfer 1

Kerry Emanuel
Thursday, June 19: RCE and Tropopause Height

Geoff Vallis
Friday, June 20: Convective Heat Transfer II

Kerry Emanuel
Monday, June 23: Water and Radiation in the Climate System

Kerry Emanuel
Tuesday, June 24: Stability of RCE and Rotating RCE

Kerry Emanuel
Wednesday, June 25: Horizontal Convection

Geoff Vallis
Thursday, June 26: The Wind-driven Deep Ocean Circulation

Geoff Vallis
Friday, June 27: Surface Winds

Geoff Vallis

Seminars

Monday, June 30: Climate-biosphere Interaction across Multiple Scales
Antonello Provenzale, Institute of Atmospheric Sciences and Climate, CNR

Planetary Climates: Some Advantages of Sparse Data
Andy Ingersoll, California Institute of Technology

Tuesday, July 1: Mixing Stuff Up
Glenn Flierl, Massachusetts Institute of Technology

Wednesday, July 2: On the Relationship between GFD and Atmosphere/Ocean Models in
the Era of Exascale Computing

Beth Wingate, University of Exeter, UK
Probabilistic Plume Model to Represent Dry, Shallow and Deep Convection

Pierre Gentine, Columbia University
Thursday, July 3: Baroclinic Equilibration with Topography

Ryan Abernathey, Columbia University
Finite-amplitude Wavepackets in Internal Waves in a Rotating Frame

Ted Johnson, University College London
Monday, July 7: Parameters, Probabilities and Insight(s)

Lenny Smith, London School of Economics and Political Science
On the Reliability of Multi-Year Forecasts of Climate

hildebrandt
Typewritten Text
vii



Susanna Corti, Institute of Atmospheric Sciences and Climate of the Italian National
Research Council
Tuesday, July 8: Metriplecticism: Relaxation Paradigms for Computation and
Derivation

Phil Morrison, University of Texas at Austin
Wednesday, July 9: Forcing and Feedback from Months to Millions of Years

Peter Huybers, Harvard University
Regional Climate Predictability from Regional Climate Feedbacks

Gerard Roe, University of Washington
Thursday, July 10: Low Clouds and Their Response to Climate Change: A GFD Problem
Waiting to be Solved

Tapio Schneider, Swiss Federal Institute of Technology, Zurich
Mixing Mechanisms and Dynamics of the Deep Arctic Ocean

Mary-Louise Timmermans, Yale University
Friday, July 11: A Competition between Turbulence and Baroclinic Instability in the Upper
Ocean

John Taylor, University of Cambridge
Retreating Greenland Glaciers and Warming Ocean: Dynamics at the Ice/Ocean Interface

Fiamma Straneo, Woods Hole Oceanographic Institution
Monday, July 14: Why are all my Power Cords Entangled? A Lecture on Random Entan-
glement

Jean-Luc Thiffeault, University of Wisconsin
Robotic GFD: Collaborative Tracking and Control in Time-Dependent and Stochastic Flows

Philip Yecko, Cooper Union New York
Tuesday, July 15: Climate Response to Increased CO2 - Effects of Explicit Representation
of Atmospheric Convection and Connections with Past Warm and Hot Climates

Eli Tziperman, Harvard University
Wednesday, July 16: The Nonlinear, Downstream Development of Unstable Baroclinic
Waves. Chaos and Scale.

Joe Pedlosky, Woods Hole Oceanographic Institution
Thursday, July 17: Dynamics of the Madden-Julian Oscillation

Adam Sobel, Columbia University
Friday, July 18: The Ocean’s Role in Transient Climate Change

Kyle Armour, Massachusetts Institute of Technology
Monday, July 21: Wind Waves in the Coupled Climate System

Baylor Fox-Kemper, Brown University
Tuesday, July 22: The Northern Hemisphere Summertime Circulation: Mechanisms and
Future Changes

Tiffany Shaw, Columbia University
Wednesday, July 23: Response of Antarctic Climate to Ozone-hole Forcing

John Marshall, EAPS MIT Cambridge
Thursday, July 24: Convectively Coupled Tropical Transients

Zhiming Kuang, Harvard University
Friday, July 25: Energetics of Semi-enclosed Basins with Two-layer Flows at the Strait

Paola Cessi, University of California, San Diego

hildebrandt
Typewritten Text
viii



Monday, July 28: Maintenance, Formation and Drift of Zonal Jets
Bill Young, University of California, San Diego

Tuesday, July 29: Ocean Heat Uptake and the Putative ’Hiatus’
Carl Wunsch, Massachusetts Institute of Technology

Wednesday, July 30: The Geometry of Transition in Shear Flows
Norman Lebovitz, University of Chicago

Thursday, July 31: Too Much of a Good Thing? Destabilisation and Mixing Induced by
Stratification in Shear Flows

Colm-cille Caulfield, Cambridge University
Friday, August 1: A GFD Study of the Last Glacial Maximum Climate

Raf Ferrari, MIT
Monday, August 4: Geometry of Turbulence, or How to Slice Baroclinic Instability

Predrag Cvitanovic, Georgia Institute of Technology
Tuesday, August 5: Ice Cores as Archives of Past Climate and Atmospheric Composition

Carlo Barbante, University of Venice
Wednesday, August 6: Superrotation in Planetary Atmospheres

Jonathan Mitchell, UCLA
Thursday, August 7: The Coolest Part of the Ocean

Cecilia Bitz, University of Washington
Friday, August 8: On the Self-aggregation of Convection in the Tropical Atmosphere

Caroline Muller, Laboratoire dHydrodynamique de l’cole Polytechnique & CNRS/Ecole
Polytechnique

Fellows’ talks

Monday, August 18:The Role of Mixed Layer Instabilities in Submesoscale Turbulence
Jörn Callies, MIT/WHOI Joint Program in Oceanography

Understanding Eddy Saturation in the Southern Ocean using Mean Field Theory
Joseph Fitzgerald, Harvard University

A Study of Heat Transport and the Runaway Greenhouse Effect using an Idealized Model
Paige Martin, University of Michigan

Tuesday, August 19: The Role of the Lapse Rate Feedback in Arctic Amplification
Ashley Payne, University of California, Irvine

The Most Minimal Seed for the Onset of Shear Turbulence
Geoff Stanley, University of Oxford

Wednesday, August 20: Models for Tropopause Height and Radiative-Convective Equilib-
rium

Shineng Hu, Yale University
Vortex Filament dynamics in Two Dimensions

Jim Thomas, New York University
Thermobaric Effects on Double-diffusive Staircases

Erica Rosenblum, University of California, San Diego
Thursday, August 21: An Experimental Investigation of the Rossby Two-slit Problem

Alexis Kaminski, University of Cambridge
A Numerical Study of the Downstream Development of Baroclinic Instability

Daniel Mukiibi, University of Hamburg

hildebrandt
Typewritten Text
ix



Lecture 1: Elements of Radiative Transfer

Kerry Emanuel; notes by Jörn Callies and Joseph Fitzgerald

June 16, 2014

1 Preamble

As opposed to expectations, there is not going to be much GFD in this lecture. There will
be no equations of motion. The reason is that to understand climate, it is necessary to
merge understanding of the large-scale motion with the thermodynamics and specifically
with radiative transfer. Most problems that have not been solved in climate science are
connected to the interaction of radiative transfer with water substances.

This lecture will therefore review how radiation passing through the atmosphere inter-
acts with its constituents, most importantly with water in its different phases. Much of the
fundamentals will only be alluded to, because of the time constraint.

One example of where the interaction of radiation with water substances in the atmo-
sphere is crucial is the Madden–Julian oscillation. This wave that moves around the globe in
the tropics is not yet well understood—it is one of the phenomena for which there are more
theories than theoreticians. As climate scientists are taking radiation and its interaction
with water more seriously, this problem will likely be solved in the near future.

Another one of these problems is tropical cyclogenesis. This also is likely to be under-
stood in the near future.

2 Useful facts and numbers

This is a loose compilation of useful facts and numbers that are fundamental controls of
Earth’s climate. Much of the detail that could take up entire courses will be skipped over
here.

The sun has a luminosity of about L0 = 3.9× 1026 J s−1, which corresponds to a radiative
flux of 6.4× 107 W m−2 at the top of the photosphere. Sunlight is received at the Earth
that orbits the sun at a mean distance of about d = 1.5× 1011 m, so that the flux density
is S0 = L0/4πd

2 = 1370 W m−2. The solar flux exhibits temporal variability, especially
associated with the 11-year solar cycle. The amplitude of these variations is of the order
of a tenth of a percent of the mean value, and is treated as negligible in this lecture series.
However, variations in the solar flux must be taken into consideration when studying climate
variability and trends on decadal and multi-decadal time scales.

The incoming solar radiation must be balanced by outgoing terrestrial radiation. A
blackbody of temperature T emits a spectral flux, integrated over a hemisphere, of σT 4,
where σ = 5.67× 10−8 W m−2 K4 is the Stefan–Boltzmann constant. According to this
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Stefan–Boltzmann law, the emitted radiative flux depends strongly on the body’s temper-
ature. The sun’s emission temperature as inferred from the Stefan–Boltzmann law at the
top of the photosphere is about 6000 K.

The amount of solar flux absorbed by the Earth is equal to S0(1− ap)πr2p, where ap is
the planetary albedo and rp is Earth’s radius. The planetary albedo is the fraction of the
solar flux that is reflected back to space. This is due to the combined effect of scattering by
clouds, by reflection off ice and other surfaces, and scattering by air molecules and aerosols.
In the present climate, Earth’s albedo is about ap = 0.3.

Because the total area of Earth is 4πr2p, the absorbed solar flux per unit area is S0(1−
ap)/4. If the atmosphere were completely transparent and the Earth emitted as a blackbody
of uniform temperature Te, then

S0
4

(1− ap) = σT 4
e ,

Using the numbers cited above, this gives Te = 255 K = −18 ◦C. This is much colder than
what is observed, which is due to the fact that the atmosphere is not transparent in the
infrared. In the more general case, the relation above can be taken as the definition of the
effective emission temperature.

The atmosphere is not completely transparent to solar radiation. Due to the presence
of water vapor (H2O), clouds, ozone (O3) in the stratosphere, and carbon dioxide (CO2),
some solar radiation is absorbed as it passes through the atmosphere. Terrestrial radiation
is absorbed even more strongly, even though it barely interacts with the atmosphere’s major
constituents, nitrogen (N2) and oxygen (O2). The primary absorbers of terrestrial radiation
are water in its three phases, CO2, methane (CH4), and nitrous oxide.

The distribution of radiative fluxes across frequencies for a blackbody in thermodynamic
equilibrium at temperature T is given by Planck’s law:

Bν(T ) =
2hν3

c2
(
e
hν
kT − 1

) ,

where ν is the frequency, h is the Planck constant, k is the Boltzmann constant, and c is
the speed of light. The atmosphere is in thermodynamic equilibrium except at very high
altitudes, where the gas density is so low that the atmosphere is very nearly transparent.
Planck’s law tells us that the distribution of radiative fluxes across frequencies, or equiv-
alently wavelengths, depends on its temperature T . Integrating this expression over all
frequencies and all angles in a hemisphere gives the Stefan–Boltzmann law:

π

∫ ∞

0
Bν(T ) dν = σT 4,

where the Stefan–Boltzmann constant can be written in terms of more fundamental physical
constants, σ = 2π5k4/15c2h3.

3 Absorption in the atmosphere

How does radiation interact with a gas? The basis of our understanding for how photons
get absorbed by gas molecules is quantum physics, which will only be alluded to here.
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An isolated atom can absorb photons only at discrete frequencies, those that correspond
by Eν = hν to differences in the available discrete energy levels of the atom’s electron
shell. Molecules have additional energy levels associated with additional degrees of freedom.
These additional energy levels allow absorption of photons at a larger number of frequencies
(Fig. 1).

For N2 and O2, only a few extra degrees of freedom are available. Compared to a single
atom, they have an extra vibrational mode, but they remain relatively weak absorbers.

The more complex the molecule becomes, the more degrees of freedom it has, and thus
the more absorption lines are present. Carbon monoxide (CO), for example, is asymmet-
ric and thus has a permanent dipole, which gives it rotational modes of interaction with
photons. More complex molecules allow additional rotational and vibrational degrees of
freedom—and combinations of different modes of excitation. Photodissociation or ioniza-
tion also leads to absorption.

The discrete energy levels of the molecules give rise to absorption lines at discrete
frequencies. But if the absorption were only present at truly discrete frequencies, no ab-
sorption at all would be possible, as the continuous spectrum of solar radiation contains
only an infinitesimal amount of energy in an infinitesimal frequency window. In reality, the
atmosphere absorbs a finite amount of energy due to the broadening of absorption lines by
two effects (Fig. 2). First, because of the movement of the molecules in a gas, the absorp-
tion frequencies get Doppler shifted slightly. The molecules move in random directions, so
averaged over all molecules, absorption can occur over a distribution around the nominal
absorption frequency. Second, the collision between molecules also broadens the absorption
line. This is called pressure broadening, because the collision rate depends on pressure.

Elements of the absorption properties of gases have been known since the 19th century.
John Tyndall measured the absorption capabilities of the various atmospheric gases in the
infrared, concluding that water vapor was the most powerful absorber.

Water is a strong absorber because of its bent triatomic structure and its permanent
dipole. It has a purely rotational absorption band and bands due to rotation, vibration,
and translation. Ozone, while also absorbing in the infrared, is mostly important because
it is involved in photodissociation in the stratosphere that absorbs ultra-violet (UV) light
emitted by the sun. CO2 has no permanent dipole, so it is not as strong an absorber as
H2O, but a dipole is present when the vibrational mode is excited, so CO2 is an important
absorber in the infrared as well. Other strongly absorbing constituents are nitrogen dioxide
(N2O) and CH4.

It is interesting to note that the main absorbers H2O and CO2 only make up a small
fraction of the total mass of the atmosphere (Fig. 3). The bulk of the atmospheric molecules,
N2 and O2, are radiatively inert. The most abundant strong absorber is H2O. While the
CO2 concentration is to leading order uniform, the H2O concentration is highly variable. To
leading order, the H2O concentration is controlled by temperature, through the Clausius–
Clapeyron relation, but deviations from this are possible when the air is sub-saturated.

The average lifetime of a water molecule in the atmosphere is on the order of two weeks.
This is very short compared to that of CO2, which decays on two exponential time scales,
one on the order of decades that is controlled by upper ocean uptake, the other on the order
of millennia that is controlled by carbon cycling into the deep ocean. Carbon is also taken
out of the atmosphere by weathering of the rocky land surface, but that process operates
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Figure 1: Illustration of the structure of molecules and their modes of interaction with
radiation by dipole moments, vibrational modes, and rotational modes
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Figure 2: Illustration of the broadening of spectral lines (a) to continuous absorption bands
(b) by Doppler and pressure effects

on geological time scales. The long lifetime of CO2 in the atmosphere allows it to be well
mixed. The CO2 concentration is currently about 0.04 %.

Long-lived gases tend to be well-mixed. Gases with a shorter lifetime can be more
highly concentrated near sources (Fig. 4). Ozone, for example, is enhanced in the strato-
sphere, where it is created by photodissociation. Carbon monoxide is mostly present in
the troposphere, where its anthropogenic sources are. Water is also mostly present in the
troposphere, but it is highly variable in space and time. It also undergoes phase transitions.

Water vapor is the most interesting of the trace gases, owing to its absorption properties
and its highly variable concentration. The H2O concentration is a function of the climate
state, and the climate state is dependent on the distribution of H2O. In fact, there are strong
feedbacks, which have often been ignored. As alluded to in the preamble, recognizing the
interplay of radiation and dynamics, which may lead to a self-regulation of the climate
system, may allow progress in long-standing problems in atmospheric and climate science.

The CO2 concentration has been rising due to anthropogenic emissions (Fig. 5). Direct
measurements of CO2 concentrations at Mauna Loa show an accelerating increase since 1959
to currently about 400ppm. Ice cores that contain air bubbles from pre-industrial times tell

5



Figure 3: Atmospheric constituents by mass, showing that the strongly absorbing gases
occur in small concentrations

us that the background, interglacial CO2 concentration was about 280ppm. Superposed
on this increase is a small seasonal cycle due to enhanced uptake of CO2 by the deciduous
forest in boreal summer that has no equivalent in the austral summer, because there is less
land mass in the southern hemisphere.

Fig. 6 shows the Planck functions for a solar temperature and for typical terrestrial
temperatures. The sun mostly emits in the visible range of the spectrum, while terrestrial
emissions are mostly in the infrared range. This separation between solar and terrestrial
radiation simplifies our conceptual understanding, as illustrated later in the lecture.

Also shown in this figure are the attenuations by absorption and scattering. The UV
light is mostly absorbed by ozone in the stratosphere. The atmosphere is mostly transparent
to visible light: some 90 % passes through. The absorption bands of H2O and CO2 tend to
be in the infrared range. The transmission of terrestrial infrared radiation is small, except
for a window around 10µm.

It should be noted that this figure is a cartoonish illustration of the immensely complex
absorption properties of the atmospheric gases. Very accurate numerical codes exist that
compute the absorption line by line. These are computationally too expensive to be put
in a climate model, so one resorts to simplified band models that are tested against the
line-by-line computations. These radiation codes are quite reliable; most of the uncertainty
in radiative transfer comes from scattering, especially multiple scattering in clouds.

4 Radiative equilibrium

Radiative equilibrium is the state of the atmosphere in which in every sample of gas, the
amount of absorbed radiation equals the amount of emitted radiation. In calculating the
radiative equilibrium, we make the assumption that the atmosphere is motionless, that no
advective heat transfer occurs. When a system is out of radiative equilibrium, radiative
transfer processes will relax it back toward the equilibrium. This relaxation will in general
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Image credit: Kerry Emanuel

Figure 4: Vertical structure of concentrations of atmospheric constituents as inferred from
climatology and specified for the band model of radiative equilibrium

be more complicated than simple Newtonian relaxation, due to the nonlocality of radiative
transfer. For example, a temperature perturbation at one level will have a radiative effect
on the temperature of other levels, which would not occur in a Newtonian cooling model.

As the simplest model of radiative equilibrium, consider a one-layer atmosphere (Fig. 7).
The model consists of a single layer of atmosphere at temperature Ta and a surface at
temperature Ts. The atmosphere is assumed to be completely transparent to solar radiation
and completely opaque to terrestrial radiation. The solar flux received is then S0(1−ap)/4 =
σT 4

e , which should be taken as a definition of the emission temperature. The surface
emits black-body radiation according to the Stefan–Boltzmann law, σT 4

s . The atmosphere
similarly emits as a black body, σT 4

a , both upward and downward. Remember that the
Stefan–Boltzmann law gives the radiative flux integrated over a hemisphere.

In radiative equilibrium, the incoming solar flux must balance the outgoing terrestrial
flux, which trivially gives the atmospheric temperature Ta = Te. At the surface, the balance
is between the sum of the incoming flux from the sun and the atmosphere and the emitted
black-body radiation:

σT 4
e + σT 4

a = σT 4
s .
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Figure 5: CO2 concentration as measured at Mauna Loa Observatory (red) and running
mean (black)

With Ta = Te, this gives the surface temperature Ts = 21/4Te = 303 K. The surface
temperature is higher than the emission temperature. This is the greenhouse effect: the
surface receives radiation from both the sun and the atmosphere. The resulting surface
temperature is higher than the observed mean surface temperature on Earth, but not too
far off, considering how simple a model this is. More importantly, the simple model captures
the essence of the problem, allowing conceptual understanding. It can be considered the
simplest climate model.

Note that in this one-layer model, the surface receives the same amount of flux from the
sun as it does from the atmosphere. In reality, it turns out that the surface receives roughly
twice as much radiation from the atmosphere as it does from the sun. This provides a
puzzle, as our model surface receives less radiation from the atmosphere than the true earth
surface, and yet our model surface temperature still comes out too hot. We will address
this issue later in the lectures.

The model can be modified by adding extra layers. The case of two atmospheric layers
that are completely opaque is depicted in Fig. 8. The extra layer increases the surface
temperature to Ts = 31/4Te. Generalizing to n layers results in a surface temperature
Ts = (n+ 1)1/4Te. Every extra layer increases the surface temperature. It should be noted
that the real atmosphere is not the continuous limit of this layered model, because as layers
become thinner, they become less opaque, so in a continuous limit, the emissivity of the
layers must go to zero.

8



Figure 6: Planck curves of solar and terrestrial radiation as well as scattering and absorption
by the atmospheric constituents

Instead of the continuous limit, let us consider two wrinkles on the two-layer model to
illustrate two important aspects of radiative equilibrium.

First, consider a thin layer of gas at temperature Tt just above the layer 2. Let its
emissivity be εt and let that emissivity tend to zero. This layer then does not affect any of
the other layers, so we can consider the radiative balance of this layer independently. From

εtσT
4
2 = 2εtσT

4
t

we find Tt = 2−1/4T2 = 2−1/4Te. This illustrates that the radiative equilibrium temperature
of an atmospheric layer can be lower than the emission temperature Te.

Second, consider adding such a layer just above the surface. Let its temperature be Ta
and its emissivity εa tend to zero. The balance of this layer is then

εaσT
4
s + εaσT

4
1 = 2εaσT

4
a ,

so T 4
a = (T 4

s +T 4
1 )/2. This layer therefore does not have the same temperature as the surface.

This result is independent of εa, so long as it is sufficiently small, and illustrates that a
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Figure 7: Radiative fluxes in a model with an atmosphere that consists of a single layer that
is completely transparent to solar radiation and completely opaque to terrestrial radiation

Figure 8: Radiative fluxes in a model with an atmosphere that consists of two layers that
are completely transparent to solar radiation and completely opaque to terrestrial radiation
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discontinuous emissivity entails a discontinuity in temperature. In radiative equilibrium,
the surface atmospheric temperature is generally different from the temperature of the
surface. Radiation drives the system into thermodynamic disequilibrium, which in reality
is counteracted by heat diffusion or fluid motion. But this effect can be experienced in a
desert during the day, where the sand is typically much hotter than the air at 2 m above
ground.

We now discuss the radiative equilibrium in a much more realistic model. This model
consists of a large number of layers for which the emissivity is calculated for wavelength
bands from the concentrations of the atmospheric constituents. The concentrations are
specified, with the exception of water vapor, for which a temperature-dependent relative
humidity is prescribed.

There are a number of interesting features of the resulting radiative equilibrium (Fig. 9).
There is a discontinuity of temperature at the surface—the surface temperature is different
from the temperature of the atmosphere at the surface. Furthermore, the troposphere is
very cold, much colder than is observed. Part of the reason is that there is a positive water
vapor feedback: as the atmosphere gets cold, the amount of water vapor decreases for a
fixed relative humidity, so the greenhouse effect is diminished. But the ultimate reason why
the tropospheric temperature is unrealistic is that we disregard convection, which will be
discussed in the next part.

The obtained temperature of the stratosphere is roughly consistent with the observed
stratospheric temperatures, which indicates that the stratosphere is in a state not very far
away from radiative equilibrium. There is an increase in temperature in the stratosphere,
which is due to the absorption of UV light by ozone in the upper stratosphere. If we
increased the CO2 concentration, the stratosphere would cool. This counterintuitive effect
can be explained by realizing that the stratospheric gas becomes a better emitter for a higher
CO2 concentration, so its temperature must be reduced to have the emitted radiation match
the absorbed solar radiation. To understand this effect fully, a radiative-equilibrium model
with two partially transparent layers would presumably be useful. In such a model, an
increase in CO2 concentration could be modeled by in increase in emissivity of the upper
layer.

5 Convection

The reason for the unrealistically cold troposphere with a very steep temperature gradient
in the lower troposphere is the omission of convection. The time scale of the radiative
relaxation to equilibrium is on the order of tens of days. But convection operates on a
few hours, much faster than radiation. Convection drives the system toward a state of
convective neutrality. The separation of time scales means that where convection occurs,
the system is very near this state of convective neutrality. The state resulting from the
combination of radiation and convection is called the radiative–convective equilibrium. It
should be noted, however, that such an equilibrium is a state of statistical equilibrium,
which is highly turbulent in nature. We begin by calculating what this equilibrium state is
if phase changes of water are neglected. Later, we will add such moist processes.

Historically, radiative–convective equilibrium was first analyzed in the 1960s. Since
then, climate scientists have rapidly moved on to three-dimensional modeling, building
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Figure 9: Radiative equilibrium of band model with concentrations of greenhouse gases
specified and relative humidity prescribed

ever more complex models. Moving on so quickly might have been a historical mistake as
much fundamental insight can still be gained from this very idealized radiative–convective
equilibrium.

Let’s consider the force balance of a cube of fluid of density ρb under the effect of gravity
g (Fig. 10). The forces in the vertical on the box are then the sum of the box’s weight and
the pressure forces on the horizontal faces:

−ρbg∆x∆y∆z + p(z)∆x∆y − p(z + ∆z)∆x∆y = 0.

Dividing through by the volume of the box and taking the limit ∆z → 0 gives

∂p

∂z
= −ρbg,

which is called the hydrostatic balance.
Allowing a vertical acceleration modifies the balance to

−ρbg∆x∆y∆z + p(z)∆x∆y − p(z + ∆z)∆x∆y = ρb
dw

dt
∆x∆y∆z,
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Figure 10: Box of air for which the vertical force balance is considered

where w is the vertical velocity. The vertical acceleration is then

dw

dt
= − 1

ρb

∂p

∂z
− g.

If the environment is in hydrostatic balance and the pressure is the same in the box and
the environment, then

dw

dt
= g

(
ρe
ρb
− 1

)
= g

ρe − ρb
ρb

= B,

which is called buoyancy. The environmental density was here denoted by ρe.
Next we will assess whether a vertical profile of temperature is stable by displacing a

parcel and calculating whether it gets pushed back to its original position, in which case we
call it stable, or whether it gets accelerated away from its original position, in which case
we call it unstable. This is not a trivial calculation, because the parcel’s density changes as
it is displaced, because its pressure changes. Throughout, we will neglect viscous stresses.
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Lecture 2: Energy Balance and the Troposphere

Geoff Vallis; notes by Shineng Hu and Alexis Kaminski

June 17

The philosophy throughout these lectures is that in order to understand a complex
system we must have a description of it at multiple levels, from a back-of-the-envelope
calculation through idealized numerical models to a comprehensive simulation with all the
bells and whistles. Because this is Walsh we will always try to include a back-of-the-envelope
calculation and go from there, but other approaches are possible.

1 What are we trying to explain?

A schematic of the overall structure of the atmosphere and ocean is given in Fig. 1, with
some pictures of the real atmosphere from observations given in Fig. 2 and Fig. 3. In Fig. 1
we sketch the troposphere, where temperature decreases with height, and the stratosphere,
where temperature increases with height, and the dividing tropopause which is fairly high
over the tropics (15km) and lower over polar regions (8km). We might immediately ask,
what determines this structure? What determines the height of tropopause? Why is it
about 10 km , and not 100 km or 1 km ? And what determines the width of the tropics
where the tropopause is high? And so on.

Turning to the ocean, we have, again very schematically, warm water in the upper ocean
and cold water below. The layer between them, where temperature varies very fast verti-
cally, is called the thermocline. Sometimes we make an analogy between the thermocline
and the tropopause, but actually the thermocline is more like the whole troposphere be-
cause they are both characterized by large vertical temperature gradients and relatively
fast dynamics. Questions for oceanographers include what determines this structure of the
ocean? What is the nature of the circulation that maintains it? More specifically, what
determines the depth of the thermocline?

These are the kinds of questions we will consider in these lectures. We’ll try to answer
some of them, but not all. The philosophy throughout is that in order to understand a
complex system we must have a description of the system at multiple levels, from a back-of-
the-envelope calculation through idealized numerical models to a comprehensive simulation
with all the bells and whistles. Because this is Walsh we will always try to include a
back-of-the-envelope calculation and go from there, but other approaches are possible.

Our goals in this lecture are fairly fundamental:

• Understand at an elementary level what determines the surface temperature of Earth.

• Understand the need for a troposphere, and what determines its thickness.

To answer that we begin with a tutorial on radiation.
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Sunday, 22 June, 14Figure 1: A schematic of thermal structures of ocean and atmosphere. The solid lines
mark the tropopause and the base of the thermocline, and the near-vertical dashed lines
are representative profiles of temperature.

2 Radiative Balance

2.1 The very basics

All macroscopic bodies except those at absolute zero (are there any?) emit thermal radi-
ation. The black body emission per unit wavelength or per unit frequency are given by
Planck’s function which is, for the two cases respectively,

Bλ(T ) =
2πhc2

λ5
1

exp(hc/λkBT )− 1
, Bν(T ) =

2hν3

c2
1

exp(hν/kBT )− 1
(1)

where c is the speed of light, h is the Planck constant and kB is the Boltzmann constant.
Conventions for frequency and wavelength are such that c = ω/k = ωλ/2π = νλ. Inte-
grating either of the above expressions over wavelength or frequency, respectively, gives the
Stefan–Boltzmann law

B(T ) = σT 4, (2)

where σ is Stefan’s constant,

σ =
2π5k4B
15h3c2

= 5.6704× 10−8 W m −2 K −4. (3)

The maximum of Planck’s function occurs at a wavelength λm = b/T where b = 2.898 ×
10−3 m K . This is Wien’s displacement law, and it means that the higher the temperature
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Figure 2: Overturning circulation of the atmosphere during a Northern Hemisphere winter.
The contours and shading indicate an overturning streamfunction, rising just south of the
equator. The top plot shows a conventional Eulerian average and the bottom plot is a
residual circulation. Three measures of the tropopause are indicated with the more nearly
horizontal solid lines.
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Figure 3: Temperature profiles in the atmosphere. On the left is the ‘US standard atmo-
sphere’ and on the right are some observed profiles.

the shorter the wavelength at which emission predominantly occurs. For the Sun, at T ≈
6000 K , λm = 5× 10−7 m , which is in the visible range; solar radiation is also sometimes
called shortwave. For Earth, at T = 280 K , λm = 1 × 10−5 m , which is in the so-
called infra-red, sometimes called longwave. The radiation itself is in units of W m −2,
and so is a flux of energy. The radiation reaching Earth from the Sun has an intensity of
S∗ = 1366 W m −2, varying by about 1 W m −2 over the 11-year sunspot cycle.

2.2 Earth’s global energy budget

The simplest model that gives the temperature of the Earth is to suppose that the incoming
solar radiation is balanced by an outgoing flux of infra-red radiation at a single temperature
so that

S0(1− α) = σT 4, (4)

where S0 = S∗/4 = 342 W m −2 and α is the Earth’s albedo, the fraction of solar radiation
reflected and measurements show that α ≈ 0.3. The resulting temperature, Te is variously
called the effective emitting temperature, the radiation temperature or the bolometric tem-
perature. Plugging in numbers we find

Te =

(
342× 0.7

5.67× 10−8

)1/4
= 255 K . (5)

The actual surface temperature on Earth averages 288 K . If you think 255 K is a good
estimate of 288 K , you are at heart a planetary scientist. If you think it is a bad estimate,
you are a climate scientist or a meteorologist.

[Needed: table of emitting temperature and actual surface temperature for all planetary
bodies in the solar system.]

A simple feedback we can put into such a model is the ice-albedo feedback, whereby we
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Figure 4: A simple EBM

suppose that α is a function of temperature. For example, we might suppose that

α =

{
0.3 for T > T0

0.8 for T < T0
(6)

2.3 Effects of the atmosphere

The clear-sky atmosphere is largely transparent to solar radiation, but not to infra-red
radiation. Most (but not all) of the solar radiation impinging on the atmosphere that is not
reflected by clouds is thus absorbed at the Earth’s surface, whereas most of the infra-red
radiation emitted at the Earth’s surface is absorbed by the atmosphere.

Given this, the next simplest model is to suppose there is an absorbing atmosphere
above the surface, as illustrated in Fig. 4. If it is in equilibrium then the energy balance
equations are:

Top: S0(1− α) = σT 4
a , (7)

Surface: S0(1− α) + σT 4
a = σT 4

g . (8)

(From these we also see the atmospheric balance, 2σT 4
a = σt4g.) The solution is

Ta =

(
(1− α)S0

σ

)1/4
, Tg = 21/4Ta. (9)

So that Ta = 255 K (as it has to be) and Tg = 303 K , This is now too warm. One solution
is to suppose the atmosphere has a finite emissivity, εa (which is less than one). This is
getting ad hoc, but it will allow us to illustrate a nice effect. Thus,

Top: S0(1− α) = εaσT
4
a + (1− εa)σT 4

g , (10)

Surface: S0(1− α) + εaσT
4
a = σT 4

g + F. (11)
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where we also introduce a flux F from surface to atmosphere. The solution for the surface
temperature is

σT 4
g =

S0(1− α)− F/2
1− εa/2

(12)

which, for F = 0 and ε = 0.77, gives Tg = 288 K . The surface temperature obviously
increases with εa as expected (Fig. 5).

3 Water Vapour Feedback

3.1 Saturation vapour pressure

The two main greenhouse gases are water vapour and carbon dioxide. Carbon dioxide is
well mixed and is not volatile (it does not condense at Earthy temperatures). Its value is
determined by geological and anthropogenic processes, and we can suppose its value to be
specifiable. Water vapour levels are determined by the relative humidity of the atmosphere
and, above all else, by the temperature through the Clausius–Clapeyron relation. This
states that the saturation vapour pressure of water, es, or indeed of nearly any condensing
material, varies as

des
dT

=
L

T (ρ−1g − ρ−1c )
≈ L

RwT 2
es, (13a,b)

where the second expression follows if ρg � ρc (the density of the gas phase is much less
than that of the condensed phase) and using the ideal gas law. The parameter L is the
‘latent heat of condensation’ and Rw is the gas constant for the gas in question, which for
us is water. If L is constant (not a quantitatively good assumption, but good enough for
now) we get

es(T ) = es0 exp

[
Ls
Rs

(
1

T0
− 1

T

)]
. (14)
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Figure 6: Saturation vapour pressure as a function of temperature

Evidently, saturation vapour pressure is a strongly increasing function of temperature. A
liquid will boil when the temperature is sufficiently high that the saturation vapour pressure
equals the ambient pressure, and for water at sea-level this occurs at 100◦C . A good, semi-
empirical approximation for saturation water vapour pressure is the Tetens–Bolton formula,

es = 6.112 exp

(
17.67 ∗ Tc
Tc + 243.3

)
(15)

where Tc is temperature in Celsius and pressure is in hecto-Pascals (the same as millibars).
This is actually a better approximation than (14) because it includes the variation of L with
T . In any case, the main point is that water vapour content in the atmosphere increases
fairly rapidly with temperature, at about 7% K −1 (Fig. 6).

3.2 Radiative feedback and runaway greenhouse

Returning now to the EBM of the previous section, if we differentiate (12) we obtain

4 dTg
Tg

=
dεa

2− εa
. (16)

Now, εa may vary both because we add CO2 (which we will denote as c) and because water
vapour content may changes, so we write

dεa = Adc+ B des (17)

where A and B are quantities that reflect the radiative properties of CO2 and water vapour.
If the main reason water vapour changes is because of the change in saturation vapour
pressure with temperature then, using (13b) and (17), (16) becomes

(8− 4εa)
dTg
Tg

= Adc+ B des = A,dc+
BL
RwT 2

es dTg. (18)
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or (
8− 4εa
Tg

− BLes
RwT 2

g

)
dTg = Adc (19)

Note that changes in atmospheric temperature is proportional to changes in surface tem-
perature. Thus

dTg
dc

=
ATg

8− 4εa

(
1

1− y

)
where y =

BesL
RwTg(8− 4εa)

. (20)

This is a rather interesting equation. It is not to be believed at a quantitative level, but it
is perhaps the simplest model that captures in a physically plausible way the greenhouse-gas
effects of both water vapour and CO2 . The following is apparent:

• Adding carbon dioxide to the atmosphere causes temperature to go up (because 4εa <
8), providing y < 1, so the model delineates between forcing and feedback.

• The feedback is captured by the terms involving y, and it can be larger than the direct
effect depending on the size of B.

• As y → 1 the feedback becomes very large, and this is called the runaway greenhouse
effect. As the temperature increases the water vapour content increases, temperature
further increases and so on.

• There is no a priori reason why y should be less than unity. For example, it will be
large if the temperature is high, and so if es is high. It seems then that that Tg will
decrease as c increases!

The last item seems totally unphysical, and to see what is going on we need to construct an
explicit model of the greenhouse effect with water vapour feedback. We will do that soon
but it will be easier if we must look in a bit more detail about radiation.

4 Radiative Transfer in a Grey Atmosphere

4.1 Assumptions

Radiative intensity, I is the radiative flux per solid angle and when dealing with radiation in
three-dimensional problems we have to deal with directionality. We also have to deal with
the dependence of absorption on wavelength, and with scattering. In dealing with radiation
in the Earth’s atmosphere we will make a number of main simplifications.

1. We can have completely separate treatments of solar and infra-red radiation.

2. Much of the time we can assume there is no solar absorption in the atmosphere. This
is not quantitatively true but if it were the case, most of the atmosphere would be
about the same.

3. We integrate over solid angles in the upward pointing hemisphere and again in the
downward pointing atmosphere, so that we have two streams of radiation.
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4. We’ll integrate over wavelength in the infra-red and assume that a single emissivity
suffices.

5. There is no scattering of infra-red radiation.

4.2 Equations of radiative transfer

Consider a monochromatic beam of radiation passing through a gas, and suppose for a
moment the gas does not emit any radiation but only absorbs it. For a thin layer of gas the
change in intensity of the beam is then

dI = −Idτ (21)

where τ is the optical depth. The equation may be regarded as a definition of optical depth
— it is the fraction of the incoming radiation absorbed — with the difficulty then arising
in relating it to the physical properties of the gas. Eq. (21) can be formally integrated to
give I = I0 exp(−τ), where the factor T = exp(−τ) is the transmittance of the layer. The
optical depth of two layers is the sum of their optical depths and the total transmittance is
the product of the two transmittances.

The optical depth of a gas is related both to the amount of gas and to its properties,
and for a thin layer of gas of thickness ds we can write

dτ = kAρds (22)

where kA is the mass absorption coefficient. In general the optical depth will depend on
the wavelength but we shall assume it does not; that is, the atmosphere is grey. In the
atmosphere if the pressure is hydrostatic then, in the vertical direction, dτ = kAρdz = kAdp
so that

τ(p1, p2) = kA(p1 − p2) (23)

In fact the mass absorption coefficient increases with pressure so that in the atmosphere a
somewhat better approximation is to write

τ ≈ τr
(p1 − p2)(p1 + p2)/2

p2r
(24)

where pr is a reference pressure and τr is a reference optical depth, a function of the
properties of the gas in question.

The slab of gas will also emit radiation, so taking this into account (21) becomes

dI = (B − I)dτ (25)

This is known as the Schwarzschild equation and it applies at each wavelength, but if
we assume τ is not a function of wavelength and we integrate over all wavelengths then
B = σT 4. (You can either take this to be obvious or do a bit of algebra involving integrations
over solid angles to convince yourself, or consult a radiation book like Goody or Petty or
Pierrehumbert.) In terrestrial applications we assume that (25) applies in the infra-red, and
do a separate calculation for solar radiation.
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Now, in the atmosphere under two-stream approximation in the atmosphere we have
upward, U , and downward, D, radiation and we write

−dU

dτ
= B − U, dD

dτ
= B −D. (26a,b)

The convention we have chosen here is that τ increases downwards. This is convenient for
atmospheric applications, for then we have τ = 0 at the top of the atmosphere, but it is not
mandated. We could choose it the other way and flip the signs of the right-hand sides and
no physical result depends on this choice, or on the origin of τ . We will use these equations
for the infra-red radiation and in what follows assume that solar radiation is all absorbed
at the surface.

4.3 Solutions

Formal Solution

Consider the generic equation for radiation travelling in the direction of increasing τ or
decreasing τ , B and U respectively

dD

dτ
= B −D, dU

dτ
= U −B. (27)

Multiplying by the integrating factors exp(τ) and exp(−τ)gives

d

dτ
(Deτ ) = Beτ ,

d

dτ
(U e−τ ) = −Be−τ (28)

Integrating between τ = 0 and τ ′ we obtain

D(τ ′)eτ
′ −D(0) =

∫ τ ′

0
B(τ)eτ dτ, U(τ ′)e−τ

′ − U(0) = −
∫ τ ′

0
B(τ)e−τ dτ (29)

or

D(τ ′) = e−τ
′
[
D(0)−

∫ τ ′

0
B(τ)eτ dτ

]
, U(0) = U(τ ′)e−τ

′
+

∫ τ ′

0
B(τ)e−τ dτ (30)

The first term in each solution is the attenuation of incoming radiation and the second is
the cumulative emission. There are other ways to write the solution, but in general the
solution of radiative problems can be written only in the form of integrals. Nevertheless, in
some important special cases we can get a local solution as below.

Radiative equilibrium in planetary atmospheres

Consider an atmosphere with net incoming solar radiation Snet and suppose the planet is in
radiative equilibrium with the incoming solar balanced by outgoing infra-red. The radiative
transfer equations are thus to be solved with the boundary conditions that

D = 0, U = Ut at τ = 0, (31)
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Figure 7: Radiative equilibrium temperature (solid curve) calculated using (36), with an
optical depth of τ0 = 8/3, Ha = 2 km and a net incoming solar radiation of 239 W m −2.

where Ut = Snet is the net outgoing long-wave radiation (OLR) at the top of the atmosphere.
There are still too many variables as we don’t know B, but we can obtain a radiative
equilibrium solution if we assume there is no longwave heating in the column. The heating
is proportional to the divergence of the net flux, so that if this is presumed zero then
∂(U −D)/∂z = 0 so that

∂(U −D)

∂τ
= 0. (32)

Let us rewrite (26) as

∂

∂τ
(U −D) = U +D − 2B, (33a)

∂

∂τ
(U +D) = U −D. (33b)

A solution of these equations that satisfies the boundary conditions is

D =
τ

2
Ut, U =

(
1 +

τ

2

)
Ut, B =

(
1 + τ

2

)
Ut. (34)

where Ut is the outgoing longwave radiation at the top of the atmosphere. The only thing
remaining is to relate τ to z, and a simple recipe that is similar to (23) is to suppose that
τ has an exponential profile.

τ(z) = τ0 exp(−z/Ha) (35)

where typical values are τ0 ≈ 4 and Ha ≈ 2 km . The temperature then goes like

T 4 = Ut

(
1 + τ0e

−z/Ha

2σ

)
, (36)

as illustrated in Fig. 7. Note the following aspects of the solution.
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1. Temperature increases rapidly with height near the ground.

2. The upper atmosphere is nearly isothermal.

3. The temperature at the top of the atmosphere, Tt is given by

σT 4
t =

Ut
2

(37)

Thus, if we define the emitting temperature, Te, to be such that σT 4
e = Ut, then

Tt = Te/2
1/4. Note also Bt/Ut = 1/2.

In fact, the temperature gradient near the ground varies so rapidly it is likely to be convec-
tively unstable, which we come to in the next lecture. Also, note that we do not need to
impose a temperature boundary condition at the ground; in fact there is no ground in this
problem! — but what happens if we add one? That is, suppose that we declare that there
is a black surface at some height, say z = 0, and we require that the atmosphere remain in
radiative equilibrium. What temperature does that surface have to be?

From (34) the upward irradiance and temperature at any height z are related by

U =

(
2 + τ

1 + τ

)
σT 4. (38)

At z = 0 the surface will have to supply upwards radiation equal to that given by (38), and
therefore its temperature, Tg is given by

σT 4
g =

(
2 + τ

1 + τ

)
σT 4

s , (39)

where Ts is the temperature of the fluid adjacent to the ground (the ‘surface temperature’).
That is, Tg > Ts and there is a temperature discontinuity at the ground. Sometimes in very
still conditions a very rapid change of temperature near the ground can in fact be observed,
but usually the presence of conduction and convection will ensure that Tg and Ts are equal.

In the limit in which τ = 0 in the upper atmosphere (let us prematurely call this the
‘stratosphere’) then we see that

D = 0, U = Ut, B =
Ut
2
. (40)

That is, the atmosphere is isothermal, there is no downwelling irradiance and the upward
flux is constant. The stratospheric temperature, Tst and the emitting temperature are
related by

Tst =
Te

21/4
. (41)

Summary Points

To sum up, what have we found?

1. If we suppose the atmosphere is grey, and we know how optical depth varies with
height, then if the atmosphere is in longwave radiative equilibrium we can construct
an explicit solution for the temperature as a function of height.
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2. The temperature will typically decrease very rapidly in height away from the surface.
So much so it is likely to be convectively unstable, as we discuss in the next lecture.

3. The radiative equilibrium temperature does not care or know whether a surface (i.e.,
the ground) is present. If a surface is present, and we require that radiate equilibrium
still hold, the temperature of the ground must be higher than the temperature of
the air adjacent to it. This is because the ground must supply the same amount
of radiation as would be supplied by an infinite layer of air below that level. Thus,
there is a temperature discontinuity at the ground, which in reality would normally
be wiped out by convection.

5 An explicit model of the Runaway Greenhouse Effect

We now come back to the greenhouse effect and construct an explicit model of runaway
greenhouse. (The term ‘runaway greenhouse’ was coined by Ingersoll (1969).) Suppose
the atmosphere is in radiative equilibrium. From the derivations above, we can relate the
surface and ground temperatures to the incoming solar radiation through the relation

T 4
s =

T 4
e

2
(1 + τ0), T 4

g = T 4
e (1 +

τ0
2

) (42)

Thus, if τ0 = 1.254 then, for Te = 255 K we find Tg = 288 K and Ts = 262 K . The as-
sumption of radiative equilibrium and the ensuing temperature discontinuity are unrealistic
but the model will illustrate and important point. We’ll construct a more realistic model
in the next lecture.

Suppose that we let τ0 be a function of temperature, increasing with the saturation
vapor pressure at the surface. Thus, let

τ0 = A+Bes(Tg) (43)

where A and B are semi-empirical constants, and es is the saturation vapor pressure as
given by the solution of the Clausius–Clapeyron equation, (15). We will tune their values
such that Tg = 288 when Te = 255, and with some experience of hindsight we set the ratio
A/B = 8, whence we obtain A = 1.12 and B = 0.14. The reason for such a seemingly high
ratio is that a grey model is too prone to give a runaway greenhouse because of its lack of
windows in the infra-red. Thus, in reality, even as temperature and water vapor content
increase some infra-red radiation can escape from the surface.

Putting the above together, the ground temperature is solution of

T 4
g = T 4

e

(
1 +

1

2
[A+Bes(Tg)]

)
. (44)

This algebraic equation is quite nonlinear and must be solved numerically but a few points
are apparent.

1. For any given Te we can obtain a graphic solution by plotting Tg and T 4
e (1 + τ0/2)1/4

and seeing where the two curves intersect. For a range of values of Te we will obtain
two solutions, as illustrated in Fig. 8. However, if Te is too high there will be no
intersection of the curves because the value of T 4

e (1 + τ0/2) will always be larger than
Tg.
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Figure 8: Graphical solution to the energy balance model (44) with Te = 255 K . The
dashed curve is Tg and the solid curve plots values of T 4

e (1 + τ0(Tg)/2)1/4, with τ0 given by
(43). Solutions occur at Tg ≈ 288 K and Tg = 350 K .

2. If Te increases and Bes is much smaller than A, then a solution is found by increasing
Tg.

3. If Te increases and Bes is suitably large then we can imagine that a solution will be
found with a lower value of Tg.

Numerical solutions, found iteratively, are illustrated in Fig. 9, and as expected there
are two branches to the solution. [A much more detailed discussion with many extensions
is to be found in the report by P. Martin in this volume.] For the parameters plotted, there
is no solution if Te > 269 K . That is to say, if a planet obeying the model above were in
an orbit such that Te > 269 K then infra-red radiation would not be able to escape from
the surface, and the surface temperature would keep on rising. All the water on the planet
surface would boil, and eventually the water vapor would escape to space. Such a scenario
may have occurred on Venus in the past.

5.1 Stability of solutions

The upper branch of the solution plotted in Fig. 9 runs counter to our intuition, in that
temperature decreases as emitting temperature increases. The situation arises because the
greenhouse effect is so strong, so that an increase in emitting temperature can lead to a
decrease in surface temperature if the greenhouse effect also falls considerably. However,
this solution is unstable as we now show.

We add a time dependence to the energy balance model and write

C
dTg
dt

= σT 4
e − σ

T 4
g

1 + τ0/2
(45)
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Figure 9: Solutions the energy balance model (44) obtained numerically. Plotted are values
of Tg as a function of The dashed curve is Tg and the solid curve plots values of T 4

e (1 +
τ0(Tg)/2)1/4, with τ0 given by (43) .

We perturb the system about an equilibrium point and so obtain

C
dT ′g
dt

=
−4σT 3

g T
′
g

1 + τ0
+

σT 4
g τ
′
0

(1 + τ0)2
, (46a)

=

(
Tg

1 + τ0/2

dτ0
dTg
− 4

)
T ′g (46b)

Thus, the solution will be stable or unstable according as whether the term in brackets is
negative or positive, respectively.

A tiny bit of algebra will reveal that the ratio of the two terms in brackets in (46b)
precisely the same as the ratio of the gradients of the solid curve and the dashed curve
at the intersection points in Fig. 8. Thus, the solution at the higher temperature (about
350 K in the graph) is unstable, because the gradient of the blue curve is greater than the
gradient of the dashed curve. Similarly, the solution at the lower temperature (288 K ) is
stable. All of the solutions on the upper branch on Fig. 9 are therefore unstable.
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Lecture 3: Convective Heat Transfer I

Kerry Emanuel; notes by Paige Martin and Daniel Mukiibi

June 18

1 Introduction

In the first lecture, we discussed radiative transfer in the climate system. Here, we will
delve into the convective heat transfer within the climate system, and how this leads to the
radiative-dry convection equilibrium as an extension of the radiative equilibrium that we
saw in Lecture 1.

2 The Buoyancy Equation

From the first lecture, we have that the buoyancy, B, of a fluid particle is given by the
formula (stemming from Archimedes’ Principle)

B = g
ρe − ρb
ρb

, (1)

where subscripts e and b denote that the variable pertains to the environment and the
sample fluid parcel, respectively. For convenience, we make two variable substitutions.
First, we switch from using density to specific volume α using the relation α = 1/ρ, which
yields

B = g
αb − αe
αe

= g
δα

αe
. (2)

Specific volume, however, is not conserved under adiabatic compression, but the entropy
s is conserved. Hence comes our second substitution from α to s. To make this substitution,
we go through a few steps as follows:

δα = (∂α∂p )sδp + (∂α∂s )pδs.

Setting the first term on the right side to zero, we are left with

δα = (∂α∂s )pδs.

We can then employ a Maxwell Relation

(
δα

δs
)p = (

δT

δp
)s. (3)
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(The Maxwell Relations are a set of equations stating the relation between derivatives
of thermodynamic variables. For a more in-depth discussion and derivation of the Maxwell
Relations, refer to a standard Thermodynamics textbook.)

The term on the right can be plugged into the above equation for buoyancy (2):

B = g
α( δTδp )sδs.

Assuming a hydrostatic environment, we can replace p with vertical height z according to
αdp = −gdz, giving the final equation

B = −(
δT

δz
)sδs = Γδs, (4)

where Γ is the adiabatic lapse rate.

3 Stability

One of the primary questions in this lecture pertains to the instability of the atmosphere to
convection. We can consider a parcel of air that we displace upwards. If the buoyancy of the
parcel is also upwards, then the parcel is unstable and will continue to accelerate upwards.
If, however, the buoyancy is downwards, then the parcel will accelerate back toward its
original position. Relating this now to entropy, we see that if entropy decreases with height,
then a particle displaced upwards will have a higher entropy than its surrounding and will
thus be unstable. If entropy is constant in height, then the atmosphere is neutrally stable.

Figure 1: The profile of virtual potential temperature, which can be considered to be entropy
for our purposes.

Figure 1 shows measurements taken from a model airplane of the entropy (the x-axis
shows the virtual potential temperature, which behaves essentially like entropy) in the
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atmosphere up to around 800m. It is clear that the entropy profile is nearly constant, with
the exception of a few meters above the surface. This constant entropy layer implies the
existence of a convecting layer, which can account for the mismatch in temperatures between
the ground and the layer of air just above the ground in the radiative equilibrium model.
Convection acts on a small enough time scale that it is able to destabilize the atmosphere,
yielding a constant entropy layer.

4 The Prandtl Problem

(For a detailed description of the Prandtl problem discussed below, see Prandtl L 1925 Z.
Angew. Math. Mech. 5 136.)

We consider now the Prandtl Problem, as shown in Figure 2. There is a rough bottom
at constant temperature, which we set to be z=0. The fluid, which is subject to gravity,
is cooled such that the vertical integral of cooling over the whole depth is constant. In
mathematical terms, this can be written

∫ ∞

0
Q̇dz = const. (5)

Figure 2: Schematic of the Prandl problem.

There is a flux of heat from the lower boundary, which is the convective (buoyancy) flux
F . F should be constant, and can be written as an average defined by

F = w′B′, (6)

where w’ is the perturbation vertical velocity and B’ the perturbation buoyancy.
To find a scale for the velocity in terms of F and z, we perform dimensional analysis.

The following are the relevant dimensions in the problem:

F ∼ length2/time3

z ∼ length

The desired scaling for q ∼ length/time can be achieved by

q ∼ (Fz)
1
3 . (7)
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Similarly, we can find a scaling for the buoyancy (which has units of length/time2) in
terms of F and z:

B′ ∼ (
F 2

z
)
1
3 . (8)

Figure 3: The vertical temperature profile.

We can then express the buoyancy B in terms of the average buoyancy B0 and the
perturbation buoyancy B′:

B ∼ B0 − cF
2
3 [(zT0 )

−1
3 − z

−1
3 ], (9)

where we define zT0 to be the thermal roughness scale. This dependence is shown in figure 3,
where temperature is plotted on the x-axis in lieu of buoyancy, but they are simply related
by the coefficient of thermal expansion and thus have qualitatively similar behavior.

The radiative-dry convective equilibrium is shown in figure 4, with the pure radiative
equilibrium plotted for comparison. From the graph, a few observations can be made.
First, the temperature in the radiative-convective equilibrium in the troposphere and near
the surface is significantly larger than in the purely radiative state. Why do we see this
temperature increase in the troposphere and surface? This is because we assumed a constant
relative humidity (a big assumption!), which implies more water vapor, hence a greater
greenhouse effect, and thus a warmer temperature. However, there remains an important
question - why is this graph so different than what we observe in the real world? This will
be answered in the next section!
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Figure 4: Full calculation of radiative-dry convective equilibrium.

5 Radiative - Dry Convective Model

In figure 5 is shown a simple model, very much like the one discussed in the first lecture.
There are two layers, both opaque, but we are now assuming that, in addition to radiative
fluxes, there are convective fluxes, denoted by F . By assumption (i.e. because we are
forcing convective neutrality), we write

T1 = T2 + ∆T
TS = T1 + ∆T = T2 + 2∆T .

We can still write σT 4
e = σT 4

2 , yielding the temperature of the second layer T2 = Te. This
dictates the temperatures of the other layers:

T1 = Te + ∆T
TS = Te + ∆T .

At the surface we can write the equation

σT 4
e + σT 4

1 = σT 4
S + FS .

This can be rearranged to solve for the surface convective flux:

FS = σ(−T 4
S + T 4

e + T 4
1 ) = σT 4

e [1 + (1 + x)4 − (1 + 2x)4], (10)
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Figure 5: A simple radiative-convective energy balance model.

where x is defined to be x = ∆T
Te

.
Similarly, the equation for the second layer can be written

2σT 4
e = σT 4

1 + FC ,

and then solving for the convective flux

FC = σT 4
e [2 − (1 + x)4]. (11)

The convective fluxes are needed to maintain a constant lapse rate. This leads into the
topic introduced below, and discussed in detail in Lecture 5 about moist convection.

6 Introduction to Moist Convection

Moist convection is important for a number of reasons, and it will shape the equilibrium
curve into something that looks more similar to the real-world picture.

Water in the atmosphere is responsible for a significant amount of heating due to phase
changes (discussed below), and is considered one of the most important greenhouse gasses.
Moist convection also plays a key role in stratiform cloudiness, and thus the planet’s albedo
and long-wave trapping.

6.1 Water Variables

The following are the variables which will be used in subsequent lectures.

q = Mwater
Mair

specific humidity

e vapor pressure (partial pressure of water vapor)

e∗ = 6.112hPa e
17.67(T−273)

T−30 saturation vapor pressure
H = e

e∗ relative humidity
q∗ saturation specific humidity
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The ideal gas law will be used, where R∗ and m̄ are the universal gas constant and the
molecular weights of the constituents, respectively:

p = ρR
∗T
m̄ ,

which can be rewritten in terms of the vapor pressure

e = ρv
R∗T
m̄v

,

with m̄v referring to the mass of the vapor particles. The specific humidity is the ratio of
water vapor density to total density:

q = ρv
ρ = mv

m̄
e
p ,

and thus the saturation specific humidity is expressed as

q∗ =
mv

m̄

e∗

p
. (12)

In Lecture 5, which continues the discussion of convective heat transfer, we will use
these quantities and equations defined above to study moisture in the atmosphere, which
will lead us to the Radiative-Moist Convective Equilibrium (RCE).
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Lecture 4: Radiative-Convective Equilibrium and Tropopause

Height

Geoff Vallis; notes by Erica Rosenblum and Ashley Payne

June 19

We now consider what the effect of convection might be on all the concepts and so-
lutions found in lecture 2. Because our interest in mainly in the large scale structure of
the atmosphere we will take a somewhat simplistic view of convection and suppose that
it acts to restore an unstable lapse to something that is neutrally stable, that lapse rate
being given by either the dry adiabatic or moist adiabatic lapse rate. Readers interested
in finding out more about convection and radiative-convective equilibrium should consult
Kerry Emanuel’s lecture notes.

1 Radiative-convective equilibrium

In lecture 2 we found that in radiative equilibrium the temperature falls off very rapidly
with height in the lower atmosphere, so much so that it is likely to be convectively unstable.
We imagine the atmosphere will convect and that the lapse rate will adjust until it is stable,
as in Fig. 1, up to some height HT . Sometimes, either instead of or in addition to, heat may
be transported upwards by large-scale motion such as baroclinic waves. In either case, let us
suppose that the dynamics acts such as to produced constant lapse rate up to some height
HT , which we will later associate with the tropopause. We wish to obtain an expression for
that height. That is, we seek a solution for which

z ≤ HT : T = Ts − Γz (1a)

z > HT : Radiative equilibrium, satisfying (lec.2:26) and (lec.2:32) (1b)

Further, since we are imposing a convective heat flux, we can suppose that at the surface the
temperature is continuous, so that the ground temperature is such that σT 4

g = U(z = 0).
To obtain a solution we might just think of adjusting the lapse rate in (lec2:fig.7) so that

there is no net heating, and this may indeed be what convection does on a short timescale.
However, an overall radiative balance is not necessarily then achieved, so that the system
will then evolve further. The variable in this equation is HT , and this can be adjusted until
(lec.2:36) is satisfied, with the outgoing radiation The solution of these equations requires
an iterative approach and the algorithm is as follows.

1. First solve the radiative transfer equations for radiative equilibrium.

2. Make a guess for the height of the tropopause, and hence obtain the temperature all
the way down to the ground.
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Figure 1: Radiative equilibrium temperature (solid curve) calculated using (lec.2:36), with
an optical depth of τ0 = 8/3, Ha = 2 km and a net incoming solar radiation of 239 W m −2.
The dashed line shows a schematic adjusted temperature with a lapse rate of 6.5 K km −1

up to a tropopause (at about 11 km here) and a radiative equilibrium temperature in the
stratosphere.

3. Integrate the radiative transfer equations down from the top. The outgoing radiative
balance is achieved this way, but there is no balance at the surface if temperature is
continuous. That is, σT 4

g 6= U(z = 0).

4. Change the height of the tropopause, find another solution, and iterate until the
surface radiative balance is achieved.

An alternative is to specify the surface temperature and integrate the radiative transfer
equations up along a given lapse rate from the bottom to a certain height, beyond which we
suppose that radiative equilibrium holds. This procedure will not give the correct outgoing
radiation, so the procedure must again be iterated.

1.1 Global Warming

Without actually solving the RCE equations we can make an important deduction as to
what happens to the height of the tropopause under global warming, that is what happens
when additional carbon dioxide is added to the atmosphere. If the atmosphere stays in
radiative balance (which it will in the long term) then the outgoing radiation remains the
same. If the stratosphere has a small optical depth then its temperature stays the same
from (lec.2:40). Therefore the temperature of the tropopause must stay the same! However,
the height of the emitting temperature must increase, because the emissivity of the lower
atmosphere increases, and the photons that reach space come, on average, from a higher
level in the troposphere. And, as a consequence, the troposphere warms as illustrated in
Fig. 2. But if the temperature of the tropopause is to stay the same then its height must
increase, and a simple calculation tells us by how much.
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Figure 2: Schematic of temperatures before (blue line) and after an increase in optical depth
of the atmosphere, such as happens in global warming. The troposphere warms but the
emitting temperature stays the same. Hence the tropopause temperature stays the same
and the height of the tropopause increases.

If the lapse rate stays the same then the tropopause height will increase by an amount
∆HT given by

∆Ht =
∆Ts

Γ
(2)

where ∆Ts is the change in surface temperature. If we allow the lapse rate to change also,
then

∆Ht =
∆Ts

Γ
−Ht

∆Γ

Γ
(3)

or
∂Ht

∂Ts
=

1

Γ
− HT

Γ

∂Γ

∂Ts
. (4)

If we suppose that Γ is the moist adiabatic lapse rate then we can calculate this expression
analytically, and some results are shown in Fig. 3, where the lapse rate is assumed constant
with height and a function of surface temperature. It is interesting that the increase in
tropopause height is quite significant – about 400 m per degree – and that both the direct
temperature effect and the lapse rate effect are important (at least in regions where the lapse
rate is moist adiabatic). An increase in tropospheric height is one of the most robust results
we have concerning changes of the structure of the atmosphere under global warming, as
discussed more in Vallis et al. (2014).

2 The Height of the Tropopause

We now provide an approximate, analytic, expression for the height of the tropopause.1 We
assume the following.

1This section is joint work with Pablo Zurita-Gotor.
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Figure 3: (a) Contours of change in tropopause height (km) as a function of temperature
change and lapse rate change, calculated using (3). (b) Rate of change of tropopause height
with temperature (∂Ht/∂T ) as a function of temperature, calculated using (4).

1. Single column (so a one-dimensional calculation).

2. Grey atmosphere with an optical thickness that decays exponentially with height.

3. A specified lapse rate to some height HT , beyond which there is radiative equilibrium.

4. An optically thin atmosphere in the upper troposphere and stratosphere.

5. An overall radiative balance. So the outgoing IR radiation is specified (equal to net
incoming solar).

6. No surface temperature discontinuity. So ground temperature equals surface air tem-
perature (Tg = Ts), and the upwards radiation at z = 0 is given by σT 4

g .

2.1 Algorithm

To find an exact solution the equations must be iterated, and an algorithm for that is as
follows.

1. First numerically integrate (lec.2:33) to obtain a radiative equilibrium solution.

2. Guess a height for the tropopause and thus obtain a temperature at all levels below
that, including the ground, using the given lapse rate.

3. Calculate the radiative fluxes by integration of (lectire 2:33) down from the top. The
upwards radiation at the ground will in general not equal σT 4

g .

4. Adjust the height of the tropopause and repeat step (2) and (3).

5. Iterate the calculation until a surface balance is achieved.
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An alternative procedure is to guess a surface temperature and integrate the equations up,
assuming a constant lapse rate up to a height HT , with radiative equilibrium beyond. When
this is done the temperature at HT will not be the correct one, and outgoing radiation will
not equal to the incoming radiation, and again we have to iterate.

2.2 Analytic approximation

The analytic approach involves obtaining an analytic expression for the outgoing radiation
for a given temperature profile along the lines of (lec.2:30). The OLR so obtained will be a
function of the height of the tropopause, and by making the expression equal to the incoming
solar radiation we obtain an expression for the tropopause height. Instead of actually using
(lec.2:30) it is easier to solve the equations approximately ab initio. We make one other
approximation, that the value of B/U varies linearly from the tropopause (where its value
is 0.5) to its value at the surface (where B/U = 1). Thus,

B

U
= 1− z

2HT
. (5)

Numerical calculations suggest this is a decent approximation (can it be improved upon?).
Rewrite (lec.2:26a) as

d logU

dτ
= 1− B

U
=

z

2HT
. (6)

Using τ(z) = τs exp(−z/Ha) we obtain

d logU

dz
= − z

2HTHa
τs exp(−z/Ha). (7)

We can integrate this expression by parts to obtain a value of the upwelling radiation at
the tropopause U(HT ), namely

log

(
U(HT )

U(0)

)
= − τs

2HT

∫ HT

0
exp(−z/Ha) dz ≈ −τsHa

2HT
. (8)

for HT � Ha. This is an expression for the outgoing longwave radiation, and we see that
the only variable in the equation is HT – note that the upwelling radiation at the surface is
given by the surface temperature, which is a function of the tropopause temperature, HT

and the lapse rate, Γ.
To obtain a closed form for the tropopause height assume that the stratosphere is opti-

cally thin and note that U(HT ) = U(HT ) = 2σT 4
T and U(0) = σT 4

g = σT 4
s . Furthermore,

TT and Ts are related by TT = Ts − ΓHT . The left-hand side of (8) then becomes

log

(
2σT 4

T

σT 4
s

)
= log 2 + 4 log

TT
Ts

= log 2 + 4 log

(
TT

TT + ΓHT

)

≈ log 2− 4ΓHT

TT
. (9)

Using (9), (8) becomes

log 2− 4ΓHT

Ts
= −τsHa

2HT
(10)
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Figure 4: Analytic approximation and numerical calculation for tropopause height.

or
8ΓH2

T − CHTTT − τsHaTT = 0. (11)

where C = 2 log 2 ≈ 1.38. The solution of this equation is

HT =
1

16Γ

(
CTT +

√
C2T 2

T + 32ΓτsHaTT

)
. (12)

For Earth’s atmosphere, Ha ≈ 2 km , τs ≈ 8/3 and Γ ≈ 6.5 K km −1. All three terms
in the quadratic are then approximately the same size and HT = 10.3 km , which is in
fact reasonably close to the exact numerical solution (obtained iteratively) of the radiative-
convective equations (Fig. 4).

The numerical approximation of the logarithm in (9) can be improved by using Tm
instead of TT , where Tm is the temperature half way between the surface and the tropopause.
However, we still want to have TT as a parameter in the quadratic for HT (because TT is
given if the OLR is known). Thus, we have to do some more algebraic fiddling and the
upshot is that we get a quadratic similar to (11) but with different coefficients. [Student
exercise. See also Vallis et al (2014) for another way to proceed.]

Once we have the tropopause height we can obtain an expression for the temperature
everywhere in the troposphere, and the surface. We could then perform a calculation similar
to that of section (lec.2:3.2) and obtain an analytic expression for how the surface temper-
ature increases with carbon dioxide content, and the conditions for a runaway greenhouse
effect. [With extensions this could be a student project.]

Optically thick and thin limits

The above approach allows us to be precise about what it means for an atmosphere to
be optically thin or thick. Using (12) and approximating C2 = 2 we easily find that the
optically thick limit arises when

τsHa �
TT
16Γ

whence HT ≈
√
TT τsHa

8Γ
(13)
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The optically thin case has

τsHa �
TT
16Γ

whence HT ≈
1.38TT

8Γ
. (14)

With parameters appropriate for Earth’s atmosphere both of the above limits give estimates
in the range 5–10 km , and note that they are additive effects. What is the interpretation
of these expressions? Do they work on other planets? What is the role of lateral heat
transport?

A number of these issues have been taken up by Shineng Hu in his summer project, and
the interested reader is referred to his report for more details.

3 Lateral Transport

The actual tropopause height is determined by a combination of lateral heat transport and
the RCE state above. Suppose we think of the energy balance of a column of air. If there
is no horizontal divergence of heat flux into the column then we have the same situation as
before, and the tropopause height is determined by the RCE argument. This in fact will be
the situation somewhere in mid-latitudes where the horizontal heat flux is a maximum. At
this particular location we have the RCE problem above.

Elsewhere there is a flux of heat into or out of the column and this will affect the
tropopause height. As far as the column is concerned these effects are similar to changes
in the outgoing longwave radiation, and so it would change the tropopause height in the
same way that changing the outgoing longwave radiation would. That is, suppose you have
separately solved the problem on how heat is transferred horizontally as well as the RCE
problem above. In that case you know the outgoing radiation at any particular latitude and
you know the lapse rate and so you can determine the tropopause height. In fact, this effect
probably will not make a big difference to the tropopause height because the sensitivity of
tropopause height on tropopause temperature is fairly weak. Thus, if the lapse rate is fixed
independently of the horizontal dynamics the height of the tropopause will only be affected
by these dynamics to a limited degree.

However, there are other ways that the dynamics affects things, and one is in the deter-
mination of the lapse rate itself. This may occur in either the tropics or the extratropics,
where the mechanisms will be slightly different. In the tropics the prime determinant of the
lapse rate is moist convection, and a simple possibility is that the lapse rate is given by the
moist adiabatic lapse rate. However, this is itself a fairly strong function of temperature,
so that the tropopause height becomes a function of temperature mainly through the effect
that horizontal transfer has on the moist adiabatic lapse rate, not temperature itself.

Another argument (Held?) is that the moist static energy at the tropopause is almost
the same as what it is at the surface, whence

N2 ≈ Lqsg

cpTsHT
(15)

where HT is, again, tropopause height and qs and Ts are the surface values of water vapour
and temperature. Note that HT decreases with increasing stability in this expression,
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whereas it increases with stability (i.e., decreases with lapse rate) in the RCE expression
(12). Only one value of the tropopause height is consistent with both.

In midlatitudes the situation is complicated because the heat transport is effected by
baroclinic instability and this has a characteristic height. One possibility is to try to adjust
things so that height of the tropopause is consistent both with baroclinic instability and
with the radiative constraint. There are a number of possibilities that we might wish to
consider (good student projects!).

Suppose that baroclinic instability is like the Eady problem. In this case the instability
goes from the surface to the tropopause; there is no additional height scale.

But suppose that we have a β-plane. In this case the vertical scale is given by the
‘Charney height’ which, in a Boussinesq system, is

h =
f2Λ

βN2
(16)

where Λ is the vertical shear of the zonal wind, Λ = ∂U/∂z . We might argue that the
height, h, in (16) must be the same as that given by the radiative constraint, and this gives
us a theory of the stratification of the atmosphere. Just as in the tropics, h decreases with
increasing stability so there is only one solution. If we suppose that h = HT , where HT is
the height of the tropopause given by the radiative constraint, then using the thermal wind
equation, fΛ = −∂b/∂y and with N2 = ∂b/∂z we find

HT = −f∂b/∂y
β∂b/∂z

(17)

or

s =
f

βHT
∼ a

HT
, (18)

where s is the slope of the isopycnals and a is the Earth’s radius. This means that an
isopycnal roughly goes from the surface at the equatorward edge of the midlatitudes to
the tropopause at the pole. This hypothesis and its friends have generated quite a lot of
controversy in the community. . . .

4 Appendix: Dry and Wet Lapse Rates

4.1 A dry ideal gas

The negative of the rate of change of the temperature in the vertical is known as the
temperature lapse rate, or often just the lapse rate, and the lapse rate corresponding to
∂θ/∂z = 0 is called the dry adiabatic lapse rate and denoted Γd. Using θ = T (p0/p)

R/cp

and ∂p/∂z = −ρg we find that the lapse rate and the potential temperature lapse rate are
related by

∂T

∂z
=
T

θ

∂θ

∂z
− g

cp
, (19)

so that the dry adiabatic lapse rate is given by

Γd =
g

cp
. (20)
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The conditions for static stability are thus:

stability :
∂θ̃

∂z
> 0; or −∂T̃

∂z
< Γd

instability :
∂θ̃

∂z
< 0; or −∂T̃

∂z
> Γd

, (21a,b)

where a tilde indicates that the values are those of the environment. The atmosphere is, in
fact, generally stable by this criterion: the observed lapse rate, corresponding to an observed
buoyancy frequency of about 10−2 s−1 , is often about 7 K km −1, whereas a dry adiabatic
lapse rate is about 10 K km −1. Why the discrepancy? One reason, particularly important
in the tropics, is that the atmosphere contains water vapour.

4.2 Saturated lapse rate

The amount of water vapour that can be contained in a given volume is an increasing
function of temperature (with the presence or otherwise of dry air in that volume being
largely irrelevant). Thus, if a parcel of water vapour is cooled, it will eventually become
saturated and water vapour will condense into liquid water. A measure of the amount of
water vapour in a unit volume is its partial pressure, and the partial pressure of water
vapour at saturation, es, is given by the Clausius–Clapeyron equation,

des
dT

=
Lces
RvT 2

, (22)

where Lc is the latent heat of condensation or vapourization (per unit mass) and Rv is the
gas constant for water vapour. If a parcel rises adiabatically it will cool, and at some height
(known as the ‘lifting condensation level’, a function of its initial temperature and humidity
only) the parcel will become saturated and any further ascent will cause the water vapour
to condense. The ensuing condensational heating causes the temperature and buoyancy of
the parcel to increase; the parcel thus rises further, causing more water vapour to condense,
and so on, and the consequence of this is that an environmental profile that is stable if the
air is dry may be unstable if saturated. Let us now derive an expression for the lapse rate
of a saturated parcel that is ascending adiabatically apart from the effects of condensation.

Let w denote the mass of water vapour per unit mass of dry air, the mixing ratio, and
let ws be the saturation mixing ratio. (ws = αes/(p− es) ≈ αwes/p where αw = 0.622, the
ratio of the mass of a water molecule to one of dry air.) The diabatic heating associated
with condensation is then given by

Qcond = −Lc
Dws

Dt
, (23)

so that the thermodynamic equation is

cp
D ln θ

Dt
= −Lc

T

Dws

Dt
, (24)

or, in terms of p and and T

cp
D lnT

Dt
−RD lnP

Dt
= −Lc

T

Dws

Dt
. (25)
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Figure 5: The saturated adiabatic lapse rate as a function of temperature and pressure
when water (H2O) is the condensate.

If these material derivatives are due to the parcel ascent then

d lnT

dz
− R

cp

d ln p

dz
= − Lc

Tcp

dws

dz
, (26)

and using the hydrostatic relationship and the fact that ws is a function of T and p we
obtain

dT

dz
+
g

cp
= −Lc

cp

[(
∂ws

∂T

)

p

dT

dz
−
(
∂ws

∂p

)

T

ρg

]
. (27)

Solving for dT/dz , the lapse rate, Γs, of an ascending saturated parcel is given by

Γs = −dT

dz
=

g

cp

1− ρLc(∂ws/∂p)T
1 + (Lc/cp)(∂ws/∂T )p

≈ g

cp

1 + Lcws/(RdT )

1 + L2
cws/(cpRvT 2)

. (28)

where the last near equality follows with use of the Clausius–Clapeyron relation. The
quantity Rd is the gas constant for dry air and Rv is the gas constant for water vapor, and
Rv = Rd/αw. The quantity Γs is variously called the pseudoadiabatic or moist adiabatic or
saturated adiabatic lapse rate, and it is plotted in Fig. 5.

Because g/cp is the dry adiabatic lapse rate Γd, Γs < Γd, and values of Γs are typically
around 6 K km −1 in the lower atmosphere; however, dws/dT is an increasing function of
T so that Γs decreases with increasing temperature and can be as low as 3.5 K km −1. For
a saturated parcel, the stability conditions analogous to (21) are

stability : −∂T̃
∂z

< Γs, (29a)

instability : −∂T̃
∂z

> Γs. (29b)
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where T̃ is the environmental temperature. The observed environmental profile in convect-
ing situations is often a combination of the dry adiabatic and moist adiabatic profiles: an
unsaturated parcel that is is unstable by the dry criterion will rise and cool following a dry
adiabat, Γd, until it becomes saturated at the lifting condensation level, above which it will
rise following a saturation adiabat, Γs. Such convection will proceed until the atmospheric
column is stable and, especially in low latitudes, the lapse rate of the atmosphere is largely
determined by such convective processes.
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Lecture 5: Convective Heat Transfer II

Kerry Emanuel; notes by Geoff J. Stanley and Jim Thomas

June 20

1 Introduction

In this lecture we will study classical Köhler theory and the effects of aerosols and their
size distribution to explain raindrop formation. We will then study the stability of a moist
atmosphere (building on the stability of a dry atmosphere in Lecture 3). We then conclude
with a discussion of radiative moist convective equilibrium.

2 Raindrop Formation

How does rain actually form in Earth’s atmosphere? The answer is quite complex, and
there is a long history of scientists who have attempted to explain the phenomenon. In this
lecture we will examine the process and along the way note its historical development.

We must begin with a phase diagram of water, which has been obtained through both
theory and laboratory experiment. Figure 1 shows the phase of water as a function of
pressure p and temperature T . When pressure and/or temperature change so as to cross a
line on the diagram, water changes from one phase to another, as the theory goes. However,
phase transitions in Earth’s atmosphere, being catalysed by a distribution of aerosols, are
more complex than in the laboratory.

First let us recall our definitions. Let ρ be the density of air and ρv the density of
water vapour in the air. Let T be the air temperature. The gas constant for water vapor
is Rv = R∗/mv = 462 J kg−1 K−1, with R∗ = 8.3144621 J mol−1 K−1 the universal gas
constant and mv = 18 g mol−1 the molar mass of water. The latent heat of condensation
of water is Lv = 2.5 × 106 J / kg. The specific humidity q, which is the actual mass
concentration of water vapor in the air, the vapor pressure e, and the saturation vapor
pressure e∗ are given by

q =
ρv
ρ
,

e =
ρvR

∗T
mv

,

e∗ = e0 exp

(
Lv

Rv
(T0
−1 − T−1)

)
. (1)

For temperatures well below the critical temperature, the Clausius-Clapeyron relation takes
the above exponential form and determines e∗ as a function of T , with e0 and T0 empirical
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constants. This is the curve between the Triple Point and the Critical Point in the phase
diagram (Figure 1). The above formulas treat Lv as constant, but it is, in fact, a weak
function of temperature; correspondingly, there are more accurate semi-empirical formulas
for e∗, but the above will suffice here. An air parcel holding water vapor becomes saturated
when e > e∗, i.e. when it crosses this curve. This can occur by increasing its vapor
pressure (by increasing q such as through sea spray, or by increasing the total pressure) or
by decreasing T so as to decrease e∗. From the ideal gas law p = ρR∗T/m̄, with m̄ the mean
molecular weight of air (which changes very little between dry and saturated air, owing to
the overwhelming concentration of N2 and O2) we may write

e = ρv
R∗T
mv

= qp
m̄

mv
.

A subsaturated air parcel that ascends adiabatically (no heat content change) and reversibly
(no change in q) will experience a lower p as well as T , such that both e and e∗ decrease.
While e decreases nearly perfectly exponentially with height (through p ≈ p0 exp(−z/H)
with H the scale height and p0 the surface pressure), e∗ decreases as the exponential of a
term (−T−1) that itself decreases with height: ∂z

(
−T−1

)
= ΓDT

−2 with Γd the dry lapse
rate. Thus e∗ decreases with height faster than e, so condensation routinely occurs by lifting
a moist air parcel.

Cloud physicists realized long ago the difficulty of rain droplet formation. Forming
a water droplet without a condensation nucleus, purely by condensation (homogeneous
nucleation) is possible but requires supersaturation of the air by 10% or more, or equivalently
(by Clausius-Clapeyron) supercooling of the air down to about −40◦C. This supersaturation
is required to overcome the tendency of small droplets to evaporate: water molecules on
the edge of a small droplet, which has a small radius of curvature, are more exposed and
separated from their neighbouring molecules; hence they experience weaker cohesive forces
(surface tension), and will evaporate more easily. This is the Kelvin effect: the amount
of supersaturation required for a droplet to be in condensation-evaporation equilibrium is
larger for smaller droplets.

However, observations rarely show air in Earth’s atmosphere to be supersaturated by
more than about 1%. There had to be another process at work. Assistance comes from
condensation nuclei (aerosols) which, by decreasing the number of liquid H2O molecules
at the interface (the edge of a droplet, in this case), reduce the tendency for evaporation.
For a flat interface, this is known as the Raoult effect. In Earth’s atmosphere, there are
plenty of aerosols that catalyse this phase transition very well, so that it truly is a good
approximation to assume that water vapor condenses when crossing this curve. However,
simply condensing water vapor is not sufficient to form rain; droplets must grow in size
until their terminal speed exceeds the updraft speed.

In a seminal paper, Köhler [1] transformed Raoult’s law for a spherical interface (imitat-
ing a water droplet) and simultaneously added the Kelvin effect. Very small droplets—those
for which the Kelvin effect inhibits condensational growth—that form on a condensation
nuclei have a high particulate to water ratio. So by Raoult’s effect the environment can
be subsaturated and yet the droplet can maintain condensation-evaporation equilibrium.
However, condensation will not grow such a droplet: if it grows the required vapor pressure
for equilibrium is raised (Raoult’s effect) and so, without adjusting the ambient vapor pres-
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Phase Equilibria

Figure 1: The phases of water dependent on temperature and pressure. At the triple point
(T = 0◦C and p = 6.112 hPa) all three phases can coexist in equilibrium. Beyond the
critical point (T > 647 K and p > 218 atm, so not relevant for Earth’s atmosphere), the
liquid and gaseous phases become indistinguishable. Atmospheric aerosols that catalyse the
condensation of water vapor to liquid droplets are plentiful in the atmosphere, so transition-
ing from vapor to liquid is just a matter of lowering the temperature or raising the vapor
pressure to cross the phase transition line. However, these aerosols are not as well suited for
catalysing deposition (vapor to ice). The dashed line indicates that in Earth’s atmosphere,
significant supersaturation or supercooling is required to form ice crystals from vapor.

sure, the droplet will evaporate back to its original size: a stable equilibrium (corresponding
to positive slopes in Figure 2). When the ambient vapor pressure is above a critical su-
persaturation level, as Köhler’s theory goes, Kelvin’s effect begins to dominate: the edge
of a growing water droplet becomes flatter and the vapor pressure required for equilibrium
falls. If the ambient vapor pressure remains constant, an even larger vapor pressure differ-
ential drives more condensation onto the droplet: an unstable equilibrium (corresponding
to negative slopes in Figure 2). The critical supersaturation, predicted by Köhler’s theory
for a given aerosol number density, is well below 1%; concerning observations, this theory
of droplet growth was plausible.

Once the critical supersaturation has been passed and a water droplet has formed, one
might expect that, since the saturation vapor pressure falls as the water droplet grows
(from the Kelvin effect), that it will grow and grow without end—or until so large that it
falls as rain. However, in the atmosphere CCN [cloud condenstation nuclei] are generally
abundant, and are all competing for available water vapor, so none grow particularly large.
Pure condensational growth does not produce water droplets large enough to fall as rain,
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Cloud formation Kelvin equation Raoult’s law Köhler curve Measurements of CCN

Köhler curve I

� Combination (multiplication) of Kelvin and Raoult’s equation

(evaluating it for e∗(r)/es(r)) gives the Köhler curve:

�

S =
e∗(r)
es(∞)

=
e∗(r)
es(r)

· es(r)

es(∞)
= (1 − b

r3
) · exp(

a

r
). (13)

with

a =
2σ

ρwRvT
≈ 3.3 · 10−7

T
[m] (14)

� For r not too small, a good approx. is: exp( a
r ) ∼ 1 + a

r

S =
e∗(r)
es(∞)

= 1 +
a

r
− b

r3
(15)

� b depends on the total solute mass m. I.e. Every dry particle mass

defines an individual Köhler curve!
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Köhler curve II

� The critical radius rc and critical supersaturation Sc are given by:

rc =

�
3b

a
; Sc =

�
4a3

27b
(16)

� Köhler curve represents equilibrium conditions

� Large particles can activate at smaller supersaturations than small

ones.

� However, large particles have large equilibrium radii and may have

insufficient times to grow to their equilibrium size in clouds with

strong updrafts.

� The curves for droplets containing fixed masses of salt approach the

Kelvin curve as they increase in size, since the droplets become

increasingly dilute solutions.

Ulrike Lohmann (IACETH) Formation of cloud droplets Oct 24, 2012 15 / 18

Figure 2: vapor pressure required for a droplets of different radii to be in condensation-
evaporation equilibrium, as described by Köhler theory. The Kelvin effect (solid beige
curve) increases the required vapor pressure with decreasing droplet size, due to an increas-
ing radius of curvature. The Raoult effect (dash-dot curves) reduces the required vapor
pressure with decreasing droplet size, due to higher aerosol concentration. Köhler theory
(solid curves) combines these two effects, and accounts for both the type of aerosol (dashed
vs. solid) and the size of the aerosol (colours). Figure from Ulrike Lohmann’s lectures
(IACETH); available at http://www.iac.ethz.ch/edu/courses/bachelor/vertiefung/

atmospheric_physics/Slides_2012/koehler.pdf

and yet another process is required for rain formation.
Surely the collection of smaller droplets by larger droplets through collisions must be

of some importance. However, not only does condensational growth produce droplets too
small to rain out, those droplets are also roughly all the same size. That is, the distribution
of droplet sizes narrows with time. Equal size droplets have the same buoyancy and drag
forces and so will accelerate at the same rate (recall Stokes’ flow past a sphere). All moving
at similar velocities, then, they will not have much opportunity for collision. Turbulent air
flows can force collisions of like-sized droplets; there is a significant body of literature on this
topic but will not be pursued here. For the more laminar case, the efficiency of the collisional
process for raindrop formation is a very strong function of not just the number density of
droplets, but also of the droplet size distribution. A narrow distribution results in rare
collisions. A variety of condensation nuclei with different sizes could initiate droplets with
a distribution of sizes, but aerosols in continental regions are predominantly dust without
much size variance. Again, another mechanism was needed to explain rain formation, and
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Ice Nucleation Problematic

Figure 3: An observational study showing the fraction of clouds with ice in them as a
function of cloud top temperature, being generally the coldest temperature in the cloud.
The numbers indicate the sample number of clouds for each temperature. Above 0◦C no
ice exists, and below (for this study) −19◦C all clouds contain ice.

it came from Bergeron in 1933.
There are two points to discuss before describing Bergeron’s mechanism. First, we’ve

said that atmospheric aerosols are well suited to catalyse water droplet formation; but those
same aerosols are not so efficient for ice formation. Homogeneous nucleation of ice crystals
from liquid water (i.e. in a perfectly clean atmosphere) also requires very low temperatures,
around −40◦C. Thus for ice formation, it is safe to assume water crystallizes below −40◦C,
and that none crystallizes above 0◦C. But there is some complicated function (of temper-
ature, and the aerosol population) that determines the fraction that crystallizes between
these temperatures. Figure 3 shows this function from one study; the function will vary
from study to study and is not meant to be taken as universal. The non-monotonicity found
in this particular study indicates the potential difficulty in determining a more universal
function. The relevant point for this discussion, however, is that this preference for liquid
droplet formation over ice crystal formation leads to a large population of droplets but a
small population of ice crystals in mixed phase clouds.

Second, deriving the Clausius-Clapeyron relation involved a thermodynamic study of
the phase transition to water vapor from liquid water or from ice. Now, the latent heat of
fusion for water is about one eighth of its latent heat of condensation1, and so the latent heat

1The latent heat of fusion is often neglected in climate models, but is certainly non-negligible in detailed
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of deposition (ice formation), being the sum of the latent heat of fusion and condensation, is
larger than the latent heat for condensation alone. These different values for L go into (1),
and this shows that the saturation vapor pressure over ice is always lower than that over
liquid water. Thus for a given ambient vapor pressure between the two saturation vapor
pressures, liquid water droplets evaporate and ice crystals grow by deposition.

Eleven years before presenting his theory Bergeron noted that a stratus cloud deck
could extend down only to the canopy, not to the ground, when temperatures were below
freezing. He proposed that a small ice crystal population could rapidly form large crystals—
large enough to fall, and possibly melt back to rain—by scavenging water from a large
population of water droplets. Given that temperatures below 0◦C exist even in the tropics
at high altitudes, this process had the potential to explain both mid-latitude and tropical
rainfall.

Indeed, the Bergeron process does explain much rain formation, but not all. In the 1950s
cloud physicists convened for a conference in Puerto Rico, where they observed intense
rainfall from a cloud whose top was certainly warmer than 0◦C. Indeed, in this case of a
maritime climate, salt particles from the sea are plentiful in the atmosphere, giving a wide
distribution of condensation nuclei sizes, and rain formation can occur via condensational
growth and collision collection alone without any cold cloud microphysics.

We have seen how aerosols, and in particular their size distribution, play a critical role
in rain drop formation, and thus in determining whether it will rain or not. We have also
seen how cold cloud microphysics involving ice crystals can produce rain when the aerosol
distribution does not particularly support rain drop formation. We have considered the
condensational and collisional processes of rain droplet growth. It is important that we
understand these fundamental processes of rain formation if we are to accurately predict
the weather, as well as the climate.

3 Stability

In Lecture 3 we derived the entropy of a dry air parcel and considered adiabatic vertical
displacements of this air parcel. Such a process is reversible so its entropy is conserved, and
we found that the environment was stable (unstable) if the entropy increased (decreased)
with height. Determining a stability criterion for moist air, however, turns out to be much
more difficult. The difficulty arises because the density of moist air depends not just on its
entropy and pressure, but also on the water content and the fraction of that water content
that is vapor versus liquid.

We can define the entropy of moist air as a function of temperature, pressure, and specific
humidity. This is well defined because, as discussed in the previous section, water vapor
supersaturates very little. The moist air entropy s is that for dry air plus two additional
terms (the last two, below):

s = cp ln
T

T1
−Rd ln

p

p1
+
Lvq

T
− qRv lnH. (2)

Here H ≡ e/e∗ is the relative humidity, cp is the specific heat capacity for air at constant
pressure, Rd (Rv) is the specific gas constant for dry air (water vapor), Lv is the latent heat

studies of cloud physics.
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of condensation, and T1 and p1 are arbitrary constants (note that entropy is only relevant
up to an additive constant). Let us also define the saturation entropy, which has H = 1 so
lnH = 0, giving

s∗ = cp ln
T

T1
−Rd ln

p

p1
+
Lvq

∗

T
. (3)

In addition to adding latter two terms, water content changes s by modifying the molar
mass of the air mixture: hence the specific gas constant used should technically be a function
of q. Similarly, the heat capacity of air is modified by water vapor, and even more strongly
by condensed water: cp should be a function of q. These modifications should be accounted
for in numerical weather prediction models, but since these changes are more of a numerical
nature than conceptual, we shall treat Rd and cp as constants here. We have also chosen
to neglect any ice processes, because of the difficulty in knowing at what temperature ice
formation occurs (recall Figure 3). These, however, are the more minor difficulties.

The major difficulty in defining the stability of moist air comes from the additional
dependence of density on the water content. The specific volume α is now a function of
three variables: entropy and pressure, as well as a modification due to water. This makes it
impossible to construct a 2D thermodynamic diagram (with axes of pressure and entropy)
that classifies the stability of an atmospheric column. That is, there is no simple stability
criterion based on ∂s/∂p, as there was for dry air. An extra dimension, the water content,
would be needed.

However, it is possible to define a modified entropy, s′, that, to good approximation,
solves this problem. Let us define qt = (ρv + ρl)/ρ to be the total mass fraction of water
content in air, whether from water vapor (ρv) or liquid droplets (ρl). This qt is conserved
in a reversible vertical displacement, even under condensation or evaporation. Thus an
arbitrary function of qt is also conserved in a reversible process. It is possible to choose this
function carefully such that, when added to s to define s′, we get the specific volume as a
function of just two variables: α ≈ α(p, s∗′).

With this caveat, we may now consider the 2D thermodynamic diagram shown in Fig-
ure 4. Consider an adiabatic vertical displacement of an air parcel originating from the
ground with (modified) entropy s′0. If this is reversible, then s and s′ are conserved. We
need to know about the specific volume α of our parcel, and of the environment, to deter-
mine stability, and by the argument above we can get this from p and s′. Suppose that
we know, from other thermodynamic information not shown in the figure, where the parcel
will condense. This is the Lifting Condensation Level (LCL), above which the air parcel
is saturated. Comparing its (modified) entropy (the rightmost vertical line) to the (modi-
fied) saturation entropy of the environment (dashed line) will tell us, through α(p, s∗′), its
buoyancy. Where s′0 > s∗′ the air parcel will be positively buoyant: an unstable situation.
Where s′0 < s∗′ it is negatively buoyant and stable.

However, the moist atmosphere can exhibit meta-stability: it can be stable to small
vertical displacements but unstable to large vertical displacements. An air parcel lifted
from the ground to anywhere below the bottom intersection of the vertical s′0 line and the
s∗′ curve, called the Level of Free Convection (LFC), will be negatively buoyant and hence
stable. But lift that same air parcel even slightly above the LFC and it will be positively
buoyant, hence unstable. It will rise until it reaches the top intersection of the vertical s′0
line and the s∗′ curve, called the Level of Neutral Buoyancy (LNB). There is no analogue
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Conserved, but not a state variable

State variable, but not conserved

Figure 4: A schematic illustration of moist meta-stability. A typical environmental profile
for s′ is shown (thick solid line). In the lower and subsaturated air, turbulent mixing
or convection has brought the environment to the dry adiabatic lapse rate, equivalent to a
constant s′. Above the Lifting Condensation Level (LCL) water vapor condenses, q decreases
in (2) and s′ decreases. Higher up the decreasing pressure begins to dominate and s′ begins
to increase with decreasing p. Near the top of the diagram s′ increases even more rapidly
with decreasing p due to increasing T in the stratosphere. For full details, see the text.

of this in a homogeneous (e.g. dry) atmosphere.
Basic thermodynamics tells us that the heat added during a cyclic process is

∮
dQ =∮

T ds. Thus if we transformed Figure 4 to have T as its vertical coordinate, the area
between s′0 and s∗′ curves is a measure of energy. Specifically, the area where s′0 > s∗′

(above the LFC and below the LNB) is the the amount of potential energy available for
convective release, termed the Convective Available Potential Energy (CAPE). Similarly,
the area where s′0 < s∗′ (below the LFC) is the amount of energy required for the air parcel
to overcome the stable stratification and rise above the LFC. This is termed the Convective
Inhibition (CIN).

Large-scale radiative cooling above the LFC lowers the entropy, thereby building up a
reservoir of CAPE. Meanwhile CIN can be built up by large-scale subsidence and/or surface
cooling (e.g. at night). CIN can be thought of as a potential barrier, and it is crucial to the
meta-stability exhibited by moist air: without it, convection would immediately consume
any CAPE, as it does in a dry atmosphere. During the day, surface heating raises the
surface entropy which can reduce the CIN, or localized processes can add enough energy to
overcome the CIN for a particular air parcel. When this occurs, air rises above the LFC and
begins to tap the (potentially large) reservoir of CAPE. This can create extremely powerful
thunderstorms, through a somewhat rare phenomenon called supercell convection, as well
as tornadoes and hailstorms. The meteorological effects of CAPE, however, are beyond the
scope of this lecture.

In the meteorological community there are two schools of thought. The first holds that
CAPE is built up and released repeatedly during large events. The second holds that moist
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Figure 5: A typical tropical sounding. The solid line is a result of averaged measurements
and the dashed line is a moist adiabat. The region where the slope changes sign is the
tropopause.

convection is a process in quasi-statistical equilibrium (like dry convection), except in a few
cases over continents.

Note that if we lift a different air parcel (i.e. from elsewhere in the column than the
ground), then its LCL will be at a different pressure level, and its stability properties will
also differ. Thus to fully characterize the stability of a moist water column, one must take
air parcels from all pressure levels and subject them to all possible vertical displacements,
large or small, which we shall explore in the next section.

4 Radiative moist convective equilibrium

The moist adiabatic lapse rate (s∗) is a function of pressure and temperature, though in
the stratosphere where water vapor is scarce it is quite near to the (constant) dry adiabatic
lapse rate. This is evident from a typical sounding data shown in Figure 5.

Figure 6 depicts the pressure variation experienced by fluid parcels that are raised from
a range of starting pressure values. As seen in the figure, a parcel lifted from 900 hPa never
becomes positively buoyant, because it has much less moisture to start with. For a parcel
starting around 940 hPa it is striking that neutral buoyancy appears throughout the whole
troposphere.

The process of forming a cumulus cloud is sketched in Figure 7. Air begins to rise
and starts to form a cumulus cloud. Due to appreciable coalescence time, the precipitation
formation occurs slowly as the air mass rises. A part of the precipitation falls outside
the envelope during the mature stage. Re-evaporation can happen in this time, leading to
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Figure 6: A plot showing the stability of air parcels being elevated. Red color indicates
positive buoyancy and blue indicates negative. Note that a sample starting around 900 mb
is positively buoyant, neutrally buoyant if it starts around 940 mb and negatively buoyant
around 900 mb

chilling of surrounding air. In the final stage, a density current appears in the atmosphere,
leading to ’raining’ of low entropy air which in the process blocks the rise of high entropy
air from the lower atmosphere. This leads to the destruction of the plume that formed, its
life cycle being of the order of an hour.

Consider now a moist RCE situation where homogeneous conditions are set in the hor-
izontal plane, i.e. constant ocean surface temperature, constant solar radiation along the
horizontal and so on. On letting moist convection occur in such a system, interesting things
happen. A cartoon representation of this is depicted in Figure 8, where a cross section is in-
dicated. In spite of a spectrum of clouds appearing in the real world, only two are indicated
here for simplicity. Air ascends through the deep clouds, precipitating in the process as
rain. The air falling after reaching the top of the cloud is depleted of condensed water and
is under saturated. The descent is therefore dry and hence the air is clear, as is seen in the
figure between the clouds. The asymmetry in ascend and descending parts is interesting.
There are strong updrafts in localized regions, which are widely spaced. Larger areas of
clear air appear surrounding them, where the air descends at speeds roughly two orders of
magnitude less than the ascending speeds. While the ascend can be on the order of a few
m/s while the descends are usually of the order of a few cm/s.

Temperature variations with altitude are indicated in Figure 9 which were obtained
from different models, holding relative humidity fixed. The calculations were carried out
for pure radiative, dry radiative-convective and moist radiative-convective cases. Note that
the height of the tropopause increases with these models. The RCE model fits well as a
zeroth order approximation for a real data plotted at a typical station.
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Figure 7: The formation of a cumulus cloud and its dissipation

Figure 8: Precipitating widely spaced clouds
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Figure 9: A comparison between different models predicting temperature as a function of
altitude.
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Lecture 6: Water and Radiation in the Climate System

Kerry Emanuel; notes by Joe Fitzgerald and Jörn Callies

June 23

1 Introduction

Over the next two lectures we will progress toward problems involving the interaction of
water substances and radiation that lie at the frontier of climate research. At the end of
the previous lecture, we left off with a discussion of moist radiative-convective equilibrium
(RCE). Using a single column model with many levels in the vertical, we solved the band-
integrated radiative transfer equations coupled to a representation of moist convection and
obtained a temperature profile T (z) that was an essentially realistic representation of the
temperature profile of the tropical atmosphere. We note, however, that obtaining a realistic
temperature profile is not a stringent test of our model’s moist convection scheme: the
observed T (z) profile is relatively easily reproduced, because it follows the moist adiabat in
the bulk of the troposphere.

Moist RCE is a good starting point for our understanding of the tropical atmosphere’s
leading-order structure, and examining our RCE solution can lead us to several physi-
cally important observations. By comparing the temperature profile resulting from RCE
to that which results from radiative equilibrium, we see that the troposphere is cooling
radiatively. Additionally, the RCE temperature profile indicates that the temperature at
the tropical tropopause is approximately −80◦C, a value which may remain fixed even as
the climate changes. However, our RCE model also failed to reproduce some features of the
real atmosphere, especially those due to the large-scale circulation, which was only crudely
represented by an increased albedo. In the tropical upper troposphere/lower stratosphere,
the observed temperature profile is shifted somewhat upward compared with our RCE cal-
culation. This is due to the Brewer-Dobson circulation, a meridional overturning circulation
in the tropical stratosphere which features upwelling through the tropical tropopause. This
circulation can produce temperature deviations near the tropopause relative to our RCE
solution because the timescale of radiation is not fast compared with that of the Brewer-
Dobson upwelling.

2 The Earth’s Energy Balance from Observations

We now move on to a reckoning of the Earth’s energy balance based on observations. To
build intuition, we consider what happens to solar energy as it arrives at Earth. Although
the real atmosphere is continuous in the vertical, for simplicity we consider the energy
balance by separating the atmosphere’s vertical structure into three boxes: the troposphere,
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the stratosphere, and the surface (which we take to include land as well as ocean). As a
normalization, we consider the passage of 100 units of solar radiation (which could be
thought of as individual photons) through the atmosphere. Figure 1 shows a schematic of
how this solar radiation is passed between our three boxes.(QHUJ\�%DODQFH

Figure 1: A schematic of the Earth’s energy balance. The atmosphere is separated into
surface, troposphere, and stratosphere boxes, and we consider the passage of 100 units of
solar radiation through the system. The values in each box indicate how much energy is
passed from box to box by various transfer processes.

In this approximate picture of the energy balance, 30 units of shortwave (SW) radiation
are reflected back to space. The largest fraction of this reflection is due to clouds, and
the next largest fraction is due to ice on the surface. After reflection, 70 units remain
to be absorbed by the atmosphere and surface. Three of these units are absorbed in the
stratosphere. This absorption filters harmful incoming UV photons out of the incoming SW
radiation field. The troposphere absorbs 17 of the remaining units, with water vapor and
clouds being the dominant absorbers. The 50 remaining units of SW are absorbed by the
surface. These SW contributions to the energy balance are indicated on the left-hand side
of Fig. 1.

The longwave (LW) contributions to the energy balance are shown in the centre portion
of Fig. 1. The surface emits 110 units of LW radiation toward space. Eighty-nine of these
units are absorbed and re-emitted back toward the surface by the troposphere. Note that
this downwelling LW flux is greater than the 50 units the surface receives directly from the
sun. The troposphere also emits 60 units upward toward space. The asymmetry between
the 89 units of downward emission and 60 units of upward emission results from our bulk
averaging over the troposphere and from the variations of temperature with height.

As discussed in previous lectures, the lower atmosphere is in thermodynamic disequi-
librium with the surface. This thermal discontinuity drives a turbulent flux of enthalpy
from the surface to the atmosphere with both sensible and latent heat components. These
non-radiative surface fluxes are indicated on the right-hand side of Fig. 1.

The net contributions to the energy budget from solar SW radiation, LW radiation, and
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the non-radiative surface fluxes are shown at the bottom of Fig. 1. Note that these values
indicate that the primary cooling mechanism in the tropics is not radiation: the net effect
of outgoing LW radiation in the tropics is small when the 89 units of longwave returning to
the surface from the atmosphere are taken into account. The main balance in the tropics
is instead between incoming solar radiation and evaporation. This implies that the tropical
surface is much cooler than it would otherwise be if water could not evaporate, assuming
that water vapor was still present in the atmosphere.

3 Contributions of Various Absorbers to the Temperature
Profile

We now consider the effects of various greenhouse gases (GHGs) on the tropical temperature
profile. As a simple conceptual method to assess the effect of each gas, we re-run the
RCE column model (which includes variable clouds interacting with radiation) with GHGs
removed one at a time from the column and compare the resulting temperature profile with
our original RCE solution. The result of this procedure is shown in Fig. 2.&RQWULEXWLRQV�RI�YDULRXV�DEVRUEHUV
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Figure 2: Temperature profiles T (z) in RCE computed using a single-column model. Green-
house gases are removed one at a time from the model and the equilibrium profile is com-
puted to demonstate the approximate effect that each gas has on T (z).

In the absence of CO2 (red curve), the tropospheric temperature profile remains on
a moist adiabat but is approximately 10◦C colder than the original RCE profile. The
stratospheric temperature, on the other hand, increases substantially. This stratospheric
warming occurs because O3 continues to absorb UV radiation but CO2 is no longer available
to emit infrared (IR) radiation toward space. The stratospheric thus warms to radiate
additional energy and retain energy balance.

Removal of O3 from the column model (green curve) also reduces the tropospheric tem-
perature slightly, as O3 has a weak greenhouse effect in the troposphere. In the stratosphere,
removing O3 results in a significant cooling as absorption of incoming UV no longer occurs.
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Removal of water vapor from the column model (blue curve) results in a much colder
troposphere alongside significant changes in the vertical structure of T (z) in the upper
troposphere. Some of the change in vertical structure may be artificial, as water vapor
interacts chemically with other GHGs and we do not include these effects in our model.

The stratosphere is compressed into the uppermost portion of Fig. 2 due to the use of
pressure coordinates. To show the effects of various gases on the stratospheric temperature
more clearly, we plot the RCE profiles again in Fig. 3 using log-pressure coordinates. Com-
parison of the profiles computed in the absence of O3 (green curve) and CO2 (red curve)
with the standard RCE profile (black curve) demonstrates that O3 and CO2 have strong
and opposite-sign effects on stratospheric temperatures. As the first order radiative balance
of the stratosphere is between UV absorption by ozone and IR emission by CO2, removal
of ozone cools the stratosphere while removal of CO2 warms the stratosphere. The RCE
calculation without O3 also indicates that UV absorption in the stratosphere is not required
to produce a tropopause: a transition in the shape of the temperature profile from moist
adiabatic to a stable profile in radiative balance still occurs near the same level as in the
standard RCE solution, although this transition is less sharp when O3 is absent.

Figure 3: As in Fig. 2, but with log-pressure on the vertical axis to show the stratosphere
more clearly.

4 Timescale of Approach to Radiative-Convective Equilib-
rium

4.1 Observations from a Single-Column Model

We now turn our attention to a basic physical issue: If T (z) is perturbed away from its
RCE solution, on what timescale does T (z) return to the RCE state? Figure 4 shows
the first ten days of the approach to equilibrium in our RCE column model. The time-
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dependent calculations assume a fixed relative humidity profile, taken from the original
RCE solution. The initial condition is an isothermal atmosphere, indicated by the Day
0 curve in Fig. 4. After ten days, T (z) is still changing significantly with time. Further
time evolution is shown in Fig. 5, which shows T (z) in 15-day increments beginning from
the state of the atmosphere at Day 10. After 25 days the tropospheric temperature has
essentially returned to its RCE state, but the stratosphere takes much longer to return to
equilibrium. Temperature variations in the stratosphere do not become small until nearly
Day 150. Note that this long stratospheric return timescale is comparable to the change of
the seasons, which implies that there is a lag in the stratospheric response to the seasonal
cycle. As we will discuss later in this lecture, the coupling between the atmosphere and the
surface (taken to be an ocean surface in these calculations; on land one would have to specify
the water availability) is critical to these results. We also note that, in the stratosphere,
T (z) features small-scale vertical structures that persist for a long time during the return to
equilibrium. These are likely due to small-scale structure in the specified relative humidity
profile and the long timescale associated with water vapor in the stratosphere.7LPH�VFDOH�RI�DSSURDFK�WR�HTXLOLEULXP

Figure 4: Daily snapshots of the temperature profile from a single-column model during
evolution toward RCE. The initial condition is an isothermal atmosphere, and relative
humidity is specified based on the RCE state.

4.2 A Simple Model of Relaxation to RCE

To better understand the controls on the timescale of the atmosphere’s return to RCE,
we now examine a simple analytical model recently presented in Cronin, T.W. and K. A.
Emanuel, 2013: The climate time scale in the approach to radiative-convective equilibrium.
J. Adv. Model. Earth Sys., 5, doi:10.1002/jame.20049. The goal is to strip this problem
down to its essence. As we will see, this model reveals an important counter-intuitive result.
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Figure 5: As in Fig. 4, but with snapshots every 15 days to show the slow evolution of the
stratosphere toward equilibrium.

4.2.1 Temperature and Moist Static Energy Profiles in the Analytical Model

Figure 6 shows a schematic of our model setup. We consider an atmospheric column coupled
to an ocean surface with mixed layer depth ∆zML. The temperature profile is assumed to
lie on a moist adiabat between the top of the boundary layer and the tropopause. This is
equivalent to the statement that the saturation moist static energy (MSE) is constant with
height up to the tropopause, where

h = cpT + Lvq + gz (1)

is the MSE and
h? = cpT + Lvq

? + gz (2)

is the saturation MSE. Here cp is the heat capacity of air at constant pressure, T is the
temperature, Lv is the latent heat of vaporization of water, q is the specific humidity, q?

is the saturation specific humidity, g is the gravitational acceleration, and z is the height.
MSE and saturation MSE are useful quantities as they are conserved during adiabatic and
saturated adiabatic motions of air parcels, respectively.

To understand the equivalence of the two conditions 1) that the temperature profile
lies on a moist adiabat (i.e., the column is neutral to moist convection) and 2) that the
saturation MSE is constant with height, we consider the following argument. Suppose we
adiabatically lift a parcel from some level z1 to a higher level z2. The parcel initially has
the saturation MSE of the environmental profile at z1, so that h?parcel = h?(z1). The parcel
retains this value of saturation MSE during its adiabatic ascent and arrives at level z2 with
h?parcel = h?(z1). The environmental air at z2 has saturation MSE h?environment = h?(z2).
The difference between the saturation MSE of the parcel and that of the environment is
then given by

h?parcel − h?environment = cp(Tparcel − Tenvironment) + Lv(q
?
parcel − q?environment) (3)
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or equivalently,

h?(z1)− h?(z2) = cp(Tparcel − T (z2)) + Lv(q
?
parcel − q?(z2)). (4)

No contribution to this saturation MSE difference arises from the gz term as we com-
pare the parcel to the environment at the same altitude. To assess stability we are inter-
ested in the sign of the temperature difference appearing on the RHS of this equation: if
Tparcel > Tenvironment, our lifted parcel will continue to rise and the column is unstable. The
sign of this temperature difference can be inferred directly from the sign of the saturation
MSE difference because the saturation specific humidity q? is an increasing function of tem-
perature at a given pressure. That is, if Tparcel > Tenvironment, then q?parcel > q?environment.
This means that the two terms on the RHS must have the same sign. So, if the LHS is
positive, both terms on the RHS must be positive, and similarly if the LHS is negative. The
condition for convective neutrality is then that the saturation MSE is constant with height
and equal to the actual MSE of the subcloud layer, so that both terms on the RHS are zero
and adiabatically lifted parcels are neutrally buoyant.

As discussed in previous lectures, the ocean surface is in thermodynamic disequilibrium
with the lower atmosphere. This thermodynamic disequilibrium is primarily due to a jump
in moisture properties: the temperature at the bottom of the atmospheric boundary layer
is close to that of the sea surface. However, boundary layer air is unsaturated, with a jump
to saturation occurring very close to the sea surface. This leads to a discontinuity in h
at the surface. (Note, however, that h?, whose profile is not shown in the boundary layer
in Fig. 6, is nearly continuous at the surface due to the near agreement of atmospheric
and surface temperatures.) As the boundary layer air is unsaturated, water vapor does
not condense until parcels are lifted sufficiently high. The level at which condensation first
occurs is referred to as the lifted condensation level, and below this level, the temperature
profile assumes the dry adiabatic lapse rate. The MSE is constant with height in this dry
adiabatic region: cpT + gz is constant with height due to the adiabatic lapse rate and
q is constant with height due to homogenization of q in the vertical by dry convective
turbulence. (In reality, q is only approximately constant with height and actually exhibits
a slight decrease as we move up through the boundary layer. MSE therefore decreases in
correspondence with the q variations.) Above the dry adiabatic region, the atmospheric
temperature profile follows a moist adiabat up the the tropopause. Above the tropopause,
radiative equilibrium leads to an increase in h with height, indicating stability to convection.

The “sickle” shape of the MSE profile h(z) in Fig. 6 also warrants explanation. As
mentioned above, h is constant in the boundary layer as water does not change phase and
q is approximately constant with height. Between the top of the boundary layer and the
tropopause, h(z) exhibits a minimum as a function of height, even though h is conserved
under adiabatic displacements. To understand the shape of h(z), we note that moist con-
vection occurs in a small fractional area of the atmosphere, and that in the remainder of
the atmosphere we have large-scale subsidence balanced by radiative cooling. This radiative
cooling acts to decrease the MSE of the descending air, causing h to decrease as we move
down through the column starting from the tropopause. As we continue to descend, the
h(z) profile begins to increase again before we reach the dry adiabatic region in which h
is constant. This increase of MSE is due to the action of shallow convection which mixes
high-MSE boundary layer air into the lower levels of the free troposphere.
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Figure 6: Schematic temperature T (z), moist static energy h(z), and saturation moist static
energy h?(z) profiles for our analytical model.

4.2.2 The Effect of Greenhouse Gases in the Analytical Model

Greenhouse gases are represented in the analytical model through their effect on the pressure
level pe at which the temperature on the moist adiabat equals the emission temperature
Te = 255 K. The effect of changing GHG concentrations in this model is shown schematically
in Fig. 7. Increasing GHG concentrations causes the emission level to move upward (pe to
decrease). The moist adiabat that the tropospheric temperature profile follows is determined
by the emission level pe and the emission temperature Te. Increasing the emission level then
shifts the temperature profile onto a warmer moist adiabat. Alternatively, we can think of
the moist adiabat as being determined by its value of saturation MSE, which in turn depends
on Te and pe: h

? = h?(Te, pe).
Comparison of the adiabatic temperature profiles before and after the addition of GHGs

in Fig. 7 demonstrates that temperature change at the original emission level ∆Ta is larger
than the temperature change ∆Ts at the surface. Differential warming with height is a
result of the curvature of the moist adiabat. For parameter values appropriate for today’s
atmosphere, this effect implies that a temperature increase of 3◦ at the emission level
maps to a temperature increase of only 1◦ at the surface. This points to two competing
climate feedbacks associated with water vapor: 1) The positive water vapor feedback due to
increasing water vapor concentrations in warmer climates. 2) The ratio of surface warming
to emission level warming decreases as the climate warms due to changes in the curvature
of the moist adiabat. This second effect, known as the lapse rate feedback, can be thought
of as buffering of surface temperature changes by evaporation.

It is important to note, however, that it is the wet bulb temperature, rather than the
absolute temperature, that is most important to human comfort. The wet bulb temperature
is defined as the temperature that an air parcel would have if it were cooled to saturation.
This distinction is important, since even though future surface warming will be buffered
by water vapor, humans will still feel the increased surface humidity. The biological upper
bound is 35◦C wet bulb temperature, past which human beings cannot survive. In the
present climate, a maximum of 33◦C is reached in the tropics, so it is likely that the
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biological limit will be exceeded in global warming. Air conditioning can alleviate that, but
will also likely increase GHG emissions even more.

The diurnal cycle of incoming solar radiation has important effects on tropospheric
temperature which we exclude here by taking a single average value for the incoming solar
radiation. In making such an approximation we introduce an error, as the average tem-
perature resulting from the real diurnal cycle is not equal to the temperature that would
result from constant insolation at the diurnal average value. This rectification of the diur-
nal cycle arises from the nonlinear dependence of the surface enthalpy fluxes on the surface
temperature disequilibrium as well as from additional effects due to the radiative effects of
clouds.

(IIHFW�RI�0RLVW�&RQYHFWLYH�$GMXVWPHQW�
RQ�&OLPDWH�6HQVLWLYLW\

Figure 7: Schematic demonstrating the effect of adding greenhouse gases in our analytical
model. The addition of GHGs moves the emission level upward and shifts the temperature
onto a warmer moist adiabat.

4.2.3 Energy Balance in the Analytical Model

We now formulate the energy balance equations for our analytical model and study their
linear stability to determine the timescale of relaxation to RCE. Based on the approximate
surface energy balance inferred from observations in Section 2, we assume that the net LW
flux at the surface is zero, and that that the steady-state energy balance in the troposphere
is between the bulk turbulent flux of enthalpy Fc through the boundary layer (primarily
due to evaporation) and IR emission to space σT 4

e (see Fig. 6):

Fc = ρsCk|Vs|(h?0 − h?) = σT 4
e . (5)

Here ρs is the density of air near the surface, Ck is the enthalpy exchange coefficient, Vs is
the surface velocity provided by large-scale dynamics, σ is the Stefan-Boltzmann constant,
h? is the vertically-constant value of saturation MSE in the free troposphere and Te is the
emission temperature corresponding to the solar forcing. Equation (5) allows us to write
the saturation MSE of the ocean surface h?0 in terms of the free tropospheric h? and the
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solar forcing:

h?0 = h? +
σT 4

e

ρsCk|Vs|
. (6)

We will now examine what governs the time scale of relaxation to equilibrium if the
surface temperature Ts and tropospheric saturation MSE h? are infinitesimally perturbed.
(Note that our perturbations to h? are taken to be constant with height, i.e., we perturb
which moist adiabat the temperature profile follows. Non-constant perturbations would be
adjusted to constancy on the fast convective timescale). We assume in our calculation that
Te, pe and Vs remain constant. The linear dynamical equations for the evolution of the
saturation MSE perturbation h?

′
and surface temperature perturbation T ′s are then

∆p

g

dh?′

dt
= −∂Frad

∂h?
h?′ + F ′c (7)

c`ρ`∆zML
dT ′s
dt

= −F ′c. (8)

Here ∆p is the pressure thickness of the troposphere, ∆p = psurface − ptropopause, ρ` is the
density of liquid water, c` is the heat capacity of liquid water, ∆zML is the mixed layer
depth, and Frad is the net upwelling IR radiation at the top of the atmosphere. In equation
(7), the ∆p/g factor results from integrating the density of air through the troposphere
to calculate the tropospheric heat capacity using hydrostatic balance. Equation (7) is the
linearization of the tropospheric MSE balance, while equation (8) is the linearization of the
surface energy balance.

In their current form the linear evolution equations are not closed as we do not know
∂Frad/∂h

? or F ′c. Using the chain rule, the relationship (6) between h? and h?0, and the
Clausius-Clapeyron relation we write

∂Frad

∂h?
=
∂Frad

∂Ts

∂Ts
∂h?

=
B

1 + L2
vq

?
s

cpRvT 2
s

, (9)

in which we have defined B ≡ ∂Frad/∂Ts to be the climate sensitivity parameter. Here
Rv is the water vapor gas constant, and subscript s indicates surface values so that q?s is
the surface saturation specific humidity. Note that Ts refers to the basic state value of the
surface temperature and not its linear deviation. The quantity B depends on the structure
of GHGs and other factors, but is for simplicity here treated as a constant, taken from the
single column model. The linear variation of the convective flux F ′c is given by

F ′c = ρsCk|Vs|
(
h?

′
0 − h?

′
)

(10)

which completes the closure of (7,8).
To cast our simple model into its final form, we re-write our surface temperature per-

turbation T ′s in terms of the perturbation to the surface saturation MSE h?
′

0 using the
relation

T ′s =
h?

′
0 /cp

1 + L2
vq

?
s

RvcpT 2
s

(11)
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and nondimensionalize according to the following definitions:

A ≡ ρsCk|Vs|cp b ≡ 1 +
L2
vq
?
s

RvcpT 2
s

χ ≡ Ab

B +Ab
(12)

τa ≡
cp∆pb

g(B +Ab)
τo ≡

c`ρ`∆zML

Ab
. (13)

After these manipulations we arrive at the final form of our analytical linear model:

τa
dh?′

dt
= −h?′ + χh?

′
0 (14)

τo
dh?

′
0

dt
= h?′ − h?′0 . (15)

In these equations, τa is an atmospheric relaxation timescale and τo is an ocean surface
timescale. The nondimensional parameter χ plays an important role in the linear dynamics
and has value χ ∼ 0.9 for our current climate. We now use this two-dimensional linear
system of ordinary differential equations to examine how ocean-atmosphere coupling affects
the timescale of return to RCE.

Consider first the artificially restricted case in which the ocean surface temperature is
held fixed, so that T ′s = 0 (and correspondingly h′s = 0). The atmospheric temperature
profile then returns to its original moist adiabat on the atmospheric timescale τa, which for
our current climate has the value τa ∼ 10 days. In the correspondingly restricted case for the
ocean in which the ocean surface temperature is perturbed holding the atmosphere fixed,
the ocean surface returns to its equilibrium temperature on the ocean timescale τo ∼ 100
days.

We now consider the general solution for the decay timescale of perturbations away from
RCE by computing the eigenvalues of the 2× 2 matrix characterizing our linear dynamics.
We find that the least damped eigenmode decays according to the timescale

τ =
2τo

1 + τo
τa
−
√(

1 + τo
τa

)2
− 4(1− χ) τoτa

. (16)

It is informative to investigate the behaviour of τ in two interesting limits: τo � τa, and
τo � τa. In the case in which the oceanic timescale is much longer than the atmospheric
timescale, we find that

τ ∼ τa +
τo

1− χ. (17)

This timescale is longer than either the atmospheric or oceanic timescales, and can be very
large if χ is close to 1. In the case in which the atmospheric timescale is much longer than
the ocean timescale, we obtain

τ ∼ τa
1− χ (18)

which is also larger than either τa or τo (as τa � τo), and can also grow large if χ is close to
1. This analysis indicates that the timescale for return to equilibrium for a coupled system
is always longer than the atmospheric timescale. Even in the limit of a very thin mixed
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layer (∆zML → 0), in which case τo becomes very small, the timescale for the return to
equilibrium can still be much longer than the atmospheric timescale τa as a result of the
factor (1 − χ) appearing in the denominator due to the atmosphere–ocean coupling. This
effect can be seen in general circulation models, which require much longer integrations to
reach equilibrium when coupled to an ocean.

The linear model defined by equations (7) and (8) performs well when compared to
a single-column model in spite of its apparent simplicity. Figure 8 shows a comparison
of the return rate to equilibrium as calculated from the analytical model alongside best
fit decay rates measured in a single-column model. The single-column model was used
to measure the climate sensitivity parameter B which appears in the linearized dynamics.
The degree of agreement between the simple model and column model is impressive both
in the approximate numerical magnitude of the timescale as well as in the dependence of
the timescale on the mixed layer and the surface temperature of the equilibrium state.(VWLPDWH�B DV�D�IXQFWLRQ�RI�Ts IURP�6LQJOH�&ROXPQ�0RGHO
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Figure 8: Comparison of the return timescale to RCE between the analytical linear model
and a single-column model. The single-column model is used to parameterize the analytical
model through the single climate sensitivity parameter B. The agreement between the
simple theory and the numerical model is apparent.

5 Explicit Simulation of Radiative-Convective Equilibrium

We next turn our attention to a problem at the frontier of research in atmospheric science:
convective aggregation. The numerical modeling and analysis in this section follows a
recently published paper: Wing, A. A., and K. A. Emanuel (2014), Physical mechanisms
controlling self-aggregation of convection in idealized numerical modeling simulations, J.
Adv. Model. Earth. Syst., 6, 59-74, doi:10.1002/2013MS000269.

5.1 Model Observations of Convective Aggregation

The study of convective aggregation requires a more sophisticated modelling approach than
we have taken so far in these lectures. We now move from simple dynamical systems models
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and single-column models to idealized three-dimensional simulations of moist convection
using the cloud-resolving model SAM (System for Atmospheric Modelling). The model
geometry and forcing are shown in Fig. 9. The domain is doubly periodic in the horizontal
with rigid boundaries at the top and bottom. The model is forced by fixed and spatially
homogeneous sea surface temperatures (SSTs) in the range of 297–312 K at the lower
boundary and a constant value of the solar forcing set to be 413.98 W/m2. The domain
size is 768 km × 768 km × 28 km, with a horizontal resolution of 3 km and 64 levels in
the vertical. The initial conditions are specified according to a profile computed from the
domain average of a previous model run of radiative–convective equilibrium in a smaller
domain. The model resolution permits the marginal resolution of moist convection, and
the model features a fully-interactive rapid radiative transfer model (RRTM), cloud micro-
physics, as well as surface fluxes.

Approach:�Idealized�modeling�of�convective�organization�in�radiativeͲ
convective�equilibrium�using�a�cloud�resolving�model

� Horizontal�Resolution:�3km
� Vertical�Resolution:�64�
levels

� Periodic�lateral�boundaries

� Initial�sounding�from�
domain�average�of�smaller�
domain�run�in�RCE

� Fully�interactive�RRTM�
radiation�and�surface�fluxes.

System�for�Atmospheric�Modeling�(SAM)�of�Khairoutdinov�and�Randall�
(2003)

768�km

768�km

28�km

Rigid�Lid

Fixed�SST
297Ͳ312�K

Constant�solar�insolation:�
413.98�W/m2

Figure 9: Schematic of the domain used in cloud-resolving modelling to study convective
aggregation.

When the cloud-resolving model is run in this configuration for a sufficiently long time,
the convection, which is initially statistically homogeneous and apparently random, spon-
taneously focuses into a cluster. This can be visualized in two dimensions by plotting the
vertically-integrated water vapor (also referred to as the total precipitable water, or TPW)
at various times throughout the model integration. Figure 10 (left) shows the time-averaged
TPW over the first day of model integration as a function of (x, y) for a case in which the
SST is set at 305K. The moisture field at each point in space is near its spatial average
value. As the integration continues, TPW becomes spatially inhomogeneous. Figure 10
(right) shows the average TPW on Day 10. A relatively dry area is seen to form in the
upper left corner of the domain. The temporal and spatial evolution of this dry patch, or
“hole”, can be seen in Figs. 11–14. By Day 90, the hole has expanded to cover most of the
outer edge of the (periodic) domain, and the convective region (the complement of the hole)
has become focused at the centre of the domain. We note that the boundary conditions
and forcing for this problem are spatially homogeneous, so that the final position of the
convecting region (the red region in Fig. 14) is random and dependent on the structure of
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the noise in the initial conditions. We also note that the spatial structure of the convective
cluster/hole system has a complex time evolution, sometimes forming horizontal bands as
can be seen in Fig. 13. This phenomenon of hole formation followed by convective clustering
is often referred to under the name “convective aggregation” and has been observed in a
variety of cloud-resolving models. However, the evolution shown in Figs. 10–14 indicates
that the convective cluster actually results from the initial formation of a small hole in the
otherwise statistically homogeneous convection, and so perhaps the phenomenon could be
more accurately called “convective self-annihilation”.
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Figure 10: Average total precipitable water (TPW) over Day 1 (left) and Day 10 (right)
during a cloud-resolving model simulation in the configuration shown in Fig. 9. The SST is
set at 305K. Note the formation of a small hole in the convection on Day 10 in the upper
left corner of the domain.
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Figure 11: As in Fig. 10, but for Day 20 (left) and Day 30 (right).

Two physically interesting and important questions concerning convective aggregation
are: 1) What controls the spatial scale of the final cluster? 2) How does convective ag-
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Figure 12: As in Fig. 10, but for Day 40 (left) and Day 50 (right).
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Figure 13: As in Fig. 10, but for Day 60 (left) and Day 70 (right).

gregation depend on the imposed SST? The answers to these questions are not completely
understood. Toward addressing the first question, it is observed in nonrotating cloud-
resolving model simulations that convective clustering always results in a final cluster state
that takes on the scale of the domain. An example of this can be seen in Fig. 14, in which
there is only one convectively active (bright red) region, with the rest of the domain being
dry and quiescent. If simulations are run in a larger domain, the size of the final cluster
increases as well. It has also been found that convective aggregation does not occur if the
simulation is run in a sufficiently small domain. We will discuss a physical hypothesis for
explaining this observation in the next lecture. We note before proceeding that it is relevant
to ask whether our fixing of SSTs results in an effective forcing of the convective cluster once
it has formed. Such an effect could arise because we do not allow the SST to adjust under
the convective region, thereby excluding the shadowing effect the clouds would have on the
surface. It would be important to test the effect of variable SSTs on cluster formation by
coupling our cloud-resolving model to a slab ocean. However, such computations are very
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Figure 14: As in Fig. 10, but for Day 80 (left) and Day 90 (right).

expensive to run to equilibrium as the time scale for equilibration becomes very long due
to the coupling, as discussed previously in this lecture. It is not currently known whether
convective aggregation occurs when coupled to an interactive ocean surface.

To address the dependence of convective aggregation on SST, we examine the results
of our cloud-resolving model simulations for different fixed, spatially-constant SST values.
Figure 15 shows the time evolution of the outgoing LW radiation (OLR) for a variety of
simulations with different SSTs. After an initial transient equilibration period, all inte-
grations reach an approximate statistical equilibrium after a few days with OLR in the
range of 250–270 W/m2. After this period, some model runs show a significant increase in
OLR, indicating that this initial statistical equilibrium is unstable. This increase in OLR
is a signal that convective aggregation is occurring: LW flux to space increases when the
convection aggregates as there is very little water vapor outside the cluster, and the cluster
occupies a relatively small areal fraction of the domain. The SST values for each integra-
tion are shown in the panel on the RHS of Fig. 15. Inspection of the SST values reveals
an apparent transition point in the large-scale behaviour of the convection as a function of
SST. For the relatively low SST values 297 K, 298 K, 300 K (dark blue and black lines with
OLR ∼ 255 W/m2 after the transient), the OLR appears to remain statistically steady, and
the convection remains statistically homogeneous. As the SST is increased beyond 300 K,
the behaviour transitions to convective organization: model integrations for 301–307 K show
increasing OLR associated with convective aggregation beginning around 40 days. These
results suggest that 300 K is an SST threshold above which convection aggregates and below
which convection remains statistically homogeneous. We note that the time required for
the clustering to complete appears to depend on the initial noise in the system and varies
between model runs, although the rate of increase of OLR appears to be determined by the
boundary conditions and forcing.

A complication appears to arise as we continue to increase SST above 307 K. The
integrations for 310 K, 311 K, and 312 K, shown in purple/red/dark orange, appear to have
constant OLR ∼ 275 W/m2, never forming a convective cluster. This appears to indicate a
non-monotonic dependence of convective clustering on SST. However, this behaviour may
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be artificial. An additional model run with an SST value of 310 K but with the size of the
domain doubled is shown by the red curve that exhibits increasing OLR and that has the
highest final value of OLR at day 100. Although the 310 K run with the standard domain
size does not aggregate, a cluster does form in the enlarged domain. This suggests that the
apparent lack of monotonicity may actually indicate that the critical domain size beyond
which clustering is possible depends on temperature: we may need to use systematically
larger model domains to observe clustering as we increase SSTs. As the calculations are
expensive, however, it is not currently feasible to continually increase the domain size and
test whether all higher SST cases aggregate given a sufficiently large domain.

This leaves us with the impression that the critical temperature above which aggregation
happens is about 300 K or 27◦C. This is suspiciously close to the tropical surface temperature
in the current climate. This may be a coincidence, but we will speculate that it arises from
a self-regulatory process in the next lecture.

Aggregation similarly happens in climate models, affecting dramatically the simulated
climate. Whether clusters in these models form for the right reasons is an open question.
Clusters are, of course, also observed in the real world, giving us confidence that aggregation
plays an important role in the present climate.6XUIDFH�7HPSHUDWXUH�'HSHQGHQFH

/DUJHU�GRPDLQ�QHHGHG�IRU�KLJK�
667V�WR�DJJUHJDWH�

Figure 15: Time evolution of the outgoing longwave radiation (OLR) for various cloud-
resolving model runs with different fixed SSTs (right). Increases in OLR after the initial
equilibration period indicate the formation of a convective cluster.

5.2 Energy Budget during Aggregation

To better understand the feedback processes involved in convective aggregation, we now
examine the energy budget throughout the domain and as a function of time. We will work
with the mass-weighted column integral of the frozen moist static energy (FMSE), defined
as

h = cpT + gz + Lvqv − Lfqi (19)
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in which we now use the symbol qv to indicate the water vapor mixing ratio, qi is the ice
mixing ratio, and Lf is the latent heat of fusion of water. We will denote the mass-weighted
vertical integral operator using a caret: ĥ. The vertically integrated FMSE ĥ is not changed
by moist convection, which is a transport process, but can be only be changed by radiation,
surface fluxes, and horizontal transport. We will consider the deviations of ĥ from the
horizontal mean, and denote these deviations by ĥ′. The evolution equation for ĥ′ is

∂ĥ′

∂t
= LHF′ + SHF′ + NetSW′ + NetLW′ −∇h · ûh (20)

where LHF is the surface latent heat flux, SHF is the surface sensible heat flux, NetSW is the
column SW radiative flux convergence, NetLW is the column LW radiative flux convergence,
and ∇h · ûh is the advective transport term, with ∇h denoting the gradient operator in
the horizontal. Note that the advection term has zero mean as it is a flux divergence. The
evolution equation for the variance of ĥ′ is obtained by multiplying eq. (20) by ĥ′:

1

2

∂

∂t
(ĥ′)2 = ĥ′LHF′ + ĥ′SHF′ + ĥ′NetSW′ + ĥ′NetLW′ − ĥ′∇h · ûh. (21)

The variance of FMSE is a useful quantity to examine because it increases with the
degree of convective aggregation. The source and sink terms in eq. (21) are correlations
between the mass-weighted column-integrated FMSE and the various diabatic terms as well
as with the horizontal convergence of ĥ. When one of these correlations is positive, that
term contributes to self-aggregation by either drying a relatively dry region or moistening
an already moist region. By examining the sign and magnitude of these RHS terms, we will
be able to identify the effect that each of these physical processes has on the formation of
convective clusters. In the analysis, the LHF, SHF, NetSW, and NetLW terms are calculated
from the model. The horizontal convergence term is then diagnosed as a residual.

To visualize the results of the analysis, each RHS term is calculated and then averaged
over each non-overlapping 48 km × 48 km subdomain and also averaged over one day. For
each RHS term, the average values for each subdomain are then ordered according to the
subdomain’s average value of the column relative humidity, from dry to moist. This ordering
procedure allows us to visualize the effect of each term in the FMSE variance budget as
it depends on both time and moisture. We also normalize each term by the instantaneous
horizontal mean value {(ĥ′)2}, where curly braces indicate the horizontal average. This
normalization prevents the early stages of the dynamics from being washed out due to the
smallness of the FMSE variance as well as the smallness of the individual RHS budget terms.
Figure 16 shows an example of such a visualization from the 305 K run, whose OLR can be
seen as a function of time in Fig. 15. In Fig. 16 the x-axis gives the columns ranked by their
moisture content, while the y-axis shows time evolution from 0 to 90 days. Colors show the
value of the correlation between ĥ′ and the total diabatic term, that is, the contribution to
the rate of change of (ĥ′)2 from

ĥ′LHF′ + ĥ′SHF′ + ĥ′NetSW′ + ĥ′NetLW′. (22)

The black line running vertically through Fig. 16 is the ĥ′ = 0 contour: the line separating
the relatively dry columns from the relatively moist columns. We note that this way of
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presenting the x-axis does not track the actual values of the column moisture. Over time,
the range of column relative humidities from the driest to the moistest may increase, so
that the x-axis would expand over time if we tracked the absolute values of humidity rather
than using the ranking system presented here.

'5< 02,67'5< 02,67
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Figure 16: Contribution to the variance budget of mass-weighted column-integrated frozen
moist static energy from the total diabatic term in the moisture-time plane. The x-axis
orders air columns from driest to moistest, while time increases upward along the y-axis.
Colors show the contribution to the variance tendency due to the sum of the diabatic terms
on the RHS of eq. (21).

Figure 16 demonstrates that the total diabatic term on the RHS of eq. (21) acts to
increase the FMSE variance in the first 20 days of the simulation, and that at early times
the strongest correlations are observed in the dry regions. This is consistent with our
observation that the convective clustering originates as a ‘hole’ seen to develop in the TPW
field over time: increasing variance in dry regions corresponds to continued drying of the
hole. These positive correlations then decrease in magnitude and shift into the moist regions,
coinciding with the expansion of the hole into the convecting region.

Having examined the total effect of the diabatic terms on convective organization, we
now consider them one at a time. Figure 17 visualizes the contribution to the rate of change
of (ĥ′)2 from the column SW flux convergence NetSW. The SW flux convergence correla-
tion is weak over most of domain for the majority of the integration with two important
exceptions. Over the first 50 days in the driest regions, the SW effect is positive and tends
to increase variance. This results from a feedback whereby dry columns (ĥ′ < 0) absorb less
solar radiation (NetSW′ < 0) because water vapor is an important SW absorber. Negative
solar absorption anomalies induce anomalous sinking, continuing to dry out the column.
This positive feedback also acts in the moist regions once the convective cluster has formed.
In the latter part of the integration (beyond 50 days or so) the moist regions have a strongly
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positive SW effect because moist columns absorb more solar radiation leading to anomalous
rising motion and moistening of the column. Both directions of this feedback act to enhance
clustering and correspondingly increase the FMSE variance.&ROXPQ�6KRUWZDYH�)OX[�&RQYHUJHQFH
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Figure 17: As in Fig. 16, but for the SW flux convergence.

The contribution to the FMSE variance from the LW term ĥ′NetLW′ is shown in Fig. 18.
Early in the integration the LW contribution is essentially positive, but weakens after the
first 20 days or so and is of varying sign in both relatively dry and relatively moist regions.
However, once the convective cluster has been formed, the LW term is important for its
maintenance. This can be seen in the top-right corner of Fig. 18, where the moistest
columns (associated with the cluster) tend to have their FMSE variance increased by the
LW effect. This feedback leads to hysteresis: once a cluster is formed, it is maintained by
this effect, even if the SST is lowered below the critical value for the formation of clusters.
The LW positive feedback is primarily due to the presence of high clouds that are opaque
to LW radiation and have relatively low temperatures, reducing the LW emission to space.
Anomalously low LW cooling manifests as a positive contribution in the anomaly energy
budget NetLW′ > 0, which has a positive correlation with ĥ′ in the moist columns within
the convective cluster.

To discuss the effects of the surface fluxes LHF′ and SHF′ it is useful to decompose
their fluctuations into components due to fluctuating winds and fluctuations in the air-sea
disequilibrium in temperature and water vapor. We can write the surface enthalpy fluxes
in terms of bulk formulae as

LHF = ρcELvU(q?Ts − qv) (23)

SHF = ρcHcpU(Ts − Ta) (24)

where cE is the latent heat exchange coefficient, cH is the sensible heat exchange coefficient,
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Figure 18: As in Fig. 16, but for the LW flux convergence.

U is the surface wind speed, Ts is the surface temperature, q?Ts is the saturation specific
humidity at the surface, Ta is the atmospheric temperature at the lowest model level, and
qv is the specific humidity at the lowest model level. When computing the deviations from
the horizontal mean of these enthalpy fluxes, we can isolate the total contribution from the
fluctuations in surface wind speed:

Surface flux wind feedback term = ĥ′ρLv(cEU)′ {∆q}+ ĥ′ρcp(cHU)′ {∆T} . (25)

Here the ∆ symbol denotes the difference between the surface and the lowest model level
as in eqns. (23) and (24). Figure 19 shows the effect of the wind fluctuation term in the
moisture–time plane. This term is essentially positive everywhere and also contributes
strongly to the maintenance of the cluster (upper right corner). This effect arises due to
a positive feedback. The formation of the convective cluster produces more thunderstorms
leading to anomalously strong surface winds. These enhanced surface winds produce greater
surface enthalpy fluxes, so that the wind contribution to SHF + LHF is positive, giving a
positive correlation with ĥ′ in the moist columns.

We now separately consider the contribution to the FMSE variance budget of the surface
enthalpy flux anomalies due to fluctuations in the air–sea disequilibrium. From the bulk
formulae (23) and (24) we obtain

Surface flux air–sea disequilibrium feedback term = ĥ′ρLv {cEU}∆q′ + ĥ′ρcp {cHU}∆T ′.
(26)

Figure 20 shows the effect of this feedback term. The air–sea disequilibrium fluctuations
act to reduce the tendency toward cluster formation everywhere in the domain and over all
time periods. In the cluster region in particular, this surface flux acts to reduce the FMSE
variance and weaken the cluster. This is due to a feedback. The presence of the convective
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Figure 19: As in Fig. 16, but for the contribution to the total surface enthalpy flux from
wind fluctuations.

cluster leads to moistening in the boundary layer. As a result, for a fixed surface wind
speed, the boundary layer air has a specific humidity anomalously close to that of the ocean
surface, leading to a negative anomalous surface enthalpy flux in a relatively moist region.
This is a negative correlation and acts as a variance sink in the FMSE budget.

The combined effect of the surface flux feedback term is shown in Fig. 21. This in-
cludes the contributions discussed above due to U ′ and (∆q′,∆T ′) as well as additional
contributions from U ′∆q′ and U ′∆T ′. Comparison of the combined surface flux contri-
bution with its components shown in Figs. 19 and 20 demonstrates that there is a large
amount of cancellation in the FMSE variance budget between the mostly-positive effect of
the wind fluctuations and the mostly-negative effect of the air–sea disequilibrium fluctu-
ations. However, these cancellations are not complete. The net effect of the surface flux
feedback is positive everywhere during the first 20 days of the integration, and is strongest
in the dryest regions. The variations in strength and sign of this combined feedback term
in the moisture–time plane demonstrate the effects of competing feedbacks controlling the
development of the convective cluster.

For completeness, we show in Fig. 22 the contribution to the FMSE variance budget
from horizontal divergence. This term is calculated as a residual from the rest of the budget,
and is noisy and of varying sign in moisture–time space. This term can be computed more
accurately by evaluating it directly, but the necessary quantities were not saved in the model
simulation.

In the final lecture, we will try to understand the physics of aggregation. We will add
rotation to our idealized model problem, taking us toward the dynamics of hurricanes and
tropical cylones. The addition of rotation to the problem will provide an external scale for
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Figure 20: As in Fig. 16, but for the contribution to the total surface enthalpy flux from
fluctuations in the air-sea thermodynamic disequilibrium.
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Figure 21: As in Fig. 16, but for the total surface enthalpy flux.

the problem, leading to scale-selection in the convective aggregation process. Using a linear
stability analysis of the radiative–convective equilibrium, we will find that the physics when
the hole is forming are different from the physics that sustain the cluster. The linear stability
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Figure 22: As in Fig. 16, but for the horizontal convergence. Note that this term is computed
as a residual from the rest of the FMSE budget.

analysis will reveal that the initial instability depends on the temperature dependence of
LW emissivity and help explain why aggregation only occurs at sufficiently large SSTs. In
our analysis, we will make the weak temperature gradient approximation—in contrast to
classic GFD problems, we thus parameterize the dynamics and focus our attention on the
interaction of water substances and radiation. We will end with a speculative discussion of
what we can infer from these idealized simulations for the real climate.
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Lecture 7: Stability of RCE and Rotating RCE

Kerry Emanuel; notes by Alexis Kaminski and Shineng Hu

June 24

1 Stability of RCE

The radiative moist convective equilibrium (RCE) state we have been considering so far
is evidently unstable in some conditions. By considering the linear stability of the RCE
state (recalling that RCE is a statistical equilibrium), is it possible to explain the clustering
seen previously in the cloud-resolving simulations? In order to proceed, some additional
concepts must be introduced to allow for dynamics in RCE. In some sense, we will take
the opposite approach to classical geophysical fluid dynamics in that the dynamics will be
parameterized while the physics will be resolved.

1.1 Weak temperature gradient approximation

As the RCE state considered so far is non-rotating, there is no way to sustain lateral
temperature gradients (e.g. dT/dx). As a result, the weak temperature gradient (WTG)
approximation can be made, which assumes that the dynamics operate so as to keep tem-
perature constant in the horizontal [Sobel and Bretherton, 2000].

We can suppose that we have an RCE state and add an SST anomaly, essentially making
a small patch of ocean slightly warmer. In this case, the atmosphere wants to be warmer
above the SST anomaly, but with the WTG approximation this is not allowed to happen.
This results in large-scale ascent above the patch such that adiabatic heat balances the
anomaly. In essence, the SST anomaly induces that vertical motion which is necessary
to keep the atmosphere relatively cool. The vertical velocity also advects water vapour
vertically, leading to a moistening of the column, an increase in clouds, and less sunlight
reaching the surface.

The WTG approximation can be extended to a weakly rotating framework. In this case,
if w is known from WTG, then the vorticity equation can be used to solve for the horizontal
component of motion. This allows us to solve for atmospheric flow without solving the
equations of motion, even in a single column model. It should be noted that the convection
in the system does not allow the ascending air to reach saturation on the macro scale.

WTG may also be used to empirically determine the stability of the RCE state. A single
column model can be run until equilibrium, at which point it is stopped and restarted in
WTG mode with a small amount of noise added. If the RCE state is stable, at this point
the noise dies away. However, for an unstable RCE state, the noise will lead to ascent or
descent throughout the column.
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The WTG approximation may also be derived asymptotically by assuming convection
and gravity waves act on sufficiently fast timescales (in analogy with the quasigeostrophic
approximation) that they are able to smooth out temperature perturbations quickly. Virtual
temperature (i.e. temperature corrected for water vapour content) above the planetary
boundary layer (PBL) is assumed to be invariant. The vertical velocity w is thus calculated
in order to maintain constant virtual temperature, using the vertical motion to advect water
vapour.

1.2 Single column model

The model used is the MIT Single-Column model. It employs Fouquart & Bonnel shortwave
radiation, Morcrette longwave radiation, Emanuel-Zivkovic-Rothman convection, and the
Bony-Emanuel cloud scheme. 25 hPa grid spacing is used in the troposphere, with higher
resolution in the stratosphere. The model is run with fixed SST until the RCE state is
reached, then re-initialized in WTG mode with fixed temperature at 850 hPa and above to
simulate the PBL. Small perturbations in w are added to the initial condition.

When the SST is less than approximately 32◦C, there is no drift from the RCE state, and
the initial perturbations decay away. However, for higher SSTs, there is a migration toward
states with either ascent (formation of a cluster) or descent (formation of a hole), depending
on the random initial perturbations. These states correspond to multiple equilibria in 2-
column models, observed by Nilsson and Emanuel [1999], Raymond and Zeng [2000] and
others.

Figure 1 shows timeseries data, starting from the addition of noise, for the descending
branch. Plotted are contours of specific humidity, ω = dp/dt (an analogue for vertical ve-
locity in pressure coordinates, where ω ' −ρgw), radiative heating, and convective heating.
Note that the height of the cutoff in data for ω, and the height at which convective heating
changes sign, corresponds to the PBL at 850 hPa. Qualitatively, figure 1 shows that in
the descending branch air is sinking as the atmosphere is drying out. Radiative cooling
is observed low in the troposphere. The growth rate of the formation of the hole (in the
case of the descending branch) is similar to that seen in the cloud-resolving model discussed
earlier.

Figure 2 shows the effect of an instantaneous, vertically-uniform reduction of the specific
humidity by 20% from the RCE state with two different SST values. In the stable case
(SST=25◦C), the reduced specific humidity leads to a negative shortwave radiation anomaly,
as there is less water vapour present to absorb the incoming solar radiation. The longwave
radiation anomaly is mostly positive, as less water vapour leads to less radiative cooling by
infrared.

However, the unstable case (SST=40◦C) exhibits markedly different behaviour. While
the shortwave radiation anomaly is similar to that of the stable scenario (indicating reduced
absorption of incoming solar radiation), the longwave radiation anomaly is an order of
magnitude larger than that of the stable scenario. The longwave radiation anomaly is
positive above approximately 750 mbar but negative below. This is a consequence of the
nonlocal nature of radiation, with the lower layers receiving less infrared radiation from
above. In this circumstance where RCE is very warm, the basic state has large quantities
of water vapour and very high emissivity in the lower troposphere, though the emissivity
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Figure 1: Timeseries contours of specific humidity in gm/kg (top left), ω in hPa hr−1 (top
right), radiative heating in K day−1 (bottom left), and convective heating in K day−1 (bot-
tom right) for the descending branch of the WTG single-column model results. From figure 3
of Emanuel et al. [2014].
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Figure 2: The response of shortwave (SW), longwave (LW), and net perturbation heating
rates to an instantaneous reduction in specific humidity for (left) SST = 25◦ and (right)
SST = 40◦. From figure 5 of Emanuel et al. [2014].

is not as high in the higher troposphere. The basic state dries: warming occurs locally but
emits less radiation to the lower troposphere, which in turn receives less radiation and cools.

Figure 3 shows the net radiation anomaly for the specific humidity perturbation used in
figure 2 for a range of SST. A clear qualitative transition is observed between SST values
of 30◦C and 35◦C, corresponding to states above and below the critical SST for stability of
approximately 32◦C.

The drying of the basic state has consequences for stability, as drying introduces down-
ward motion which further dries in the unstable cases. Convection is also reduced, which
dries the upper troposphere and lower stratosphere due to downward flux of water vapour.
It should be noted that even if convection shut down entirely in the column, the tropo-
sphere would not be expected to dry out entirely as neighbouring columns would be in
RCE, leading to horizontal motions bringing in water vapour.

1.3 Two-layer model

The mechanism described above requires at least two troposphere layers to be understood,
and cannot be parameterized as Newtonian relaxation. As such, we consider a two-layer
troposphere model, shown in figure 4, for which RCE can be calculated and the linear
stability of the resulting state can be analyzed.

The critical SST of approximately 30◦C can be thought of in terms of the Clausius-
Clapeyron equation: the troposphere needs to be sufficiently opaque to longwave radiation,
with optical depth increasing with increasing temperature.

The basic state of this system is moist RCE with a grey atmosphere. The temperatures
T1 and T2 are fixed by the longwave infrared emissivities ε1 and ε2, respectively, and the
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Figure 3: The response of perturbation net heating rates at several SST values to an
instantaneous reduction in specific humidity. From figure 6 of Emanuel et al. [2014].
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Figure 4: Schematic for the two-layer troposphere model for RCE stability. From figure 1
of Emanuel et al. [2014].

surface temperature is specified. The water vapour-dependent emissivities are controlled
by q1 and q2, which are the only time-dependent quantities in the model. The boundary
layer is held in quasi-equilibrium, with the convective mass fluxes M calculated such that
the enthalpy of the boundary layer is held fixed in time, and the vertical velocities w are
calculated from WTG [Emanuel et al., 2014].

As seen in the cloud-resolving model, the resulting structure is independent of any
horizontal scale, and the scale of the self-aggregating patches appears to increase with the
domain size. The physics do not explain the scale of the patches. One possible mechanism
by which the size of the clusters may be set is related to the convective turbulence of
the surroundings. Convective clouds have an order one aspect ratio and a well-defined
horizontal length scale, which can be used to establish a scale for the turbulent diffusion.
The vertical velocities associated with convective turbulence, though unsolved, are O(m/s),
and the vertical scale of the clouds does not change much. If we let H be the scale of the
clouds and vc be the characteristic velocity, then the turbulent diffusivity scales like vcH.
The descent of air in a patch acts to dry the column; conversely, the turbulence is acting to
remoisten the patch. For air descending in a patch of size L with velocity w, the ratio of
drying to moistening can be scaled as (wH)/(vcL). So, for small holes, turbulent diffusion
is relatively more influential, and making the domain large is equivalent to decreasing the
effect of the turbulent diffusion on the formation of the holes. This may explain why larger
domain sizes were needed to see patches in the cloud-resolving models for higher SSTs. This
mechanism gives a lower bound of sorts on the required size of the patches, but does not
provide an upper bound.
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Based on this model, a criterion for instability is

Q̇1

ε1

∂ε1
∂q1

+ (1− εp)
Q̇2

ε2

∂ε2
∂q2

+ εp
S2
S1

σε1T
4
2

ρ1

∂ε2
∂q2

> 0 , (1)

where ε1,2 are emissivities, Q̇ is the radiative heating per unit mass, S2/S1 is the O(1)
ratio of dry static stabilities, and εp is the precipitation efficiency with typical values 0.5 <
εp < 1. Convection produces downdrafts driven by precipitation; εp = 0 corresponds to
all precipitation re-evaporating leading to no heating, while εp = 0 corresponds to no re-
evaporation and no downdrafts.

In (1), the first term is negative but small when atmospheric moisture is low. The second
term is negative but not necessarily small. It is only the third term which is positive, and
instability only occurs if this term is sufficiently large. The resulting instability is radiatively
driven due to the dependence of the emissivities ε1,2 on water vapour and convection: RCE
becomes linearly unstable if the infrared opacity of the lower troposphere is sufficiently large
and if εp is large.

We can consider ordinary RCE, as seen in the top row of figure 5 and perturb locally
with downward vertical velocity. For low SST, i.e. when the system is stable, the short-
wave radiative heating is not strongly affected, while longwave radiative cooling is reduced
throughout the column. The convective heating is also somewhat reduced. The net result
is positive perturbation heating, leading to large scale ascent through WTG and negative
feedback on the initial downward perturbation, as shown in the middle row of figure 5.

However, for high SST (shown in the bottom row of figure 5), the downward verti-
cal velocity perturbation leads to strong negative perturbations in the shortwave heating.
Longwave radiative cooling is reduced in the upper troposphere, rather than throughout
the column, as the change in optical depth in the lower troposphere due to the velocity
perturbation is very small. The longwave cooling of the lower troposphere is increased,
and convective heating is decreased. The net result is thus negative perturbation heating
which, as a consequence of WTG, induces large scale descent, and as such acts as a positive
feedback on the initial downward perturbation.

When the resulting instability becomes nonlinear, cloud effects on radiation begin to
take over. These effects are dominant once a cluster has formed, as the central dense
overcast causes an intense anomaly in outgoing longwave radiation. However, it should be
emphasized that cloud feedbacks are not important for instigating instability, but maintain
the clusters when already formed; there is a strong hysteresis in the RCE system. Figure 6
shows the hypothesized subcritical bifurcation for the system, in which a “clustering metric”
(vertical velocity w on the cluster scale) is used.

In preliminary attempts at a nonlinear two-layer model of RCE, updraft mass flux does
show evidence of aggregation. However, it is unclear as to whether the aggregated state is
a unique attractor of sorts for RCE.

Given the idealized nature of the two-layer model considered here, it is natural to ask
how relevant the results obtained are. It can be seen that in a model of deep convective
self-aggregation above uniform SST [Bretherton et al., 2005], aggregation dramatically dries
the atmosphere (in the sense of the whole domain average), as seen in figure 7. As a result,
the greenhouse effect is reduced and SST would be expected to drop, though disaggregation
may not occur due to the hysteresis of the system. In considering several datasets (including
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Ordinary�RadiativeͲConvective�Equilibrium

Introduce�local�downward�vertical�velocity

Figure 5: Response of the two-layer RCE model (top) to a local downward perturbation in
vertical velocity for (middle) low SST and (bottom) high SST. (Original artwork by Kerry
Emanuel.)
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Figure 6: Hypothesized subcritical bifurcation. From figure 7 of Emanuel et al. [2014].

satellite observations and reanalysis data), Tobin et al. [2012] defined an empirical “Simple
Convective Aggregation Index” (SCAI) based on the number of convective clusters and the
distances between clusters. They found that the atmosphere was drier in locations where
convection was more clustered.

One conjecture for the self-organization of RCE, shown in figure 8, is as follows. In cases
of high SST, convection self-aggregates. However, this causes the horizontally-averaged
humidity to drop dramatically, which in turn leads to a decreased greenhouse effect and
cooling of the system, causing disaggregation of the convection. Thus, we can hypothesize
that the system wants to be near the phase transition to the aggregated state, i.e. with SST
near the critical temperature for self-aggregation.

Based on this hypothesis, we can consider a situation of “self-organized criticality”, first
proposed by David Neelin for a different mechanism. This proposal says that the system
should reside near the critical temperature for self-aggregating, thus regulating tropical
SST. In addition, the convective cluster size should follow a power-law distribution.

Several questions remain which could be asked about the two-layer RCE model:

1. How good is the assumption of convective equilibrium?
There is a substantial amount of debate regarding this point, and the answer is, at
present, unknown. However, there is some suggestion that the assumption is more
justified on the macro scale, i.e. for longer scales in space and time.

2. If self-aggregation occurs on large scales, is there a breakdown of the range over which
RCE exists? Might this be related to the behaviour of the Madden-Julian Oscillation?

3. Is self-aggregation seen in climate models?
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Figure 7: Horizontally averaged profile of relative humidity on day 1 and day 50 of a cloud-
resolving model with self-aggregating convection. From figure 4 of Bretherton et al. [2005].
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Figure 8: Hypothesis for self-organization of RCE.

Probably not, or not accurately, as there is no explicit coupling of convective down-
drafts to surface fluxes, and so the necessary feedbacks are missing. However, the
physics required to maintain clusters once initialized are there in global climate mod-
els – what is lacking are the physics need for spontaneous formation of clusters.

2 Hurricanes

In further considering the self-aggregation problem discussed above, it is natural to ask
what the result would be if rotation were included. As figure 9 shows, for a 3000 km
3D box with vertically-integrated water vapour, the self-aggregated clusters appear to have
become hurricanes. In figure 10, where the rotation rate has been increased, multiple smaller
hurricanes are seen in the box, thereby indicating that the hurricanes have an associated
size and spacing, unlike the non-rotating clusters which scaled with domain size. However,
the transition temperature from the non-aggregated to aggregated states is not strongly
affected by the addition of rotation.

The energy production associated with an ideal hurricane is shown in figure 11. The
energetics are comparable to a Carnot cycle, in which maximum efficiency results from the
particular cycle of isothermal expansion, adiabatic expansion, isothermal compression, and
adiabatic compression. This is similar to what occurs in a hurricane, in which air rises due
to excess enthalpy, expands, and descends. It should be noted that the last leg, however,
is not adiabatic in a hurricane – while air cools radiatively, the environmental temperature
profile is moist adiabatic and so the amount of cooling is equivalent to that of saturated air
descending moist adiabatically. This is also shown for a real hurricane (Hurricane Inez) in
figure 12. The maximum rate of energy production is

P =
Ts − T0
Ts

Q̇ (2)

where Ts and T0 are the surface and outflow temperatures, respectively, and Q̇ is the rate of
heat input. The hurricane has a high-entropy core which takes heat out of the ocean. Based
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Figure 9: Several snapshots of precipitable water (days 12, 15, 18, and 21) for rotating
RCE. The formation of a hurricane is indicated in the bottom right panel.
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Figure 10: Snapshot of precipitable water (day 30) for rotating RCE. Here, the rotation
rate f has been increased from that of figure 9.
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Figure 11: Energy production associated with an idealized hurricane. Red (blue) denotes
regions of high (low) entropy.

on the energy cycle in figure 11, the maximum steady intensity that the storm can achieve,
also known as the “potential intensity”, can be computed and related to a maximum wind
speed [Emanuel, 1999].

The theoretical maximum wind speed for the hurricanes can be derived as

|Vpot|2 '
Ck

CD

Ts − T0
T0

(k∗0 − k) (3)

where Ck/CD is the ratio of exchange coefficients of enthalpy and momentum and k∗0 − k
is the air-sea enthalpy disequilibrium. This air-sea enthalpy disequilibrium is the driver of
hurricanes, and occurs due to the presence of greenhouse gases in the atmosphere. Using
the maximum wind speed, Vpot, a scaling for rotating RCE can be derived.

Using the above quantities, as well as the modified thermodynamic efficiency ε ≡ (Ts −
T0)/T0, angular velocity of the Earth’s rotation Ω, saturation concentration of water vapour
at the sea surface qs ∼ eTs , and net upward radiative fluxes at the surface and the top of the
atmosphere, Fs and FTOA respectively, scalings for the hurricanes can be derived. These
include the potential intensity, V 3

p ≈ ε(FTOA − Fs)/CD, the radius at which maximum
winds occur , rm ∼ Vpot/Ω, the distance between storm centres, D ∼ √Lvqs/Ω (alternately,
the deformation radius), and the number density (i.e. number of storms per unit area),
n ∼ Ω2/(Lvqs).
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Source:�Hawkins�and�Imbembo,�1976
Figure 12: Equivalent potential temperature in Hurricane Inez. Graphic by Kerry Emanuel,
based off of figure 6 of Hawkins and Imbembo [1976].
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Figure 13: Snapshots of precipitable water in rotating RCE with f ≈ 5 × 10−5 s−1 (left)
and f ≈ 2× 10−4 s−1 (right). Approximate sizes from scaling analysis are indicated by the
black circles. (From figure 1 of Khairoutdinov and Emanuel [2013]

Simulations agree well with this scaling. For example, figure 13 shows the result of
increasing the rotation speed with the eye of storm deformation radius overlaid. The de-
creasing radii, increasing number density, and decreasing distance between storm centres
all agree well with the predictions of the hurricane world scaling. Increasing the SST is seen
to lead to fewer, but more intense, events, as shown in figure 14.

3 RCE of an Earth-like aquaplanet

The question remains of how to relate RCE with large-scale dynamics. To answer this,
we can consider a hypothetical Earth-like planet without continents (i.e. an aquaplanet) or
seasons, for which the only friction that acts on the atmosphere is at the surface itself. As
the RCE state depends only on the latitude, we can imagine calculating the RCE state at
each latitude of the planet (bearing in mind that this would lead to difficulties at the poles,
for which this problem is not defined owing to the lack of radiation). While there are some
rather substantial differences between Earth and the planet described here, we can compare
between the real world and the hypothetical planet, asking “why do we not observe the
same balance in reality?”
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Figure 14: Snapshots of near-surface wind (m/s) in rotating RCE for three different values
of SST: 294 K (left), 297 K (centre), and 300 K (right).

The primary advantage of the setup described here is that there is an exact nonlinear
equilibrium solution for the atmospheric flow. This solution is characterized by

1. every column of the atmosphere, as well as the surface beneath it, is in RCE

2. the wind vanishes at the surface of the planet

3. horizontal pressure gradients are balanced by Coriolis accelerations

4. surface pressure is constant

The pressure above the surface decreases poleward. This decrease in pressure occurs more
rapidly at higher altitudes. The pressure gradient is in geostrophic balance with a west
wind, and the wind experiences a vertical shear due to the horizontal temperature gradient
from incoming radiation, i.e. the system is in thermal wind balance, as shown in figure 15.
The atmosphere-ocean heat flux from the equator to the poles means that there is a heat
balance at the top of the atmosphere.

However, this setup does have the potential for some difficulty. For instance, it is possible
that the planet does not have sufficient angular momentum to support the west-east wind
required by the thermal wind balance. Also, it is possible that the equilibrium solution may
be unstable. Instabilities such as baroclinic instability in mid- to high-latitudes may lead to
the formation of eddies, which would in turn cause radiative imbalance, thus moving away
from the thermal wind balance previously computed.
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Lecture 8: Horizontal Convection

Geoff Vallis; notes by Daniel Mukiibi and Paige Martin

June 19

1 The Ocean: Constraints on a Thermal Circulation

We now turn our attention to the ocean. Our goal in this lecture and the next is to describe
a theory for the deep circulation of the ocean, sometimes called the meridional overturning
circulation (MOC) and occasionally the thermohaline circulation. We begin in this lecture
by showing that there have to be winds or some other form of mechanical forcing in order
to drive a substantial deep ocean circulation. The root effect goes back to Sandström, and
although his rigour was suspect it seems his intuition was right.

2 Sandström’s Effect

We first give an argument that is similar in spirit to the one that Sandström gave in his
original papers (Sandström, 1908, 1916).

2.1 Maintaining a steady baroclinic circulation

The Boussinesq equations are

Dv

Dt
= −∇φ+ bk + F,

Db

Dt
= Q̇, ÷v = 0, (1a,b,c)

where F represents frictional terms and Q̇ = J + κ∇2b (that is, the heating term here
includes the effects of diffusion). The circulation, C, changes according to

DC

Dt
=

D

Dt

∮
v · dr =

∮ (
Dv

Dt
· dr + v · dv

)

=

∮
bk · dr +

∮
F · dr,

(2)

(Note that rotation does no work.) Furthermore, we can write rate of change of circulation
itself as

DC

Dt
=

∮ (
∂v

∂t
+ v · ∇v

)
· dr =

∮ (
∂v

∂t
+ ω × v

)
· dr. (3)

Let us assume the flow is steady, so that ∂v /∂t vanishes. Let us further choose the path
of integration to be a streamline, which, since the flow is steady, is also a parcel trajectory.
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The second term on the right-most expression of (3) then also vanishes and (2) becomes
∮
bdz = −

∮
F · dr = −

∮
F

|v | · v dr, (4)

where the last equality follows because the path is everywhere parallel to the velocity. Let
us now assume that the friction retards the flow, and that

∮
F · v /|v | dr < 0. (One form

of friction that has this property is linear drag, F = −Cv where C is a constant. The
property is similar to, but not the same as, the property that the friction dissipates kinetic
energy over the circuit.) Making this assumption, if we integrate the term on the left-hand
side by parts we obtain ∮

z db < 0. (5)

Now, because the integration circuit in (6) is a fluid trajectory, the change in buoyancy db
is proportional to the heating of a fluid element as it travels the circuit db = Q̇dt = dQ,
where the heating includes diffusive effects.

∮
z dQ < 0. (6)

Thus, the inequality implies that the net heating must be negatively correlated with height:
that is, the heating must occur, on average, at a lower level than the cooling in order that a
steady circulation may be maintained against the retarding effects of friction.

A compressible fluid

A similar result can be obtained for a compressible fluid. We write the baroclinic circulation
theorem as

DC

Dt
=

∮
pdα+

∮
F · dr =

∮
T dη +

∮
F · dr, (7)

where η is the specific entropy. Then, by precisely the same arguments as led to (6), we are
led to the requirements that

∮
T dη > 0 or equivalently

∮
p dα > 0. (8a,b)

Equation (8a) means that parcels must gain entropy at high temperatures and lose entropy
at low temperatures; similarly, from (6b), a parcel must expand (dα > 0) at high pressures
and contract at low pressures.

For an ideal gas we can put these statements into a form analogous to (6) by noting
that dη = cp(dθ/θ), where θ is potential temperature, and using the definition of potential
temperature for an ideal gas. With these we have

∮
T dη =

∮
cp
T

θ
dθ =

∮
cp

(
p

pR

)κ
dθ, (9)

and (8a) becomes ∮
cp

(
p

pR

)κ
dθ > 0. (10)
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Because the path of integration is a fluid trajectory, dθ is proportional to the heating of
a fluid element. Thus [and analogous to the Boussinesq result (6)], (10) implies that the
heating (the potential temperature increase) must occur at a higher pressure than the cooling
in order that a steady circulation may be maintained against the retarding effects of friction.

These results may be understood by noting that the heating must occur at a higher
pressure than the cooling in order that work may be done, the work being necessary to
convert potential energy into kinetic energy to maintain a circulation against friction. More
informally, if the heating is below the cooling, then the heated fluid will expand and become
buoyant and rise, and a steady circulation between heat source and heat sink can readily
be imagined. On the other hand, if the heating is above the cooling there is no obvious
pathway between source and sink.

2.2 A rigorous result

Following Paparella & Young (2002), we now show more rigorously that, if the diffusivity
is small, the circulation is in a certain sense weak. Now including molecular viscosity and
diffusivity, the equations of motion are

∂v

∂t
+ (f + 2ω)× v = −∇B + bk + ν∇2v , (11a)

Db

Dt
=
∂b

∂t
+÷(bv ) = Q̇ = J + κ∇2b, (11b)

÷v = 0, (11c)

Multiply the momentum equation by v and integrate over a volume to give

d

dt

〈
1

2
v 2

〉
= 〈wb〉 − ε, (12)

where angle brackets denote a volume average and

ε = −ν
〈
v · ∇2v

〉
= ν

〈
ω2
〉
, (13)

after integrating by parts. The dissipation, ε, is a positive definite quantity.
Write the buoyancy equation as

Dbz

Dt
= z

Db

Dt
+ b

Dz

Dt
= zQ̇+ bw, (14)

whence
d

dt
〈bz〉 =

〈
zQ̇
〉

+ 〈bw〉 . (15)

Subtracting (15) from (12) gives the energy equation

d

dt

〈
1

2
v 2 − bz

〉
= −

〈
zQ̇
〉
− ε. (16)

In a steady state: 〈
zQ̇
〉

= −ε < 0. (17)
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This is an analogue of our earlier results. It says that if we want to have a dissipative,
statistically steady flow there has to be a negative correlation between heating and z. Put
simply, the heating has to be below the cooling. But note that the heating and cooling
include the diffusive terms.

With diffusion only

Take Q̇ = κ∇2b whence (17) becomes

κ

V

∫
z∇2bdV = −ε (18)

The horizontal part of the integral vanishes so that

κ

H

∫ 0

−H
z
∂2b

∂z2
dz = −ε. (19)

where an overbar is a horizontal average. Integrating the LHS by parts gives

κ

H

[
b(0)− b(−H)

]
= ε. (20)

The LHS is bounded by the surface buoyancy gradient, so the KE dissipation goes to zero
as κ→ 0.

The result is (at least from a physicist’s point of view) quite rigorous. It can also be
extended to a nonlinear equation of state (Nycander, 2010). It tells us that the dissipation
of kinetic energy in a fluid diminishes with the diffusivity, and that if κ = 0 then dissipation
vanishes. It doesn’t say there is no flow at all, but it is hard to envision a flow in a finite
domain that does not dissipate kinetic energy. The result is often characterized as saying
that the flow is non turbulent.

3 Buoyancy and Mixing Driven Scaling Theories

Now we talk about scaling, becoming a bit less rigorous. Interestingly the scaling, dating
from Rossby (1965), predates the rigorous theories, and it also provides much stronger
bounds. However, it is a scaling and not a rigorous result and therefore open to dispute.

3.1 Equations of motion

A non-rotating Boussinesq fluid heated and cooled from above obeys the equations.

Dv

Dt
= −∇φ+ ν∇2v + bk, (21)

Db

Dt
= κ∇2b (22)

∇ · v = 0. (23)

with boundary conditions
b(x, y, 0, t) = g(x, y), (24)
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For algebraic simplicity consider the two-dimensional version of these equations, in y and
z . We can define a streamfunction

v = −∂ψ
∂z

, w =
∂ψ

∂y
, ζ = ∇2

xψ =

(
∂2ψ

∂y2
+
∂2ψ

∂z2

)
, (25)

Taking the curl of the momentum equation gives

∂∇2ψ

∂t
+ J(ψ,∇2ψ) =

∂b

∂y
+ ν∇4ψ (26a)

∂b

∂t
+ J(ψ, b) = κ∇2b (26b)

where J(a, b) ≡ (∂ya)(∂zb)− (∂za)(∂yb).

Non-dimensionalization and scaling

We non-dimensionalize (26) by formally setting

b = ∆b b̂, ψ = Ψψ̂, y = Lŷ, z = Hẑ, t =
LH

Ψ
t̂, (27)

where the hatted variables are non-dimensional, ∆b is the temperature difference across the
surface, L is the horizontal size of the domain, and Ψ, and ultimately the vertical scale H,
are to be determined. Substituting (27) into (26) gives

∂∇̂2ψ̂

∂t̂
+ Ĵ(ψ̂,∇2ψ̂) =

H3∆b

Ψ2

∂b̂

∂ŷ
+

νL

ΨH
∇̂4ψ̂, (28a)

∂b̂

∂t̂
+ Ĵ(ψ̂, b̂) =

κL

ΨH
∇̂2b̂, (28b)

where ∇̂2 = (H/L)2∂2/∂ŷ2+∂2/∂ẑ2 and the Jacobian operator is similarly non-dimensional.
If we now use (28b) to choose Ψ as

Ψ =
κL

H
, (29)

so that t = H2t̂/κ, then (28) becomes

∂∇̂2ψ̂

∂t̂
+ Ĵ(ψ̂, ∇̂2ψ̂) = Ra σα5 ∂b̂

∂ŷ
+ σ∇̂4ψ̂, (30)

∂b̂

∂t̂
+ Ĵ(ψ̂, b̂) = ∇̂2b̂, (31)

and the non-dimensional parameters that govern the behaviour of the system are

Ra =

(
∆bL3

νκ

)
, (the Rayleigh number), (32a)

σ =
ν

κ
, (the Prandtl number), (32b)

α =
H

L
, (the aspect ratio). (32c)
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3.2 Rossby’s Scaling

For steady non-turbulent flows, and also perhaps for statistically steady flows, then we can
demand that the buoyancy term in (30) is O(1). If it is smaller then the flow is not buoyancy
driven, and if it is larger there is nothing to balance it. Our demand can be satisfied only if
the vertical scale of the motion adjusts appropriately and, for σ = O(1), this suggests the
scalings

H = Lσ−1/5Ra −1/5 =

(
κ2L2

∆b

)1/5

, Ψ = Ra 1/5σ−4/5ν = (κ3L3∆b)1/5. (33a,b)

The vertical scale H arises as a consequence of the analysis, and the vertical size of the
domain plays no direct role. [For σ � 1 we might expect the nonlinear terms to be small
and if the buoyancy term balances the viscous term in (30) the right-hand sides of (33) are
multiplied by σ1/5 and σ−1/5. For seawater, σ ≈ 7 using the molecular values of κ and ν.
If small scale turbulence exists, then the eddy viscosity will likely be similar to the eddy
diffusivity and σ ≈ 1.] Numerical experiments (Figs. 1 and 2, taken from Ilicak & Vallis
2012) do provide some support for this scaling, and a few simple and robust points that
have relevance to the real ocean emerge, as follows.

• Most of the box fills up with the densest available fluid, with a boundary layer in
temperature near the surface required in order to satisfy the top boundary condition.
The boundary gets thinner with decreasing diffusivity, consistent with (33). This is a
diffusive prototype of the oceanic thermocline.

• The horizontal scale of the overturning circulation is large, being at or near the scale
of the box.

• The downwelling regions (the regions of convection) are of smaller horizontal scale
than the upwelling regions, especially as the Rayleigh number increases.

3.3 The importance of mechanical forcing

The above results do not, strictly speaking, prohibit there from being a thermal circulation,
with fluid sinking at high latitudes and rising at low, even for zero diffusivity. However,
in the absence of any mechanical forcing, this circulation must be laminar, even at high
Rayleigh number, meaning that flow is not allowed to break in such a way that energy can
be dissipated — a very severe constraint that most flows cannot satisfy. The scalings (33)
further suggest that the magnitude of the circulation in fact scales (albeit nonlinearly) with
the size molecular diffusivity, and if these scalings are correct the circulation will in fact
diminish as κ → 0. For small diffusivity, the solution most likely to be adopted by the
fluid is for the flow to become confined to a very thin layer at the surface, with no abyssal
motion at all, which is completely unrealistic vis-à-vis the observed ocean. Thus, the deep
circulation of the ocean cannot be considered to be wholly forced by buoyancy gradients at
the surface.

Suppose we add a mechanical forcing, F, to the right-hand side of the momentum
equation (11a); this might represent wind forcing at the surface, or tides. The kinetic
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energy budget becomes

ε = 〈wb〉+ 〈F · v 〉 = H−1κ[b(0)− b(−H)] + 〈F · v 〉 . (34)

In this case, even for κ = 0, there is a source of energy and therefore turbulence (i.e.,
a dissipative circulation) can be maintained. The turbulent motion at small scales then
provides a mechanism of mixing and so can effectively generate an ‘eddy diffusivity’ of
buoyancy. Given such an eddy diffusivity, wind forcing is no longer necessary for there
to be an overturning circulation. Therefore, it is useful to think of mechanical forcing as
having two distinct effects.

1. The wind provides a stress on the surface that may directly drive the large-scale
circulation, including the overturning circulation.

2. Both tides and the wind provide a mechanical source of energy to the system that
allows the flow to become turbulent and so provides a source for an eddy diffusivity
and eddy viscosity.

In either case, we may conclude that the presence of mechanical forcing is necessary for
there to be an overturning circulation in the world’s oceans of the kind observed.

4 The Relative Scale of Convective Plumes and Diffusive Up-
welling

Why is the downwelling region narrower than the upwelling? The answer is that high
Rayleigh number convection is much more efficient than diffusional upwelling, so that the
the convective buoyancy flux can match the diffusive flux only if the convective plumes
cover a much smaller area than diffusion. (Tom Haine explained this to me.) Suppose
that the basin is initially filled with water of an intermediate temperature, and that surface
boundary conditions of a temperature decreasing linearly from low latitudes to high latitudes
are imposed. The deep water will be convectively unstable, and convection at high latitudes
(where the surface is coldest) will occur, quickly filling the abyss with dense water. After
this initial adjustment, the deep, dense water at lower latitudes will be slowly warmed by
diffusion, but at the same time surface forcing will maintain a cold high latitude surface,
thus leading to high latitude convection. A steady state or statistically steady state is
eventually reached with the deep water having a slightly higher potential density than the
surface water at the highest latitudes, and so with continual convection, but convection that
takes place only at the highest latitudes.

To see this more quantitatively consider the respective efficiencies of the convective
heat flux and the diffusive heat flux. Consider an idealized re-arrangement of two parcels,
initially with the heavier one on top as illustrated in Fig. 3. The potential energy released
by the re-arrangement, ∆P is given by

∆P = Pfinal − Pinitial (35)

= g [(ρ1z2 + ρ2z1)− (ρ1z1 + ρ2z2)] (36)

= g(z2 − z1)(ρ1 − ρ2) = ρ0∆b∆z (37)
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where ∆z = z2 − z1 and ∆b = g(ρ1 − ρ2)/ρ0.
The kinetic energy gained by this re-arrangement, ∆K is given by ∆K = ρ0w

2 and
equating this to (35) gives

w2 = −∆b∆z. (38)

Note that if the heavier fluid is initially on top then ρ2 > ρ1 and, as defined, ∆b < 0. The
vertical convective buoyancy flux per unit area, Bc, is given by Bc = w∆b and using (38)
we find

Bc = (−∆b)3/2(∆z)1/2. (39)

The upwards diffusive flux, Bd, per unit area is given by

Bd = κ
∆b

H
(40)

where H is the thickness of the layer over which the flux occurs. In a steady state the total
diffusive flux must equal the convective flux so that, from (39) and (40),

(−∆b)3/2(∆z)1/2δA = κ
∆b

H
, (41)

where δA is the fractional area over which convection occurs. Thus If we set ∆z = H, we
get

δA =
κ

(∆b)1/2H3/2
(42)

This is a small number, although it is not quite right yet — we don’t really know H. Let
us use (33a), namely H = (κ2L2/∆b)1/5 then

δA =
κ

(∆b)1/2(κ2L2/∆b)3/10

=

(
κ2

∆bL3

)1/5

= (Ra σ)−1/5.

(43)

For geophysically relevant situations this is a very small number, usually smaller than 10−5.
Although the details of the above calculation may be questioned (for example, the use of
the same buoyancy difference and vertical scale in the convection and the diffusion), the
physical basis for the result is clear: for realistic choices of the diffusivity the convection
is much more efficient than the diffusion and so will occur over a much smaller area. This
result almost certainly transcends the limitations of its derivation.
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Figure 1: Temperature (left) and streamfunction (right) fields. From the top, the Rayleigh
numbers are 106, 107, 108.
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Figure 2: Temperature (left) and streamfunction (right) fields. From the top, the Rayleigh
numbers are 109, 1010, 1011.

z2

z1ρ1

ρ2

Δz

Figure 3: Two fluid parcels, of density ρ1 and ρ2 and initially at positions z1 and z2

respectively, are interchanged. If ρ2 > ρ1 then the final potential energy is lower than the
initial potential energy, with the difference being converted into kinetic energy.
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Lecture 9: The Deep Ocean Circulation

Geoff Vallis; notes by Ashley Payne and Erica Rosenblum

June 26

In this lecture we try to understand the processes that give rise to a deep meridional
overturning circulation. We’ll present a zonally-averaged model of the meridional overturn-
ing circulation of the ocean, following Nikurashin & Vallis (2011, 2012). It is a quantitative
model, and might even be called a theory, depending on what one’s definition of theory is.

1 A Model of the Wind-driven Overturning Circulation

The model is motivated by the plot of the stratification shown in Fig. 1, and the schematic of
water mass properties of the Atlantic shown in Fig. 3. The following features are apparent.

1. Two main masses of water, known as North Atlantic Deep Water (NADW) and
Antarctic Bottom Water (AABW). Both are interhemispheric. NADW appears to
outcrop in high northern latitudes and high southern latitudes, and AABW just at
high Southern.

2. Isopycnals are flat over most of the ocean, and slope with a fairly uniform slope in
the Southern Ocean.

3. The circulation is along isopycnals in much of the interior. There is some water mass
transformation between AABW and NADW, but most of it occurs near the surface.

2 A Theory for the MOC in a Single Hemisphere

Let us first imagine there is a wall at the equator, and make a model of the circulation in
the Southern Hemisphere (Figs. 4, 5, 6); that is, essentially of AABW. The model will have
the following features, or bugs if you are being critical.

1. Zonally averaged.

2. Simple geometry. A zonally re-entrant channel at high latitudes, with an enclosed
basin between it and the equator.

3. We solve the equations of motion separately in the two regions and match the solutions
at the boundary.

4. Mesoscale eddies are parameterized with a very simple down-gradient scheme.

5. There are no wind-driven gyres.
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Figure 1: Stratification in the Pacific at 150◦W
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Figure 2: A schematic of deep ocean circulation.

2.1 Equations of motion

With quasi-geostrophic scaling the zonally-averaged zonal momentum and buoyancy equa-
tions are

∂u

∂t
− f0 v =− ∂

∂y
u′v′ +

∂τ

∂z
, (1)

∂b

∂t
+N2w =− ∂

∂y
v′b′ + κv

∂2b

∂z2
. (2)
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Figure 3: A simpler schematic of deep ocean circulation
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Figure 4: Idealized geometry of the Southern Ocean: a re-entrant channel, partially blocked
by a sill, is embedded within a closed rectangular basin; thus, the channel has periodic
boundary conditions. The channel is a crude model of the Antarctic Circumpolar Current,
with the area over the sill analogous to the Drake Passage.
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Figure 5: Cross-section of a structure of the single-hemisphere ocean model. There is a
channel between y1 and y2. The arrows indicate the fluid flow driven by the equatorward
Ekman transport in the channel, and the solid lines are isopycnals.

where b is buoyancy (‘temperature’) and N2 = ∂zb0. To these we add the thermal wind
relation and mass continuity:

f0
∂u

∂z
= −∂b

∂y
,

∂v

∂y
+
∂w

∂z
= 0.

Define a residual flow such that

v∗ = v − ∂

∂z

(
1

N2
v′b′
)
, w∗ = w +

∂

∂y

(
1

N2
v′b′
)
.

whence

∂u

∂t
− f0 v∗ = v′q′ +

∂τ

∂z
(3a)

∂b

∂t
+N2w∗ = κv

∂2b

∂z2
. (3b)

These are the so-called transformed Eulerian mean (TEM) equations. The theory of them
is extensive and suffice it to say here that v∗ and w∗ more nearly represent the trajectories
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Figure 6: As for Fig. 5, but now for a two-hemisphere ocean with a source of dense water,
b3, at high northern latitudes.

of fluid parcels. Note that there are no fluxes in the buoyancy equation and that only the
PV flux, v′q′, need be parameterized. If we now put back some of the terms we omitted,
our complete equations are

∂u

∂t
− fv∗ = v′q′ +

∂τ

∂z
(4a)

∂b

∂t
+ v∗

∂b

∂y
+ w∗

∂b

∂z
= κv

∂2b

∂z2
. (4b)

where (v∗ , w∗) = (−∂ψ/∂z, ∂ψ/∂y) and f∂u/∂z = −∂b/∂y. The stress τ in only non-zero
near the top (wind-stress) and bottom (Ekman drag), and τ integrates to zero. We’ll look
for steady state solutions and drop the ∗ notation so that all variables are residuals and
zonal averages.

Equations in the channel

We parameterize

v′q′ = −Ke
∂q

∂y
. (5)

where, approximately, for the large-scale ocean

q ≈ f ∂
∂z

(
b

bz

)
, so that

∂q

∂y
≈ f ∂

∂z

(
by

bz

)
= −f ∂S

∂z
(6)

where S = −by/bz is the slope of the isopycnals. Thus

v′q′ = fKe
∂S

∂z
. (7)
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Figure 7: Schematic of the single hemisphere meridional overturning circulation crudely
representing AABW. Thin black lines are the isopycnals, thick black line is a overturning
streamfunction, dashed vertical line is the northern edge of the channel, shaded gray areas
are the convective region and the surface mixed layer.

and the momentum equation becomes

−fv = fKe
∂Sb
∂z

+
∂τ

∂z
. (8)

Since v∗ = −∂ψ/∂z we integrate this from the top to a level z and obtain

ψ = −τw
f

+KeS. (9)

We have assumed ψ = 0 and S = 0 at the top, and τ = τw at the top (base of mixed layer)
and τ = 0 in the interior.

The buoyancy equation in terms of streamfunction is

v · ∇b = κv
∂2b

∂z2
=⇒ ∂ψ

∂y

∂b

∂z
− ∂ψ

∂z

∂b

∂y
= κv

∂2b

∂z2
(10)

or
∂ψ

∂y
+ S

∂ψ

∂z
=
∂2zb

∂zb
. (11)

The boundary condition on ψ for this will be supplied by the basin! The other boundary
condition we will need is the buoyancy distribution at the top, and so we specify

b(y, z = 0) = b0(y). (12)
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Equations in the basin

In the basin the slope of the isopycnals is assumed zero and (11) becomes the conventional
upwelling diffusive balance,

w
∂b

∂z
= κ

∂2b

∂z2
or

∂ψ

∂y

∂b

∂z
= κv

∂2b

∂z2
. (13)

Integrate this from the edge of the channel, y = 0, to the northern edge, y = L, and obtain

ψ|y=0 = −κvL
bzz

bz
. (14)

2.2 Scaling

Let hats denote non-dimensional values and let

z = hẑ, y = lŷ, τw = τ0τ̂w, (15)

f = f0f̂ , ψ =
τ0
f0
ψ̂, S =

h

l
Ŝ, (16)

where h is a characteristic vertical scale such that S ∼ h/l. It will emerge as part of the
solution. If we have scaled properly then variables with hats on are of order one. The
nondimensional equations of motion are then

Buoyancy evolution: ∂ŷψ̂ + Ŝ∂ẑψ̂ = ε

(
l

L

)
∂ẑẑ b̂

∂ẑ b̂
, (17a)

Momentum balance: ψ̂ = − τ̂
f̂

+ ΛŜ, (17b)

Boundary condition: ψ̂|ŷ=0 = −ε∂ẑẑ b̂
∂ẑ b̂

, (17c)

where

Λ =
Eddies

Wind
=

Ke

τ0/f0

h

l
∼ 1. and ε =

Mixing

Wind
=

κv
τ0/f0

L

h
∼ 0.1− 1. (18a,b)

These are the two important nondimensional numbers in the problem and we can obtain
estimates of their values by using some observed values for the other parameters. Thus,
with κv = 10−5 m2 s−1, Ke = 103 m2 s−1, τ0 = 0.1 N m−2, f0 = 10−4 s−1, ρ0 = 103 kg m−3,
L = 10, 000 km, l = 1, 000 km, and h = 1 km we find

Λ = 1, ε = 0.1, and
l

L
= 0.1. (19)

Note that Λ and ε are not independent of each other for they both depend on the vertical
scale of stratification h which is a part of the solution, and for that we must look at some
limiting cases.

118



The weak diffusiveness limit

Suppose that mixing is small and that ε � 1. We can then require that Λ = 1 in order
that the eddy-induced circulation nearly balance the wind-driven circulation (because the
diffusive term is small), whence the vertical scale h is given by

h

l
=
τ0/f0
Ke

. (20)

If Ke does become small then h becomes large, meaning that the isopycnals are near vertical.
Using the above value for h we find that

ε =
κvKe

(τ0/f0)2
L

l
(21)

This is an appropriate measure of the strength of the diapycnal diffusion in the ocean. Using
(17c) we see that ψ̂ ∼ ε so that the dimensional strength of the circulation goes as

Ψ = ε
τ0
f0

= κv
Ke

τ0/f0

L

l
. (22)

Another way to obtain this is to note that for weak diffusion the balance in the dimensional
momentum equation is between wind forcing and eddy effects (because they must nearly
cancel) so that

τw
f
∼ KeS, (23)

which may be written as
h

l
∼ τw
Kef

. (24)

Advective-diffusive balance in the basin gives

∂ψ

∂y

∂b

∂z
= κv

∂2b

∂z2
=⇒ Ψ =

κvL

h
(25)

and (24) and (25) together give (22).

The strong diffusiveness limit

This limit may be appropriate for the abyssal ocean and in any case it is worth doing, so
let us take ε � 1 and the circulation in the basin will in some sense be strong. As before
the nondimensional strength of the circulation is given by

ψ̂ = O(ε)� 1. (26)

The fact that ψ̂ 6= O(1) means we haven’t scaled things in an ideal fashion, but let’s proceed
anyway. Dimensionally

Ψ = ε
τ0
f 0

or Ψ =
κvL

h
(27a,b)

but h and ε are both different than before.
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Now, if ψ̂ ∼ ε� 1 the diffusion driven circulation in the basin cannot be matched by a
purely wind-driven circulation in the channel, since the latter is O(1). We can only match
the circulation with an eddy-driven circulation and therefore we require

Λ = O(ε). (28)

In particular, if we set Λ = ε then

ε = Λ =

√(
KeκvL

(τ0/f)2l

)
. (29)

This is the square root of the expression for ε in the weak diffusiveness limit. Using (29)
and (27a) we find

h =

√
κv
Ke

Ll and Ψ =

√
KeκvL

l
. (30a,b)

Discussion of limits

If diffusion is weak the stratification itself is set by the eddies. Thus, upwelling-diffusion
gives ψ ∼ κvL/h, with h being set by the wind as in (24), thus giving a circulation strength
that is linearly proportional to diffusivity, as in (22). In the strong diffusion case the diffusion
itself affects the stratification, and so we get a weaker dependence of the circulation strength
on κv. In this limit diapycnal mixing deepens the isopycnals in the basin away from the
channel, so that the isopycnals are steeper in the channel. This steepening is balanced by
the slumping effects of baroclinic instability, and wind only has a secondary effect. From an
asymptotic perspective in the small ε limit the residual circulation is zero to lowest order.
At next order it follows the isopycnals except in the mixed layer.

Instead of varying diffusivity we can think of the wind changing. In the weak wind limit
the circulation is diffusively driven and independent of the wind strength. In the strong
wind limit the circulation actually decreases as the wind increases. This is because the
wind steepens the isopycnals so the diffusive term (∼ κvbzz) gets smaller and hence the
circulation weaker.

3 An Interhemispheric Circulation

We now introduce another ‘water mass’ into the mix — North Atlantic Deep Water, or
NADW. We will construct a model of similar type to what we did in the previous lecture,
but now we will divide the ocean into three regions, namely

1. a southern channel, say from 50◦ S to 70◦ S

2. a basin region, say from from 50◦ S to 60◦N

3. a northern convective region

(Fig. 8). The idea will be to write down the dynamics in these three regions and match
them at the boundaries. The main difference, and it is an important one, between this
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Figure 8: Schematic of the interhemispheric MOC. Thin solid black lines are the isopycnals,
dashed lines with arrows are the streamlines, dashed vertical lines are the boundaries be-
tween adjacent regions, shaded gray areas are the convective regions at high latitudes and
the surface mixed layer,and the red arrow represents downward diffusive heat flux. Labels
1, 2, and 3 (in circles) denote the circumpolar channel, ocean basin, and isopycnal outcrop
regions.

model and the previous one is the presence of an interhemispheric cell that is primarily
wind driven, and sits on top of the lower cell. It is convenient to write down the equations
of motion for each region separately, with the first two regions being similar to those of the
previous section.

3.1 Equations of motion

In the equations below use restoring conditions at the top, but a specified buoyancy would
work too.

Region 1, the southern channel

In the channel the buoyancy equation takes its full advective-diffusive form (although we
later find that in some circumstances diffusion is unimportant). The momentum equation
has a wind-driven component and and eddy-driven component, as before. In dimensional
form the equations are

Buoyancy advection: J(ψ1, b1) = κv
∂2b1
∂z2

(31a)
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Momentum: ψ1 = −τ(y)

f
−KeS (31b)

Surface boundary, at z = 0 : −κ∂b1
∂z

= λ(b∗(y)− b1) (31c)

Buoyancy match to interior: b1(z)|y=0 = b2(z) (31d)

Streamfunction match to interior ψ|y=0 = −κvL
bzz

bz
(31e)

These are more-or-less the same as those for the channel in the previous section, although we
have explicitly added a buoyancy condition and we use a restoring condition on temperature.

Region 2, the basin

In the basin the isopycnals are flat and the buoyancy equation is an upwelling-diffusive
balance. We won’t need the momentum equation, and so we have

Upwelling diffusive:
(ψ3 − ψ1)

L

∂b2
∂z

= κv
∂2b2
∂z2

(32a)

Surface boundary: −κ∂b2
∂z

∣∣∣∣
z=0

= λ(b∗ − b2) (32b)

The upwelling diffusive balance is just w∂zb = ∂2zb with flat isopycnals, with ψ1 and ψ3

being the streamfunctions at the southern and northern ends of the basin, respectively. If
ψ1 6= ψ2 there is a net convergence and hence an upwelling. If κv = 0 then either there is
no upwelling or no vertical buoyancy gradient. However, there can be an interhemispheric
flow; the properties of the water mass do not change, and we expect the meridional flow to
occur in a western boundary current.

Region 3, the northern convective region

In this region the values of buoyancy at the surface (i.e., b3(y, z = 0)) are mapped on to the
flat isopycnals in the interior (i.e, b2(z)). We assume this matching occurs by convection.
That is, the surface waters convect downward to the level of neutral buoyancy and then
move meridionally. By thermal wind the outcropping isopycnals give rise to a zonal flow,
with the total zonal transport being determined by the meridional temperature gradient
and the depth to which flow convects, which is a function of such things as the winds, eddy
strength and diapycnal mixing in the Southern channel. The zonal flow is thus

u3(y, z) = − 1

f

∫ z

−h

∂b3
∂y

dz′ + C (33)

where C is determined by the requirement that
∫ 0
−h u3 dz = 0. When the relatively shallow

eastward moving zonal flow collides with the eastern wall it subducts and returns. When the
deep westward flow collides with the western wall it may move equatorward in a frictional
deep western boundary current. It is the upper, northward moving branch of the deep
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western boundary current that feeds the eastward moving flow. The total volume transport
in these zonal flows thus translates to a meridional streamfunction that has the value

ψ3(z) =

∫ z

−h
dz′
∫ Ln

Ly

u3 dy (34)

where Ly is the latitude of the southern edge of the convecting region and Ln = Ly + ln is
the northern edge of the domain. Summing up, the equations in the convective region are

Convective matching: b2(z)⇒ b3(y, z = 0) (35)

Thermal wind: fu3(y, z) = −
∫ z

−h

∂b3
∂y

dz′ + C (36)

Mass Continuity: ψ3(z) =

∫∫
u3 dy dz (37)

We now discuss how all this fits together.

3.2 Scaling and Dynamics

Our main focus is on the upper cell, since the lower cell has essentially the same dynamics
as in the single hemisphere case. We proceed by writing down some parametric expressions
for the streamfunctions in the three domains.

Ψ1 =

(
τ0
f1
−Ke

h

ls

)
Lx, (38a)

Ψ2 = Ψ3 −Ψ1 =
κv
h
LxLy, (38b)

Ψ3 =
∆bh2

f3
. (38c)

We don’t like these equations because when doing scaling we don’t like having additive
expressions but for now we damn the torpedoes. The four unknowns are Ψ1,Ψ2, Ψ3 and
h and there are four equations (note that (38b) is two equations). If we combine them we
obtain

∆bh2

f3
−
(
τ0
f1
−Ke

h

ls

)
Lx =

κv
h
LxLy (39)

This expression is very similar to one obtained by Gnanadesikan (1999).

With no northern source

Suppose that ∆b = 0 and that there is no deep water formation in the North Atlantic. If
also κv is small then we obtain h/ls = (τ0/f1)/Ke, which is essentially the same as (20),
obtained previously. If κv is large then we find h2 = κvLls/Ke; that is, we recover (30a).
Pretty much everything is the same as it was section 2.
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With no southern channel

If there is no southern channel then Ψ1 = 0 and we have

∆bh2

f3
=
κv
h
LxLy (40)

and

h3 = κv

(
f3LxLy

∆b

)
and Ψ3 = Ψ2 = (κvLxLy)

2/3

(
∆b

f3

)1/3
. (41)

These are classical expressions for the thickness of a diffusive thermocline and the strength
of a diffusively-driven overturning circulation, going back to Robinson and Stommel. This
is also the same as the strong diffusivity limit.

With all three regions

This is the new bit. The weak diffusivity limit is the interesting case, as the strong diffusivity
limit is really just the case with no southern channel.

In this case the upwelling is weak and |Ψ3| ≈Ψ1| and

∆bh2

f3
−
(
τ0
f1
−Ke

h

ls

)
Lx = 0. (42)

In this case the basin is just a ‘pass-through’ region: water formed in the North Atlantic
just passes through the basin without change, and upwells in the Southern Ocean. For the
moment let us also assume that Ke is small and then

∆bh2

f3
=

τ0
ρ0f1

Lx, (43)

which results in a depth scale h for the stratification,

h =

(
τ0f3Lx
f1∆b

)1/2

(44)

Putting in the numbers, we find h ≈ 320 m. Furthermore, the strength of the circulation is
just determined by the wind stress,

Ψ1 = Ψ3 =

(
τ0Lx
f1

)
(45)

which is about 10 Sv .
In the more general case we solve (42) to give

h =

(
τ0f3Lx
f1∆b

)1/2 (
−α+

√
1 + α2

)
(46)

where α is the nondimensional number given by the ratio of the wind to eddy effects

α =
1

2

Ke

ls

(
Lxf1f3
τ0∆b

)1/2

=
1

2

Ψ∗

Ψ
. (47)
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where

Ψ =
τ0
f1
Lx, Ψ∗ = −Keh

Lx
ls

= −ke
Lx
ls

(
τ0f3Lx
f1∆b

)1/2
. (48)

If we put in numbers then α ≈ 0.08, Ψ∗ ≈ 1.6 Sv and Ψ ≈ 10 Sv . That is, the wind-
induced circulation is the dominant factor in the meridional overturning circulation, and if
we take α to small then we have

h ≈
(
τ0f3Lx
f1∆b

)1/2
, Ψ ≈ τ0

f1
Lx (49)

Discussion

Although there can be no certainties when eddy diffusivities are present, the use of rep-
resentative parameters suggests that the eddy-induced circulation is indeed smaller than
the wind-driven circulation in the Southern Ocean. That is, putting in numbers, we find
α ≈ 0.08 with Ψ∗ ≈ 1.6 Sv and Ψ ≈ 10 Sv . This suggests that, for typical oceanic pa-
rameters, the strength of the eddy-induced circulation on isopycnals corresponding to the
middepth overturning cell is only about 10-20% of the wind-driven circulation. Thus, rather
than the residual circulation vanishing as is sometimes assumed, the middepth residual cir-
culation is comparable to the wind-driven circulation and acts to pull O(10) Sv of deep
water formed at high northern latitudes in the North Atlantic back up to the surface. As
a result, the depth scale of stratification h is not linearly proportional to the wind stress τ ,
as one would obtain from the vanishing residual circulation argument with a simple eddy
parameterization, but rather it scales with τ as τ1/2 and is dependent on ∆b which is the
buoyancy range for isopycnals which are shared between the circumpolar channel and the
isopycnal outcrop region in the Northern Hemisphere.

In summary, in the limit of weak diapycnal mixing, relevant to the present middepth
ocean, the strength of the middepth overturning circulation is primarily determined by
the Ekman transport in the Southern Ocean. The rest of the ocean is essentially forced
to adjust and produce the amount of deep water demanded by the Ekman transport and
the associated wind-driven upwelling in the Southern Ocean. For instance, during the
transient adjustment, the Ekman transport in the circumpolar channel, in conjunction
with the surface buoyancy flux, pulls dense waters up from the deep ocean, converts them
into light waters at the surface, and pumps these waters into, or just below, the main
thermocline in the ocean basin. The rate at which these light waters are then imported into
the deep water formation region in the North Atlantic, converted back into dense waters, and
exported to the ocean basin at middepth, is controlled by the meridional pressure gradient
set up by the outcropping isopycnals in the north. Hence, light waters pumped into the
ocean basin by the Ekman transport in the south accumulate in, or just below, the main
thermocline, therefore deepening the middepth isopycnals and increasing the transport of
light water into the deep water formation region in the north until the transports in the
north and south match. The established interhemispheric balance sets the depth of the
isopycnals in the ocean basin and thus stratification throughout the entire ocean.

In the case when deep waters are not produced in the north, as observed in the Pacific
Ocean, light waters pumped into the ocean basin by the Southern Ocean wind will deepen
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the mid-depth isopycnal in the ocean basin, and thus steepen their slopes in the Southern
Ocean, until the eddy-induced circulation in the Southern Ocean cancels the wind-driven
circulation resulting in a zero residual circulation and water mass transformation.

4 Theory of the Main Thermocline
(And why it is not really like the tropopause)

Our goal in this lecture is to give a sense of the structure of the thermocline, and to draw
out similarities and differences (mainly differences) with the tropopause.

A simple kinematic model

The fact that cold water with polar origins upwells into a region of warmer water suggests
that we consider the simple one-dimensional advective–diffusive balance,

w
∂T

∂z
= κ

∂2T

∂z2
, (50)

where w is the vertical velocity, κ is a diffusivity and T is temperature. In mid-latitudes,
where this might hold, w is positive and the equation represents a balance between the
upwelling of cold water and the downward diffusion of heat. If w and κ are given constants,
and if T is specified at the top (T = TT at z = 0) and if ∂T/∂z = 0 at great depth (z = −∞)
then the temperature falls exponentially away from the surface according to

T = (TT − TB)ewz/κ + TB, (51)

here TB is a constant. This expression cannot be used to estimate how the thermocline depth
scales with either w or κ, because the magnitude of the overturning circulation depends on
κ. However, it is reasonable to see if the observed ocean is broadly consistent with this
expression. The diffusivity κ can be measured; it is an eddy diffusivity, maintained by
small-scale turbulence, and measurements produce values that range between 10−5 m 2 s−1

in the main thermocline and 10−4 m 2 s−1 in abyssal regions over rough topography and in
and near continental margins, with still higher values locally.

The vertical velocity is too small to be measured directly, but various estimates based
on deep water production suggest a value of about 10−7 m s−1 . Using this and the smaller
value of κ in (51) gives an e-folding vertical scale, κ/w, of just 100 m , beneath which the
stratification is predicted to be very small (i.e., nearly uniform potential density). Using
the larger value of κ increases the vertical scale to 1000 m , which is probably closer to the
observed value for the total thickness of the thermocline (look at Fig. 9), but using such a
large value of κ in the main thermocline is not supported by the observations. Similarly,
the deep stratification of the ocean is rather larger than that given by (50), except with
values of diffusivity on the large side of those observed.
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Figure 9: Sections of potential density (σθ) in the North Atlantic. Upper panel: meridional
section at 53◦W , from 5◦N to 45◦N , across the subtropical gyre. Lower panel: zonal
section at 36◦N , from about 75◦W to 10◦W .
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5 Scaling and Simple Dynamics of the Main Thermocline

The Rossby number of the large-scale circulation is small and the scale of the motion large,
and the flow obeys the planetary-geostrophic equations:

f × u = −∇φ, ∂φ

∂z
= b, (52a,b)

÷v = 0,
Db

Dt
= κ

∂2b

∂z2
. (53a,b)

5.1 An advective scale

If there is upwelling (w > 0) from the abyss, and Ekman downwelling (w < 0) at the
surface, there is some depth Da at which w = 0. By cross-differentiating (52a) we obtain
βv = −f ÷ [z]u , or

βv = f
∂w

∂z
→ βV = f

W

Da
= f

WE

Da
. (54)

Thermal wind

f × ∂u

∂z
= −∇b → U

Da
=

1

f

∆b

L
, (55)

where ∆b is the scaling value of variations of buoyancy in the horizontal. Assuming the
vertical scales are the same in (54) and (55) and that V ∼ U then

Da = W
1/2
E

(
f2L

β∆b

)1/2
. (56)

5.2 A diffusive scale

The estimate (56) cares nothing about the thermodynamic equation, so let’s now include
some and construct a scaling from from advective–diffusive balance in the thermodynamic
equation, the linear geostrophic vorticity equation, and thermal wind balance:

w
∂b

∂z
= κ

∂2b

∂z2
, βv = f

∂w

∂z
, f

∂u

∂z
= k×∇b, (57a,b,c)

with corresponding scales

W

δ
=

κ

δ2
, βU =

fW

δ
,

U

δ
=

∆b

fL
, (58a,b,c)

where δ is the vertical scale. Because there is now one more equation than in the advective
scaling theory we cannot take the vertical velocity as a given, otherwise the equations would
be overdetermined. We therefore take it to be the abyssal upwelling velocity, which then
becomes part of the solution, rather than being imposed. From (58) we obtain the diffusive
vertical scale,

δ =

(
κf2L

β∆b

)1/3
. (59)

With κ = 10−5 m 2 s −2 and with the other parameters taking the values given following
(56), (59) gives δ ≈ 150 m and, using (58a), W ≈ 10−7 m s−1 , which is an order of
magnitude smaller than the Ekman pumping velocity WE .
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6 The Internal thermocline

6.1 The M equation

The planetary-geostrophic equations can be written as a single partial differential equation
in a single variable, although the resulting equation is of quite high order and is nonlinear.
We write the equations of motion as

−fv = −∂φ
∂x

, fu = −∂φ
∂y
, b =

∂φ

∂z
, (60a,b,c)

÷v = 0,
∂b

∂t
+ v · ∇b = κ∇2b, (61a,b)

where we take f = βy. Cross-differentiating the horizontal momentum equations and using
(61a) gives the linear geostrophic vorticity relation βv = f∂w/∂z which, using (60a) again,
may be written as

∂φ

∂x
+

∂

∂z

(
−f

2

β
w

)
= 0. (62)

This equation is the divergence in (x, z) of (φ,−f2w/β) and is automatically satisfied if

φ = Mz and
f2w

β
= Mx. (63a,b)

where the subscripts on M denote derivatives. Then straightforwardly

u = −∂yφ
f

= −Mzy

f
, v =

∂xφ

f
=
Mzx

f
, b = ∂zφ = Mzz. (64a,b,c)

The thermodynamic equation, (61b) becomes

∂Mzz

∂t
+

(−Mzy

f
Mzzx +

Mzx

f
Mzzy

)
+

β

f2
MxMzzz = κMzzzz (65)

or
∂Mzz

∂t
+

1

f
J(Mz,Mzz) +

β

f2
MxMzzz = κMzzzz. (66)

where J is the usual horizontal Jacobian. This is the M equation,1 somewhat analogous to
the potential vorticity equation in quasi-geostrophic theory in that it expresses the entire
dynamics of the system in a single, nonlinear, advective–diffusive partial differential equa-
tion, although note that Mzz is materially conserved (in the absence of diabatic effects) by
the three-dimensional flow. Because of the high differential order and nonlinearity of the
system analytic solutions of (66) are very hard to find, and from a numerical perspective
it is easier to integrate the equations in the form (60) and (61) than in the form (66).
Nevertheless, it is possible to move forward by approximating the equation to one or two
dimensions, or by a priori assuming a boundary-layer structure.

1Welander (1971).
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A one-dimensional model

Let us consider an illustrative one-dimensional model (in z ) of the thermocline. Merely
setting all horizontal derivatives in (66) to zero is not very useful, for then all the advective
terms on the left-hand side vanish. Rather, we look for steady solutions of the form M =
M(x, z), and the M equation then becomes

β

f2
MxMzzz = κMzzzz, (67)

which represents the advective–diffusive balance

w
∂b

∂z
= κ

∂2b

∂z2
. (68)

(We must also suppose that the value of κ varies meridionally in the same manner as does
β/f2; without this technicality M would be a function of y , violating our premise.) If the
ocean surface is warm and the abyss is cold, then (67) represents a balance between the
upward advection of cold water and the downward diffusion of warm water. The horizontal
advection terms vanish because the zonal velocity, u, and the meridional buoyancy gradient,
by, are each zero. Let us further consider the special case

M = (x− xe)W (z), (69)

where the domain extends from 0 ≤ x ≤ xe, so satisfying M = 0 on the eastern boundary.
Equation (67) becomes the ordinary differential equation

β

f2
WWzzz = κWzzzz, (70)

where W has the dimensions of velocity squared. We non-dimensionalize this by setting

z = Hẑ, κ = κ̂(HWS), W =

(
f2WS

β

)
Ŵ , (71a,b,c)

where the hatted variables are non-dimensional and WS is a scaling value of the dimensional
vertical velocity, w (e.g., the magnitude of the Ekman pumping velocity WE). Equation
(70) becomes

ŴŴ ẑẑẑ = κ̂Ŵ ẑẑẑẑ, (72)

The parameter κ̂ is a non-dimensional measure of the strength of diffusion in the interior,
and the interesting case occurs when κ̂ � 1; in the ocean, typical values are H = 1 km ,
κ = 10−5 m s −2 and WS = WE = 10−6 m s −1 so that κ̂ ≈ 10−2, which is indeed small.
(It might appear that we could completely scale away the value of κ in (70) by scaling W
appropriately, and if so there would be no meaningful way that one could say that κ was
small. However, this is a chimera, because the value of κ would still appear in the boundary
conditions.)

The time-dependent form of (72), namely

Ŵ ẑẑt + ŴŴ ẑẑẑ = κ̂Ŵ ẑẑẑẑ (73)
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is similar to Burger’s equation
Vt + V Vz = νVzz (74)

which is known to develop fronts. (In the inviscid Burger’s equation, DV/Dt = 0, where the
advective derivative is one-dimensional, and therefore the velocity of a given fluid parcel is
preserved on the line. Suppose that the velocity of the fluid is positive but diminishes in
the positive z-direction, so that a fluid parcel will catch-up with the fluid parcel in front
of it. But since the velocity of a fluid parcel is fixed, there are two values of velocity at
the same point, so a singularity must form. In the presence of viscosity, the singularity is
tamed to a front.) Thus, we might similarly expect (72) to produce a front, but because
of the extra derivatives the argument is not as straightforward and it is simplest to obtain
solutions numerically.

Equation (72) is fourth order, so four boundary conditions are needed, two at each
boundary. Appropriate ones are a prescribed buoyancy and a prescribed vertical velocity
at each boundary, for example

Ŵ = ŴE , −Ŵ ẑẑ = B0, at top

Ŵ = 0, −Ŵ ẑẑ = 0, at bottom,
(75)

where ŴE is the (non-dimensional) vertical velocity at the base of the top Ekman layer,
which is negative for Ekman pumping in the subtropical gyre, and B0 is a constant, pro-
portional to the buoyancy difference across the domain. We obtain solutions numerically
by Newton’s method. The solutions here are obtained using about 1000 uniformly spaced
grid points to span the domain, taking just a few seconds of computer time. Because of
the boundary layer structure of the solutions employing a non-uniform grid would be even
more efficient for this problem, but there is little point in designing a streamlined hat to
reduce the effort of walking. These are shown in Figs. 10 and 11. The solutions do indeed
display fronts, or boundary layers, for small diffusivity. If the wind forcing is zero (Fig. 11),
the boundary layer is at the top of the fluid. If the wind forcing is non-zero, an internal
boundary layer — a front — forms in the fluid interior with an adiabatic layer above and
below. In the real ocean, where wind forcing is of course non-zero, the frontal region is
known as the internal thermocline.

6.2 Boundary-layer analysis

The reasoning and the numerical solutions of the above sections suggest that the internal
thermocline has a boundary-layer structure whose thickness decreases with κ. If the Ekman
pumping at the top of the ocean is non-zero, the boundary layer is internal to the fluid. To
learn more, let us perform a boundary layer analysis.

One-dimensional model

Let us now assume a steady two-layer structure of the form illustrated in Fig. 12, and
that the dynamics are governed by (72) in a domain that extends from 0 to −1. The
buoyancy thus varies rapidly only in an internal boundary layer of non-dimensional thickness
δ̂ located at ẑ = −h; above and below this the buoyancy is assumed to be only very slowly
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Figure 10: Solution of the one-dimensional thermocline equation, (72), with boundary
conditions (75), for two different values of the diffusivity: κ̂ = 3.2 × 10−3 (solid line) and
κ̂ = 0.4× 10−3 (dashed line), in the domain 0 ≤ ẑ ≤ −1.
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Figure 11: As for Fig. 10, but with no imposed Ekman pumping velocity at the upper
boundary (ŴE = 0), again for two different values of the diffusivity.

varying. Following standard boundary layer procedure we introduce a stretched boundary
layer coordinate ζ where

δ̂ζ = ẑ + h. (76)

That is, ζ is the distance from ẑ = −h, scaled by the boundary layer thickness δ̂, and within
the boundary layer ζ is an order-one quantity. We also let

Ŵ (ẑ) = Ŵ I(ẑ) + W̃ (ζ), (77)

where Ŵ I is the solution away from the boundary layer and W̃ is the boundary layer correc-
tion. Because the boundary layer is presumptively thin, Ŵ I is effectively constant through
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Figure 12: The simplified boundary-layer structure of the internal thermocline. In the limit
of small diffusivity the internal thermocline forms a boundary layer, of thickness δ in the
figure, in which the temperature and buoyancy change rapidly.

it and, furthermore, for ẑ < −h, Ŵ vanishes in the limit as κ = 0. We thus take Ŵ I = 0
throughout the boundary layer. (The small diffusively-driven upwelling below the boundary
layer is part of the boundary layer solution, not the interior solution.) Now, buoyancy varies
rapidly in the boundary layer but it remains an order-one quantity throughout. To satisfy
this we explicitly scale W̃ in the boundary layer by writing

W̃ (ζ) = δ̂2B0A(ζ), (78)

where B0 is defined by (75) and A is an order-one field. The derivatives of W are

∂Ŵ

∂ẑ
=

1

δ̂

∂W̃

∂ζ
= δ̂B0

∂A

∂ζ
,

∂2Ŵ

∂ẑ2
= B0

∂2A

∂ζ2
, (79)

so that Ŵ ẑẑ is an order-one quantity. Far from the boundary layer the solution must be able
to match the external conditions on temperature and velocity, (75); the buoyancy condition
on Wẑẑ is satisfied if

Aζζ →
{

1 as ζ → +∞
0 as ζ → −∞.

(80)

On vertical velocity we require that W → (ẑ/h+ 1)WE as ζ → +∞, and W → constant as
ζ → −∞. The first matches the Ekman pumping velocity above the boundary layer, and
the second condition produces the abyssal upwelling velocity, which as noted vanishes for
κ→ 0.

Substituting (77) and (78) into (72) we obtain

B0AAζζζ =
κ̂

δ̂3
Aζζζζ . (81)
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Because all quantities are presumptively O(1), (81) implies that δ̂ ∼ (κ̂/B0)
1/3. We restore

the dimensions of δ by using κ = κ̂(HWS) and ∆b = B0Lf
2WS/(βH

2), where ∆b is the
dimensional buoyancy difference across the boundary layer [note that b = Mzz = (x −
1)Wzz ∼ LWzz ∼ LB0f

2WS/(βH
2) using (71)]. The dimensional boundary layer thickness,

δ, is then given by

δ ∼
(
κf2L

∆b β

)1/3
, (82)

which is the same as the heuristic estimate (59). The dimensional vertical velocity scales as

W ∼ κ

δ
∼ κ2/3

(
∆b β

f2L

)1/3
, (83)

this being an estimate of strength of the upwelling velocity at the base of the thermo-
cline and, more generally, the strength of the diffusively-driven component of meridional
overturning circulation of the ocean.

The qualitative features of these models transcend their detailed construction, and in
particular:

• the thickness of the internal thermocline increases with increasing diffusivity, and
decreases with increasing buoyancy difference across it, and as the diffusivity tends to
zero the thickness of the internal thermocline tends to zero.

• the strength of the upwelling velocity, and hence the strength of the meridional over-
turning circulation, increases with increasing diffusivity and increasing buoyancy dif-
ference.

The three-dimensional equations

We now apply boundary layer techniques to the three-dimensional M equation.2 The main
difference is that the depth of the boundary layer is now a function of x and y , so that the
stretched coordinate ζ is given by

δ̂ζ = z + h(x, y). (84)

[The coordinates (x, y, z) in this subsection are non-dimensional, but we omit their hats to
avoid too cluttered a notation.] Just as in the one-dimensional case we rescale M in the
boundary layer and write

M = B0δ̂
2Â(x, y, ζ), (85)

where the scaling factor δ̂2 again ensures that the temperature remains an order-one quan-
tity. In the boundary layer the derivatives of M become

∂M

∂z
=

1

δ̂

∂A

∂ζ
, (86)

and
∂M

∂x
= δ̂2B0

(
∂A

∂ζ

∂ζ

∂x
+
∂A

∂x

)
= δ̂2B0

(
∂A

∂ζ

1

δ̂

∂h

∂x
+
∂A

∂x

)
. (87)

2Following Samelson (1999).
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Substituting these into (65) we obtain, omitting the time-derivative,

δ̂

[
1

f
(AζxAζζy −AζyAζζx) +

β

f2
AxAζζζ

]
+

β

f2
hxAζAζζζ

+
1

f
[hx (AζζAζζy −AζyAζζζ) + hy (AζxAζζζ −AζζAζζx)]

=
κ

B0δ̂2
Aζζζζ ,

(88)

where the subscripts on A and h denote derivatives. If hx = hy = 0, that is if the base of
the thermocline is flat, then (88) becomes

1

f
[AζxAζζy −AζyAζζx] +

β

f2
AxAζζζ =

κ

B0δ̂3
Aζζζζ . (89)

Since all the terms in this equation are, by construction, order one, we immediately see that
the non-dimensional boundary layer thickness δ̂ scales as

δ̂ ∼
(
κ

B0

)1/3
, (90)

just as in the one-dimensional model. On the other hand, if hx and hy are order-one
quantities then the dominant balance in (88) is

1

f
[hx(AζζAζζy −AζyAζζζ) + hy(AζxAζζζ −AζζAζζx)] =

κ

B0δ̂2
Aζζζζ (91)

and

δ̂ ∼
(
κ

B0

)1/2
, (92)

confirming the heuristic scaling arguments. Thus, if the isotherm slopes are fixed indepen-
dently of κ (for example, by the wind stress), then as κ→ 0 an internal boundary layer will
form whose thickness is proportional to κ1/2. We expect this to occur at the base of the
main thermocline, with purely advective dynamics being dominant in the upper part of the
thermocline, and determining the slope of the isotherms (i.e., the form of hx and hy). Inter-
estingly, the balance in the three-dimensional boundary layer equation does not in general
correspond locally to wTz ≈ κTzz. Both at O(1) and O(δ) the horizontal advective terms
in (88) are of the same asymptotic size as the vertical advection terms. In the boundary
layer the thermodynamic balance is thus u · ∇zT +wTz ≈ κTzz, whether the isotherms are
sloping or flat. We might have anticipated this, because the vertical velocity passes through
zero within the boundary layer.
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Lecture 10a: The Hadley Cell

Geoff Vallis; notes by Jim Thomas and Geoff J. Stanley

June 27

In this short lecture we take a look at the general circulation of the atmosphere, and in
particular the Hadley cell. Look again at the zonally averaged circulation in the top panel of
(lec.2:fig.2). The centre two circulations are the Hadley cells. Deep tropical convection lifts
air near at the Intertropical Convergence Zone (ITCZ) near the equator. At the tropopause
its vertical motion is inhibited by strong static stability, so it begins a poleward migration
which extends as far as some critical latitude ϑH . In this lecture we will attempt to explain
why the Hadley cell terminates at ϑH , and not some other latitude. We will outline three
possibilities.

1. The Hadley cell is terminated in order to satisfy certain thermodynamic constraints,
described in section 1.

2. The Hadley cell is terminated by the onset of baroclinic instability, described in section
2.

3. The Hadley cell is terminated by the effects of the breaking of Rossby waves, described
in section 3.

Almost certainly none of these models describes the real Hadley cell in anything other than
an approximate way, but this does not mean they are not useful.

1 A Zonally Symmetric Steady Model of the Hadley cell

We begin with a a model of the zonally symmetric circulation – that is, the circulation has
no eddies, in fact no variation at all in the zonal direction. A parcel of air moving polewards
away from the boundary layer will then conserve its axial angular momentum, as shown in
Figure 1. To construct a mathematical model, following Schneider & Lindzen (1977) and
Held & Hou (1980), we suppose the following.

1. The circulation is steady.

2. The polewards moving air conserves its axial angular momentum, whereas the zonal
flow associated with the near-surface, equatorwards moving flow is frictionally re-
tarded and weak.

3. The circulation is in thermal wind balance.

4. The flow is symmetric about the equator. Seasons can in fact be added to such a
model.
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Figure 1: A simple model of the Hadley cell. Rising air near the equator moves polewards
near the tropopause, descending in the subtropics and returning near the surface. The
polewards moving air conserves its axial angular momentum, leading to a zonal flow that
increases away from the equator. By the thermal wind relation the temperature of the
air falls as it moves polewards, and to satisfy the thermodynamic budget it sinks in the
subtropics. The return flow at the surface is frictionally retarded and small.

1.1 Angular momentum conservation

Momentum equation:

∂u

∂t
− (f + ζ)v + w

∂u

∂z
= − 1

a cos2 ϑ

∂

∂ϑ
(cos2ϑu′v′) − ∂u′w′

∂z
, (1)

where ζ = −(a cosϑ)−1∂ϑ(u cosϑ) and the overbars represent zonal averages. We simplify
this to

(f + ζ)v = 0. (2)

It is easy to show that this is equivalent to

2Ω sinϑ =
1

a

∂u

∂ϑ
− u tanϑ

a
. (3)

and the solution is (c.f. Fig. 2)

u = Ωa
sin2ϑ

cosϑ
≡ UM . (4)
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Axis of rotation

Figure 2: If a ring of air at the equator moves polewards it moves closer to the axis of
rotation. If the parcels in the ring conserve their angular momentum their zonal velocity
must increase; thus, if m = (u+ Ωa cosϑ)a cosϑ is preserved and u = 0 at ϑ = 0 we recover
(4).

Temperature field

Thermal wind balance:

2Ω sinϑ
∂u

∂z
= −1

a

∂b

∂ϑ
, (5)

where b = g δθ/θ0 is the buoyancy and δθ is the deviation of potential temperature from
a constant reference value θ0. (Be reminded that θ is potential temperature, whereas ϑ is
latitude.) Vertically integrating from the ground to the height H where the outflow occurs
and substituting (4) for u yields

1

aθ0

∂θ

∂ϑ
= −2Ω2a

gH

sin3ϑ

cosϑ
, (6)

where θ = H−1
∫ H
0 δθ dz is the vertically averaged potential temperature. If the latitudinal

extent of the Hadley cell is not too great we can make the small-angle approximation, and
replace sinϑ by ϑ and cosϑ by one, then integrating (6) gives

θ = θ(0) − θ0Ω
2y4

2gHa2
, (7)

where y = aϑ and θ(0) is the potential temperature at the equator, as yet unknown.
Away from the equator, the zonal velocity given by (4) increases rapidly polewards and the
temperature correspondingly drops. How far polewards is this solution valid? And what
determines the value of the integration constant θ(0)? To answer these questions we turn
to thermodynamics.
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1.2 Thermodynamics

In the above discussion, the temperature field is slaved to the momentum field in that it
seems to follow passively from the dynamics of the momentum equation. Nevertheless, the
thermodynamic equation must still be satisfied. Let us assume that the thermodynamic
forcing can be represented by a Newtonian cooling to some specified radiative equilibrium
temperature, θE ; this is a severe simplification, especially in equatorial regions where the
release of heat by condensation is important. The thermodynamic equation is then

Dθ

Dt
=
θE − θ

τ
, (8)

where τ is a relaxation time scale, perhaps a few weeks. Let us suppose that θE falls
monotonically from the equator to the pole, and that it increases linearly with height, and
a simple representation of this is

θE(ϑ, z)

θ0
= 1 − 2

3
∆HP2(sinϑ) + ∆V

(
z

H
− 1

2

)
, (9)

where ∆H and ∆V are non-dimensional constants that determine the fractional temperature
difference between the equator and the pole, and the ground and the top of the fluid,
respectively. P2 is the second Legendre polynomial. At z = H/2, or for the vertically
averaged field, this approximates to

θE = θE0 − ∆θ
(y
a

)2
, (10)

where θE0 is the equilibrium temperature at the equator, ∆θ determines the equator–pole
radiative-equilibrium temperature difference, and

θE0 = θ0(1 + ∆H/3), ∆θ = θ0∆H . (11)

Now, let us suppose that the solution (7) is valid between the equator and a latitude
ϑH where v = 0, so that within this region the system is essentially closed. Conservation
of potential temperature then requires that the solution (7) must satisfy

∫ YH

0
θ dy =

∫ YH

0
θE dy, (12)

where YH = aϑH is as yet undetermined. Polewards of this, the solution is just θ = θE .
Now, we may demand that the solution be continuous at y = YH (without temperature
continuity the thermal wind would be infinite) and so

θ(YH) = θE(YH). (13)

The constraints (12) and (13) determine the values of the unknowns θ(0) and YH . A little
algebra gives

YH =

(
5∆θgH

3Ω2θ0

)1/2
, (14)
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Figure 3: The radiative equilibrium temperature (θE , dashed line) and the angular-
momentum-conserving solution (θM , solid line) as a function of latitude. The two dotted
regions have equal areas. The parameters are: θEO = 303 K , ∆θ = 50 K , θ0 = 300 K , Ω =
7.272 × 10−5 s −1, g = 9.81 m s −2, H = 10 km . These give R = 0.076 and YH/a = 0.356,
corresponding to ϑH = 20.4◦ .

and

θ(0) = θE0 −
(

5∆θ2gH

18a2Ω2θ0

)
. (15)

A useful non-dimensional number that parameterizes these solutions is

R ≡ gH∆θ

θ0Ω2a2
=
gH∆H

Ω2a2
, (16)

which is the square of the ratio of the speed of shallow water waves to the rotational
velocity of the Earth, multiplied by the fractional temperature difference from equator to
pole. Typical values for the Earth’s atmosphere are a little less than 0.1. In terms of R we
have

YH = a

(
5

3
R

)1/2
, (17)

and

θ(0) = θE0 −
(

5

18
R

)
∆θ . (18)

The solution, (7) with θ(0) given by (18) is plotted in Fig. 3. Perhaps the single most
important aspect of the model is that it predicts that the Hadley cell has a finite merid-
ional extent, even for an atmosphere that is completely zonally symmetric. The baroclinic
instability that does occur in mid-latitudes is not necessary for the Hadley cell to terminate
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Figure 4: The zonal wind corresponding to the radiative equilibrium temperature (UE ,)
and the angular-momentum-conserving solution (UM ) as a function of latitude, given (19)
and (20) respectively. The zonal wind (in the model) follows the thick solid line: u = Um

for ϑ < ϑH (y < YH), and u = UE for ϑ > ϑH (y > YH), and so has a discontinuity at ϑH .

in the subtropics, although it may be an important factor, or even the determining factor,
in the real world.

1.3 Zonal wind

The angular-momentum-conserving zonal wind is given by (4), which in the small-angle
approximation becomes

UM = Ω
y2

a
. (19)

This relation holds for y < YH . The zonal wind corresponding to the radiative-equilibrium
solution is given using thermal wind balance and (10), which leads to

UE = ΩaR, (20)

and this holds polewards of YH , or ϑH , as sketched in Fig. 4.

2 Baroclinic Instability and Termination of the Hadley Cell

One mechanism that could halt the Hadley cell is baroclinic instability. Having assumed
that the surface winds are weak, and knowing the upper level zonal velocity from (4), the
shear ∂UM/∂z is determined by the height of the tropopause H, which we suppose to be a
constant. At some latitude ϑC the shear will become baroclinically unstable at which point
any assumption of zonal symmetry will break down and the Hadley cell will terminate.
What model of baroclinic instability should we use to calculate this? The Eady model has
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no critical shear — all shears are unstable — but it has no beta-effect and beta is almost
certainly important. The Charney model has beta, but it too has no critical shear. However,
small shears give rise to shallow, weak instabilities that may not be important. Thus, we
are led to the two-level Phillips model of baroclinic instability, because it accounts for the
β effect.

In the Phillips model, a flow becomes unstable when it reaches a critical velocity differ-
ence between upper and lower levels given by

U = U1 − U2 =
1

4
βL2

d (21)

where Ld = NH/f is the baroclinic deformation radius, and on the sphere β = 2Ω cosφ/a.
Both β and the f hiding in Ld make this U grow towards the equator and decay towards
the pole.

Now, from the Hadley cell solution

U = Ωa
sin2 φ

cosφ
(22)

so that, modulo constant factors, the Hadley cell terminates when

sin4 φc
cos2 φc

=
N2H2

Ω2a2
, (23)

or, with a small angle approximation,

ϑH ≈
(
N2H2

Ω2a2

)1/4
∼ (NH)1/2. (24)

As we discussed previously, both theory and modelling suggest that the tropopause will
move higher as Global Warming progresses. This model shows that such an increase in
H should be accompanied by a poleward expansion of the Hadley cell, perhaps by 1◦ –
2◦ over the 21st century. But perhaps even more significant will be the changes in N2,
which is essentially set by the moist adiabatic lapse rate. A warmer atmosphere will hold
more moisture by Clausius-Clapeyron (assuming no major changes in the relative humidity)
which reduces the moist adiabatic lapse rate and reduces N2. Thus the Hadley cell might
in fact shrink equatorward based on this reasoning. However, the value of N in (24) should
be evaluated at ϑH where the baroclinic instability occurs. This is not determined by the
moist adiabatic lapse rate, and indeed model results suggest that subtropic static stability
may increase with global warming, which would lead to an expansion of the Hadley cell.

3 Effect of Rossby-wave breaking

We will conclude this lecture with an outline of a third model for the extent of the Hadley
cell. Recall we had reduced the zonal momentum equation (1) to a balance of two terms;
let us now include a third for the momentum balance within the Hadley cell:

(f + ζ)v = − ∂

∂y

(
u′v′

)
. (25)
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Figure 5: A schematic for the mechanism described in section 3. Rossby waves are gen-
erated through baroclinic instability at mid-latitudes, accelerating the flow eastwards:
∂(u′v′)/∂y > 0. Some propagate equatorwards, and deposit westward momentum,
∂(u′v′)/∂y < 0, near the critical latitude inside the Hadley cell. At some latitude the
Rossby wave momentum flux is neither convergent nor divergent, ∂(u′v′)/∂y = 0, corre-
sponding to the edge of the Hadley cell.

However, at the edge of the Hadley cell we have v = 0, and thus ∂y
(
u′v′

)
= 0. This is not

necessarily the latitude where the flow is baroclinically unstable (Section 2). Rather, baro-
clinic instability, occurring at some latitude possibly poleward of here, generates Rossby
waves; some of these propagate equatorwards and attenuate as they approach a critical lat-
itude where the mean zonal wind matches the Rossby wave’s phase speed (see the discussion
of lecture 10b). Recalling our previous discussion, angular momentum conservation initiates
a situation with weak winds in low-latitudes and strongly eastward winds in mid-latitudes.
Thus a Rossby wave generated at mid-latitude has a phase speed somewhat less than the
peak eastward wind speed, but certainly still positive for realistic parameters. This Rossby
wave, then, will encounter a critical latitude equatorward of which it cannot flow. The wave
breaks near this critical latitude and accelerates the zonal wind westward. This acceleration
means that the next Rossby wave will encounter its critical latitude slightly more polewards.
We thus have a situation in which the Rossby wave momentum flux convergence ∂(u′v′)/∂y
is positive in the mid-latitudes and negative in the low-latitudes, requiring a zero crossing
∂(u′v′)/∂y = 0 at some latitude in between, shown schematically in Figure 5. This, as was
argued through (25), is the edge of the Hadley cell. Note that this edge is equatorward of
where the baroclinic instability occurs (which was taken to be the edge in Section 2). The
precise latitude will be established through a feedback between the eastward acceleration
by angular momentum conservation and westward acceleration by Rossby wave breaking.
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Lecture 10b: Rossby Waves and Surface Winds

Geoff Vallis; notes by Jim Thomas and Geoff Stanley

June 27

In this our third lecture we stay with the atmosphere and introduce some dynamics.
Our first goal is to understand why there are surface winds, and in particular why there
are surface westerlies (Fig. 1). A full explanation of this would require a discussion of
baroclinic instability and take up a couple of lectures in itself. We’ll skip all that and carry
out explicit derivations only for the barotropic vorticity equation, with the reader filling
in the gaps phenomenologically. We do note that there are westerly winds aloft in the
atmosphere because of the thermal wind relation, f∂u/∂z = ∂b/∂z , where b is buoyancy
which is like temperature. Thus, a temperature gradient between the equator and the pole
implies that the zonal wind increases with height. But this doesn’t of itself mean that the
surface winds are non-zero – we will need momentum fluxes for that. By the same token,
momentum fluxes are not needed to have westerly winds aloft.

We begin with a few basic equations.

1 Momentum Equation

The zonally-averaged momentum, in Cartesian geometry has the form

∂u

∂t
− (f + ζ)v =

∂

∂y
u′v′ +

∂τ

∂z
(1)

where f = f0 +βy In mid-latitudes we usually neglect the mean advection terms (ζv here)
which in midlatitudes are small. If we multiply by density and integrate vertically then, in
a steady state the terms on the left-hand side both vanish, whence

τs =

∫

z
ρu′v′ dz (2)

where τs is the surface stress, which is roughly proportional to the surface wind: τs ≈ rus
where r is a constant. Thus

us ≈
1

r

∫

z
ρu′v′ dz. (3)

In other words, the surface winds arise because of the eddy convergence of momentum in
the atmosphere. Where does this come from? It turns out that it arises from the sphericity
of the Earth which gives rise to differential rotation and Rossby waves, as we shall see.
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Figure 1: (a) Annual mean, zonally averaged zonal wind (heavy contours and shading) and
the zonally averaged temperature (lighter contours). (b) Annual mean, zonally averaged
zonal winds at the surface. The wind contours are at intervals of 5 m s−1 with shading for
eastward winds above 20 m s−1 and for all westward winds, and the temperature contours
are labelled. The ordinate of (a) and (c) is Z = −H log(p/pR), where pR is a constant, with
scale height H = 7.5 km .

2 Rossby Waves: A Brief Tutorial

The inviscid, adiabatic potential vorticity equation is

∂q

∂t
+ u · ∇q = 0, (4)

where q(x, y, z, t) is the potential vorticity and u (x, y, z, t) is the horizontal velocity. The
velocity is related to a streamfunction by u = −∂ψ/∂y, v = ∂ψ/∂x and the potential
vorticity is some function of the streamfunction, which might differ from system to system.
Two examples, one applying to a continuously stratified system and the second to a single
layer system, are

q = f + ζ +
∂

∂z

(
S(z)

∂ψ

∂z

)
, q = ζ + f − kd 2ψ. (5a,b)
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We deal mainly with the second. If the basic state is a zonal flow and purely a function of
y then

q = q(y, z) + q′(x, y, t), ψ = ψ(y, z) + ψ′(x, y, z, t) (6)

whence
∂q′

∂t
+ u · ∇q + u · ∇q′ + u ′ · ∇q + u ′ · ∇q′ = 0. (7)

Linearizing gives
∂q′

∂t
+ u

∂q′

∂x
+ v′

∂q

∂y
= 0. (8)

2.1 Rossby waves in a single layer

In the single-layer case we have q = βy +∇2ψ − kd 2ψ. If we linearize this around a zonal
flow then ψ = ψ + ψ′ and

ψ = −uy q = βy + uk2dy (9)

and
q′ = ∇2ψ′ − kd 2ψ′ (10)

and (8) becomes

(
∂

∂t
+ u

∂

∂x

)
(∇2ψ′ − ψ′kd 2) +

∂ψ′

∂x
(β + Uk2d) = 0 (11)

Substituting ψ′ = Re ψ̃ei(kx+ly−ωt) we obtain the dispersion relation,

ω =
k(UK2 − β)

K2 + kd 2
= Uk − kβ + Ukd

2

K2 + kd 2
. (12)

We will simplify by taking U = 0 whence

ω = − β

K2 + kd 2
. (13)

The corresponding components of phase speed and group velocity are

cxp ≡
ω

k
= − β

K2 + kd 2
, cyp ≡

ω

l
=
k

l

(
β

K2 + kd 2

)
(14a,b)

and

cxg ≡
∂ω

∂k
=
β(k2 − l2 − kd 2)
(
K2 + kd 2

)2 , cyg ≡
∂ω

∂l
=

2βkl
(
K2 + kd 2

)2 , (15a,b)

which K2 = k2 + l2.
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3 Momentum Transport in Rossby Waves

It turns out that Rossby waves will transport momentum from place to place, and this is
why we have surface winds! (Well, at least it is an explication of why we have surface winds.
Other explications that don’t involve Rossby waves can be given (Vallis, 2006), but they
are all really the same explanation.)

Let us suppose that some mechanism is present that excites Rossby waves in mid-
latitudes. This mechanism is in fact baroclinic instability, but we don’t really need to know
that. We expect that Rossby waves will be generated there, propagate away and break and
dissipate. To the extent that the waves are quasi-linear and do not interact, then just away
from the source region each wave has the form

ψ = ReCei(kx+ly−ωt) = ReCei(kx+ly−kct), (16)

where C is a constant, with dispersion relation

ω = ck = uk − βk

k2 + l2
≡ ωR, (17)

taking kd = 0 and provided that there is no meridional shear in the zonal flow. The
meridional component of the group velocity is given by

cyg =
∂ω

∂l
=

2βkl

(k2 + l2)2
. (18)

Now, the direction of the group velocity must be away from the source region; this is
a radiation condition, demanded by the requirement that Rossby waves transport energy
away from the disturbance. Thus, northwards of the source kl is positive and southwards
of the source kl is negative. That the product kl can be positive or negative arises because
for each k there are two possible values of l that satisfy the dispersion relation (17), namely

l = ±
(

β

u− c − k
2

)1/2
, (19)

assuming that the quantity in parentheses is positive.
The velocity variations associated with the Rossby waves are

u′ = −ReC ilei(kx+ly−ωt), v′ = ReC ikei(kx+ly−ωt), (20a,b)

and the associated momentum flux is

u′v′ = −1

2
C2kl. (21)

Thus, given that the sign of kl is determined by the group velocity, northwards of the
source the momentum flux associated with the Rossby waves is southward (i.e., u′v′ is
negative), and southwards of the source the momentum flux is northward (i.e., u′v′ is
positive). That is, the momentum flux associated with the Rossby waves is toward the
source region. Momentum converges in the region of the stirring, producing net eastward
flow there and westward flow to either side (Fig. 2).
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Figure 2: Generation of zonal flow on a β -plane or on a rotating sphere. Stirring in
mid-latitudes (by baroclinic eddies) generates Rossby waves that propagate away from the
disturbance. Momentum converges in the region of stirring, producing eastward flow there
and weaker westward flow on its flanks.

Another way of describing the same effect is to note that if kl is positive then lines of
constant phase (kx + ly = constant) are tilted north-west/south-east, as in Fig. 3 and the
momentum flux associated with such a disturbance is negative (u′v′ < 0). Similarly, if kl is
negative then the constant-phase lines are tilted north-east/south-west and the associated
momentum flux is positive (u′v′ > 0). The net result is a convergence of momentum flux
into the source region. In physical space this is reflected by having eddies that are shaped
like a boomerang, as in Fig. 3.

Pseudomomentum and wave–mean-flow interaction

The kinematic relation between vorticity flux and momentum flux for non-divergent two-
dimensional flow is

vζ =
1

2

∂

∂x

(
v2 − u2

)
− ∂

∂y
(uv). (22)

After zonal averaging this gives

v′ζ ′ = −∂u
′v′

∂y
, (23)

noting that v = 0 for two-dimensional incompressible (or geostrophic) flow.
Now, the barotropic zonal momentum equation is (for horizontally non-divergent flow)

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
− fv = −∂φ

∂x
+ Fu −Du, (24)

where Fu and Du represent the effects of any forcing and dissipation. Zonal averaging, with
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Figure 3: The momentum transport in physical space, caused by the propagation of Rossby
waves away from a source in mid-latitudes. The ensuing boomerang-shaped eddies are
responsible for a convergence of momentum, as indicated in the idealization pictured.

v = 0, gives
∂u

∂t
= −∂u

′v′

∂y
+ F u −Du, (25)

or, using (23),
∂u

∂t
= v′ζ ′ + F u −Du. (26)

Thus, the zonally averaged wind is maintained by the zonally averaged vorticity flux. On
average there is little if any direct forcing of horizontal momentum and we may set F u = 0,
and if the dissipation is parameterized by a linear drag (26) becomes

∂u

∂t
= v′ζ ′ − ru, (27)

where the constant r is an inverse frictional time scale.
Now consider the maintenance of this vorticity flux. The barotropic vorticity equation

is
∂ζ

∂t
+ u · ∇ζ + vβ = Fζ −Dζ , (28)

where Fζ and Dζ are forcing and dissipation of vorticity. Linearize about a mean zonal flow
to give

∂ζ ′

∂t
+ u

∂ζ ′

∂x
+ γv′ = F ′ζ −D′ζ , (29)
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where

γ = β − ∂2u

∂y2
(30)

is the meridional gradient of absolute vorticity. Multiply (29) by ζ ′/γ and zonally average,
assuming that uyy is small compared to β or varies only slowly, to form the pseudomomen-
tum equation,

∂A
∂t

+ v′ζ ′ =
1

γ
(ζ ′F ′ζ − ζ ′D′ζ ), (31a)

A =
1

2γ
ζ ′2 (31b)

is a wave activity density, equal to the (negative of) the pseudomomentum for this prob-
lem. The parameter γ is positive if the average absolute vorticity increases monotonically
northwards, and this is usually the case in both Northern and Southern Hemispheres.

3.1 An aside on wave activity and stability

Suppose the flow is unforced and inviscid (common conditions that we impose in stability
problems). Then the wave activity equation above becomes

∂A
∂t

+ v′ζ ′ = 0. (32)

This condition holds even in the presence of shear. Integrating between quiescent latitudes
gives

d

dt

∫
Ady = 0. (33)

The quantity Â ≡
∫
Ady is wave activity, something that is quadratic in wave amplitude

and is conserved. A itself is a wave activity density. Energy is not normally a wave activity,
because it grows if the flow is unstable, whereas a wave activity does not.

Now suppose that γ is positive everywhere. In this case the conservation of Â prevents
ζ ′2 from growing! Thus, for a wave to grow, β − uyy must change sign somewhere in the
domain. We have derived the Rayleigh-Kuo criterion for barotropic instability. Note that
there is no mention of normal modes, although we have still (in this derivation) assumed
linearity.

4 Wave–mean-flow interaction, acceleration and non-acceleration

In the absence of forcing and dissipation, (27) and (31a) imply an important relationship
between the change of the mean flow and the pseudomomentum, namely

∂u

∂t
+
∂A
∂t

= 0. (34)

We have now essentially derived a special case of the non-acceleration result. If the waves
are steady and inviscid, then from (31a) v′ζ ′ = 0. Then from (34) the mean flow does not
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poleequator

Figure 4: Mean flow generation by a meridionally confined stirring. Because of Rossby wave
propagation away from the source region, the distribution of pseudomomentum dissipation
is broader than that of pseudomomentum forcing, and the sum of the two leads to the zonal
wind distribution shown, with positive (eastward) values in the region of the stirring. See
also Fig. 6.

accelerate. We need to do a bit more work in the stratified case, but the essence of the
result is the same.

Now if for some reason A increases, perhaps because a wave enters an initially quiescent
region because of stirring elsewhere, then mean flow must decrease. However, because the
vorticity flux integrates to zero, the zonal flow cannot decrease everywhere. Thus, if the
zonal flow decreases in regions away from the stirring, it must increase in the region of
the stirring. In the presence of forcing and dissipation this mechanism can lead to the
production of a statistically steady jet in the region of the forcing, since (27) and (31a)
combine to give

∂u

∂t
+
∂A
∂t

= −ru+
1

γ
(ζ ′F ′ζ − ζ ′D′ζ ), (35)

and in a statistically steady state

ru =
1

γ
(ζ ′F ′ζ − ζ ′D′ζ ). (36)

The terms on the right-hand side represent the stirring and dissipation of vorticity, and
integrated over latitude their sum will vanish, or otherwise the pseudomomentum budget
cannot be in a steady state. However, let us suppose that forcing is confined to mid-latitudes.
In the forcing region, the first term on the right-hand side of (36) will be larger than the
second, and an eastward mean flow will be generated. Away from the direct influence of the
forcing, the dissipation term will dominate and westward mean flows will be generated, as
sketched in Fig. 4. Thus, on a β -plane or on the surface of a rotating sphere an eastward
mean zonal flow can be maintained by a vorticity stirring that imparts no net momentum to
the fluid. In general, stirring in the presence of a vorticity gradient will give rise to a mean
flow, and on a spherical planet the vorticity gradient is provided by differential rotation.
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Figure 5: The time and zonally averaged wind (solid line) obtained by an integration of
the barotropic vorticity equation on the sphere. The fluid is stirred in mid-latitudes by a
random wavemaker that is statistically zonally uniform, acting around zonal wavenumber
8, and that supplies no net momentum. Momentum converges in the stirring region leading
to an eastward jet with a westward flow to either side, and zero area-weighted spatially
integrated velocity. The dashed line shows the r.m.s. (eddy) velocity created by the stirring.

It is crucial to the generation of a mean flow that the dissipation has a broader latitudinal
distribution than the forcing: if all the dissipation occurred in the region of the forcing then
from (36) no mean flow would be generated. However, Rossby waves are generated in the
forcing region, and these propagate meridionally before dissipating thus broadening the
dissipation distribution and allowing the generation of a mean flow.

5 Rossby Waves in an Inhomogeneous Medium

Consider the horizontal problem with infinite deformation radius and linearized equation of
motion (

∂

∂t
+ u(y)

∂

∂x

)
q′ + v′

∂q

∂y
= 0, (37)

where q′ = ∇2ψ′, v′ = ∂ψ′/∂x and ∂q/∂y = β − uyy. If u and ∂q/∂y do not vary in space
then we may seek wavelike solutions in the usual way and obtain the dispersion relation

ω ≡ ck = uk − ∂q/∂y

k
k2 + l2 (38)

where k and l are the x - and y -wavenumbers.
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Figure 6: The pseudomomentum stirring (solid line, F ′ζζ
′), dissipation (dashed line, D′ζζ

′)
and their sum (dot–dashed), for the same integration as Fig. 5. Because Rossby waves
propagate away from the stirred region before breaking, the distribution of dissipation is
broader than the forcing, resulting in an eastward jet where the stirring is centred, with
westward flow on either side.

If the parameters do vary in the y -direction then we seek a solution of the form ψ′ =
ψ̃(y) exp[ik(x− ct)] and obtain

∂2ψ̃

∂y2
+ l2(y)ψ̃ = 0, where l2(y) =

∂q/∂y

u− c − k
2 (39a,b)

If the parameter variation is sufficiently small, occurring on a spatial scale longer than the
wavelength of the waves, then we may expect that the disturbance will propagate locally
as a plane wave. The solution is then of WKB form namely

ψ̃(y) = A0l
−1/2 exp

(
i

∫
l dy

)
. (40)

where A0 is a constant. The phase of the wave in the y -direction, θ, is evidently given by
θ =

∫
l dy, so that the local wavenumber is given by dθ/dy = l. The group velocity is, as

before,

cxg = u+
(k2 − l2)∂q/∂y

(k2 + l2)2
, cyg =

2kl ∂q/∂y

(k2 + l2)2
. (41a,b)

The group velocity can now vary spatially, although it is only allowed to vary slowly.

5.1 Wave amplitude

As a Rossby wave propagates its amplitude is not necessarily constant because, in the
presence of a shear, the wave may exchange energy with the background state. It goes like
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l−1/2(y). This variation can be understood from somewhat more general considerations. As
we saw earlier in the simple one-layer case (and discussed more in the appendix) an inviscid,
adiabatic wave will conserve its wave activity meaning that

∂A
∂t

+∇ · F = 0, (42)

where A is the wave amplitude and F is the flux, and F = cgA. In the stratified case we
have

A =
q′2

2∂q/∂y
, F = −u′v′ j +

f0
N2

v′b′ k, (43)

with F is the Eliassen–Palm (EP) flux, and in the 2D case there is no buoyancy and the k
component is zero. If the waves are steady then ∇·F = 0, and in the two-dimensional case
under consideration this means that ∂u′v′/∂y = 0.

Thus, u′v′ = kl|ψ̃|2 = constant, and since k is constant the amplitude of a wave varies
like

|ψ̃| = A0√
l(y)

(44)

as in the WKB solution. The energy of the wave then varies like

Energy = (k2 + l2)
A2

0

l
. (45)

6 Rossby Wave Propagation in a Slowly Varying Medium

The linear equation of motion is, in terms of streamfunction,

(
∂

∂t
+ u(y, z)

∂

∂x

)[
∇2ψ′ +

f0
2

ρR

∂

∂z

(
ρR
N2

∂ψ′

∂z

)]
+
∂ψ′

∂x

∂q

∂y
= 0. (46)

We suppose that the parameters of the problem vary slowly in y and/or z but are uniform
in x and t. The frequency and zonal wavenumber are therefore constant. We seek solutions
of the form ψ′ = ψ̃(y, z)eik(x−ct) and find (if, for simplicity, N2 and ρR are constant)

∂2ψ̃

∂y2
+
f0

2

N2

∂2ψ̃

∂z2
+ n2(y, z)ψ̃ = 0 (47a)

where

n2(y, z) =
∂q/∂y

u− c − k
2. (47b)

The value of n2 must be positive in order that waves can propagate, and so waves cease to
propagate when they encounter either

1. A turning line, where n2 = 0, or

2. A critical line, where u = c and n2 becomes infinite.
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The bounds may usefully be expressed as a condition on the zonal flow:

0 < u− c < ∂q/∂y

k2
. (48)

If the length scale over which the parameters of the problem vary is much longer than
the wavelengths themselves we can expect the solution to look locally like a plane wave and
a WKB analysis can be employed. In the purely horizontal problem we assume a solution
of the form ψ′ = ψ̃(y)eik(x−ct) and find

∂2ψ̃

∂y2
+ l2(y)ψ̃ = 0, l2(y) =

∂q/∂y

u− c − k
2. (49)

The solution is of the form

ψ̃(y) = Al−1/2 exp
(
± i

∫
l dy
)
. (50)

Thus, l(y) is the local y -wavenumber, and the amplitude of the solution varies like l−1/2.
At a critical line the amplitude of the wave will go to zero although the energy may become
very large, and since the wavelength is small the waves may break. At a turning line the
amplitude and energy will both be large, but since the wavelength is long the waves will not
necessarily break. A similar analysis may be employed for vertically propagating Rossby
waves.

6.1 Two examples

(i) Waves with a turning latitude

A turning line arises where l = 0. The line arises if the potential vorticity gradient diminishes
to such an extent that l2 < 0 and the waves then cease to propagate in the y -direction. This
may happen even in unsheared flow as a wave propagates polewards and the magnitude of
beta diminishes.

As a wave packet approaches a turning latitude then l goes to zero so the amplitude, and
the energy, of the wave approach infinity. This may happen as a wave propagates polewards
and β diminishes. However, the wave will never reach the turning latitude because the
meridional component of the group velocity is zero, as can be seen from the expressions for
the group velocity, (41). As a wave approaches the turning latitude cxg → (β − uyy)/k2 and
cyg → 0, so the group velocity is purely zonal and indeed as l→ 0

cxg − u
cyg

=
k

2l
→∞. (51)

Because the meridional wavenumber is small the wavelength is large, so we do not expect
the waves to break. Rather, we intuitively expect that a wave packet will turn — hence the
eponym ‘turning latitude’ — and be reflected.

To illustrate this, consider waves propagating in a background state that has a beta
effect that diminishes polewards but no horizontal shear. To be concrete suppose that
β = 5 at y = 0, diminishing linearly to β = 0 at y = 0, and that u − c = 1 everywhere.
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Figure 7: Parameters for the first example considered in section 6.1, with all variables
nondimensional. The zonal flow is uniform with u = 1 and c = 0 (so that uyy = 0) and β
diminishes linearly as y increases polewards as shown. With zonal wavenumber k = 1 there
is a turning latitude at y = 0.8, and the wave properties are illustrated in Fig. 8.
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Figure 8: Left: The group velocity evaluated using (41) for the parameters illustrated in
Fig. 7, which give a turning latitude at y = 0.8. For x < 0.5 we choose positive values of n,
and a northward group velocity, whereas for x > 0.5 we choose negative values of n. Right
panel: Values of refractive index squared (n2), the energy and the amplitude of a wave. n2

is negative for y > 0.8. See text for more description.
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Figure 9: Parameters for the second example considered in section 6.1, with all variables
nondimensional. The zonal flow has a broad eastward jet and β is constant. There is a
critical line at y = 0.2, and with zonal wavenumber k = 5 the wave properties are illustrated
in Fig. 10.

There is no critical line but depending on the x -wavenumber there may be a turning line,
and if we choose k = 1 then the turning line occurs when β = 1 and so at y = 0.8. Note that
the turning latitude depends on the value of the x -wavenumber — if the zonal wavenumber
is larger then waves will turn further south. The parameters are illustrated in Fig. 7.

For a given zonal wavenumber (k = 1 in this example) the value of l2 is computed using
(39b), and the components of the group velocity using (41), and these are illustrated in
Fig. 8. Note that we may choose either a positive or a negative value of l, corresponding to
northward or southward oriented waves, and we illustrate both in the figure. The value of
l2 becomes zero at y = 0.8, and this corresponds to a turning latitude. The values of the
wave amplitude and energy are computed using (44) and (45) (with an arbitrary amplitude
at y = 0) and these both become infinite at the turning latitude.

(ii) Waves with a critical latitude

A critical line occurs when u = c, corresponding to the upper bound of c, and from (39)
we see that at a critical line the meridional wavenumber approaches infinity. From (41) we
see that both the x - and y -components of the group velocity are zero — a wave packet
approaching a critical line just stops. Specifically, as l becomes large

cxg − u→ 0, cyg → 0,
cxg − u
cyg

→ − l
k
→ −∞. (52)

From (44) the amplitude of the wave packet also approaches zero, but its energy ap-
proaches infinity. Since the wavelength is very small we expect the waves to break and
deposit their momentum, and this situation commonly arises when Rossby waves excited
in midlatitudes propagate equatorward and encounter a critical latitude in the subtropics.

To illustrate this let us construct background state that has an eastward jet in midlati-
tudes becoming westward at low latitudes, with β constant chosen to be large enough so that
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Figure 10: Left: The group velocity evaluated using (41) for the parameters illustrated in
Fig. 7, which give a critical line at y = 0.2. For x < 0.5 we choose positive values of n,
and a northward group velocity, whereas for x > 0.5 we choose negative values of n. Right
panel: Values of refractive index squared, the energy and the amplitude of a wave. The
value of n2 becomes infinite at the critical line. See text for more description.

β − uyy is positive everywhere. (Specifically, we choose β = 1 and u = −0.03 sin(8πy/5 +
π/2) − 0.5), but the precise form is not important.) If c = 0 then there is a critical line
when u passes through zero, which in this example occurs at x = 0.2. (The value of u − c
is small at y = 1, but no critical line is actually reached.) These parameters are illustrated
in Fig. 9. We also choose k = 5, which results in a positive value for l2 everywhere.

As in the previous example, we compute the value of l2 using (39b) and the components
of the group velocity using (41), and these are illustrated in Fig. 10, with northward propa-
gating waves shown for x < 0.5 and southward propagating waves for x > 0.5. The value of
l2 increases considerably at the northern and southern edges of the domain, and is actually
infinite at the critical line at y = 0.2. Using (44) the amplitude of the wave diminishes
as the critical line approaches, but the energy increases rapidly, suggesting that the linear
approximation will break down. The waves will actually stall before reaching the critical
layer, because both the x and the y components of the group velocity become very small.
Also, because the wavelength is so small we may expect the waves to break and deposit
their momentum, but a full treatment of waves in the vicinity of a critical layer requires a
nonlinear analysis.

The situation illustrated in this example is of particular relevance to the maintenance
of the zonal wind structure in the troposphere. Waves are generated in midlatitude and
propagate equatorward and on encountering a critical layer in the subtropics they break,
deposit westward momentum and retard the flow, as the reader who braves the next section
will discover explicitly.
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7 Rossby Wave Absorption near a Critical Layer

We noted in the last section that as a wave approaches a critical latitude the meridional
wavenumber l becomes very large, but the group velocity itself becomes small. These ob-
servations suggest that the effects of friction might become very large and that the wave
would deposit its momentum, thereby accelerating or decelerating the mean flow, and if we
are willing to make one or two approximations we can construct an explicit analytic model
of this phenomena. Specifically, we will need to choose a simple form for the friction and
assume that the background properties vary slowly, so that we can use a WKB approxima-
tion. Note that we have to include some form of dissipation, otherwise the Eliassen–Palm
flux divergence is zero and there is no momentum deposition by the waves.

7.1 A model problem

Consider horizontally propagating Rossby waves obeying the linear barotropic vorticity
equation on the beta-plane (vertically propagating waves may be considered using similar
techniques). The equation of motion is

(
∂

∂t
+ u

∂

∂x

)
∇2ψ + β∗

∂ψ

∂x
= −r∇2ψ, (53)

where β∗ = β − uyy. The parameter r is a drag coefficient that acts directly on the relative
vorticity. It is not a particularly realistic form of dissipation but its simplicity will serve our
purpose well. We shall assume that r is small compared to the Doppler-shifted frequency
of the waves and seek solutions of the form

ψ′(x, y, t) = ψ̃(y)ei(k(x−ct)). (54)

Substituting into (53) we find, after a couple of lines of algebra, that ψ̃ satisfies, analogously
to (39),

∂2ψ̃

∂y2
+ l2(y)ψ̃ = 0, where l2(y) =

β∗

u− c− ir/k
− k2. (55a,b)

Evidently, as with the inviscid case, if the zonal wind has a lateral shear then l is a function
of y. However, l now has an imaginary component so that the wave decays away from its
source region. We can already see that if u = c the decay will be particularly strong.

7.2 WKB solution

Let us suppose that the zonal wavenumber is small compared to the meridional wavenumber
l, which will certainly be the case approaching a critical layer. If r � k(u − c) then the
meridional wavenumber is given by

l2(y) ≈
[
β∗(u− c+ ir/k)

(u− c)2 + r2/k2

]
≈ β∗

u− c

[
1 +

ir

k(u− c)

]
(56)

whence

l(y) ≈
(

β∗

u− c

)1/2 [
1 +

ir

2k(u− c)

]
. (57)
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The streamfunction itself is then given by, in the WKB approximation,

ψ̃ = Al−1/2 exp

(
±i

∫ y

l dy′
)
. (58)

But now the wave will decay as it moves away from its source and deposit momentum into
the mean flow, as we now calculate.

The momentum flux, Fk, associated with the wave with x -wavenumber of k is given by

Fk(y) = u′v′ = −ik

(
ψ
∂ψ∗

∂y
− ψ∗∂ψ

∂y

)
, (59)

and using (57) and (58) in (59) we obtain

Fk(y) = F0 exp

(
±i

∫ y

0
(l − l∗) dy′

)
= F0 exp

(∫ y

0

±rβ∗1/2
k(u− c)3/2 dy′

)
. (60)

In deriving this expression we use that fact that the amplitude of ψ̃ (i.e., l−1/2) varies only
slowly with y so that when calculating ∂ψ̃/∂y its derivative may be ignored. In (60) F0 is
the value of the flux at y = 0 and the sign of the exponent must be chosen so that the group
velocity is directed away from the wave source region. Clearly, if r = 0 then the momentum
flux is constant.

The integrand in (60) is the attenuation rate of the wave and it has a straightforward
physical interpretation. Using the real part of (57) in (41b), and assuming |l| � |k|, the
meridional component of the group velocity is given by

cyg =
2kl β∗

(k2 + l2)2
≈ 2k β∗

l3
=

2k(u− c)3/2
β∗1/2

. (61a,b)

Thus, we have

Wave attenuation rate =
rβ∗1/2

k(u− c)3/2 =
2×Dissipation rate = 2r

Meridional group velocity, cyg
. (62)

As the group velocity diminishes the dissipation has more time to act and so the wave is
preferentially attenuated, a result that we discuss more in the next subsection.

How does this attenuation affect the mean flow? The mean flow is subject to many
waves and so obeys the equation

∂u

∂t
= −

∑

k

∂Fk
∂y

+ viscous terms. (63)

Because the amplitude varies only slowly compared to the phase, the amplitude of ∂Fk/∂y
varies mainly with the attenuation rate (62) and is largest near a critical layer. Consider
a Rossby wave propagating away from some source region with a given frequency and x -
wavenumber. Because k is negative a Rossby wave always carries westward (or negative)
momentum with it. That is, Fk is always negative and increases (becomes more positive)
as the wave is attenuated; that is to say, if r 6= 0 then ∂Fk/∂y is positive and from (63)
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the mean flow is accelerated westward as the wave dissipates. This acceleration will be
particularly strong if the wave approaches a critical layer where u = c. Indeed, such a
situation arises when Rossby waves, generated in mid-latitudes, propagate equatorward.
As the waves enter the subtropics u− c becomes smaller and the waves dissipate, producing
a westward force on the mean flow, even though a true critical layer may never be reached.
Globally, momentum is conserved because there is an equal and opposite (and therefore
eastward) wave force at the wave source producing an eddy-driven jet, as discussed in the
previous lecture.

7.3 Interpretation using wave activity

We can derive and interpret the above results by thinking about the propagation of wave
activity. For barotropic Rossby waves, multiply (53) by ζ/β∗ and zonally average to obtain
the wave activity equation,

∂A
∂t

+
∂F
∂y

= −αA, (64)

where A = ζ ′2/2β∗ is the wave activity density, ∂F/∂y = v′ζ ′ is its flux divergence, and
α = 2r. Referring as needed to the discussion in sections A.2 and A.3, the flux obeys the
group velocity property so that

∂A
∂t

+
∂

∂y
(cgA) = −αA. (65)

Let us suppose that the wave is in a statistical steady state and that the spatial variation
of the group velocity occurs on a longer spatial scale than the variations in wave activity
density, consistent with the WKB approximation. We then have

cyg
∂A
∂y

= −αA. (66)

which integrates to give

A(y) = A0 exp

(
−
∫ y α

cyg
dy′
)
. (67)

That is, the attenuation rate of the wave activity is the dissipation rate of wave activity
divided by the group velocity, as in (60) and (62) (note that α = 2r).

Appendix A: Various properties of Rossby Waves

In this appendix we derive various properties of Rossby waves useful in wave–mean-flow
interaction theory, assuming a good knowledge of stratified quasi-geostrophic theory. We
use the Boussinesq approximation throughout. This material was not presented in the
lectures at Walsh.
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A.1 The Eliassen–Palm Flux

The eddy flux of potential vorticity may be expressed in terms of vorticity and buoyancy
fluxes as

v′q′ = v′ζ ′ + f0 v
′ ∂
∂z

(
b′

N2

)
. (68)

The second term on the right-hand side can be written as

f0 v
′ ∂
∂z

(
b′

N2

)
= f0

∂

∂z

(
v′b′

N2

)
− f0

∂v′

∂z

b′

N2

= f0
∂

∂z

(
v′b′

N2

)
− f0

∂

∂x

(
∂ψ′

∂z

)
b′

N2

= f0
∂

∂z

(
v′b′

N2

)
− f0

2

2N2

∂

∂x

(
∂ψ′

∂z

)2
,

(69)

using b′ = f0 ∂ψ
′/∂z .

Similarly, the flux of relative vorticity can be written

v′ζ ′ = − ∂

∂y
(u′v′) +

1

2

∂

∂x
(v′2 − u′2) (70)

Using (69) and (70), (68) becomes

v′q′ = − ∂

∂y
(u′v′) +

∂

∂z

(
f0
N2

v′b′
)

+
1

2

∂

∂x

(
(v′2 − u′2)− b′2

N2
.

)
(71)

Thus the meridional potential vorticity flux, in the quasi-geostrophic approximation, can
be written as the divergence of a vector: v′q′ = ∇ · E where

E ≡ 1

2

(
(v′2 − u′2)− b′2

N2

)
i− (u′v′) j +

(
f0
N2

v′b′
)

k. (72)

A particularly useful form of this arises after zonally averaging, for then (71) becomes

v′q′ = − ∂

∂y
u′v′ +

∂

∂z

(
f0
N2

v′b′
)
. (73)

The vector defined by

F ≡ −u′v′ j +
f0
N2

v′b′ k (74)

is called the (quasi-geostrophic) Eliassen–Palm (EP) flux (Eliassen & Palm (1961)), and
its divergence, given by (73), gives the poleward flux of potential vorticity:

v′q′ = ∇xF , (75)

where ∇x ≡ (∂/∂y, ∂/∂z)· is the divergence in the meridional plane. Unless the meaning
is unclear, the subscript x on the meridional divergence will be dropped.
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A.2 The Eliassen–Palm relation

On dividing by ∂q/∂y and using (75), the enstrophy equation becomes

∂A
∂t

+∇ · F = D, (76a)

where

A =
q′2

2∂q/∂y
, D =

D′q′

∂q/∂y
. (76b)

Equation (76a) is known as the Eliassen–Palm relation, and it is a conservation law for
the wave activity density A. The conservation law is exact (in the linear approximation) if
the mean flow is constant in time. It will be a good approximation if ∂q/∂y varies slowly
compared to the variation of q′2.

If we integrate (76b) over a meridional area A bounded by walls where the eddy activity
vanishes, and if D = 0, we obtain

d

dt

∫

A
AdA = 0. (77)

The integral is a wave activity — a quantity that is quadratic in the amplitude of the
perturbation and that is conserved in the absence of forcing and dissipation. In this case A
is the negative of the pseudomomentum, for reasons we will encounter later. (‘Wave action’
is a particular form of wave activity; it is the energy divided by the frequency and it is
a conserved property in many wave problems.) Note that neither the perturbation energy
nor the perturbation enstrophy are wave activities of the linearized equations, because there
can be an exchange of energy or enstrophy between mean and perturbation — indeed, this
is how a perturbation grows in baroclinic or barotropic instability! This is already evident
from an enstrophy equation. Or, in general, take the linearized PV equation with D′ = 0
and multiply by q′ to give the enstrophy equation

1

2

∂q′2

∂t
+

1

2
u · ∇q′2 + u ′q′ · ∇q = 0, (78)

where here the overbar is an average (although it need not be a zonal average). Integrating
this over a volume V gives

dẐ ′

dt
≡ d

dt

∫

V

1

2
q′2 dV = −

∫

V
u ′q′ · ∇q dV. (79)

The right-hand side does not, in general, vanish and so Ẑ ′ is not in general conserved.

A.3 The group velocity property for Rossby waves

The vector F describes how the wave activity propagates. In the case in which the distur-
bance is composed of plane or almost plane waves that satisfy a dispersion relation, then
F = cgA, where cg is the group velocity and (76a) becomes

∂A
∂t

+∇ · (Acg) = 0. (80)
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This is a useful property, because if we can diagnose cg from observations we can use (76a)
to determine how wave activity density propagates. Let us demonstrate this explicitly for
the pseudomomentum in Rossby waves, that is for (76a).

The Boussinesq quasi-geostrophic equation on the β -plane, linearized around a uniform
zonal flow and with constant static stability, is

∂q′

∂t
+ u

∂q′

∂x
+ v′

∂q

∂y
= 0, (81)

where q′ = [∇2 + (f0
2/N2)∂2/∂z2]ψ′ and, if u is constant, ∂q/∂y = β. Thus, we have

(
∂

∂t
+ u

∂

∂x

)[
∇2ψ′ +

∂

∂z

(
f0

2

N2

∂ψ′

∂z

)]
+ β

∂ψ′

∂x
= 0. (82)

Seeking solutions of the form

ψ′ = Re ψ̃ei(kx+ly+mz−ωt), (83)

we find the dispersion relation,

ω = uk − βk

κ2
. (84)

where κ2 = (k2 + l2 +m2f0
2/N2), and the group velocity components:

cyg =
2βkl

κ4
, czg =

2βkmf0
2/N2

κ4
. (85)

Also, if u′ = Re ũ exp[i(kx+ ly +mz − ωt)], and similarly for the other fields, then

ũ = −Re ilψ̃, ṽ = Re ikψ̃,

b̃ = Re imf0 ψ̃, q̃ = −Reκ2ψ̃,
(86)

The wave activity density is then

A =
1

2

q′2

β
=
κ4

4β
|ψ̃2|, (87)

where the additional factor of 2 in the denominator arises from the averaging. Using (86)
the EP flux, (74), is

Fy = −u′v′ =
1

2
kl|ψ̃2|, Fz =

f0
N2

v′b′ =
f0

2

2N2
km|ψ̃2|. (88)

Using (85), (87) and (88) we obtain

F = (Fy,Fz) = cgA. (89)

If the properties of the medium are slowly varying, so that a (spatially varying) group
velocity can still be defined, then this is a useful expression to estimate how the wave
activity propagates in the atmosphere and in numerical simulations.
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A.4 Energy flux in Rossby waves

Start with
∂

∂t

(
∇2 − k2d

)
ψ + β

∂ψ

∂x
= 0. (90)

To obtain an energy equation multiply (90) by −ψ and obtain

1

2

∂

∂t

(
(∇ψ)2 + k2dψ

2
)
−∇ ·

(
ψ∇∂ψ

∂t
+ i

β

2
ψ2

)
= 0, (91)

where i is the unit vector in the x direction. The first group of terms are the energy itself, or
more strictly the energy density. (An energy density is an energy per unit mass or per unit
volume, depending on the context.) The term (∇ψ)2/2 = (u2 + v2)/2 is the kinetic energy
and k2dψ

2/2 is the potential energy, proportional to the displacement of the free surface,
squared. The second term is the energy flux, so that we may write

∂E

∂t
+∇ · F = 0. (92)

where E = (∇ψ)2/2 + kd
2ψ2 and F = −

(
ψ∇∂ψ/∂t + iβψ2

)
. We haven’t yet used the

fact that the disturbance has a dispersion relation, and if we do so we may expect that the
energy moves at the group velocity. Let us now demonstrate this explicitly.

We assume a solution of the form

ψ = A(x) cos(k · x− ωt) = A(x) cos (kx+ ly − ωt) (93)

where A(x) is assumed to vary slowly compared to the nearly plane wave. (Note that k
is the wave vector, to be distinguished from k, the unit vector in the z -direction.) The
kinetic energy in a wave is given by

KE =
A2

2

(
ψ2
x + ψ2

y

)
(94)

so that, averaged over a wave period,

KE =
A2

2
(k2 + l2)

ω

2π

∫ 2π/ω

0
sin2(k · x− ωt) dt. (95)

The time-averaging produces a factor of one half, and applying a similar procedure to the
potential energy we obtain

KE =
A2

4
(k2 + l2), PE =

A2

4
k2d, (96)

so that the average total energy is

E =
A2

4
(K2 + kd

2), (97)

where K2 = k2 + l2.
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The flux, F, is given by

F = −
(
ψ∇∂ψ

∂t
+ i

β

2
ψ2

)
= −A2 cos2(k · x− ωt)

(
kω − i

β

2

)
, (98)

so that evidently the energy flux has a component in the direction of the wavevector, k,
and a component in the x -direction. Averaging over a wave period straightforwardly gives
us additional factors of one half:

F = −A
2

2

(
kω + i

β

2

)
. (99)

We now use the dispersion relation ω = −βk/(K2 + kd
2) to eliminate the frequency, giving

F =
A2β

2

(
k

k

K2 + kd 2
− i

1

2

)
, (100)

and writing this in component form we obtain

F =
A2β

4

[
i

(
k2 − l2 − kd 2

K2 + kd 2

)
+ j

(
2kl

K2 + k2d

)]
(101)

Comparison of (101) with (15) and (97) reveals that

F = cgE (102)

so that the energy propagation equation, (92), when averaged over a wave, becomes

∂E

∂t
+∇ · cgE = 0. (103)

This is an important result, and more general than our derivation implies. One immediate
implication is that if there is a disturbance that generates waves, the group velocity is
directed away from the disturbance.

Most of the time in waves, energy is not conserved because it can be extracted from the
flow.

Appendix B: The WKB Approximation for Linear Waves

We are concerned with finding solutions to an equation of the form

d2ξ

dz2
+m2(z)ξ = 0, (104)

where m2(z) is positive for wavelike solutions. If m is constant the solution has the harmonic
form

ξ = ReA0eimz (105)

where A0 is a complex constant. If m varies only ‘slowly’ with z — meaning that the
variations occur on a scale much longer than 1/m — one might reasonably expect that the
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harmonic solution above would provide a reasonable first approximation; that is, we expect
the solution to locally look like a plane wave with local wavenumber m(z). However, we
might also expect that the solution would not be exactly of the form exp(im(z)z), because
the phase of ξ is θ(z) = mz, so that dθ/dz = m + zdm/dz 6= m. Thus, in (105) m is not
the wavenumber unless m is constant. Nevertheless, this argument suggests that we seek
solutions of a similar form to (105), and we find such solutions by way of a perturbation
expansion below. We note that the condition that variations in m, or in the wavelength
m−1, occur only slowly may be expressed as

m

|∂m/∂z | � m−1 or

∣∣∣∣
∂m

∂z

∣∣∣∣� m2. (106)

This condition will generally be satisfied if variations in the background state, or in the
medium, occur on a scale much longer than the wavelength.

B.1 Solution by perturbation expansion

To explicitly recognize the rapid variation of m we rescale the coordinate z with a small
parameter ε; that is, we let ẑ = εz where ẑ varies by O(1) over the scale on which m varies.
Eq. (104) becomes

ε2
d2ξ

dẑ2
+m2(ẑ)ξ = 0, (107)

and we may now suppose that all variables are O(1). If m were constant the solution would
be of the form ξ = A exp(mẑ/ε) and this suggests that we look for a solution to (107) of
the form

ξ(z) = eg(ẑ)/ε, (108)

where g(ẑ) is some as yet unknown function. We then have, with primes denoting deriva-
tives,

ξ′ =
1

ε
g′eg/ε, ξ′′ =

(
1

ε2
g′2 +

1

ε
g′′
)

eg/ε. (109a,b)

Using these expressions in (107) yields

εg′′ + g′2 +m2 = 0, (110)

and if we let g =
∫
hdẑ we obtain

ε
dh

dẑ
+ h2 +m2 = 0. (111)

To obtain a solution of this equation we expand h in powers of the small parameter ε,

h(ẑ; ε) = h0(ẑ) + εh1(ẑ) + ε2h2(ẑ) + · · · . (112)

Substituting this in (111) and setting successive powers of ε to zero gives, at first and second
order,

h20 +m2 = 0, 2h0h1 +
dh0
dẑ

= 0. (113a,b)
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The solutions of these equations are

h0 = ±im, h1(ẑ) = −1

2

d

dẑ
ln
m(ẑ)

m0
. (114a,b)

where m0 is a constant. Now, ignoring higher-order terms, (108) may be written in terms
of h0 and h1 as

ξ(ẑ) = exp

(∫
h0 dẑ/ε

)
exp

(∫
h1 dẑ

)
, (115)

and, using (114) and with z in place of ẑ, we obtain

ξ(z) = A0m
−1/2 exp

(
±i

∫
m dz

)
. (116)

where A0 is a constant, and this is the WKB solution to (104). In general

ξ(z) = B0m
−1/2 exp

(
i

∫
mdz

)
+ C0m

−1/2 exp

(
−i

∫
m dz

)
. (117)

or

ξ(z) = D0m
−1/2 cos

(∫
m dz

)
+ E0m

−1/2 sin

(∫
mdz

)
. (118)

A property of (116) is that the derivative of the phase is just m; that is, m is indeed
the local wavenumber. Note that a crucial aspect of the derivation is that m varies slowly,
so that there is a small parameter, ε, in the problem. Having said this, it is often the case
that WKB theory can provide qualitative guidance even when there is little scale separation
between the variation of the background state and the wavelength. Asymptotics often works
when it seemingly shouldn’t.
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The Role of Mixed Layer Instabilities

in Submesoscale Turbulence

Jörn Callies

1 Introduction

The upper ocean can support energetic flows at scales smaller than the order 100 km
mesoscale eddies. Sharp surface fronts associated with strong along-front currents emerge
in high-resolution numerical simulations [8, 16] and are observed in the wintertime mid-
latitude ocean [7]. These submesoscale flows are associated with large vertical fluxes of
both physical and biogeochemical tracers and may thereby regulate the uptake of heat and
carbon from the atmosphere [8, 17, 11]. What drives these submesoscale flows?

Two mechanisms have been proposed: surface frontogenesis [19, 28] and mixed layer
instabilities [3]. The process underlying surface frontogenesis can be understood with quasi-
geostrophic (QG) dynamics [32]. In the interior of the ocean, when a strain field increases a
horizontal buoyancy gradient, an ageostrophic circulation develops according to the omega
equation [13] and acts to oppose the increase of the buoyancy gradient. Light water down-
wells on the dense side and dense water upwells on the light side of the buoyancy gradient.
At the surface, however, the vertical velocity must vanish and the ageostrophic circulation
cannot act to oppose the increase of the buoyancy gradient in the same way—the mesoscale
strain field is left to create strong surface fronts.

The simplest model of these dynamics is the surface QG model [10, 32, 1, 12]. It assumes
an infinitely deep ocean with constant interior potential vorticity (PV),

∇2ψ +
∂

∂z

(
f2

N2

∂ψ

∂z

)
= 0, (1)

where ψ is the geostrophic streamfunction, f is the Coriolis frequency, and N the buoyancy
frequency, such that the dynamics are completely determined by the advection of buoyancy
at the surface,

∂b

∂t
+ J(ψ, b) = 0, (2)

where b = f∂ψ/∂z is buoyancy and

J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
(3)

is the Jacobian operator. This supplies the boundary condition for the elliptic problem (1).
Straining by mesoscale eddies creates sharp buoyancy gradients and strong associated flows
at the surface. Secondary instabilities lead to eventually fully turbulent dynamics [12],
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for which Kolmogorov-like dimensional arguments predict the energy spectrum in the sub-
mesoscale range to scale like Ekh ∼ kh

−5/3 in an inertial range in which surface buoy-
ancy variance is cascaded to small scales [1]. If non-QG dynamics are taken into account,
ageostrophic advection of buoyancy further accelerates frontogenesis and leads to frontal
collapse, the formation of true discontinuities [14]. In this case, the submesoscale energy
spectrum is modified to Ekh ∼ kh−2 [4].

As opposed to what is assumed in surface QG dynamics, however, the upper ocean
does not have a nearly constant PV. Instead, there is typically a weakly stratified mixed
layer with low PV overlying a strongly stratified thermocline with high PV. There is a
sharp step-like increase in PV at the base of the mixed layer. This PV step is dynamically
important, because it supports edge waves that have the potential to interact with surface
edge waves and thus produce a baroclinic instability in the mixed layer [3]. In winter, when
mixed layers are deep, this mixed layer instability occurs at scales of 1–10 km, so it has the
potential to energize submesoscale turbulence.

The importance of mixed layer instabilities is hinted at by the observation that sub-
mesoscale turbulence undergoes a seasonal cycle. Both modeling [22] and observations [7]
suggest that submesoscale turbulence is energized in winter and suppressed in summer.
Mixed layer instabilities are expected to undergo a strong seasonal cycle, following the sea-
sonal cycle of mixed layer depth itself. In the frontogenetic picture, on the other hand,
submesoscale turbulence is driven by mesoscale eddies that do not exhibit a strong seasonal
cycle.

The goal of this report is to understand the dynamics of mixed layer instabilities and
of the turbulent dynamics that emerge when these instabilities grow to finite amplitude.
We formulate a simple QG model consisting of two constant-PV layers representing the
mixed layer and the thermocline, coupled at a deformable interface. Despite its simplicity,
this model captures both mesoscale and mixed layer instabilities and thereby a number
of fundamental aspects of submesoscale dynamics. The model also allows straightforward
comparison to surface QG dynamics, in which no mixed layer is present.

We use QG scaling to formulate the dynamics of our model, which requires small Rossby
and Froude numbers [24]. Typical mesoscale Rossby and Froude numbers are on the order
0.1 and increase slowly with wavenumber if the submesoscale is energetic [7]. To leading
order, submesoscale flows are thus expected to follow QG dynamics. Higher-order effects
can become important at submesoscales, however, and we take up the discussion of non-QG
effects in the conclusions.

2 Model formulation

Consider two layers of constant PV on an f -plane, with constant stratification and constant
mean shear (Fig. 1). The upper layer represents the mixed layer, which has a mean depth h,
stratification Nm, and mean shear Λm. The lower layer represents the thermocline and has
stratification Nt and mean shear Λt. The total depth is H. The layers are coupled by a
deformable interface; a rigid lid condition is applied at the surface; a flat bottom condition
is applied at the bottom. The presence of a bottom at the base of the thermocline is not
realistic, but we will see that the bottom layer will still represent important properties of
the thermocline. The approximation that the stratification is discontinuous at the base of
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Figure 1: Schematic of the model setup in a vertical–horizontal plane. There are rigid sur-
faces at z = 0 and z = −H and a deformable interface at the mean depth z = −h, separating
layers of constant stratifications, Nm in the mixed layer and Nt in the thermocline.

the mixed layer is appropriate at horizontal scales larger than the deformation radius Nd/f
associated with the transition depth d [30]. The transition at the base of the mixed layer
is typically quite sharp, so this deformation radius is much smaller than the submesoscales
we are interested in here.

The uniform PV within the two layers simplifies the dynamics dramatically. PV con-
servation within the layers is trivial, like in the classic Eady problem [10]. The flow in the
interior of the layers is obtained by solving (1), with the boundary conditions supplied by
the distribution of buoyancy at the surface and bottom and by matching conditions at the
interface between the mixed layer and the thermocline.

At the rigid boundaries at the surface and bottom, where the vertical velocity w vanishes,
the advection of buoyancy anomalies b is given by

∂b

∂t
+ J(ψ, b) = 0. (4)

To ensure that pressure is continuous at the interface, we require that the streamfunction ψ
is continuous. For mass conservation, we require that the vertical velocity w is also continu-
ous. These conditions are applied at z = −h, consistent with QG scaling. The conservation
equations for buoyancy just above and below the interface at z = −h,

∂b+

∂t
+ J(ψ, b+) + wN2

m = 0,
∂b−

∂t
+ J(ψ, b−) + wN2

t = 0, (5)

can then be combined to eliminate w. This gives

∂θ1
∂t

+ J(ψ1, θ1) = 0, (6)

where ψ1 denotes the streamfunction at z = −h. This is a conservation equation for

θ1 = f

(
b+

N2
m

− b−

N2
t

)
. (7)
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The quantity θ1 is nothing but the PV

q = ∇2ψ + f
∂

∂z

(
b

N2

)
(8)

integrated across the interface. While there are no PV anomalies within the two layers, the
displacement of the interface between the two layers of constant PV induces a PV anomaly
that, according to (6) and consistent with QG dynamics, is advected by the geostrophic
flow at z = −h. The conservation equation (6) has been used to study the dynamics of the
tropopause, which is similarly an interface between weakly stratified fluid in the troposphere
and strongly stratified fluid in the stratosphere [10, 27, 15, 12].

The model can be considered as consisting of three PV sheets:

q = θ0δ(z) + θ1δ(z + h) + θ2δ(z +H), (9)

where δ is Dirac’s delta function and θ0 = −fb/N2
m at z = 0 and θ2 = fb/N2

t at z = −H.
PV is advected by the geostrophic flow, so

∂θi
∂t

+ J(ψi, θi) = 0, (10)

where i = 0, 1, 2 and ψi is the streamfunction at the level corresponding to θi. This for-
mulation is simply an extension of Bretherton’s representation of boundary conditions [5]
to include an interior PV sheet due to deflection of an interface between layers of different
stratification.

Note that the statement that θ1 is only advected by the geostrophic flow does not imply
that the vertical velocity vanishes at the interface, just like the fact that PV anomalies in
the QG system are advected only by the geostrophic flow does not imply that the vertical
velocity vanishes. The vertical velocity is implicit in the dynamics and can be solved for
using the omega equation.

To complete the dynamics, we require an inversion relation that allows us to obtain the
streamfunctions ψi from the conserved quantities θi. This relation can be written as a linear
equation for the Fourier coefficients, denoted by subscripts k, l:

θk,l = Lψk,l, θ = (θ0, θ1, θ2)
T, ψ = (ψ0, ψ1, ψ2)

T. (11)

The matrix L is determined by solving

−k2hψk,l +
∂

∂z

(
f2

N2

∂ψk,l
∂z

)
= 0 (12)

in each layer. For example, the first column of L is determined by setting ψ = (1, 0, 0)T,
solving (12) for ψ(z), and subsequently calculating

θ0 = − f2

N2
m

∂ψ

∂z
(0), θ1 =

f2

N2
m

∂ψ

∂z
(−h+)− f2

N2
t

∂ψ

∂z
(−h−), θ2 =

f2

N2
t

∂ψ

∂z
(−H). (13)

This procedure gives

L = fkh



− cothµm

Nm

cschµm
Nm

0
cschµm
Nm

− cothµm
Nm

− cothµt
Nt

cschµt
Nt

0 cschµt
Nt

− cothµt
Nt


 , (14)
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Figure 2: Vertical structure of streamfunction amplitude associated with anomalies of
θ0 (surface), θ1 (interface), and θ2 (bottom). Shown are the vertical profiles for θi anomalies
with different horizontal wavenumbers kh = 2π/λ. The wavelength λ is given in the panel
titles.
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where µm = Nmkhh/f and µt = Ntkh(H − h)/f are nondimensional wavenumbers. This
3× 3 matrix can easily be inverted.

This model can be generalized to an arbitrary number of layers of constant stratification
and shear, which may be a useful way to approximate more realistic stratification and shear
profiles. This is discussed in Appendix A. The model can also be extended to include a
density jump at the interface, as is sometimes present at the base of the mixed layer. The
formulation is given in Appendix B, but we here restrict ourselves to the case of a continuous
density profile.

To build intuition for the dynamics of the model, we illustrate the vertical structure
of flow associated with anomalies of the conserved quantities at the surface, the interface,
and the bottom (Fig. 2). We apply parameters that will be used throughout the report,
typical of the wintertime midlatitude ocean (Tab. 1). At the largest scales, for anomalies
with wavelength λ = 1000 km or kh � f/NtH, the flow is nearly barotropic, irrespective
of which level the anomaly is at. At smaller scales, λ = 100 km or kh ∼ f/NtH � f/Nmh,
there is significant decay in the thermocline while the flow is nearly barotropic in the mixed
layer. Anomalies at the surface and interface still induce significant flow at the bottom and
vice versa. At λ = 10 km or kh ∼ f/Nmh, on the other hand, anomalies at the surface
or interface induce very little flow at the bottom and vice versa. The flow is also not
barotropic in the mixed layer anymore, but surface anomalies still induce significant flow
at the interface and vice versa. At λ = 1 km or kh � f/Nmh, all levels are decoupled:
anomalies on any of the levels induce very little flow at the other levels.

The dependence of the vertical flow structure on the horizontal scale of the anomalies
illuminates the qualitative dynamics of the model. At the smallest scales, all three levels
are independent and follow surface QG dynamics. At scales kh ∼ f/Nmh, around the
mixed layer deformation radius, surface and interface anomalies can interact, allowing for
phase locking and instability in the mixed layer. Bottom anomalies, on the other hand
are independent, so there is no deep instability at these scales. At scales kh ∼ f/NtH,
around the deep deformation radius, surface or interface anomalies can interact with bottom
anomalies, so there is potential for a deep instability at these scales. At the largest scales,
the flow is essentially barotropic and follows two-dimensional dynamics.

3 Linear stability analysis

We now analyse the linear stability of the model formulated above. While this linear analysis
is not directly applicable to the strongly nonlinear turbulent regime, it reveals some key
characteristics of the dynamics that will help us understand the nonlinear regime.

Blumen analyzed short-wave instabilities in the atmosphere also using a model consisting
of two coupled constant-PV layers [2]. He performed a linear stability analysis equivalent
to what will be presented in the following. For completeness, we review the linear stability
in the context of the upper ocean dynamics, at the cost of being somewhat redundant with
Blumen’s study.

We consider the linear stability of normal-mode perturbations to a zonal flow with
constant vertical shear Λm in the mixed layer and Λt in the thermocline (Fig. 3). The
system is Galilean invariant, so we can arbitrarily set the mean zonal flow to zero at the
surface. The linearized conservation equations for the perturbations from this mean state
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Figure 3: Mean buoyancy structure in the meridional–vertical plane for (a) the full model
and (b) the thermocline only case. The contours show isopycnals; light shading indicates
more buoyant fluid.

are
∂θk,l
∂t

+ ikUθk,l + ikΓψk,l = 0, (15)

where the mean zonal flows and mean meridional PV gradients at the respective levels are
denoted by the diagonal elements of the matrices U and Γ:

U = diag
(
0,−Λmh,−Λmh− Λt(H − h)

)
, (16)

Γ = diag
(
f2Λm/N

2
m,−f2Λm/N

2
m + f2Λt/N

2
t ,−f2Λt/N

2
t

)
. (17)

Using the inversion relation (11), we can replace the θk,l, such that

L
∂ψk,l
∂t

+ ikULψk,l + ikΓψk,l = 0. (18)

Assuming that modes vary harmonically in time with (complex) frequency ω turns this into
the generalized eigenvalue problem

(UL+ Γ)ψk,l = cLψk,l, (19)

where the eigenvalue is c = ω/k. The real part of c is the zonal phase speed; the imaginary
part gives the growth rate σ = k Im c.

Being a third-order system, (19) can be solved analytically, but the solutions are rather
complicated and give little useful insight. We instead explore the characteristics of the
solutions numerically for the set of parameters given above. We then explain the stability
properties and parameter dependencies by considering simplifications of the model.
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Figure 4: Growth rates from the linear stability analysis for (a) the full model incorporating
a mixed layer, (b) an Eady model representing the thermocline only, (c) an Eady model
representing the mixed layer only, and (d) a model like the full model but without a bottom.
Growth rates are shown in blue, the growth rates of the full model are overlaid for reference
in gray.
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Parameter Symbol Value

Mixed layer depth h 100 m
Total depth H 500 m
Mixed layer stratification Nm 2× 10−3 s−1

Thermocline stratification Nt 8× 10−3 s−1

Mixed layer shear Λm 10−4 s−1

Thermocline shear Λt 10−4 s−1

Coriolis frequency f 10−4 s−1

Domain size a 500 km

Table 1: Parameters used throughout this report unless otherwise noted. These are typical
of the wintertime midlatitude ocean.

3.1 Full model

The linear stability analysis reveals that there are two lobes of instability: one at the
mesoscale and one at the submesoscale (Fig. 4a). The maximum growth rates occur at
l = 0 and zonal wavelengths of about 160 km and 10 km. The submesoscale instability has
a peak growth rate much larger than the mesoscale instability in this case with equal shear
in the two layers. The growing modes are conjugate to decaying modes. The growth rates
are similar to what Boccaletti et al. found in a linear QG stability analysis of a realistic
mean state of the wintertime eastern subtropical North Pacific [3]. The magnitudes are
slightly smaller here, because the shear is slightly weaker.

The phase speeds of the linear modes give clues to the dynamics in different ranges
of scales (Fig. 5a). For each wavenumber, there are three modes. Growing and decaying
modes, being conjugate to each other, have the same phase speeds. This is the familiar phase
locking of counter-propagating waves in baroclinic instability (branches ‘b’ and ‘e’). Where
these growing and decaying modes exist, there is an additional neutral mode (branches ‘a’
and ‘d’). Where there are no growing modes, all three neutral modes have distinct phase
speeds—no phase locking occurs. We will discuss the dynamics of the various branches by
considering approximations to the full model.

But first consider the spatial structure of the modes corresponding to the peak growth
rates. The perturbation streamfunctions show that the mesoscale mode is deep and spans
the entire water column (Fig. 6a), whereas the submesoscale mode is almost completely
confined to the mixed layer, with only weak leaking into the thermocline below 100 m
depth (Fig. 6b). Both modes show the familiar pattern of unstable modes tilted into the
shear, which is necessary to extract potential energy from the mean.

3.2 Thermocline only

We start explaining the instability properties of the full model by comparing it to the classic
Eady model representing the thermocline only (Fig. 3b). This amounts to setting h = 0 or
Nm = Nt in the full model. In this case, the system reduces to two variables, the inversion
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Figure 5: Phase speeds from the linear stability analysis for (a) the full model incorporating
a mixed layer, (b) an Eady model representing the thermocline only, (c) an Eady model
representing the mixed layer only, and (d) a model like the full model but without a bottom.
Phase speeds are shown in blue, the growth rates of the full model are overlaid for reference
in gray. The faint red line shows the phase speed of a surface edge wave.
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Figure 6: Perturbation streamfunction as obtained from the linear stability analysis of
(a) the most unstable mesoscale mode of the full model, (b) the most unstable submesoscale
mode of the full model, (c) the most unstable mode of an Eady model representing the
thermocline only, and (d) the most unstable mode of an Eady model representing the
mixed layer only. Red and blue shading represents positive and negative values.
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matrix is

L = fkh

(
− cothµt

Nt

cschµt
Nt

cschµt
Nt

− cothµt
Nt

)
, (20)

and

U = diag
(
0,−Λth

)
, (21)

Γ = diag
(
f2Λt/N

2
t ,−f2Λt/N

2
t

)
. (22)

The solution is [10, 33]

c = −Λth

2
± iΛth

µm

(
µt cothµt − 1− µ2t

4

) 1
2

, (23)

where µt = NtkhH/f is the nondimensional wavenumber.
The Eady model has a baroclinic instability near the deformation radius NtH/f . The

maximum growth rate σ = 0.31fΛt/Nt occurs at l = 0 and µt = 1.6, which corresponds
to a zonal wavelength λ = 3.9NtH/f . The growth curve for this thermocline only model
traces out the mesoscale lobe of the full model almost perfectly (Fig. 4b). The short-wave
cutoff in the Eady model at λ = 2.6NtH/f nearly coincides with the short-wave cutoff
of the mesoscale instability in the full model. The phase speed of the phase-locked waves
−ΛtH/2 very nearly matches the phase speed of the unstable mesoscale mode of the full
model (Fig. 5b). The critical level, where the phase speed matches the mean flow, is at
mid-depth. The split at the short-wave cutoff into surface and bottom modes also features
in the full model. In the thermocline only model, the surface and bottom modes are very
nearly Eady edge waves that do not sense the other boundary. The bottom mode of the
thermocline only model almost perfectly matches that of the full model (branch ‘d’). The
surface mode of the thermocline only model traces out branch ‘c’ of the full model, but then
the full model transitions to dynamics associated with the mixed layer that are not present
in the thermocline only model. The mesoscale instability of the full model therefore follows
Eady dynamics. The presence of the mixed layer only modifies the characteristics of the
instability slightly. The spatial structure of the most unstable mesoscale mode is also well
captured by the thermocline only model (Fig. 6c).

3.3 Mixed layer only

Shifting our attention to the submesoscale instability, we now consider an Eady model
representing the mixed layer with a rigid bottom at its base. A priori, we can see from (7)
that the full model converges to these dynamics as the thermocline stratification goes to
infinity. The thermocline then acts like a rigid bottom at the base of the mixed layer and
the conservation of θ1 turns into a conservation of the buoyancy at the base of the mixed
layer b(−h+).

The Eady model for the mixed layer captures some key properties of the submesoscale
instability, but misses others. The solution is the same as (23), with Λt replaced by Λm

and µt replaced by µm = Nmkhh/f . The peak growth rate σ = 0.31fΛm/Nm occurs at
µm = 1.6, which corresponds to a zonal wavelength λ = 3.9Nmh/f . This is a reasonable
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approximation of the maximum submesoscale growth rate of the full model (Fig. 4c). The
mixed layer only model captures the bulk shape of the submesoscale lobe of the full model;
its short-wave cutoff at λ = 2.6NmH/f is close to the short-wave cutoff of the full model.
But the mixed layer only model does not have a long-wave cutoff, unlike the submesoscale
instability of the full model. The phase speed structure of the mixed layer only model, with
its two phase-locked modes in the unstable range and the split into a surface mode and one
propagating on the base of the mixed layer, corresponds to a similar mode structure of the
full model (Fig. 5c). The spatial structure of the most unstable Eady mode resembles that
of the most unstable submesoscale mode of the full model (Fig. 6d). It tilts into the shear
in the mixed layer, but does not leak into the thermocline.

3.4 No bottom

The submesoscale instability is better approximated if modes are allowed to penetrate into
the thermocline. To isolate the submesoscale instability, we consider again the layered
model but let the thermocline be infinitely deep. That eliminates bottom edge waves, so
no mesoscale instability occurs.

Eady considered the atmospheric analogue to this system to relax the assumption that
a rigid lid is placed at the tropopause [10]. The system with no bottom again reduces to
two variables; the inversion matrix is

L = fkh

(
− cothµm

Nm

cschµm
Nm

cschµm
Nm

− cothµm
Nm

− 1
Nt

)
(24)

and

U = diag
(
0,−Λmh

)
, (25)

Γ = diag
(
f2Λm/N

2
m,−f2Λm/N

2
m + f2Λt/N

2
t

)
. (26)

In the case Λ = Λm = Λt, the solution is [10, 2]

c = −Λh

2

(
1 +

α

µm

)
± iΛh

µm

[
(1− α2)(µm − tanhµm)

tanhµm + α
− 1

4
(µm − α)2

] 1
2

, (27)

where µm = Nmkhh/f and α = Nm/Nt. This solution converges to the mixed layer only
solution if α � 1 and α � µm, which is equivalent to Nt � Nm and kh � f/Nth. This
shows that large thermocline stratification can act like a rigid bottom, but only for scales
that are not too large. Modes of large horizontal scale still manage to penetrate into the
thermocline, by which the large-scale dynamics are altered.

The growth rates and phase speeds of this reduced model almost perfectly match the
growth rates and phase speeds of the full model at scales smaller than about 100 km (Fig. 4d
and 5d). This model now captures the long-wave cutoff of the submesoscale instability. At
large scales, where µm � α and µm � 1 or equivalently kh � f/Nth and kh � f/Nmh,
the dynamics split into modes that are barotropic and baroclinic in the mixed layer. The
barotropic mode behaves like a surface edge wave, with phase speed −fΛ/Ntkh, which does
not sense the mixed layer (Fig. 5d). The baroclinic mode is baroclinic in the mixed layer
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and remains shallow for large scales—its critical level is the base of the mixed layer, its
phase speed is −Λh. The vastly different phase speeds of these two modes prevent phase-
locking, so no instability occurs at large scales. This stabilization is analogous to that by
the β-effect [25, 21, 33]. For the unstable modes, this reduced model with no bottom also
captures the deepening of the critical level as the scale gets larger, −Λh(1 + f/Ntkhh)/2,
which is due to the increasing penetration of the unstable mode into the thermocline.

The longwave cutoff in this constant-shear case depends on the ratio Nm/Nt. In the
more general case Λm 6= Λt, it also depends on the ratio Λm/Λt. No longwave cutoff occurs
if Λt = 0, as found by Rivest et al., who considered the atmospheric case with no shear
in the stratosphere [27]. There is also no longwave cutoff as Nm/Nt → 0, which is the
Eady limit. The instability itself requires a reversal of the PV gradient, so the condition
for instability is Λm/N

2
m > Λt/N

2
t . This condition is typically satisfied in the ocean.

3.5 Summary

We are now in a position to understand all branches in the phase speed diagram of the
full model. Branch ‘a’ is a mode that is baroclinic in the mixed layer and does not pene-
trate much into the thermocline. It does not sense the bottom. Branch ‘b’ is the unstable
branch corresponding to the deep, Eady-like instability. Branch ‘c’ is a mode that is nearly
barotropic in the mixed layer and behaves like a surface edge wave in the thermocline. It
does not interact much with the bottom. Branch ‘d’ is a bottom edge wave that is indepen-
dent of the surface and interface. Branch ‘e’ is the unstable branch corresponding to the
mixed layer instability. The instability is significantly modified by the modes’ penetration
into the thermocline, but the scale and growth rate of the most unstable mode still scale
with the mixed layer deformation radius and the Eady growth rate. Branches ‘f’ and ‘g’
are edge waves propagating on the surface and the interface that do not interact with any
of the other edge waves.

4 Nonlinear dynamics

We now turn to the nonlinear dynamics that arise when the perturbations grow to finite
amplitude. Before considering the combined effect of the deep mesoscale and mixed layer
instabilities, we first consider them separately. We start with the thermocline only case, in
which only the deep instability is present. We subsequently contrast that case with the case
with no bottom, in which only the submesoscale instability is present. We finally consider
the full model, in which both instabilities occur.

We solve the full nonlinear perturbation equations

∂θ′

∂t
+ U

∂θ′

∂x
+ Γ

∂ψ′

∂x
+ J(ψ′,θ′) = −r∇−2θ′ − ν∇2nθ′, (28)

where the Jacobian operator is understood to act element-wise. We introduce hypoviscosity
with coefficient r, which provides a large-scale drag, and hyperviscosity with coefficient ν
and order n, which helps ensure numerical stability and absorbs enstrophy that is cascaded
to small scales.
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We solve these equations in a 500 km × 500 km domain that is doubly periodic in the
perturbation quantities. A fully dealiased pseudo-spectral code with a resolution 512× 512
is used. The time derivatives are discretized using a forth-order Runge-Kutta scheme. The
hypoviscosity coefficient is r = 10−16 m−2 s−1; the hyperviscosity is of order n = 10 and
the coefficient is ν = 2.5× 1046 m20 s−1. All calculations are started with a white noise of
small amplitude in θ′.

4.1 Thermocline only

We start with the familiar Eady model representing the thermocline. Since the dissipative
terms are weak in the linear equations, the instability grows until it reaches finite amplitude,
when the nonlinear terms become important. Secondary instabilities set in and the flow
quickly evolves into a fully turbulent regime. The perturbations grow in scale until they
reach a scale where hypoviscosity is strong enough to damp the flow significantly. Thereby,
the flow comes into statistical equilibrium, which is the time period considered in what
follows.

A snapshot from the equilibrated state exhibits a patchy surface buoyancy field (Fig. 7a).
There are strong buoyancy gradients. The strongest vortices visible are those at a scale of
about 200 km. Smaller-scale vortices are present, but successively weaker. They result
from a roll-up instability that features prominently in the evolution of the flow [12]. The
submesoscale dynamics of this setup are decoupled surface QG dynamics at the surface and
bottom that are stirred by the meosscale thermocline instability [28].

As typical for turbulent flows, a continuum of scales is energized. This is quantified by
the kinetic and potential energy spectra,

Kk,l =
1

2

(
|uk,l|2 + |vk,l|2

)
, Pk,l =

1

2

|bk,l|2
N2

, (29)

which we average azimuthally in wavenumber space, because the statistics are very nearly
isotropic. We also average in time to characterize the statistics of the equilibrated state.
The surface and bottom spectra of both kinetic and potential energy peak at a wavelength of
about 200 km and fall off roughly like k

−5/3
h (Fig. 8), as predicted by surface QG turbulence

theory [1]. Since smaller-scale modes decay more rapidly in the vertical than larger-scale
modes, the spectra are steeper in the interior. At 100 m depth, the mesoscale energy levels
are similar to those at the surface, but submesoscales energy levels are much lower.

A useful diagnostic of turbulent dynamics is the spectral energy budget. While the
dynamics are completely determined by the advection of conserved quantities at the surface
and bottom, we first consider the energy budget over the entire depth range. We will present
a lower-order energy diagnostic for the no bottom case below.

The equations for the spectral perturbation potential and kinetic energies are

∂Pk,l
∂t

= Re

[
fΛ

N2
v∗k,lbk,l − w∗k,lbk,l −

1

N2
b∗k,l Jk,l(ψ

′, b′)
]
−
(
rk−2h + νk2nh

)
Pk,l (30)

∂Kk,l

∂t
= Re

[
−f ∂

∂z

(
w∗k,lψk,l

)
+ w∗k,lbk,l + ψ∗k,l Jk,l(ψ

′,∇2ψ′)
]
−
(
rk−2h + νk2nh

)
Kk,l (31)

where P is potential energy, K is kinetic energy, the asterisks denote complex conjugates,
and Re denotes the real part. The first term on the right-hand side of the potential energy
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Figure 7: Snapshots of surface buoyancy (mean plus anomalies) from the equilibrated states
of the (a) thermocline only simulations, (b) the no bottom simulation, (c) the full model
simulation with equal mixed layer and thermocline shears, and (d) the full model with
reduced mixed layer shear. The color scale extends from white (more buoyant) through
blue to black (less buoyant) and extends between ±fΛmL.
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Figure 8: Wavenumber spectra of kinetic and potential energy from the thermocline only
simulation. (a) Kinetic energy spectra at the surface and 100 m depth, (b) spectral density
of kinetic energy in the wavenumber–depth plane, (c) potential energy spectra at the surface
and 100 m depth, (d) spectral density of potential energy in the wavenumber–depth plane.
In panels (b) and (d), no values below 10−3 m3 s−2 are shown.
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equation represents the extraction of potential energy from the mean flow. The second term
represents the conversion from potential to kinetic energy. This term appears as a source
term in the kinetic energy budget. The third term in the potential energy budget repre-
sents spectral transfer by triadic interactions. The sum of this term over all wavenumbers
vanishes. An equivalent spectral transfer term appears in the kinetic energy budget (third
term). Kinetic energy can also be distributed vertically by pressure fluxes, represented by
the first term in the kinetic energy budget. The vertical integral of this term vanishes.
The viscosity terms act as sinks for both potential and kinetic energy—hypoviscosity acting
at large scales, hyperviscosity at small scales. We present these budgets again averaged
azimuthally in wavenumber space and over time.

The extraction of potential energy from the mean is dominated by the largest, most
energetic eddies (Fig. 9a). The extraction is independent of depth, because q′ = 0 and
therefore

0 = Re v∗k,lqk,l = Re
∂

∂z

(
f

N2
v∗k,lbk,l

)
. (32)

Potential energy is transferred downscale by triadic interactions and deposited near the
deformation radius and in wedges near the surface and the bottom that reach to much
smaller scales (Fig. 9b). Where potential energy is deposited by scale interactions, it is
converted into kinetic energy (Fig. 9c). Near the deformation radius, this conversion is
due to the mesoscale instability that produces vertical buoyancy fluxes. In the wedges
near the surface and bottom, the conversion is due to secondary instabilities present in
the surface QG cascades, which occur independently at the surface and the bottom [28].
The kinetic energy thus created is transferred back to large scales (Fig. 9d). The bulk of
the energy is dissipated through hypoviscosity at the scales of the largest, most energetic
eddies (Fig. 9e). The energy dissipation through hyperviscosity is small, which reflects the
fundamental property of geostrophic turbulence that energy is trapped at large scales and
viscous energy dissipation vanishes as the viscosity goes to zero [18, 9].

4.2 No bottom

Now consider the case with no bottom, which has a mixed layer instability only. This
instability, too, grows to finite amplitude and the flow becomes turbulent. There is a
turbulent spin-up phase, in which the eddies that are initially of the size of the instability
grow larger until they reach a statistical equilibrium with hypoviscosity.

A snapshot of surface buoyancy reveals that the flow’s structure is quite different from
the thermocline only case (Fig. 7b). There are many more coherent vortices. They are
prominent at a scale of about 100 km, but many smaller-scale coherent vortices exist. These
do not appear to be present in observations of sea surface temperature or realistic regional
ocean models, a point we will come back to in the discussion. If we focus on the filamentary
sea, however, there are again strong fronts, superimposed by submesoscale structure, which
is realistic.

The energy spectra reflect this nearly frontal structure at the surface (Fig. 10). The
kinetic energy spectra fall off slightly more steeply than k−5/3 at the scales of the linear
instability and like k−5/3 at scales smaller than the linear short-wave cutoff, both at the
surface and at the base of the mixed layer at 100 m depth (Fig. 10a). The mixed layer
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Figure 9: Spectral energy budget for the thermocline only simulation. The terms are
(a) potential energy extraction from the mean, (b) spectral potential energy flux divergence,
(c) potential to kinetic energy conversion, (d) kinetic energy flux divergence, including
spectral flux and pressure flux, (e) hypoviscosity on both kinetic and potential energy, and
(f ) hyperviscosity on both kinetic and potential energy. All terms are multiplied by the
wavenumber to compensate for logarithmic shrinking.
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Figure 10: Wavenumber spectra of kinetic and potential energy from the no bottom simu-
lation. (a) Kinetic energy spectra at the surface and 100 m depth, (b) spectral density of
kinetic energy in the wavenumber–depth plane, (c) potential energy spectra at the surface
and 100 m depth, (d) spectral density of potential energy in the wavenumber–depth plane.
In panels (b) and (d), no values below 10−3 m3 s−2 are shown.
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instabilities energize the entire depth of the mixed layer. This is in sharp contrast to the
thermocline only simulation, in which the surface QG dynamics energize a thin wedge close
to the surface only.

It should be noted that the equilibrated flow in the no bottom case is much more
energetic than in the thermocline only case and more energetic than is realistic. While the
equilibration by hypoviscosity is unrealistic, we will see that the enhanced energy levels are
due to more efficient extraction of mean potential energy in the weakly stratified mixed
layer, which is a dynamical property of the system that does not depend on how the flow
is equilibrated. We will discuss reasons for this excess in energy in the conclusions.

Below the base of the mixed layer, The potential energy spectra are the same as the
kinetic energy spectra (Fig. 10c). In the mixed layer, the potential energy spectra are
significantly flatter than the kinetic energy spectra. This is in contrast to observations that
show rough equipartition between kinetic and potential energy [6, 7].

The vertical structure of the energy shows that the mixed layer instabilities also energize
the thermocline below (Fig. 10b,d). At the instability scale, the flow does not reach much
into the thermocline. But as the horizontal scale of the flow increases, so does the vertical
scale. The flow exhibits the familiar property of geostrophic turbulence that it barotropizes
as it increases its horizontal scale [31].

The energy transfer into the thermocline can further be examined in the spectral energy
budget (Fig. 11). Potential energy is again extracted at the scale of the largest, most
energetic eddies, but the extraction is now confined to the mixed layer (Fig. 11a). Potential
energy is transferred from the extraction scale to the scale of the mixed layer instability
(Fig. 11b). The mixed layer instability converts potential energy into kinetic energy in the
mixed layer, at the instability scale (Fig. 11c). The kinetic energy created by the instability
again enters an inverse cascade, but now it is not only transferred to large horizontal scales,
but also vertically into the thermocline (Fig. 11d). The deposition of kinetic energy at the
scale of the largest eddies is well distributed across the mixed layer and upper thermocline.
The vertical distribution of damping by hypoviscsosity also reflects the fact that the flow is
not confined to the mixed layer at the scale of the largest eddies, where hypoviscosity acts
(Fig. 11e). Hyperviscosity acts only at the smallest resolved scales (Fig. 11f ). While small,
it does affect the other terms in the budget. We neglect this effect, because it would tend
to zero if the resolution was increased and the hyperviscosity coefficient decreased.

These energy pathways are reminiscent of the phenomenology of two-layer baroclinic
turbulence. The turbulent dynamics of a two-layer system can be understood in terms of
a dual cascade [26, 29]. Baroclinic energy is extracted from the mean at the scale of the
largest, most energetic eddies. The barotropic flow dominates at these scales and transfers
the baroclinic energy downscale. The baroclinic mode behaves like a passive tracer at
these scales. Around the deformation radius, the instability converts baroclinic energy into
barotropic energy. The barotropic energy then enters an inverse cascade, which gets halted
at some scale by drag.

Can the turbulent dynamics induced by mixed layer instabilities be understood in similar
terms? To phrase the analysis in these terms, we need a concept of modes, which the energy
can be partitioned into. In our system, the vertically integrated energy can be written

191



10−3 10−2 10−1 100

inverse wavelength [km−1]

0

100

200

300

400

500

d
ep

th
[m

]
PE extraction(a)

10−3 10−2 10−1 100

inverse wavelength [km−1]

0

100

200

300

400

500

d
ep

th
[m

]

PE flux divergence(b)

10−3 10−2 10−1 100

inverse wavelength [km−1]

0

100

200

300

400

500

d
ep

th
[m

]

PE to KE conversion(c)

10−3 10−2 10−1 100

inverse wavelength [km−1]

0

100

200

300

400

500

d
ep

th
[m

]

KE flux divergence(d)

10−3 10−2 10−1 100

inverse wavelength [km−1]

0

100

200

300

400

500

d
ep

th
[m

]

hypoviscosity(e)

10−3 10−2 10−1 100

inverse wavelength [km−1]

0

100

200

300

400

500

d
ep

th
[m

]

hyperviscosity(f )

−150 −100 −50 0 50 100 150

wavenumber × spectral energy tendency [10−9 m2 s−3]

Figure 11: Spectral energy budget for the no bottom simulation. The terms are (a) potential
energy extraction from the mean, (b) spectral potential energy flux divergence, (c) potential
to kinetic energy conversion, (d) kinetic energy flux divergence, including spectral flux and
pressure flux, (e) hypoviscosity on both kinetic and potential energy, and (f ) hyperviscosity
on both kinetic and potential energy. All terms are multiplied by the wavenumber to
compensate for logarithmic shrinking.
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entirely in terms of the quantities at the interfaces:

E = −1

2
ψ†θ = −1

2
ψ†Lψ, (33)

where we dropped the k, l subscripts to denote Fourier transforms. Since L is real and
symmetric, it is diagonalizable by a unitary matrix,

L = S†DS, (34)

where D is diagonal and consists of the real eigenvalues of L, Dii = λi. The energy can
now be written as

E = −1

2
(Sψ)†D(Sψ) = −1

2

∑

i

λi |(Sψ)i|2 . (35)

This defines the modes (Sψ)i that are orthogonal with respect to the energy norm, i.e. the
energy can be partitioned into contributions by these modes. The structure of the modes
depends on wavenumber, because L and therefore S does.

For the no bottom case, with L given by (24), the eigenvalues of L are

λ0,1 = fkh


cothµm

Nm
+

1

2Nt
±
√

csch2 µm
N2

m

+
1

4N2
t


 (36)

and S, of which the columns constitute the eigenvectors, is

S =




1√
1+
(
coshµm+

Nmλ0
fkh

sinhµm
)2

1√
1+
(
coshµm+

Nmλ1
fkh

sinhµm
)2

coshµm+
Nmλ0
fkh√

1+
(
coshµm+

Nmλ0
fkh

sinhµm
)2

coshµm+
Nmλ1
fkh√

1+
(
coshµm+

Nmλ1
fkh

sinhµm
)2


 . (37)

For large scales, kh � f/Nth or µm � Nm/Nt, this reduces to

λ0 = −fkh
2Nt

, λ1 = − 2f2

N2
mh

. (38)

and simply

S =
1√
2

(
1 1
1 −1

)
. (39)

This indicates that at large scales the first mode is barotropic in the mixed layer. It
behaves like a surface QG mode penetrating into the thermocline. The streamfunction is
proportional to kh times the conserved quantity [12],

(Sψ)0 = −fkh
2Nt

(Sθ)0. (40)

The second mode at large scales is baroclinic in the mixed layer. The relation between the
streamfunction and the conserved quantity is

(Sψ)1 = − 2f2

N2
mh

(Sθ)1, (41)
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Figure 12: Vertical structure of the streamfunction corresponding to orthogonal modes in
the no bottom case for different wavenumbers kh = 2π/λ, with the wavelength λ given
in the panel titles. For panels (a), (b), and (c), the modes are normalized to unity at the
interface at 100 m depth; for panel (d), the modes are normalized to have a maximum value
of unity. Mode 0 is shown in blue, mode 1 in green. In panels (a), (b), and (c), the two
modes coincide below the interface.
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which is independent of kh, as expected for a baroclinic mode.
This description of the modes as barotropic and baroclinic mixed layer modes only

applies to large scales. At smaller scales, the modes have more complicated vertical structure
(Fig. 12). At scales smaller than the mixed layer deformation radius, the modes morph into
decoupled modes that are localized in the vertical at the surface and the interface. But for
the cascade dynamics to be discussed, the mode structure at large scales is what is most
important.

We can now consider the energy budget of these modes. We start from the vertically
integrated spectral energy budget, written in terms of the conserved quantities and corre-
sponding streamfunctions:

∂E

∂t
= −ψ†∂θ

∂t
. (42)

Again, the subscripts k, l are dropped. Using the diagonalization, this can be written as

∂E

∂t
= −ψ†L∂ψ

∂t
= −(Sψ)†D

∂

∂t
(Sψ) = −

∑

i

λi(Sψ)∗i
∂

∂t
(Sψ)i. (43)

The budget therefore splits into

∂Ei
∂t

= −λi(Sψ)∗i
∂

∂t
(Sψ)i. (44)

The terms on the right-hand side of this budget can be obtained from

−ψ†∂θ
∂t

= −(Sψ)†S
∂θ

∂t
, (45)

into which the spectral form of the evolution equation (28) is substituted. We further
expand the nonlinear terms in (28) into

J(ψ,θ) = J(S†(Sψ), S†(Sθ)) (46)

= J(S†P0(Sψ), S†P0(Sθ)) + J(S†P0(Sψ), S†P1(Sθ))

+ J(S†P1(Sψ), S†P0(Sθ)) + J(S†P1(Sψ), S†P1(Sθ)), (47)

where P0 and P1 are the projections onto the respective modes,

P0 =

(
1 0
0 0

)
, P1 =

(
0 0
0 1

)
. (48)

This allows us to separate out the nonlinear interactions of the modes with themselves
and with each other. The first term in (47), for example, represents the advection of the
barotropic mode by the barotropic mode, to use the naming convention introduced above.
The second term represents the advection of the baroclinic mode by the barotropic mode,
and so on.

In terms of the orthogonal modes, the energy budget is very similar to that of a baro-
clinic two-layer system [20]. The extraction of potential energy from the mean flow is
concentrated at the scale of the largest, most energetic eddies and creates mostly baroclinic
energy (Fig. 13b). That input of baroclinic energy is compensated by a spectral transfer of
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Figure 13: Modal energy budget for the no bottom case. The advective terms correspond
to the contributions from the four terms in (47). The energy tendencies are multiplied by
wavenumber to compensate for logarithmic shrinking.

baroclinic energy down to the instability scale, achieved by the advection of the baroclinic
mode by the barotropic mode (Fig. 13b). The energy deposited around the instability scale
is transferred to the barotropic mode by interactions between the two modes that amount
to baroclinic instability (Fig. 13b). This energy enters the barotropic budget rather less
localized in wavenumber space (Fig. 13a). This forcing of the barotropic mode is compen-
sated by the upscale spectral transfer of the barotropic mode (Fig. 13a). The deposition of
energy by the inverse cascade at the scale of the largest, most energetic eddies is compen-
sated by hypodiffusion (Fig. 13a). Energy loss by hyperdiffusion again enters the budget,
but is neglected because it is an artifact of finite resolution.

This model thus exhibits a dual cascade just like the classic two-layer system. Baroclinic
energy is transferred downscale through advection by the barotropic mode, baroclinic insta-
bility converts baroclinic into barotropic energy, and barotropic energy is transferred back
upscale in an inverse cascade. The difference is that the barotropic mode at large scales here
behaves like a surface QG mode, instead of a truly barotropic or two-dimensional mode.
The inverse cascade is therefore expected to yield a k−1h surface energy spectrum, which
we find to emerge if the inertial range is wide enough (not shown). More importantly,
the surface-QG-like behavior implies that in the inverse cascade, energy is transferred to
successively larger vertical scales. This provides a pathway for mixed layer instabilities to
energize the thermocline below.

4.3 Full model

We now consider the full model, which supports both deep and mixed layer instabilities.
We analyze two cases, one with the same shear in mixed layer and thermocline—the setup
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discussed in the linear stability analysis section—and one with reduced shear in the mixed
layer.

In the constant shear case, the growth rate of the mixed layer instability is much larger
than that of the deep instability. The mixed layer instability therefore grows to finite ampli-
tude first and the evolution in the mixed layer is very similar to that of the no bottom case.
Again, the eddies grow in size until they come into statistical equilibrium with hypoviscosity.

The equilibrated state of this case is very similar to that of the no bottom case, except
near the bottom (Fig. 14). The energy levels and spectra at the surface and the base of
the mixed layer are very similar. Near the bottom, a wedge in wavenumber–depth space is
energized, just like in the thermocline only case. This is due to the surface QG dynamics
at the bottom.

The energy budget is also similar to the case with no bottom (Fig. 15). The main
energy pathway is again extraction of potential energy in the mixed layer, transfer to the
mixed layer instability scale, conversion to kinetic energy, transfer back to large scales and
into the thermocline, and dissipation by hypoviscosity. There is additional extraction in the
thermocline, but that is weak compared to the extraction in the mixed layer. The dominant
dynamics are therefore those described for the no bottom case. Interaction with the bottom
is possible, but of secondary importance in this parameter regime.

A different picture emerges when the mixed layer shear is reduced. We choose the mixed
layer shear such that the growth rates of the two instabilities are comparable, which from
Eady scaling is expected to occur if Λm/Nm = Λt/Nt is satisfied, so at Λm = 2.5× 10−5 s−1.
The results of the linear stability analysis for this mixed layer shear show that indeed the
growth rates are comparable (Fig. 16). The horizontal scales of the instabilities and the
overall structure of the dispersion curves have not changed. Reducing the mean shear by
this amount means that the mean available potential energy is vertically constant.

This system with reduced mixed layer shear equilibrates to realistic and much lower
energy levels than the constant shear case (Fig. 17). The energy levels are comparable to
the thermocline only case. The vertical structure of energy in this case, however, is still
different from the thermocline only case. The mixed layer instability, while not significantly
increasing the mesoscale energy levels, does energize the mixed layer at submesoscales.

This can be explained by again considering the energy budget (Fig. 18). The potential
energy extraction from the mean is now roughly constant vertically. The energy pathway
induced by the mixed layer instability, however, is still active. Potential energy is transferred
to the mixed layer deformation radius, where it is converted into kinetic energy and enters
an inverse cascade. This energy cycle is stronger than that of surface QG turbulence in the
thermocline only case (Fig. 9).

This difference between mixed layer dynamics and surface QG dynamics is also reflected
in vertical velocities that are produced by the instabilities (Fig. 19). While the available
potential energies are the same and the resulting surface energy levels comparable between
this reduced mixed layer shear case and the thermocline only case, there are dramatically
larger vertical velocities in the presence of a mixed layer. These enhanced vertical velocities
extend significantly below the base of the mixed layer. The largest vertical velocities are
located in the vicinity of fronts in the filamentary sea (Fig. 20). Coherent vortices, while
associated with the large buoyancy gradients, induce relatively weak vertical motion. The
large vertical velocities appear to be induced by the dynamic filamentary structure that
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Figure 14: Wavenumber spectra of kinetic and potential energy from the full model simu-
lation. (a) Kinetic energy spectra at the surface and 100 m depth, (b) spectral density of
kinetic energy in the wavenumber–depth plane, (c) potential energy spectra at the surface
and 100 m depth, (d) spectral density of potential energy in the wavenumber–depth plane.
In panels (b) and (d), no values below 10−3 m3 s−2 are shown.
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Figure 15: Spectral energy budget for the full model simulation. The terms are (a) potential
energy extraction from the mean, (b) spectral potential energy flux divergence, (c) potential
to kinetic energy conversion, (d) kinetic energy flux divergence, including spectral flux and
pressure flux, (e) hypoviscosity on both kinetic and potential energy, and (f ) hyperviscosity
on both kinetic and potential energy. All terms are multiplied by the wavenumber to
compensate for logarithmic shrinking.
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Figure 16: growth rates and phase speeds

undergoes mixed layer instabilities.
The root mean square vertical velocities are similar in structure to those found in prim-

itive equation models [8]. A careful comparison is necessary to establish whether the QG
dynamics described here reproduce the magnitude of the vertical velocities or whether non-
QG effects significantly enhance vertical velocities. Such a comparison, however, is beyond
the scope of the report.

5 Conclusions

Our analysis suggests that the presence of a mixed layer has a profound effect on subme-
soscale turbulence. The low stratification in the mixed layer, combined with geostrophic
shear, provides a large amount of available potential energy that can be extracted through
baroclinic instabilities in the mixed layer. The extraction is dominated by mesoscale ed-
dies, but potential energy is subsequently cascaded down to the deformation radius of the
mixed layer, where baroclinic instability converts it into kinetic energy. In the QG dynam-
ics considered here, no energy is lost to small scales. The entire energy extracted from the
mean in the mixed layer is converted to kinetic energy around the deformation radius of the
mixed layer and subsequently transferred back to larger scales in an inverse cascade that
also energizes the thermocline below. Through this process, mixed layer instabilities can
energize the mesoscale eddy field.

These dynamics are significantly different from surface QG dynamics, which are often
invoked to explain energetic submesoscales. Surface QG dynamics can only energize a thin
surface layer, whereas mixed layer instabilities energize the entire mixed layer. The vertical
and spectral structure found in the presence of a mixed layer is consistent with that found in
wintertime observations in the Gulf Stream region, except for the potential energy spectra,
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Figure 17: Wavenumber spectra of kinetic and potential energy from the full model simu-
lation with reduced mixed layer shear. (a) Kinetic energy spectra at the surface and 100 m
depth, (b) spectral density of kinetic energy in the wavenumber–depth plane, (c) potential
energy spectra at the surface and 100 m depth, (d) spectral density of potential energy
in the wavenumber–depth plane. In panels (b) and (d), no values below 10−3 m3 s−2 are
shown.
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Figure 18: Spectral energy budget for the full model simulation with reduced mixed layer
shear. The terms are (a) potential energy extraction from the mean, (b) spectral potential
energy flux divergence, (c) potential to kinetic energy conversion, (d) kinetic energy flux
divergence, including spectral flux and pressure flux, (e) hypoviscosity on both kinetic and
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vertical velocity snapshot is taken at 47 m, the depth of the maximum root mean square
vertical velocity.
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which are underestimated by our model.
The energization by mixed layer instabilities implies a seasonal cycle in submesoscale

turbulence, which has been observed in both models and observations. Surface QG dynamics
do not predict a seasonal cycle in submesoscale turbulence, because the dynamics are driven
by mesoscale processes. Observational evidence for surface QG dynamics has yet to be
found, but the dynamics may be important when mixed layers are shallow and surface
buoyancy gradients strong.

An aspect of our model that is inconsistent with observations is that only the subme-
soscale appears to undergo a strong seasonal cycle, not the mesoscale, as implied by the
dynamics of our simple QG model. The energization of the mesoscale by mixed layer insta-
bilities appears to be much less effective in the real ocean. Our model is more consistent
with the real ocean if the mixed layer shear is reduced. Then, the mesoscale surface en-
ergy levels do not depend on the presence of the mixed layer and the model equilibrates to
realistic submesoscale energy levels.

This inconsistency with observations may point to shortcomings of the QG system in
predicting the equilibrated energy levels. The lack of small-scale energy dissipation makes
the mixed layer instabilities very effective in energizing the entire turbulent flow. If non-
QG effects were allowed, a fraction of the energy extracted from the mean in the mixed
layer would be dissipated at small scales. This energy leak to small scales is likely as the
Rossby and Froude numbers can be large enough at submesoscales to only marginally allow
QG scaling. Especially the host of coherent vortices forming in QG dynamics (Fig. 7)
may not form in the real ocean, because they would be unstable to non-QG instabilities.
The possibility of an energy leak to small scales has been demonstrated by Molemaker
et al., who studied an Eady instability with Ro = Fr = 0.5 using the full Boussinesq
equations [23]. While much of the energy extracted from the mean is still trapped at
large scales, as predicted by QG dynamics, some is lost to dissipation at small scales. A
small leak of energy in the instability may make a big difference in the cascade dynamics,
because that energy is not transferred back to mesoscales, where it would further enhance
the extraction of potential energy from the mean. We are currently investigating whether
primitive equation models indeed equilibrate to lower energy levels than QG models at
moderate Rossby and Froude numbers and will report the results elsewhere.

Another possible explanation for the lack of a strong seasonal cycle in the real ocean is
that our setup overestimates the amount of mean potential energy available for extraction.
QG dynamics do not allow for restratification, which would quickly increase the mixed
layer stratification and thereby reduce the available potential energy. We also hold the
mean shear fixed, which amounts to providing an infinite reservoir of available potential
energy. It does appear, however, that strong wintertime atmospheric forcing, with heat
fluxes on the order of several hundred watts per square meter, can effectively maintain both
a weak mixed layer stratification and horizontal buoyancy gradients.
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A Multi-layer model

A system of n layers of constant PV, of thickness hi and stratification Ni, consists of
n + 1 conserved quantities that are advected by the geostrophic flow at their respective
levels. Compared to the two-layer model considered in the main text, additional interface
quantities analogous to θ1 are present. The linear operator in the inversion relation (11)
has tridiagonal structure:

L = fkh




− cothµ0
N0

cschµ0
N0

cschµ0
N0

− cothµ0
N0

− cothµ1
N1

cschµ1
N1

. . .
. . .

. . .
cschµn−1

Nn−1
− cothµn−1

Nn−1
− cothµn

Nn
cschµn
Nn

cschµn
Nn

− cothµn
Nn



, (49)

where µi = Nikhhi/f . It may be more efficient to solve the inversion relation numerically
instead of calculating the inverse of this matrix, which will in general be full.

One can also include a PV gradient due to differential rotation. This can be done using
a trick described by Lindzen [21]: instead of using linear shear and constant stratification
in the layers, one can use parabolic shear or a modified stratification profile, which allows
cancellation of the contribution from the β-effect and retaining constant PV within the
layers. The PV gradient due to β is then included in the PV sheets at the interfaces.

B Density jump at layer interface

If there is a buoyancy jump g′ at the interface, the matching conditions must be modified.
To ensure a continuous pressure at the interface at z = −h+ η, we require

ψ(−h+)− ψ(−h−) = −g
′

f
η. (50)

Here, η is the perturbation of the interface between the constant-PV layers. The buoyancy
equations (5) can be combined with the kinematic condition

w =
∂η

∂t
+ J(ψ, η), (51)

applied at z = −h+ and z = −h−, to give

∂θ1
∂t

+ J(ψ1, θ1) = 0,
∂θ2
∂t

+ J(ψ2, θ2) = 0, (52)
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where

θ1 = f
b(−h+)

N2
m

+ fη, θ2 = f
b(−h−)

N2
t

+ fη, ψ1 = ψ(−h+), ψ2 = ψ(−h−). (53)

Together with the conservation of surface and bottom buoyancy,

θ0 = −f b(0)

N2
m

, θ3 = f
b(−H)

N2
t

, (54)

and the inversion relation obtained by solving (12) with the matching conditions above, the
model is complete. It now consists of four conserved quantities.
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Understanding Eddy Saturation in the Southern Ocean using

Mean Field Theory
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Abstract

The winds over the Southern Ocean are increasing with time, and the impact that this
change in forcing will have on the structure of the Antarctic Circumpolar Current (ACC)
is not well understood. The statistical mean state of the ACC is set by a competition
of several physical processes including the direct effects of winds, as well as the effects of
eddies produced by baroclinic instability. We formulate a highly idealized two-layer quasi-
geostrophic model of the ACC using a zonally-reentrant channel geometry. We determine
the dependence of the equilibrium shear on the imposed wind stress in this model and find
that some eddy saturation occurs: the domain mean eddy diffusivity is found to increase
with increasing wind stress, mitigating the wind-driven tendency to steepen the interfacial
slope. We then formulate the mean-field dynamics of our idealized model in which eddy-
eddy interactions are discarded but eddy-mean flow interactions are retained. We find that
the mean-field model robustly reproduces the qualitative dependence of the shear on wind
stress seen in the full model. The mean-field model also captures the sense of the depen-
dence of the full dynamics on other model control parameters such as the bottom friction.
Our results suggest that mean-field dynamics constitutes a simplified and useful theoretical
framework within which progress toward a physical understanding of eddy diffusion in the
ACC might be made.

1 Introduction

The Antarctic Circumpolar Current (ACC) is a strong eastward current circulating around
the Antarctic continent with surface speeds on the order of 30 cm/s and strong eastward
flow extending to depth. The ACC is driven by persistent westerly winds blowing over
the surface of the Southern Ocean (SO) with characteristic velocities on the order of 10
m/s, corresponding to a surface wind stress of approximately 0.2 N/m2 [10]. The ACC is
characterized by a strong vertical shear of zonal velocity, with the large surface currents
diminishing to a weak flow near the ocean bottom. This vertical shear is associated with
the sloping of isopycnal surfaces across the ACC: isopycnals deepen moving away from the
Antarctic continent, with the rate of deepening being proportional to the strength of the
zonal mean shear. The SO is zonally reentrant in the Drake Passage latitude band near
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60S, but connects with the zonally-bounded ocean basins equatorward of the ACC. Isopy-
cnals in the ocean basins are relatively flat and are continuous with those in the ACC.
An emerging theoretical paradigm [14, 15] relates the depth of each isopycnal in the basin
interior to the slope of that isopycnal across the ACC. In this picture, isopycnal slopes in
the ACC play an important role in setting the deep stratification of the ocean basins. The
deep stratification in turn influences the large-scale meridional overturning circulation in
the Atlantic basin, which largely flows along isopycnal surfaces. The overturning circulation
redistributes carbon and heat on the planetary scale and thus plays a critical role in global
climate [10]. These considerations indicate that understanding the physical processes con-
trolling the strength and vertical structure of the ACC constitutes an important problem
in climate dynamics.

Observational records indicate that the strength and structure of the winds over the SO
are changing in time. These changes have been linked to Antarctic ozone depletion, and have
led to stronger eastward surface winds at ACC latitudes [19, 20]. How the ACC will respond
to this change in forcing is not well understood. Observational results have suggested that
the SO carbon sink is weakening as a result of the wind increases due to an associated
enhancement of the upwelling rate in the SO [8]. Some theoretical arguments [15] connect
such increases in upwelling with steepening of ACC isopycnal slopes. However, observations
have also suggested that isopycnal slopes in the ACC have remained essentially constant
[3], and high-resolution numerical modeling results have recently demonstrated that SO
overturning rate and isopycnal slopes may not covary as suggested by theoretical models
[12].

The spatial structure of the zonal mean isopycnals in the depth-latitude ACC cross-
section are determined by the interactions of several physical processes. These processes
include the surface buoyancy fluxes, which set the buoyancy structure in the outcrop region;
the surface Ekman transport, which tends to steepen isopycnals in the ACC region; and
heat fluxes due to baroclinic eddies, which act to flatten isopycnals. Surface buoyancy
fluxes are commonly taken to be constant in theoretical models of the ACC, although this
assumption has been shown to have important impacts on the response of the overturning
as winds are increased [2]. The Ekman response is well-understood and increases linearly
with the imposed wind stress. The eddy response is less straightforward, and understanding
how eddy effects vary with forcing constitutes a crucial step toward understanding the large
scale stratification and overturning of the world oceans.

Recent work has shown that numerical model predictions of the response of the ACC
mean state to changes in wind forcing is strongly dependent on how eddies are treated in
those models. Coarse resolution simulations typically parameterize eddies using the Gent-
McWilliams scheme and predict that the overturning and isopycnal slopes will respond
strongly to increases in the wind stress [14, 15]. In contrast, high resolution simulations
that permit or resolve eddies in the SO have predicted a dramatically reduced sensitivity
of isopycnal slopes to increasing winds [13]. This reduction in sensitivity associated with
the accurate simulation of SO eddies is referred to as eddy-saturation, and can produce
isopycnal slopes that are entirely independent of wind stress in some cases.

The effects of eddies on the SO mean state are frequently studied using the theoretical
framework of the transformed Eulerian mean (TEM) [9, 7]. The TEM description of the
relationship between eddies, winds, and isopycnal slopes is typically phrased as follows
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(following [2]). The steady-state Eulerian zonal mean budget buoyancy budget is

v∂yb+ w∂zb+ ∂yv′b′ + ∂zw′b′ = D (1)

in which (y, z) are the meridional and vertical Cartesian coordinates, (v, w) are the velocity
components in the y and z directions, b is the buoyancy, D represents any diabatic forcing
terms, and overbars and primes are used to indicate the zonal mean and deviations from
the zonal mean. Defining the TEM eddy streamfunction by ψ? = −w′b′/∂yb, (1) can be
rewritten as

J(ψres, b) = D − ∂y
[
(1− µ)v′b′

]
. (2)

Here we use the Jacobian notation J(f, g) = ∂yf∂zg−∂zf∂yg and have defined the quantities
ψres = ψ + ψ? and µ = −(∂zb)w′b′/(∂yb)v′b′, where ψ is the streamfunction corresponding
to the Eulerian mean velocities v and w. If the eddies act adiabatically so that their heat
fluxes are aligned with isopycnals then µ = 1 and in the absence of explicit diabatic terms
we obtain

J(ψres, b) = 0. (3)

This result shows that the residual circulation, which is the circulation relevant to heat
transport, is along isopycnals in an adiabatic ocean.

Many idealized models of the ACC are formulated in the geometry of a zonally-reentrant
channel bounded by zonal walls. In such a model isopycnals will intersect the wall on the
equatorward side, which constrains the residual circulation to vanish. This is because ψres

vanishes on the boundary by the condition of no normal flow at the wall, and ψres is constant
along isopycnals by (3). If µ = 0 we can rewrite the eddy streamfunction as ψ? = v′b′/∂zb
and the condition of zero residual circulation gives

0 = ψ + ψ? = ψ +
v′b′

∂zb
. (4)

The Eulerian mean streamfunction is given by the well-known Ekman overturning ψ =
−τ/(ρ0f) where τ is the surface wind stress, ρ0 is a reference density and f is the Coriolis
parameter. Assuming a Gent-McWilliams-like flux-gradient form for the eddy heat flux
v′b′ = −K∂yb in (4) immediately yields the formula

s = −∂yb
∂zb

=
τ

ρ0fK
(5)

which predicts the isopycnal slope s in terms of the external parameters τ , f , and ρ0 as well
as the eddy diffusion coefficient K. Although the real ACC is not bounded by zonal walls, it
remains plausible that (5) holds at leading order, as observations of the SO indicate that the
residual circulation is much weaker than either the eddy or Eulerian mean streamfunctions,
implying that the two contributions to ψres cancel one another heavily [10].

Equation (5) summarizes the competing effects of winds and eddies in determining the
isopycnal slopes. Increasing the wind stress τ steepens isopycnals according to the Ekman
response, while strengthening the eddy fluxes by increasing K flattens isopycnals. If K
is taken to be a constant, increasing τ produces a linear increase in the slope. On the
other hand, if K is taken to be proportional to the wind stress, then s will be invariant
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to changes in τ , i.e., the ACC will be completely eddy saturated. No accepted theoretical
argument currently exists to predict K, and many different assumptions have been used
to parameterize K and obtain a scaling for s(τ). Marshall and Radko [9] took K to be
proportional to the isopycnal slope K = αs to obtain s ∼ √τ . Based on mixing-length
arguments, Abernathey and Marshall [2] related K to the eddy kinetic energy (EKE) as
K ∼

√
EKE. In their simulations EKE was found to depend linearly on τ , predicting

K ∼ √τ . Meredith et al. [11] also suggested that K scales with EKE, but according to
a more complex relationship having two limiting cases. In the limit of small EKE, they
obtain K ∼ EKE3/2, while in the limit of large EKE they obtain K ∼

√
EKE. Assuming

EKE ∼ τ , these results predict a family of scaling laws s ∼ τγ with −1/2 < γ < 1/2. This
range of scalings includes cases in which isopycnal slopes steepen with τ , are constant with
τ , or decrease with τ .

Based on the above discussion it is clear that an improved understanding of eddy physics
in the ACC is required to make progress on the problem of the SO response to changes in
forcing. In this work, we use the two-layer quasigeostrophic (QG) equations to formulate a
highly-idealized model of the ACC. Within the context of this model, we identify a reduced
set of dynamics, the mean-field dynamics, which appears to reproduce the dependence of the
mean state on the winds that we observe in the full dynamics. The mean-field dynamics is
obtained by discarding eddy-eddy interactions from the full nonlinear equations of motion
while retaining the interactions between the eddies and the mean flow. This approach
has previously been successful in a variety of applications. O’Gorman and Schneider [16]
applied mean-field theory to an atmospheric GCM and obtained a mean state and storm
track statistics similar to those of the unapproximated GCM. Mean-field theory has also
been successful in predicting the formation and structure of zonal jets emerging on the
stochastically-driven barotropic β-plane [4, 17]. It is hoped that our application of the
highly-simplified mean-field dynamics to the ACC will provide a more tractable theoretical
framework within which progress toward understanding the eddy response to wind stress
variations may be made in the future.

2 Model Formulation

2.1 Model Geometry and Equations of Motion

Layer&1

Layer&2

h

H1

H2

Figure 1: Schematic (x, z) cross-section of the two-layer model geometry.
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We consider the motion of two fluid layers with thicknesses

h1 = H1 + h (6)

h2 = H2 − h (7)

where H1 and H2 are the (constant) mean thicknesses of layers 1 and 2 and h(x, y, t) is the
excess thickness of layer 1. We take x (increasing eastward) and y (increasing equatorward)
to be our zonal and meridional coordinates on a zonally-reentrant β-plane channel of merid-
ional width W and zonal extent L. A cross section of the model geometry is illustrated in
Fig. 1. The local slope of the interface between the two layers is given by the gradient of
h and is the analog of the isopycnal slope in the two-layer case. In the QG approximation,
the dynamics of the two layers are formulated in terms of the upper and lower layer QG
potential vorticities (PVs) q1 and q2, which are defined as

q1 = ∇2ψ1 + βy − F1(ψ1 − ψ2) (8)

q2 = ∇2ψ2 + βy + F2(ψ1 − ψ2). (9)

Here ψ1 and ψ2 denote the upper and lower layer geostrophic streamfunctions, which are
related to the geostrophic velocity components via u1,2 = −∂ψ1,2/∂y and v1,2 = ∂ψ1,2/∂x.
As we work on the β-plane, β = df/dy is a constant parameter. The parameters F1 and
F2 are defined in terms of the mean layer depths as

F1 =
f20
g′H1

F2 =
f20
g′H2

(10)

in which f0 is the constant background Coriolis parameter and g′ is the reduced gravity
g′ = g(ρ2 − ρ1)/ρ2 where ρi is the constant density of the fluid in layer i. We take ρ2 > ρ1
so that the fluid is stably stratified. The difference ψ1 − ψ2 appearing in (8,9) is related to
the interface deflection h through the relation

f0(ψ1 − ψ2) = g′h (11)

so that the zonal mean interfacial slope is given by

s ≡ −∂h
∂y

=
f0
g′

(U1 − U2) (12)

in which the overbar indicates a zonal average and we denote the zonal mean flow by
U1,2 = u1,2. Note the negative sign in the definition of s: as h is the excess thickness in
layer 1, s < 0 corresponds to h increasing with y. Equation (12) relates the baroclinic
component of the mean flow to the interfacial slope, and indicates that for positive shear
U1 > U2 the interface deepens as we move equatorward (f0 < 0).

The PV fields evolve according to the dynamical equations

∂tq1 + J(ψ1, q1) = −r(q1 − βy)− 1

ρ1H1
∂yτ + κ∇2q1 (13)

∂tq2 + J(ψ2, q2) = −r(q2 − βy)− dF2∇2ψ2 + κ∇2q2 (14)

213



in which J(f, g) = (∂xf)(∂yg)−(∂yf)(∂xg). Conservation of PV in (13) and (14) is modified
by forcing, in the form of wind stress acting on layer 1, and by dissipation, in the form of
Rayleigh drag, diffusion, and bottom friction. We take the wind stress to be of the idealized
form

1

ρ1H1
τ(y) = A sin(lgy) (15)

where lg = π/W and A controls the strength of the forcing. The stress is thus zonally-
symmetric with a half-sinusoidal profile across the channel, and acts to drive eastward flow
in the channel. Rayleigh drag damps the dynamical part of the PV qi−βy in both layers with
coefficient r. This Rayleigh drag on PV derives from Rayleigh drag on the upper and lower
layer velocities as well as on the interface deflection h, all with equal coefficients. Bottom
friction acts only on the relative vorticity in layer 2. We take the drag coefficient to be dF2

so that d controls the strength of the bottom drag when F2 is held constant. Diffusion of
PV with coefficient κ is included for numerical stability of the mean-field dynamics, which
we introduce in Section 2.5. We set κ = 0 when working with the full nonlinear equations
of motion, and so we ignore diffusion when discussing the full dynamics.

The model boundary conditions are periodic in x and appropriate boundary conditions
are applied in the meridional direction to ensure mass conservation. Mass conservation
requires that the meridional velocity vanishes at the boundaries y = 0,W , including both
the geostrophic (v) and ageostrophic (va) parts of the meridional velocity. Since vi =
∂ψi/∂x = 0, the vi = 0 geostrophic condition implies that v′i = 0, where the prime denotes
the deviation from the zonal mean. The ageostrophic condition vai = 0 implies the boundary
condition U1 = U2 = 0 on the zonal mean zonal flow, which we discuss in Section 2.2. Free-
slip boundary conditions are applied to u′i.

2.2 Zonal Mean Dynamics and Residual Circulation

Although the PV-evolution equations (13,14) are sufficient to determine the dynamics, it
is illuminating to examine the zonal mean dynamics directly in terms of the velocities and
interface deflection. The zonal mean equations of motion for the interface and zonal flow
are

∂tU1 = v′1q
′
1 + f0v

†
1 − rU1 +

1

ρ1H1
τ (16)

∂tU2 = v′2q
′
2 + f0v

†
2 − rU2 − dF2U2 (17)

∂th = −w† − rh (18)

in which we have defined the residual meridional velocities

v†1 = v1a +
1

H1
v′1h
′ (19)

v†2 = v2a −
1

H2
v′2h
′ (20)

w† = w1 + ∂yv′1h
′ = w2 + ∂yv′2h

′. (21)

The second equality in (21) follows from continuity at the interface of the component of
velocity normal to the interface, which ensures that h is a material surface viewed from
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either fluid layer. Note that (11) implies v′1h
′ = v′2h

′ and that mass continuity implies v†1 =

−(H2/H1)v
†
2. The vertical and meridional residual velocities are related through H1∂yv

†
1 =

−H2∂yv
†
2 = w†. Note that (18) implies that in steady state the residual circulation w†

balances the diabatic effect of Rayleigh drag on the interface. The residual circulation in
our simplified model is thus strongly constrained by the imposed drag parameters, and
vanishes by necessity in the limit r → 0.

The boundary condition of no normal flow at y = 0,W places a constraint on the zonal
mean flow at the walls that can be understood from (16). The PV flux v′1q

′
1 = 0 and

thickness flux v′1h
′ vanish at the walls because v′ = 0 there, and τ = 0 at the walls by our

choice of forcing structure. The budget then becomes

∂tU1 = f0v1a − rU1. (22)

We require that the ageostrophic meridional flow v1a = 0 at the walls to prevent a net flux
of mass into or out of the layer. This implies that U1 decays exponentially at the walls,
and that if U1 = 0 at t = 0, then U1 = 0 for all time. Similar considerations apply to U2.
As described in Section 2.1, we take U1 = U2 = 0 at the channel walls as our boundary
conditions on the mean flow.

The upper layer mean zonal momentum equation (16) shows that in the absence of
eddies, Rayleigh drag, or time-dependence, the wind stress drives an equatorward residual
flow v†1 > 0 whose Coriolis force balances the stress. This is the representation of the Ekman

response in our simplified two-layer model. The residual return flow v†2 in the lower layer
produces an eastward Coriolis force that must be balanced by bottom friction on the zonal
flow U2, thereby requiring eastward flow U2 > 0 in the lower layer. In the presence of eddies,
the eddy PV fluxes v′1q

′
1 and v′2q

′
2 act to transfer momentum from the upper layer to the

lower layer. It is straightforward to show that H1〈v′1q′1〉 = −H2〈v′2q′2〉, where angle brackets
denote a mean over the entire domain. This shows that the rate at which eddies remove
momentum from the upper layer is equal to the rate at which they deposit momentum into
the lower layer. Eddies produced by a baroclinically unstable shear then act to barotropize
the flow, reducing the shear and flattening the interface.

We now use the zonal mean equations (16,17,18) to cast the eddy saturation argument
discussed in the introduction into the language of our model. We make the assumption that
diabatic effects are weak and that the residual circulation is unimportant. The steady state
zonal mean momentum budgets then become

0 = v′1q
′
1 +

1

ρ1H1
τ (23)

0 = v′2q
′
2 − dF2U2. (24)

Further assuming that the interface term in the potential vorticity is dominant over the
planetary and relative vorticity terms, we write the PV fluxes in terms of the thickness flux
as

v′1q
′
1 ≈ − f0

H1
v′1h
′ (25)

v′2q
′
2 ≈ +

f0
H2

v′2h
′ =

f0
H2

v′1h
′. (26)
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Finally, we assume a flux-gradient relationship for the thickness flux

v′1h
′ = −K∂h

∂y
. (27)

Combining expressions (23), (25), and (27) immediately yields an expression for the zonal
mean interfacial slope s in terms of the model parameters and the eddy diffusivity K:

s = −∂h
∂y

=
τ

f0ρ1K
. (28)

Equation (28) implies that if the eddy diffusivity K is constant, the slope of the interface
scales linearly with the imposed wind stress. On the other hand, if K is linear in the wind
stress K = ατ , then the slope of the interface does not depend at all on the winds. This
highlights the crucial role of eddies in determining the response of the ocean to changing
forcing conditions.

The interfacial slope s is related to the zonal mean shear U1 −U2 by (12). By applying
the flux-gradient relation to the zonal mean momentum budget of the lower layer, we can
also obtain explicit formulas for U1 and U2 individually. Combining equations (26), (27),
and (28) yields

U2 =
δ

dF2

τ

ρ1H1
(29)

where δ = H1/H2 is the ratio of layer depths. Writing U1 = U2 + (U1 − U2) and applying
(28) then yields

U1 =

(
δ

dF2
+

1

F1K

)
τ

ρ1H1
. (30)

Equation (29) shows that, under these assumptions, the lower layer flow is independent of
the eddy diffusivity K and is determined solely by the winds and bottom friction. The
upper layer flow U1 weakens with increasing K as larger eddy diffusivities correspond to a
shallower interfacial slope and reduced vertical shear.

2.3 Model Fixed Point

As we are interested in the behavior of the model equations (13) and (14) as the wind stress
forcing is varied, it is useful to determine whether stable fixed point solutions exist over
some range of forcing strengths. The model indeed has a single, zonally-symmetric fixed
point that is stable for sufficiently weak wind stress. The fixed point becomes baroclinically
unstable as the wind stress is increased beyond a threshold value. For sufficiently strong
winds, the flow in the channel is turbulent.

To obtain the fixed point in terms of the model parameters, we first write

q1 − βy = Q̂1 cos(lgy) q2 − βy = Q̂2 cos(lgy) (31)

U1 = Û1 sin(lgy) U2 = Û2 sin(lgy) (32)

so that the steady state, zonally-symmetric PV budgets become (from (13) and (14))

0 = −rQ̂1 cos(lgy)− ∂y (A sin(lgy)) (33)

0 = −rQ̂2 cos(lgy)− dF2∂y

(
−Û2 sin(lgy)

)
. (34)
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Equations (33) and (34) can be solved for the steady state values of U1 and U2 by writing
the PV in terms of the zonal mean flow. We obtain

U1

∣∣∣
FP

= A
F2 + l2g

(
1 + F2d

r

)

F2d(l2g + F1) + r(l2g + F1 + F2)
sin(lgy) (35)

U2

∣∣∣
FP

= A
F2

F2d(l2g + F1) + r(l2g + F1 + F2)
sin(lgy). (36)

The corresponding upper and lower layer PV gradients are

∂q1
∂y

∣∣∣
FP

= β +
l2gA

r
sin(lgy) (37)

∂q2
∂y

∣∣∣
FP

= β −
l2gA

r

dF 2
2

dF2(l2g + F1) + r(l2g + F1 + F2)
sin(lgy). (38)

Several important theoretical properties of our model are revealed by expressions (35)-
(38). From (35) and (36) it is clear that the fixed point values of U1, U2, and U1 − U2

all increase linearly with the wind stress A. Equations (35) and (36) also show that the
fixed point structure depends crucially on the Rayleigh drag r. As r → 0, the fixed point
value of U1 tends to infinity while U2 asymptotes to a constant finite value. This can be
understood from the zonal mean momentum and thickness budgets (16) and (18). In the
absence of Rayleigh drag, (18) constrains the residual circulation to vanish. In the absence
of a residual circulation, eddies, or Rayleigh drag in the momentum equation, (16) shows
that the momentum injection by wind stress must be balanced by acceleration of the upper
level flow. This argument illustrates that no fixed point exists for r = 0: the solution is
always time-dependent, with the upper layer flow steadily increasing until the shear becomes
baroclinically unstable, even for very weak wind forcing. The fixed point PV gradients (37)
and (38) reveal the important role played by bottom drag in our model. The upper layer
PV gradient is always positive, while the PV gradient in layer 2 is positive for small A and
negative for sufficiently large A. However, if the coefficient of bottom friction d → 0, the
PV gradient in layer 2 can never become negative. As a change in sign of the PV gradient
must occur somewhere in the domain as a necessary condition for baroclinic instability, this
demonstrates that bottom drag is required for baroclinic instability to occur in this model.
We discuss the stability of the fixed point in more detail in the next section.

2.4 Model Parameters and Instability Properties

The model dynamics depends on a number of parameters, whose values we choose to be
approximately representative of the SO. As our primary interest is in the response of the
model dynamics to changing wind stress, we will normally vary the strength of the wind
stress A while keeping other parameters fixed. We also conduct a number of sensitivity tests
by varying the damping parameters r and d. We hold the following parameters constant in
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all model integrations:

W = 1000 km (39)

L = 2000 km (40)

F1 = 5.5× 10−4 km−2 (41)

F2 = 1.1× 10−4 km−2 (42)

β = 1.2× 10−3 (km day)−1. (43)

The zonal extent of the channel is thus twice its meridional width. The ratio F1/F2 =
H2/H1 = 5, so that the lower layer has a mean thickness of five times that of the upper layer.
The model dynamics does not depend on the values of H1 and H2 outside their appearance
in the F1 and F2 parameters. Similarly, the dynamics does not depend explicitly on g′ or
f0. The Rossby deformation radius Rd is given by Rd = (F1 + F2)

−1/2 = 38.8 km, so that
our channel extends over 50 Rossby radii in the zonal direction and approximately 25 in the
meridional direction. The value of β was chosen to represent a channel centered at 60◦S.

It remains to specify the values of the drag parameters r, d, and κ, as well as the
strength of the wind forcing A. We take a constant value of κ = 20 km2/day in the mean-
field dynamics and κ = 0 in the fully-nonlinear dynamics. The value of κ was chosen to be
as small as possible while still allowing the numerical model to remain stable. The Rayleigh
drag r and bottom drag d are varied in sensitivity tests, but our reference values are taken
to be

r = 1× 10−4 day−1 (44)

d = 500 km2/day. (45)

For the reference bottom friction value, the drag on the lower layer velocity has coefficient
dF2 = 0.05 day−1, so that the bottom drag acts approximately 500 times more rapidly than
the bulk Rayleigh drag. In the mean-field dynamics, the PV diffusion acts on the largest
scales with coefficient κl2g ∼ 2×10−4 day−1. Diffusion in the mean-field model is thus twice
as strong as the Rayleigh drag at the largest scales, and even stronger at smaller scales.
Diffusion plays an important role in the mean field equations (due to numerical constraints)
while playing no role in the nonlinear equations. This difference in dissipation constitutes
a limitation of our results, and resolving this issue is an important future direction of
this work. However, preliminary integrations of the nonlinear model in which comparable
diffusion was added to the dynamics produced results similar to those without diffusion for
wind stress values well beyond the stability boundary of the fixed point. This suggests that
comparisons between the mean-field and nonlinear dynamics remain informative in spite of
the differences in the dissipation properties of the two models.

We vary the wind stress over the range A = 0.1−7.0 km/day2. We take as our reference
value A = 1 km/day2. In our notation the wind stress A appears directly as an acceleration
of the zonal wind, and so has units of acceleration. To compare with realistic values of
the wind stress over the SO it is conventional to write the acceleration as τ0/(ρ1H1) where
τ0 has units of stress (N/m2) and ρ1 is the density of the upper layer. Choosing as a
typical density ρ1 ∼ 1035 kg/m3 and an upper layer depth H1 ∼ 1000 m, our reference
acceleration corresponds to a surface stress τ0 ∼ 0.14 N/m2. This is near the conventional

218



value of τ0 = 0.2 N/m2, so that A = 1 km/day2 is reasonably representative of the SO wind
stress. By varying A over a wide range in the vicinity of this reference value, we assess how
the state of the two-layer model ocean responds to changes in wind stress.

The growth rate of baroclinic instability is shown in Fig. 2 as a function of zonal
wavenumber for A = 1.0 km/day2 and reference values of the drag parameters. Panel (a)
shows the growth rate in the nonlinear model (κ = 0) and panel (b) shows the growth
rate in the mean-field dynamics (κ = 20 km2/day). For this forcing value the fixed point
is unstable with or without diffusion, and the e-folding time of the fastest growing wave
is on the order of a few days. The growth rate peaks near zonal wavenumbers 4 and 5.
The Rossby radius Rd = 38.8 km corresponds to a wavenumber kd ∼ 1/Rd = .025 km−1

which is near zonal wavenumber 8. Baroclinic instability thus sets in at scales somewhat
larger than the Rossby radius. In the absence of diffusion the stable high wavenumbers
decay on the timescale of the Rayleigh drag. With diffusion, all growth rates are reduced,
and higher wavenumbers decay more rapidly. For κ = 0, instability sets in at a minimum
wind strength of A ∼ .015 km/day2 for the reference drag values. For κ = 20 km2/day,
baroclinic instability does not set in until A = 0.25 km/day2. As we vary A over the range
A = 0.1− 7.0 km/day2, all model integrations are in the unstable regime for the nonlinear
model diffusion. The mean-field model is stable for the first few wind stress values and
unstable thereafter.
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Figure 2: Growth rate of baroclinic instability as a function of wavenumber (a) without
diffusion and (b) with diffusivity κ = 20 km2/day. Blue circles indicate the quantized
wavenumbers permitted by the periodic geometry. Reference values are used for all param-
eters.

2.5 Mean-Field Dynamics

Mean-field dynamics is a simplified theoretical model of the system (13,14) in which the
nonlinearity associated with the advection of eddy quantities by the eddy velocity field is
discarded but the nonlinearity associated with wave-mean flow interaction is retained. To
derive the mean-field equations, we first rewrite the nonlinear equations of motion in the
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Reynolds decomposition:

q1 = q1 + q′1 = Q1(y, t) + q′1(x, y, t) (46)

q2 = q2 + q′2 = Q2(y, t) + q′2(x, y, t). (47)

The mean PV fields Q1 and Q2 evolve according to the dynamical equations

∂tQ1 = −∂yv′1q′1 − r (Q1 − βy)− 1

ρ1H1
∂yτ + κ∂yyQ1 (48)

∂tQ2 = −∂yv′2q′2 − r (Q2 − βy)− dF2∂yyψ2 + κ∂yyQ2. (49)

These equations are equivalent to the set of equations (16,17,18) except that we include
the diffusion term for numerical stability of the approximated equations derived in what
follows. The eddy PV fields q′1 and q′2 evolve according to

∂tq
′
1 = −U1∂xq

′
1 − v′1∂yQ1 − rq′1 + κ∇2q′1 + EENL1 (50)

∂tq
′
2 = −U2∂xq

′
2 − v′2∂yQ2 − rq′2 + κ∇2q′2 − dF2∇2ψ′2 + EENL2. (51)

Here we use the notation EENL to denote the eddy-eddy nonlinearities, given by

EENL1 = −∂y
(
v′1q
′
1 − v′1q′1

)
− ∂x

(
u′1q
′
1 − u′1q′1

)
(52)

EENL2 = −∂y
(
v′2q
′
2 − v′2q′2

)
− ∂x

(
u′2q
′
2 − u′2q′2

)
. (53)

Equations (48)-(51) are exact. To form the mean field equations, we simply drop the EENL
terms, thereby discarding the effects of eddies advecting eddies. The discarded EENL
terms are those responsible for the scattering of energy between different zonal wavenumber
components of the flow. In the mean-field approximation, the dynamics is that of wave-
mean flow interaction: the structure of the eddy field is shaped by its interaction with the
mean flow, and the eddy fluxes in turn modify the mean flow to complete the two-way
wave-mean coupling.

The mean-field dynamics has considerable conceptual and practical advantages over the
full nonlinear equations of motion. As result of our approximation, the eddy equations of
motion (50,51) become linear in eddy quantities. We write the eddy PV fields as Fourier
series in zonal wavenumber components kn = 2πn/L

q1(x, y, t) = Re

[ ∞∑

n=1

q̃1,n(y, t)eiknx

]
q2(x, y, t) = Re

[ ∞∑

n=1

q̃2,n(y, t)eiknx

]
. (54)

Equations (50,51) then imply that each wavenumber component n evolves independently
of the others, interacting only through their mutual interaction with the mean flow. This
is in contrast to the full nonlinear equations in which Fourier components interact directly.
Since wavenumbers do not interact directly in the mean-field dynamics, it is mathematically
consistent to retain a single zonal wavenumber k in the expansions (54) and write

q1(x, y, t) = Re
[
q̃1(y, t)e

ikx
]

q2(x, y, t) = Re
[
q̃2(y, t)e

ikx
]
. (55)
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The resulting equations of motion for the single wave and the mean flow are

∂tq̃1 =
[
−ikU1 − r + κ(∂yy − k2)

]
q̃1 + [−ik∂yQ1] ψ̃1 (56)

∂tq̃2 =
[
−ikU2 − r + κ(∂yy − k2)

]
q̃2 +

[
−ik∂yQ2 − dF2(∂yy − k2)

]
ψ̃2 (57)

∂tQ1 = (k/2)∂yIm
(
ψ̃1q̃

?
1

)
− rQ1 −

1

ρ1H1
∂yτ + κ∂yyQ1 (58)

∂tQ2 = (k/2)∂yIm
(
ψ̃2q̃

?
2

)
− rQ2 + dF2∂yU2 + κ∂yyQ2 (59)

in which we have used the relation v′iq
′
i = −(k/2)Im(ψ̃iq̃

?
i ) to write the eddy PV fluxes ex-

plicitly in terms of the Fourier coefficient. Stars indicate complex conjugation. In equations
(56)-(59), the retained wavenumber k is a free parameter. We choose k based on the dom-
inant wavenumber observed in nonlinear model integrations. The mean-field dynamics is
also often referred to as the quasilinear approximation. Based on this nomenclature, we will
refer to the closed dynamical system (56)-(59) as the quasilinear model, abbreviated “QL”.
To mirror our naming convention we refer to the fully nonlinear dynamics (13)-(14) by the
abbreviation “NL”. We emphasize that the difference between NL and QL is in the EENL
terms only. As these terms play no role in the zonally-symmetric fixed point solution, the
QL dynamics has the same fixed point and stability properties as NL, with the exception
of the influence of PV diffusion which is included in QL but not in NL.

In the full nonlinear dynamics (13,14), a flow initialized with energy concentrated in
single zonal wavenumber component would nonlinearly produce a full spectrum of waves
through the EENL terms. In the mean-field dynamics this scattering of energy to other
waves does not occur and the interaction of a single wave with the mean flow can be con-
sistently investigated. The choice to retain a single wavenumber constitutes an extreme
simplification of the dynamics, reducing the dynamical variables of the model from two-
dimensional fields fluctuating in time ψ′(x, y, t) to one-dimensional Fourier structures vary-
ing in time ψ̃k(y, t). In addition to practical simplification, the mean field equations also
provide conceptual clarity by isolating the effects of wave-mean flow sector of the model
physics from the EENL effects. This separation allows us to evaluate the importance of
EENL processes in determining the model’s response to forcing. In the remainder of this
paper we will compare solutions of the nonlinear and mean-field equations to evaluate the
extent to which the mean-field theory can reproduce the response of the nonlinear model to
changes in wind forcing. The success or failure of the mean-field dynamics in mirroring the
behavior of the full model has important implications for our understanding of how eddies
influence the mean climate state.

2.6 Numerical Implementation

The NL equations (13)-(14) are integrated numerically on a staggered finite-difference grid
with nx = 128 points in the zonal direction and ny = 64 points in the meridional direction.
This corresponds to a model grid spacing of dx = dy ≈ 15 km, so that we have several
grid points within each Rossby radius Rd ≈ 40 km. PV inversion is performed spectrally.
Advection terms are calculated in flux form and a van Leer flux limiter is used for numerical
stability. We use a second-order Runge-Kutta method for the marching scheme with a time
step of dt = 1/64 days. The model is initialized near the fixed point solution for low values of

221



the wind stress. For large values of wind stress U1,FP is so large that initialization near the
fixed point constrains the timestep due to the CFL condition, so we instead initialize with
zonal mean fields equal to those of the fixed point but rescaled by a coefficient with value
less than one. Small scale noise is added to break the symmetry and allow the instability
to develop. Model integrations are typically carried out for 5000 days, which was found
to be sufficient to obtain reasonable flow statistics. For some parameter values very long
runs (50000 days) were carried out, and the statistics were not found to change very much
compared to the shorter integrations. The sensitivity of the model results to the spatial
resolution was also tested. Model integrations at doubled resolution (Fig. 12, Appendix)
showed minor quantitative differences when compared with the default resolution, but the
similarity of the two solutions demonstrates that the model dynamics are sufficiently well-
resolved at 64× 128 resolution.

The QL equations (56)-(59) are solved numerically using finite-differences on an ny = 64
point meridional grid. PV inversions were performed using finite differences. The same
marching scheme, time step, and initialization procedure was used as in NL. As the QL
model is inexpensive to numerically integrate (even compared with our highly simplified
two-layer QG model) we integrate the QL model for 100000 days to obtain reliable statistics.
In many cases the QL model exhibits long transient oscillations after the initial instability,
but these were eliminated from the statistics by averaging only over the second half of the
model integrations.

3 Results

3.1 Reference Case
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Figure 3: (a) EKE as a function of zonal wavenumber in the NL model (b) Eddy PV flux
as a function of wavenumber in the NL model. Both EKE and PV flux show large peaks
at zonal wavenumbers 4 and 5, indicating that these waves are dominant in the statistical
mean state

We now compare the results of the NL and QL model integrations for the reference case
A = 1 km/day2, r = 1 × 10−4 day−1, d = 500 km2/day. Figure 3 (a) shows the time and
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domain average EKE as a function of zonal wavenumber in the equilibrated NL state, where
EKE is calculated as

EKE =
H1〈u′21 + v′21 〉+H2〈u′22 + v′22 〉

H1 +H2
=
F2〈u′21 + v′21 〉+ F1〈u′22 + v′22 〉

F1 + F2
. (60)

Angle brackets indicate a time and domain average. The contribution from each wavenum-
ber was determined by expanding the velocity field in a Fourier series as in (54) and calcu-
lating the energy of each wavenumber component separately. The energy spectrum shows a
clear peak at zonal wavenumber 4, with some energy at the neighboring wavenumbers and
very little energy at small scales. Figure 3 (b) shows the time and domain mean eddy PV
flux 〈v′q′〉 for the upper and lower layers as a function of wavenumber. In the upper layer
the eddies flux PV poleward, decelerating the upper layer flow by (16). The eddy flux in
the lower layer is in the opposite direction, with the eddies acting to drive the lower layer
flow against bottom friction. The eddy flux spectrum indicates that zonal wavenumber 4
dominates the flux of PV, in addition to containing the most kinetic energy. Based on these
observations, we take k = 4 as our QL wavenumber.

Figure 4 (a) and (c) show snapshots of the upper layer PV fields in QL and NL in
statistical equilibrium. The zonal wavenumber 4 and 5 structures appearing in the energy
spectrum are also visibly evident in the NL PV field. The NL and QL PV fields are
qualitatively similar, although EENL effects in the NL model produce PV filaments that
are not present in the QL model. The QL PV field is by design characterized by an exact
wave-4 structure, since only k = 4 is included in our calculation.

Panels (b) and (d) in Fig. 4 show the zonal mean flow in the upper and lower layers for
the QL and NL models. It is informative to compare these equilibrated turbulent structures
to the fixed point solutions (35,36). For the reference parameter values, the upper and lower
layer unstable fixed point jets have strengths U1,FP ∼ 180 km/day and U2,FP ∼ 3 km/day
so that the fixed point baroclinic shear is O(175 km/day). The shear maintained by the
equilibrated turbulence is O(15 km/day) at the channel center, indicating that the action
of baroclinic eddies produces a dramatic barotropization of the flow. The magnitude of the
upper layer flow is approximately 20 km/day ≈ 23 cm/s, which is realistic for the ACC.

The strengths of the zonal jets U1 and U2 are similar in the QL and NL models. In-
spection of the upper layer flow in NL shows that the eddies have modified the meridional
profile of the zonal jet in addition to severely reducing its strength relative to the fixed
point solution. The initially sinusoidal profile has been intensified at the channel center
and weakened in the flanks of the center jet, with the appearance of an additional slight
inflections of the jet profile near y = 200 km and y = 800 km. The QL upper layer jet
has a meridional structure qualitatively different from that of the NL jet. The QL jet is
intensified at the channel center and weakened on the flanks in agreement with the NL
profile. However, additional flank jets are evident in the QL simulation near the locations
of the minor inflections seen in the NL profile. These strong flank jets do not seem to form
in the NL system. As the upper-level QL jet is stronger than the NL jet in some regions of
the channel and weaker in other regions, the QL dynamics may track the behavior of NL
more closely in the domain-average picture in which these differences in structure may be
partially averaged out. The lower layer jets of NL and QL agree much more closely than
the upper layer jets, although the QL dynamics still produces additional meridional struc-
ture on the flanks of the sharpened center jet. Additional work is in progress to identify
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the physical explanation for these differences in structure, which we suspect are due to the
development within the jet of critical layers for the equilibrated wave which are smoothed
out by the turbulence of the NL model.
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Figure 4: (a) Snapshot of upper layer PV in the QL model. (b) Upper level zonal mean flow
in the QL (red) and NL (blue) models. (c) Snapshot of upper layer PV in the NL model.
(d) Lower level zonal mean flow in the QL (red) and NL (blue) models. PV snapshots show
qualitatively similar structures in both models, with NL showing a mixture of waves 4 and
5 as well as some small scale structure absent from the QL model. Zonal mean flows in QL
and NL are close in amplitude but differ in meridional structure, with the QL dynamics
producing a multiple jet structure that is not found in NL.

3.2 Model Response to Increasing Wind Stress

Motivated by the qualitative agreement between the QL and NL models in the reference
configuration, we next vary the strength of the wind stress and compare the responses of
NL and QL over a wide range of parameter space. Figure 5 shows the domain and time
mean shear U1 − U2 as a function of the wind stress A for the NL and QL models. The
abrupt change in the behavior of the QL curve at very weak wind stress is due to the
onset of baroclinic instability, which sets in near A = 0.25 km/day in QL. The NL model is
unstable for all plotted A values due to the absence of diffusion in NL system. Away from
the instability boundary the shapes of the NL and QL curves are quite similar, with the
behavior appearing to be loosely separated into two regimes. For relatively weak wind stress
A . 1 km/day, the shear increases rapidly as A is increased. We emphasize that even in
this relatively weak forcing regime the shear of the equilibrated state is much weaker than
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that of the fixed point solution, and that the rate of increase of the shear with A is also much
shallower than that which would result from the fixed point solution. The sharp increase
of shear with A for the fixed point solution can be seen in the first few points of the QL
curve before the flow becomes unstable. As A is increased beyond A ≈ 1 km/day, the shear
becomes less sensitive to changes in wind stress, indicating a degree of eddy saturation that
occurs in both the QL and NL models. From Fig. 5 it does not appear that the shear ever
becomes independent of A, which would correspond to complete eddy saturation, but we
have not carried out model runs beyond A = 7 km/day.
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Figure 5: Domain and time average shear in statistical equilibrium in the QL (red) and
NL (blue) models as functions of wind stress. Behavior in both models is characterized
by increased sensitivity to wind stress at low values of A, transitioning to partial eddy
saturation as the winds become stronger.

We also show the dependence of the criticality parameter ξ on wind stress in Fig. 5
(right axis). The criticality is defined as

ξ =
f0s

H2β
=
F2

β
(U1 − U2) (61)

and serves as a nondimensionalization of the shear. A commonly-invoked theoretical argu-
ment [18] suggests that baroclinic turbulence will adjust the mean state such that the lower
layer PV gradient vanishes. This is motivated by the necessary condition for baroclinic
instability that the PV gradient change sign somewhere in the domain: as the upper layer
PV gradient is positive, zero PV gradient in the lower layer is the marginal state to which
the eddies relax the mean state. Ignoring relative vorticity, the lower layer PV gradient is

∂yQ2 = β − F2(U1 − U2) (62)

so that a vanishing gradient implies that F2(U1 − U2)/β = ξ = 1. Values of the criticality
ξ > 1 then correspond to interfacial slopes steeper than those expected from the marginal
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instability criterion and a more strongly reversed lower layer PV gradient. Criticality values
ξ < 1 indicate the opposite mean state properties. The model results shown in Fig. 5
indicate that ξ = 1 does not appear to be a preferred value for this system. In the NL
dynamics, the turbulent state is subcritical for weak wind stress and passes through ξ = 1
to become supercritical for larger wind stress. The QL model shows similar behavior,
although the subcritical range is obscured by the transition to baroclinic instability. These
results are consistent with the recent idealized modeling study of Jansen and Ferrari [6],
who showed that the turbulent state of the atmosphere can be moved from a subcritical to
a supercritical regime by varying the external control parameters.

As we are interested in the role of the eddies in determining the equilibrated turbulent
state, we next relate the mean states shown in Fig. 5 to the properties of the eddy field.
Figure 6 (a) shows the eddy diffusivity K in the NL and QL models as a function of
wind stress. Both models produce eddy diffusivities on the order of O(100 km2/day) ≈
1000 m2/s, which is in the realistic range for the ocean at mid depths [10]. We estimate
K using two independent methods. First, taking the interfacial slope s from our numerical
simulations we can solve for K in (28) to obtain

Ktheory =
τ

f0ρ1s
=

τ/(ρ1H1)

F1(U1 − U2)
. (63)

We use the subscript ‘theory’ to indicate that this estimate of K is not based on observations
of the PV flux and gradient from the numerical model, but is derived from the equilibrium
state using the assumptions outlined in Section 2.2. We also estimate K directly from our
numerical simulations using the definition

Kest = − v′1q
′
1

∂yQ1
(64)

which we calculate at every model timestep and average over the domain and in time to
estimate K. Figure 6 (a) shows that the eddy diffusivity depends strongly on the wind
stress in both the QL and NL dynamics, increasing by a factor of 4 as A is varied from
1 km/day2 to 7 km/day2. The diffusivity becomes somewhat less sensitive to A as A is
increased. The QL model equilibrates with a larger shear than the NL model in Fig. 5, and
correspondingly the QL eddy diffusivity is weaker than that of the NL model.

Mixing length arguments suggest that K is related to the EKE through a functional
relationship of the form K ∼

√
EKE [2]. Figure 6 (b) shows the domain-average total

EKE as a function of wind stress in NL and QL, calculated using equation (60). The EKE
behaves similarly in the two models as A is increased. For very small A values the QL EKE
is exactly zero since the fixed point is stable. Beyond the instability threshold the EKE of
both NL and QL increase close to linearly as wind stress is increased, with the QL EKE
growing more rapidly with A than the NL EKE. For A . 2 km/day2, the NL EKE exceeds
the QL EKE as the NL model is further from the threshold for baroclinic instability. For
larger values of the wind stress the eddies in the QL model contain more energy than those
in the NL model in spite of the additional diffusion in the QL dynamics. This suggests
that the EENL terms produce an effective eddy viscosity acting on the eddies themselves,
scattering energy from the wavenumbers capable of extracting energy from the mean state to
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small-scale damped waves where the energy is dissipated. In our numerical implementation
of NL this small-scale damping may be accomplished by the flux limiter or by numerical
diffusion. Although we do not quantitatively examine the scaling relationship between K
and EKE in this work, the downward concavity of the diffusivity curve and approximate
linearity of the EKE with A is suggests that a relationship similar to K ∼

√
EKE may be

applicable to our results. However, it appears that if such a functional relationship is valid
it may not hold across both models, as for larger A values the QL EKE is greater than the
NL EKE, while the diffusivity of the NL dynamics is always larger than that of the QL
dynamics.
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Figure 6: (a) Eddy diffusivity K in the QL (red) and NL (blue) models as functions of wind
stress. Ktheory is an estimate based on the equilibrium shear using equation (63), while Kest

is an estimate based directly on the eddy flux and PV gradient in model simulations using
equation (64). The results show that K increases substantially with increasing winds. (b)
EKE as a function of wind stress in the QL (red) and NL (blue) models. In both models
EKE increases approximately linearly with A.

3.3 Parameter Sensitivity

In Section 3.2 we presented the behavior of the NL model as the wind stress was increased
and evaluated the ability of the mean-field dynamics to reproduce the observed NL behavior.
In this section we vary the drag parameters d and r to test the robustness of the general
agreement between the QL and NL models demonstrated in the previous section. Figure
7 shows the time and domain mean shear as a function of wind stress in the NL and QL
models for four additional parameter cases. In panels (a) and (b) the bottom drag coefficient
d is halved and doubled, respectively, relative to its reference value of d = 500 km2/day.
In panels (c) and (d) the Rayleigh drag coefficient r is halved and doubled with respect
to its reference value of r = 10−4 day−1. For each case, all parameters are held constant
except A and the drag parameter that was changed for that sensitivity test. In all cases
the qualitative behavior of the NL model as A is increased is the same as discussed for the
reference case. For weak wind stress the shear increases rapidly with A, with the sensitivity
of the shear to the wind stress lessening as A is increased. For large wind stress the shear
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appears to increase approximately linearly with A. It is clear from Fig. 7 that the success
of the QL model in reproducing the NL shear scaling is robust to alternate choices of the
the drag parameters.
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Figure 7: Testing the robustness of the agreement of QL and NL to changes in the drag
parameters. All panels show the time and domain average shear in the QL (red) and
NL (blue) models as functions of wind stress, for four different parameter cases. (a) d =
250 km2/day, r = 10−4 s−1. (b) d = 1000 km2/day, r = 10−4 s−1. (c) d = 500 km2/day,
r = 0.5× 10−4 s−1. (d) d = 500 km2/day, r = 2× 10−4 s−1. The model behavior is similar
in all cases.

Comparison of the NL curves in Fig. 7 (a) and (b) shows that the equilibrium shear in
NL weakens as the bottom drag is increased for fixed A (note the difference in scale between
(a) and (b)). This result is shown more clearly in Fig. 8 (b), which shows the equilibrium
shear in QL and NL for the reference wind stress value A = 1 km/day2 and three values of
the bottom drag, corresponding to our reference drag d = 500 km2/day and the halving and
doubling cases shown in Fig. 7 (a) and (b). Both QL and NL show weakening shear with
increasing bottom drag. Based on the scaling relation (28), this indicates that the eddy
diffusivity K increases as the bottom drag is increased for constant winds. The physical
explanation for this behavior is not obvious. From (29) increasing bottom drag results in
a reduced lower level flow. However, this effect only changes the barotropic component of
the flow, whereas the shear component is the one most relevant to the eddy physics. The
shear associated with the fixed point solutions (35) and (36) also does not depend on d, in
the limit dF2/r � 1 relevant to this work. Understanding the physical mechanisms behind
the parameter dependencies shown in Fig. 8 is an important future direction of the work.
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The equilibrated shear also depends to some extent on the bulk Rayleigh drag as shown
in Figs. 7 (c), (d) and 8 (a). As r is increased at constant wind, the shear decreases slightly
in NL and somewhat more substantially in QL. The relation (28) implies that this decrease
in shear results from an increase in the eddy diffusivity with increasing Rayleigh drag.
This is somewhat surprising since the drag acts to remove energy from the eddy field, thus
presumably weakening the eddy fluxes. However, the arguments in Section 2.2 were based
on the assumption that the diabatic effects could be ignored in the mean budgets. In the
complete dynamics, the drag r acts not only on the eddies but on the mean state as well,
including directly damping the interface deflection through (18). The decrease in shear with
increasing drag in Fig. 8 (a) likely results from a competition between the direct diabatic
damping of the shear and the simultaneous reduction of the EKE and corresponding eddy
diffusivity by the drag.
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Figure 8: (a) Time and domain average shear in the QL (red) and NL (blue) models as
functions of Rayleigh drag r. Wind stress is fixed at A = 1 km/day2. (b) Same, but for
varying bottom drag d. The equilibrium shear is seen to weaken with both forms of drag
in both the QL and NL models.

In Fig. 9 we show the meridional structure of the shear for the reference wind stress
A = 1 km/day2 and the four alternate drag parameter choices previously discussed. As was
found in the reference case (Fig. 4), important qualitative differences between the shear
profiles of NL and QL are visible. The QL model forms multiple jets in all cases. Similar
flank jets are also found in the NL model in the case of weak bottom drag (Panel (a)),
but the additional jets are much weaker than their QL counterparts. Evidently, the wave-
mean flow dynamics of a single zonal Fourier component has a strong tendency to produce
multiple jets that is strongly suppressed in the NL dynamics. In the next section we will
show the results of a preliminary attempt to produce a more realistic jet structure in the
QL model by including additional zonal wavenumber components and modeling the effect
of EENL interactions with stochastic forcing.

Based on our observations of the NL EKE and PV flux spectra in Fig. 3, we chose
k = 4 as our single zonal wavenumber component in the QL dynamics. Figure 10 (a) shows
the shear as a function of wind stress for reference drag values in the QL dynamics and in
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Figure 9: Comparison of the QL and NL profiles of time and zonal mean shear for different
drag values. In all cases QL produces multiple jets that are not seen in NL. (a) d =
250 km2/day, r = 10−4 s−1. (b) d = 1000 km2/day, r = 10−4 s−1. (c) d = 500 km2/day,
r = 0.5× 10−4 s−1. (d) d = 500 km2/day, r = 2× 10−4 s−1.

two alternate QL models in which k = 3 and k = 5 were chosen as the QL wavenumbers.
Although the choice of wavenumber does have a quantitative effect on the shear, the shapes
of the curves are quite similar for all three wavenumber choices. The k = 3 model maintains
the largest shear, indicating that the eddy diffusivity is smallest for this choice of k. This
is conceptually consistent with our observations of the NL spectrum, which showed that
the EKE and PV flux associated with k = 4 and k = 5 were comparable while k = 3
was relatively weak. We take this as an indication that the k = 3 wave is less efficient at
extracting energy from the equilibrated NL mean state than k = 4 and k = 5, consistent
with the behavior shown in Fig. 10 (a) for the QL models.

Although we have chosen to work with the maximally-simplified QL dynamics in which
only a single wavenumber is retained, it is also possible to formulate the QL dynamics
with more than one wavenumber. In such a model each eddy component q̃1,k(y, t) has its
own evolution equation of the form (56), (57). Each component interacts with the same
mean field Q1(y, t), Q2(y, t), so that the waves are indirectly coupled through their mutual
interactions with the mean flow. Figure 10 (b) shows an example of the results of a QL
integration in which the first 8 wavenumber components k ∈ (2π/L) {1, . . . , 8} were retained
and reference parameter values were chosen. During the initial transient phase of instability
growth, all unstable waves begin to grow. (See Fig. 2 (b) for the instability growth rates
as a function of k for this case). Waves 3,4, and 5 grow to large amplitude, while all
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other waves remain too weak to be seen on our axis scale. At equilibrium waves 4 and 5
persist. The structure of the resulting jets (not shown) is similar to the jets produced by the
k = 4 single-wave model. In particular, the multi-wave QL dynamics continues to produce
multiple jets in qualitative disagreement with NL solutions.
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Figure 10: (a) Time and domain average shear as a function of wind stress for QL models in
which different zonal wavenumbers were retained. All three cases show similar qualitative
behavior, but the k = 3 QL model supports a larger equilibrium shear. (b) Time series of
EKE for each wavenumber in a QL model run for reference parameter values in which the
first 8 wavenumber components were retained. Initially all unstable waves grow, and some
waves reach large amplitude before decaying to zero asymptotically. Two waves, k = 4 and
k = 5, survive at finite amplitude in the statistical equilibrium state.

3.4 Stochastically-Driven QL Dynamics

In this section we present the results of a preliminary attempt to resolve the discrepancy
between the jet structures of the QL and NL dynamics. Our approach is to introduce
additional stochastic forcing into the QL model with multiple wavenumber components.
The motivation for this model comes from several observations. First, it is clear from the
NL energy spectrum (Fig. 3) that although the EKE is concentrated at k = 4 and k = 5
in the reference simulation, the wavenumber spectrum is populated up to about wave 10,
with most of these waves producing non-negligible contributions to the PV flux. Second,
the timeseries in Fig. 10 (b) shows that wavenumbers that are not present in the statistical
equilibrium state still have the capacity to extract substantial energy from the mean flow
as demonstrated by their rapid growth at early times. Although the equilibrium state has
been adjusted so that waves other than k = 4 and k = 5 have negative growth rates on the
mean state, the linear dynamics of these waves remains highly non-normal and thus can
exhibit large transient growth if they are somehow excited. In the QL dynamics no such
excitation occurs and these waves remain at zero amplitude forever. This is an unrealistic
aspect of the QL model, since EENL interactions in the NL dynamics scatter energy into
all wavenumbers. We make the simplifying assumptions that the EENL scattering is not

231



correlated in time and not dependent on the system state, and model the effect of the
EENL terms by adding stochastic forcing to the evolution equations for all wavenumber
components in the QL dynamics.

The stochastic QL model modifies the usual QL equations of motion to include an
additional term on the RHS of the eddy PV equations:

∂tq̃1,k =
[
−ikU1 − r + κ(∂yy − k2)

]
q̃1,k + [−ik∂yQ1] ψ̃1,k + εGk(y, t) (65)

∂tq̃2,k =
[
−ikU2 − r + κ(∂yy − k2)

]
q̃2,k +

[
−ik∂yQ2 − dF2(∂yy − k2)

]
ψ̃2,k + εGk(y, t).

(66)

The evolution equations for Q1 and Q2 remain the same, since EENL terms appear only
in the eddy equations in the NL dynamics. In these equations Gk(y, t) is a random forcing
term that is applied equally in both layers for simplicity. We choose our random forcing
to be δ-correlated in time and correlated in space with a structure gk(y, y

′) such that
〈Gk(y, t)G?k(y′, t′)〉 = gk(y, y

′)δ(t− t′) where angle brackets indicate the ensemble mean over
realizations of the noise. We take the stochastic forcing to be equal for all wavenumbers so
that gk(y, y

′) = g(y, y′). We choose the spatial correlation structure of the noise to be given
by

g(y, y′) = exp

(
−(y − y′)2

`2c

)
exp

(
−(y − W

2 )2

2∆2

)
exp

(
−(y′ − W

2 )2

2∆2

)
. (67)

This correlation function produces noise with Gaussian correlation in space with correlation
length `c and noise amplitude peaked in the channel center. We take `c = 78 km and
∆ = 156 km. These choices ensure that the noise is locally smooth over a few model
gridpoints and that the amplitude of the forcing is substantial over the middle third of the
channel, tapering toward the boundaries. This choice of forcing structure was chosen for
its simplicity. An important extension of this work will be to use observations of EENL
scattering in the NL dynamics to understand what forcing structure is most realistic of the
true EENL dynamics. The parameter ε controls the overall amplitude of the noise forcing
and has units of day−3/2 so that ε2 has units of potential enstrophy injection rate. In the NL
model the EENL interactions do not inject energy into the eddy field, but rather move energy
from wavenumber to wavenumber while leaving the total EKE invariant. Our stochastic
forcing is deficient in this sense because forcing of the form described above injects energy
directly into the eddy field. The stochastic parameterization could thus be improved by
augmenting the eddy dissipation such that the eddy energetics are consistent with those of
NL [5]. For simplicity we ignore these concerns and proceed with the formulation described
above as a first step. We refer to the stochastic dynamics introduced above as the stochastic
quasilinear model (SQL).

Figure 11 summarizes several results from SQL. All SQL integrations were performed
with reference values for the wind stress and drag parameters, and the first six zonal
wavenumber components were retained in the calculations. Panel (b) shows the time evo-
lution of the energy of each wavenumber component during a 10000 day model integration
with stochastic forcing strength ε = .05 day−3/2. It is clear that all waves are excited and
fluctuate at finite amplitude. Wavenumbers 4 and 5 (cyan and green curves) are no longer
dominant, with the largest contribution to the eddy energy being due to k = 1. This is
clearly seen in panel (c) which shows the time average EKE spectrum. The spectrum is red
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and in poor agreement with the NL spectrum shown in Fig. 3. Note, however, that our
maximally simple forcing in which each component of the eddy PV is forced with equal am-
plitude leads to a preferential injection of energy into the large scales (enstrophy is injected
into each scale equally). This forcing bias, together with the action of diffusion to dissipate
higher wavenumbers, may underlie the complete lack of agreement between the SQL and
NL spectra. Panel (d) shows the dependence of the total EKE on the forcing strength. As
expected, the eddies are more energetic when they are forced more strongly, and we expect
this stronger eddy field to suppress the equilibrium shear.

The SQL equilibrium shear profiles are shown in Fig. 11 (a) for three values of the
stochastic forcing amplitude, with the results of the NL reference case reproduced for com-
parison. For the smallest value of ε the shear profile is close to that of the ordinary QL
model, showing strong jets on the flanks of the center jet. As ε is increased both the ampli-
tude and the structure of the jets undergo substantial changes. The amplitude of the shear
decreases as ε is increased, consistent with our understanding that the stochastic forcing
supports the transient growth of waves whose eddy fluxes barotropize the zonal flow. The
flank jets also weaken substantially as ε increases. For ε = .05 day−3/2 (red curve), the jet
structure is quite similar to that of the NL model. The amplitude of the shear, however, is
too weak for this choice of forcing. Keeping the correlation structure of the forcing fixed and
varying the parameter ε only, it is not possible to accurately fit the NL jet structure: either
the strength or the structure of the shear can be approximately matched, but matching
both simultaneously is not possible. However, the reduction of the strength of the unre-
alistic flank jets when stochastic forcing is included is an encouraging result, and future
work with the SQL model will involve experimenting with the forcing structure gk(y, y

′) to
evaluate whether SQL is capable of producing fully-realistic jet structures and amplitudes.

4 Discussion and Conclusion

The goal of this work is to advance our theoretical understanding of the interactions between
eddies and the large scale mean state in baroclinically unstable flow driven by surface stress.
In particular, we are interested in understanding how eddy-mean flow interactions change in
response to changes in the external forcing. The ACC provides a concrete example system
for which the external forcing is changing and the eddy response must be understood if we
are to understand the response of the mean state. Theoretical models of the ACC mean state
typically rely on the assumption of eddy diffusion. The manner in which the eddy diffusivity
is parameterized in terms of the large-scale variables in such models can be the determining
factor in the model predictions of the ACC response to changing forcing. Although the
sensitivity of model predictions to the eddy diffusion parameterization indicates that the
eddy diffusivity is a quantity crucial to our understanding of the turbulent dynamics, no
accepted theory exists to predict its value or how it depends on the external parameters
of the system. In this work, we make progress on this problem by demonstrating that
a reduced dynamics, the mean-field equations, reproduces many aspects of an idealized,
but fully turbulent, model of the ACC, including the variation of important mean state
properties as the external forcing is varied. Although the theoretical prediction of mean
state variations with forcing remains an open problem, the identification of the mean-field
model as a significantly simplified theoretical framework that contains the essence of the
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Figure 11: Summary of results of the stochastically-driven QL model. In all calculations
reference parameter values were used and 6 zonal wavenumber components were retained.
(a) Equilibrium shear profiles for three stochastic forcing strengths ε. The shear is seen to
weaken overall as ε is increased, as well as shift toward a single-jet meridional structure. (b)
Time series of EKE for each wavenumber in the stochastic model. All waves are sustained
at finite energy in the equilibrium state. (c) Time average EKE spectrum for the stochastic
model. In disagreement with the NL reference spectrum in Fig. 3, the eddy field is ener-
getically dominated by the largest structures. (d) Total EKE as a function of stochastic
forcing strength.

eddy-mean flow interaction and its dependence on the external model parameters provides a
promising pathway for future efforts toward understanding the physics of the ACC response
to forcing.

We used the idealized two-layer QG model in a flat-bottom channel configuration as
our model ACC. We refer to this fully-nonlinear model formulation as the NL model. The
flow was driven by wind stress at the surface, with the injected momentum being removed
from the system in the lower layer by bottom friction. For very weak wind stress the flow is
baroclinically stable, but the flow becomes unstable and turbulent for wind strengths that
are realistic for the SO. By integrating the model equations numerically to a statistically-
steady state for different values of the wind forcing, we assessed how the slope of the
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interface, or equivalently the baroclinic component of the zonal mean flow, responded to
changes in the winds. For weak winds the mean state was very sensitive to changes in
forcing, with the shear increasing rapidly as the winds were increased. The shear responded
less sensitively to further increases in the winds, demonstrating eddy saturation to some
degree. However, the shear was not found to become entirely independent of the winds for
any range of parameters tested, and so the model does not appear to exhibit complete eddy
saturation.

We formulated the mean-field model by removing eddy-eddy advection terms from the
equations of motion and retaining a single zonal wavenumber component in the eddy field.
We refer to the mean-field equations by the abbreviation QL. In the domain mean picture,
this highly simplified theoretical model reproduced many qualitative aspects of the NL
dynamics. The dependence of the mean shear on the wind stress in QL mirrored that of NL,
with differences occurring primarily at the quantitative level. The QL model also reproduced
the sense of the dependence of the mean state on the imposed drag parameters. Our
QL experiments demonstrated that the QL model robustly reproduces the domain-mean
properties of the NL dynamics over a wide range of parameters in spite of the substantial
simplifications made in deriving the model equations. Our results indicate that, in the
domain mean sense, the strength and parameter-dependence of the eddy diffusivity are not
fundamentally controlled by eddy-eddy processes.

We also compared the QL and NL models in the zonal mean, but not channel-mean,
picture. When the channel-mean was not taken, important differences between the two
models were evident. The equilibrated meridional structure of the shear flow in the NL
takes the form of a broad single jet intensified at the channel center. In contrast, the QL
equilibrium jet structure features multiple jets, with additional strong jets occurring on
the flanks of the center jet. These qualitative differences in structure occur over all tested
parameter ranges. This fundamental difference in structure points to qualitative differences
in model physics that should be resolved if the QL dynamics is to be used to understand
the NL model behavior.

In an attempt to improve the agreement between the meridional jet structures of the
QL and NL model, we modified the QL dynamics to include additional wavenumber com-
ponents and stochastic forcing as a parameterization of the EENL terms appearing in the
NL dynamics. When stochastic forcing was included, the QL model attained an equilib-
rium state with a populated energy spectrum, and the flank jets were seen to weaken and
disappear as the strength of the noise was increased. However, the energy spectrum of the
stochastic model was in poor agreement with that of NL, and the QL jet amplitudes were
too weak when compared with those of NL when the noise was strong enough to suppress
the unrealistic multiple jets. We believe that these failures of the stochastic model may be
due to bias introduced by the simplified structure chosen for the noise forcing as well as the
diffusion introduced into the QL model for reasons of numerical stability.

The results presented here constitute a step toward understanding the relationship be-
tween the QL and NL dynamics but many aspects of the problem require additional research.
At the level of the NL dynamics, a more detailed consideration of the eddy energy budget
is required to understand the effects of the various forms of drag on the eddy field, and also
how energy is passed between wavenumbers by eddy-eddy interactions. These results will
be useful for informing the parameterization of the eddy-eddy terms in the QL dynamics.
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Incorporating an improved noise parameterization is likely to improve the realism of the
QL jet structure.

Beyond the problem of simply reproducing the NL simulation results with the QL model,
it also remains an open problem to leverage the simplicity of the QL dynamics to develop a
theoretical understanding of eddy-mean flow interactions in this problem. In the QL model
without stochastic forcing, a possible approach is to identify and trace the unstable fixed
point solution that exists, at least in some cases, beneath the fluctuating equilibrium state
as a function of the wind stress. This fixed point consists of an equilibrated baroclinic
wave and a steady mean flow, and becomes unstable in a supercritical Hopf bifurcation to
an oscillatory state which becomes chaotic as the ‘turbulent’ QL state is reached. As the
fluctuations in equilibrium appear to remain fairly close to this fixed point, the unstable fixed
point solution is a relatively simple, time-independent mathematical object whose analysis
may lead to a physical understanding of how eddy fluxes are determined in cooperation
with the mean state. In the case of the stochastic QL model, a theoretical framework for
analyzing the statistical mean equilibrium state has been developed by Farrell and Ioannou
[4]. A promising future direction of this research is to use their covariance-matrix formalism
to understand how the ensemble-mean eddy fluxes are determined by interaction with the
mean state.

Our decision to model the ACC using the two-layer QG equations in a flat-bottomed
reentrant channel was motivated by its simplicity. However, it is well-established that bot-
tom topography plays an important role in the ACC dynamics. In a flat-bottom geometry
the overall momentum balance must be between momentum injection by the winds and
removal by bottom drag. This requires the development of a strong barotropic flow compo-
nent capable of dissipating the required amount of momentum at the bottom. In the real
ACC the momentum balance is between wind input and bottom form drag on topography,
and the barotropic flow is weak. Flow over bottom topography also produces stationary
waves that can have a significant effect on the ACC stratification by increasing the efficiency
of eddy heat transport and correspondingly shallowing isopycnal slopes [1]. Our idealized
model cannot account for these effects in its current formulation. However, topography
could in principle be included in both the NL and QL models discussed in this work, and
understanding the impact of topography in our framework is an important future direction.

5 Acknowledgments

I thank Glenn Flierl and Raf Ferrari for their help and guidance during my work on this
project, and Brian Farrell for valuable comments on the manuscript. I also thank the
organizers, participants, and Fellows of the 2014 WHOI GFD program for making the
summer educational and enjoyable.

6 Appendix: Sensitivity of NL Model to Numerical Resolu-
tion

Figure 12 shows a comparison of nonlinear model runs at two different resolutions: the
default resolution with 64 × 128 spatial grid points, and a doubled resolution run with
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128 × 256 gridpoints. Reference parameter values are used for wind and drag. Panels (a)
and (c) show snapshots of the upper layer PV fields. Panels (b) and (d) show the statistical
mean upper and lower layer zonal jets. The PV fields show similar features and have similar
characteristic magnitude in both cases. The higher resolution run shows some small-scale
filamentation that is less prominent in the default resolution case. However, these small-scale
features do not appear to dominate the flow. The time mean flow is also nearly identical
in the two runs. The mean flow in the doubled-resolution run is not perfectly symmetric
about the channel center. This is due to an insufficiently long period of averaging due to
the increased computational cost to run the model at this resolution. Based on Fig. 12 we
conclude that 64 × 128 gridpoints is sufficient to resolve the structures most important to
the dynamics, at least in the parameter ranges considered here.
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Figure 12: Test of spatial resolution in the NL model. Default resolution is 64 × 128
gridpoints, doubled resolution is 128 × 256 gridpoints. Panels (a) and (c) show snapshots
of the upper layer PV fields. Although some smaller scale features are seen in the high
resolution case that are absent from the default resolution case, the PV field still appears
to be dominated by wave 4 and wave 5 structures. Panels (b) and (d) show the upper and
lower level zonal mean flows in statistically steady state. High resolution jets (red) show
some deviations from perfect cross-channel symmetry due to insufficiently long averaging
periods. The high and default resolution flows are of nearly the same amplitude and similar
meridional structure.
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1 Introduction

Radiative-convective equilibrium (RCE) is the equilibrium state that a convective system
reaches, where convective heating compensates radiative cooling. RCE has often been used
to represent the planetary atmosphere on a global scale, and it is also useful for studying
the tropical climates since tropical atmosphere is always believed to reside in a near RCE
state.

There is a hierarchy of numerical models that have been developed to study the RCE
system, ranging from radiative-convective models (RCMs) with parameterized convection to
cloud resolving models (CRMs) with explicit convective processes. Those numerical models
have led us to a much deeper understanding of the radiative-convective system, but the
basic physics of RCE is still far from fully understood.

One important reason is that, although the RCE concept is already simplified from
reality, the full RCE system (or model) is still too complicated at least in two aspects.
First, radiative and convective processes are highly coupled and nonlinear. For example,
convection transports water vapor from the boundary layer to the free troposphere, and
it effectively influences the absorbed longwave radiation in the atmosphere, which in turn
affects the local buoyancy (temperature) and thus convection. Second, current RCMs or
CRMs are usually divided into tens of vertical layers. The exchange of mass and energy
between different layers makes the system very difficult to diagnose.

To better understand the RCE system, one can try to simplify either aspect above, and
this is one of the motivations of this study. Accordingly, the main goal of this study is
twofold. The first part will stick with multiple layers, but try to reduce the coupling of the
system by specifying some variables like lapse rate and optical depth. One main goal of
this part is to understand the structure of earth’s tropopause by taking advantage of the
simplifications we made here. The second part will try to develop a maximally simplified
RCE model with an interactive hydrological cycle to better understand the basic physics of
RCE itself. This model contains two layers in troposphere, but the convective and radiative
processes are still highly coupled. More details will be discussed below.
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2 The height of tropopause

2.1 Background

Tropopause is usually referred to as the boundary between the troposphere and the strato-
sphere, even though it has various definitions based on the spatial structures of temperature,
potential vorticity, and chemical concentrations. Understanding the height of tropopause is
important to studying the column total ozone [1] and also the mass exchange between the
troposphere and the stratosphere [2].

Despite its importance, many problems related to the observed features of the tropopause
remain unsolved. From observations, the height of tropopause is higher in the tropics (16km)
and lower in the polar regions (8km), and this transition sharply occurs in the mid-latitudes
(Fig. 1a). What shapes this particular structure? Also, tropical tropopause, compared with
the one in extratropics, is not only higher, but also colder and sharper (Fig. 1b). What can
explain those three features simultaneously?

(a) (b)

Latitude (°N)Latitude (°N)

H
ei

gh
t (

m
)

Figure 1: (a) Zonal-mean tropopause height as a function of latitude (solid). Figure adopted
from [3]. (b) Zonal mean temperature profiles in different regions. Note the contrast between
tropics (blue dash-dotted) and extratropics (green dashed). Figure adopted from [4].

To that end, we will use a extremely simplified tropopause model, and see whether this
one-dimensional (1-D) model can reproduce the observed structure of tropopause. One
thing noteworthy is that there will be no explicit dynamics in this model, although lateral
transport and mid-latitude eddies are shown to be important in shaping the tropopause
structure. Our following results will show that the observed features of tropopause can be
surprisingly well captured by this simple 1-D model.

2.2 Numerical model

Let’s start with a two-stream grey atmosphere, which is commonly used in early related
studies [5, 6], and write the radiation transfer equation for longwave radiation as,

∂D

∂τ
= B −D, ∂U

∂τ
= U −B, (2.1)
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Figure 2: Temperature profiles for radiative equilibrium (green) and radiative-convective
equilibrium (black).

whereD and U are downward and upward longwave radiation, B = σT 4 is Stefan-Boltzmann
law, and τ is optical depth increasing downward. Then we can quickly rewrite Eq. (2.1) as

∂I

∂τ
= J − 2B,

∂J

∂τ
= I (2.2)

using
I = U −D, J = U +D. (2.3)

Consider a radiative equilibrium (RE) state and assume that no shortwave radiation is
absorbed by the atmosphere, then the convergence of net longwave radiation should vanish,
which can be expressed as,

∂I

∂τ
= 0. (2.4)

Furthermore, by using the boundary condition at the top of the atmosphere,

τ = 0 : U = Ut = σT 4
e , D = 0 (2.5)

we arrive at the solutions for radiative equilibrium,

D(τ), U(τ), B(τ) =

(
τ

2
,
τ + 2

2
,
τ + 1

2

)
Ut. (2.6)

The temperature profile from this solution is shown as the green line in Fig. 2
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Let’s look at several features of RE solutions. When τ is very small, B/U is one half,
and it physically means that near the top of the atmosphere, half of upward longwave
radiation is coming from remote radiative transfer. Note that, until now, we have not
used any boundary condition at the surface. So this observation will be valid for any cases
with any lower boundary conditions, as long as the upper atmosphere is in the radiative
equilibrium state; it will be used in the following analysis when we are deriving the analytical
approximation of RCE solutions. Now consider at the surface, the difference between U and
B is always non-zero. It indicates that there is always a temperature jump between ground
temperature and near-surface air temperature in RE solutions, and this temperature jump
is actually nontrivial, around 10K. Another main feature is that the lapse rate near the
surface is so high that convection can occur, which will result in a new equilibrium state
called radiative-convective equilibrium (RCE) state.

Within this new equilibrium state, the system is in RE in the stratosphere, given by the
solutions above, while in RCE in the troposphere with a uniform lapse rate. Mathematically,
the temperature profile can be expressed as,

T (z) =

{
Tre, z ≥ HT ,

TT + Γ(HT − z), HT ≥ z ≥ 0,
(2.7)

where HT is the tropopause height, and TT is the tropopause temperature. The two vertical
coordinates (τ and z) can be related by the formulation below,

τ(z) = τs [fH2Oexp(−z/Ha) + (1− fH2O)exp(−z/Hs)] (2.8)

where τs is surface optical depth, fH2O is a linear parameter controlling the contribution
of water vapor to optical depth compared with carbon dioxide, Ha is the scale height of
water vapor (typically 2km), and Hs is the scale height of carbon dioxide (typically 8km).
Additionally, we should add one more boundary condition at the surface,

τ = τs : U = B = σT 4
s . (2.9)

We can solve this set of equations numerically by integrating Eq. (2.1) from the top of
the atmosphere to the surface given a certain HT , and iterate the calculation to match both
boundary conditions. The temperature profile associated with the RCE solutions is shown
as the black curve in Fig. 2.

Note that the RCE solution above is a function of emission temperature Te, surface
optical depth τs, and tropospheric lapse rate Γ. The sensitivity of tropopause height to
those three parameters are presented in Fig. 3. Tropopause height significantly increases
when surface optical depth increases or tropospheric lapse rate decreases; tropopause height
increases with outgoing longwave radiation but its impact is not as strong as the other two
parameters.

2.3 Analytical approximation

To better understand the phase diagrams in Fig. 3, it is helpful to derive an analytical
expression for tropopause height. However, finding the exact analytical solution is very dif-
ficult due to the multiple-layer model set-up and the nonlinearity of the system. Therefore,
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(a) (b)

Figure 3: Tropopause height as a function of surface optical depth and (a) tropospheric
lapse rate and (b) outgoing longwave radiation. Note that the parameter ranges are chosen
as typical ranges of earth’s atmosphere.

we make the following assumptions. First, temperatures above the tropopause are uniform
and equal to 2−1/4Te, which is obtained from Eq. (2.6) by simply setting τ to be zero. Sec-
ond, as mentioned before, the lapse rate is held uniform throughout the whole troposphere
below HT . Third, the contribution to optical depth all comes from water vapor, that is,
fH2O is set to 1. Fourth, B/U linearly increases from 1/2 (radiative equilibrium when τ
is zero) at the tropopause to 1 (lower boundary condition) at the surface, which can be
expressed as B/U = 1 − z/2HT , and this assumption is fairly good for a wide range of
surface optical depth and tropospheric lapse rate as shown in Fig. 4.

With those assumptions, we can eventually derive an analytical approximation for the
height of tropopause as follows,

HT =
1

16Γ

(
CTT +

√
C2T 2

T + 32ΓτsHaTT

)
, (2.10)

where C = ln4 ≈ 1.38. This expression agrees quite well with the sensitivity results
presented in Fig. 3.

2.4 What shapes the observed tropopause structure from an RCE per-
spective? The role of Brewer-Dobson circulation

One question we can ask is could we reproduce the observed tropopause structure using
this 1-D RCE model? To this end, we should first get the observed latitude dependence of
lapse rate, optical depth, and outgoing longwave radiation, and then plug them into this
simple model. We will go through those three parameters as inputs one by one, and only
the zonal-mean annual-mean results will be discussed.
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Figure 4: Validation of the assumption B/U = 1 − z/2HT for different combinations of
surface optical depth and tropospheric lapse rate.

Tropospheric lapse rate decreases from 6.5K/km in the tropics to 4K/km in the polar
regions [7, 8]. In the tropics, deep moist convection makes the lapse rate very close to
the moist adiabatic lapse rate. However, in the polar regions, it is noteworthy that the
lapse rate is not controlled by dry adiabatic lapse rate (about 9.8K/km); instead, the
value of 4K/km is determined by the critical lapse rate that satisfies the condition of
baroclinic adjustments [7]. Surprisingly, the structure of lapse rate leads to an increase in
the tropopause height from the tropics to polar regions by over 3km, which is opposite to
the observed structure (blue line in Fig. 6).

As water vapor concentration decreases dramatically from tropics to polar regions, sur-
face optical depth also decreases significantly. In this model, we are using a grey atmosphere;
therefore, getting the observed equivalent surface optical depth is not very straightforward.
An alternative way is to use the optical depth structure used in idealized GCMs. Following
previous studies [9, 10], we will let the surface optical depth change sinusoidally from 7.2 in
tropics to 1.8 in polar regions and set the parameter fH2O to 0.8. As a result, tropopause
height decreases from tropics to polar regions by about 3km, which almost totally compen-
sates the effect of optical depth (magenta line in Fig. 6).

Concerning the outgoing longwave radiation, it tends to yield a higher tropopause in
the tropics, but as we mentioned above, its impact is very limited (red line in Fig. 6).

Combining all three effects, we will get an almost uniform tropopause height, about
10.5km, across different latitudes (black solid line in Fig. 6). Its pattern indeed mimics the
observed pattern: higher in the tropics and lower in the polar regions with sharp changes
occurring in the mid-latitudes. However, the tropical tropopause is only about 0.5km higher
than the polar tropopause, which is much smaller than the observed value 8km. What might
be missing?

Brewer-Dobson circulation in the stratosphere can cause the adiabatic heating (or cool-
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ing) locally near the tropopause, therefore it can potentially change the height of tropopause.
The heating rate is essentially determined by vertical velocity and thermal stratification,

∂θ

∂t
= −w∂θ

∂z
= Qs. (2.11)

From observations, the vertical gradient of potential temperature is positive all around the
globe. So the ascents (descents) in the tropical (polar) stratosphere will induce a local
adiabatic cooling (heating). Rough estimates from observations w ≈ 0.3mm/s, ∂θ/∂z ≈
40K/km, give us a heating rate of Qs ≈ 1K/day. Due to this additional adiabatic heating,
we need to rewrite the radiative equilibrium condition Eq. (2.4) as

∂I

∂z
= ρcpQs, (2.12)

where ρ is the density of air and cp is the heat capacity of air.
After imposing the heating structure shown in the lower-right panel of Fig. 5, we can

get a structure of tropopause height (thick green line in Fig. 6) very like observations (black
solid line in Fig. 1a). The adiabatic cooling significantly raises the tropical tropopause by
3km, and the adiabatic heating also lowers the polar tropopause by 1km. Eventually we get
a tropopause with very similar structure as observations in both the general pattern and
the equator-pole contrast.

Brewer-Dobson circulation not only raises the tropical tropopause, but also makes it
colder and sharper, which otherwise cannot be explained by any of the three parameters
(Fig. 7a,b). Comparing our results (Fig. 7b) and the observations (Fig. 1b), we find that our
model, in spite of its simplicity, well captures all three main features of tropical tropopause:
higher, colder, and sharper than the extratropical tropopause. By adding ozone heating
in the upper troposphere, we can get an even more realistic temperature profile (Fig. 7c)
compared to observations (Fig. 1b).
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Figure 5: Meridional structure of outgoing longwave radiation, tropospheric lapse rate,
surface optical depth, and adiabatic heating rate by Brewer-Dobson circulation, which have
been used as inputs in the 1-D tropopause model. OLR is computed from NOAA OLR
dataset. Lapse rate is a best-fit tangent curve to observed values. Surface optical depth is
following the previous study with idealized GCMs. Adiabatic heating rates are artificially
imposed just above the tropopause.
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Figure 6: Meridional structure of tropopause height from the numerical solutions of 1-D
tropopause model. The black dashed line is with all parameters constant. Three thin color
lines are with only lapse rate (blue), optical depth (magenta), or OLR (red) changing with
latitude. The thick black solid line is with all three parameters changing with latitude.
The thick green solid line is with all three parameters changing with latitude and also an
imposed adiabatic heating by Brewer-Dobson circulation.
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(a) (b)

(c)

Figure 7: The contrast of temperature profiles at equator and 45oN . (a) With all three
parameters changing with latitude, (b) adding adiabatic heating (Brewer-Dobson circula-
tion) onto case a, and (c) adding both adiabatic heating (Brewer-Dobson circulation) and
diabetic heating (ozone) onto case a.
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3 A two-layer RCE model

3.1 Background

In the tropopause model we just talked about, radiation and convection are two separate
processes. Radiation accounts for the energy balance of the system, while convection acts to
set the tropospheric lapse rate. In reality, the two processes are highly coupled. There are
quite a few RCE studies with highly coupled models, such as radiative-convective models
(RCMs) and cloud resolving models (CRMs), but they are too complicated to help us
understand the principle physics of RCE states. For example, how does relative humidity
change with climates in RCE states? It involves too many elements and layers. We will
develop a maximally simplified radiative-convective equilibrium (RCE) model but still with
an interactive hydrological cycle, and our main goal is to answer some basic questions related
to RCE like the one about relative humidity we just mentioned.

3.2 Model set-up

Following a recent study [11], the RCE model has two equal-mass layers for troposphere,
and its hydrological cycle is interactive. Here we only care about the equilibrium state,
instead of the stability of the state. Effective emission temperature Te is specified, and two
other parameters are the precipitation efficiency εp and the surface wind V . All the other
variables, including temperature, humidity, convective mass flux, tropopause height, and
heating rate are calculated.

Figure 8: The schematic of the two-layer RCE model.

The basic model setup is shown in the schematic of Fig. 8. Surface pressure p0 is
specified, and the tropopause temperature is assumed to be 2−1/4Te as discussed in the

250



previous section. In the following discussions, the subscripts ‘1’, ‘2’, ‘s’, ‘b’, ‘m’, and ‘trop’
stand for the lower layer, upper layer, surface, boundary layer, middle of troposphere, and
tropopause, respectively. Note that ‘middle’ indicates the mid-level in terms of mass – in
other words, in the pressure coordinate.

Let’s start with the energy balance in the two layers. In the lower layer,

Fs −Mu(hb − hm) +Q1 = 0, (3.1)

where Fs is the surface turbulent enthalpy flux, Mu is the convective mass flux, hb and hm
is the moist static energy (MSE) in the middle of troposphere and in the subcloud layer,
and Q1 is the radiative cooling. Surface turbulent enthalpy flux is essentially determined
by surface wind speed, surface saturation specific humidity, and surface relative humidity,

Fs = Ṽ (hs − hb) ≈ Ṽ Lvq
∗
s(1−Hs), (3.2)

where Ṽ is defined as
Ṽ = ρbCkV. (3.3)

Similarly, in the upper layer,
Mu(hb − hm) +Q2 = 0, (3.4)

where we assume the MSE at the tropopause is the same as that in the subcloud layer, so
there is no MSE exchange at the tropopause.

Energy balance should also hold in the clear air between clouds. In the lower layer,
assuming convective downdraft as (1− εp)Mu, we can have that the large-scale subsidence
in the clear air is εpMu. So the energy balance can be written as

εpMu∆S1 +Q1 = 0, (3.5)

where we are assuming convection only occupies a very small portion of the domain area,
and ∆S1 is the contrast in dry static energy between the mid-troposphere and the surface,

∆S1 = cp(Tm − Ts) + gzm. (3.6)

Similarly, we can write the energy balance in the clear air of upper layer as,

γMu∆S2 +Q2 = 0, (3.7)

where ∆S2 is the contrast in dry static energy between the tropopause and the mid-
troposphere,

∆S2 = cp(Ttrop − Tm) + g(ztrop − zm). (3.8)

Note that here γ, not like εp, is calculated instead of specified, so it is not a parameter.
Finally let’s consider the energy balance in the subcloud layer and at the surface. In

the subcloud layer, surface turbulent enthalpy flux is balanced by the convective flux out
of the layer and the flux due to shallow convection; that is,

Mu(hb − hm) + Fshallow = Fs. (3.9)

251



If we parameterize Fshallow as (1− α)Fs, we can then get

Mu(hb − hm) = αFs. (3.10)

Note that here α is calculated, not a parameter. The surface energy balance requires that

Fs −Qs = 0. (3.11)

The radiative heating rates in the lower layer, the upper layer, and at the surface can
be defined as,

Q1 = σε1(T
4
s − 2T 4

1 + ε2T
4
2 ), (3.12)

Q2 = σε2[(1− ε1)T 4
s − 2T 4

2 + ε1T
4
1 ], (3.13)

Qs = σ[T 4
e + ε1T

4
1 + ε2(1− ε1)T 4

2 − T 4
s ]. (3.14)

In addition to those three sets of energy balance equations, we also need to make as-
sumptions of conserved saturation MSE and saturation entropy in the whole column, which
are controlled by subcloud properties. Mathematically, it can be expressed as,

hb = h∗1 = h∗m = h∗2 = h∗trop (3.15)

and
sb = s∗1 = s∗m = s∗2 = s∗trop. (3.16)

Since this is a highly coupled and nonlinear system, we need to solve it numerically.
Numerical solutions will be discussed in the following subsections.

3.3 State-dependent emissivity

Before we talk about the solutions, one thing we want to emphasize is the state-dependence
of layer emissivities. Intuitively, we can imagine that when water vapor increases in a certain
layer, more longwave radiation can be absorbed or emitted given a certain temperature; in
other words, layer emissivity will increase. But, quantitively determining the relationship
between emissivity and water vapor (or temperature) is not a trivial problem. As a first step,
we can try to use an artificial exponential function to mimic the Clausius-Clapeyron relation,
but the parameters we will choose are quite empirical. We notice that this relation is a key
element coupling radiation and convection, so it will largely affect the model behavior.
Thus, we decide to use more realistic formulation to get a more reasonable model behavior.

Following a very early study [12], we seek to find a relation between layer emissivity and
water vapor path (WVP, sometimes also called total precipitable water, defined as the height
of water if all water vapor in a certain layer condenses to liquid water). Carbon dioxide
has been taken into account, but its concentration is held as constant around 400ppmv.
The overlap of absorption spectrum between water vapor and carbon dioxide has also been
corrected. Results are shown in Fig. 9. The WVP of current earth is about 27mm, ranging
from 1mm in the polar regions to 42mm in the tropics, so the layer emissivity is roughly in
the range of 0.6 to 0.8.
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Figure 9: Relation between layer emissivity and water vapor path, with the best-fit lines in
different ranges of water vapor path [12].

3.4 General behaviors of the two-layer RCE model

In general, our two-layer model well captures most important features of an RCE system,
but here we will just discuss two examples about how the model behaves. The first thing
we need to check is the lapse rate. By definition, the lapse rate can be computed as
the temperature contrast between the top and the bottom of a layer divided by the layer
thickness. Then we can compare this value with the theoretical value of moist adiabatic
lapse rate, which can be computed with the average layer temperature. In principle, those
two values should be approximately the same, and this feature is well captured by our
two-layer model as expected (Fig. 10).

Another example we want to show is how convection strength changes with climates.
Recall that Eq. (3.4) basically states that in the second layer, radiative cooling balances the
convective heating, which is determined by both convective mass flux and the MSE contrast
between the mid-troposphere and the tropopause (note that hb = h∗trop = htrop because
the tropopause is extremely dry). When SST increases, on one hand, radiative cooling
will increase because both temperature and emissivity increase; on the other hand, the
MSE contrast also increases because the satiation specific humidity increases significantly
with temperature following Clausius-Clapeyron relation. In comparison, the MSE contrast
increases much faster than the radiative cooling, so the convective mass flux will decrease,
as is seen from the full cloud resolving simulations (Fig. 11b). This feature is also captured
by our two-layer model (Fig. 11a). Note that here we are focused on RCE states, and things
will be different if one considers weak temperature gradient (WTG) simulations.
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Figure 10: Comparison of the model lapse rate and the theoretical moist adiabatic lapse
rate in both layers for different emission temperatures.
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Figure 11: Comparison of (a) the convective mass flux (in the lower layer) from our two-
layer model and (b) the maximum convective mass flux (red line) from a cloud resolving
model [13].
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3.5 How does relative humidity change with climates from an RCE per-
spective?

How relative humidity changes with climates is a fundamental and important question,
but we still lack a complete answer to that. Some studies regard it as a constant variable
in climate models, but this assumption still needs to be justified. Among all arguments
related to this question, large-scale circulation argument might be known and accepted by
most people in the community. It basically states that large-scale circulation transports a
saturated air parcel to a warmer place, which makes it under-saturated, and the relative
humidity is simply determined by the temperature difference between two places; therefore
as long as the large-scale circulation does’t change too much, global (or tropical) average
relative humidity in the troposphere might not be able to change too much. Here we will
focus on RCE states without any large-scale circulation, and our results suggest that even
in RCE states, tropospheric relative humidity can not change much and a key element is
the radiation-convection coupling.

Seen from our two-layer model results, tropospheric relative humidity hardly changes
within a broad range of SST. When SST increases from 10oC to 40oC, surface relative
humidity slowly increases from 0.7 to 0.9; however, the relative humidity in the free tropo-
sphere changes little and sits at a value of 0.5. To better understand this behavior, we will
make use of the energy balance equations mentioned above and conduct energetics analysis.

Let’s start with the surface relative humidity. From Eq. (3.2), we can easily get

1

Fs

∂Fs

∂Ts
=

1

q∗s

∂q∗s
∂Ts
−
( Hs

1−Hs

)
1

Hs

∂Hs

∂Ts
, (3.17)

Similarly, from Eq. (3.14), we can get

1

Qs

∂Qs

∂Ts
=
A+B

C
, (3.18)

where

A = 4[T 3
e

∂Te
∂Ts

+ ε1T
3
1

∂T1
∂Ts

+ ε2(1− ε1)T 3
2

∂T2
∂Ts
− T 3

s ],

B =
∂ε1
∂Ts

T 4
1 + [(1−ε1)

∂ε2
∂Ts
− ε2

∂ε1
∂Ts

]T 4
2 ,

C = T 4
e + ε1T

4
1 +ε2(1− ε1)T 4

2 − T 4
s .

(3.19)

Since layer emissivity is close to 1, the second term B/C is relatively small compared with
A/C and can be neglected. Then we can simplify Eq. (3.18) as

1

Qs

∂Qs

∂Ts
≈ 4

T̄

∂T̄

∂Ts
≈ 8

T̄
(3.20)

where T̄ is the average tropospheric temperature, and it is roughly 280K when surface
temperature is 300K. The second approximation is because the value of ∂T̄ /∂Ts can be
assumed to be 2, which indicates that, given a certain increase in surface temperature,
tropospheric temperature is amplified by a factor of 2 due to the lapse rate feedback. Then
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Figure 12: Surface relative humidity (black) and tropospheric relative humidity (green) as
a function of sea surface temperature for the cases with varying emissivity (solid) and fixed
emissivity (dashed). Note the unchanged tropospheric relative humidity for the case of
varying emissivity.

combining Eq. (3.17) and Eq. (3.20), and recalling the surface energy balance Eq. (3.11),
we can eventually arrive at,

1

Hs

∂Hs

∂Ts
≈
(

1−Hs

Hs

)(
1

q∗s

∂q∗s
∂Ts
− 8

T̄

)

≈
(

0.18

0.82

)(
6.2%

1K
− 8

280K

)

≈ 0.7%/K,

(3.21)

which is a good estimate to the black solid line in Fig. 12.
With a similar method, we can get how tropospheric relative humidity changes with

SST. Combining Eqs. (3.4)(3.5), we can get

hb − hm = εp∆S1Q2/Q1, (3.22)
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and thus
1

hb − hm
∂(hb − hm)

∂Ts
=

1

Q2

∂Q2

∂Ts
− 1

Q1

∂Q1

∂Ts
+

1

∆S1

∂∆S1
∂Ts

. (3.23)

Then we rewrite (hb − hm) as

hb − hm = h∗m − hm = Lvq
∗
m(1−Hm). (3.24)

Also, we rewrite ∆S1 as

∆S1 = (h∗m − Lvq
∗
m)− (hb − Lvqs) = Lv(q∗sHs − q∗m). (3.25)

Substituting Eqs.(3.24)(3.25) into Eq.(3.23), we get

1

Hm

∂Hm

∂Ts
=

(
1−Hm

Hm

)[
1

q∗m

∂q∗m
∂Ts

− 1

q∗sHs − q∗m
∂(q∗sHs − q∗m)

∂Ts
+

1

Q1

∂Q1

∂Ts
− 1

Q2

∂Q2

∂Ts

]

(3.26)

When layer emissivity varies with SST (or WVP), the three terms in Eq. (3.26) are

1

q∗m

∂q∗m
∂Ts

≈ 9.4%/K, (3.27)

− 1

q∗sHs − q∗m
∂(q∗sHs − q∗m)

∂Ts
≈ −4.4%/K, (3.28)

1

Q1

∂Q1

∂Ts
− 1

Q2

∂Q2

∂Ts
≈ −5.0%/K, (3.29)

which are the values when SST is 300K. Substituting Eqs.(3.27)(3.28)(3.29) into Eq.(3.26),
we get

1

Hm

∂Hm

∂Ts
≈ 0.0%/K. (3.30)

That is why tropospheric relative humidity changes little with a broad range of climate with
SST varying from 10oC to 40oC.

Since this RCE system is highly coupled, it is hard to say which single element in
this coupled system causes the almost constant tropospheric relative humidity. Actually,
it is due to the radiation-convection coupling itself, in other words, the feedback between
radiation and convection. To test this hypothesis, we can fix the layer emissivity to a
constant value, which kills the coupling between convection and radiation, and see how the
relative humidity changes with SST.

Interestingly, we find that the case with fixed emissivity experiences a significant increase
in the tropospheric relative humidity with SST. This can be partly explained by the same
energetics analysis we conducted above, and the new values of the three terms in Eq. (3.26)
are

1

q∗m

∂q∗m
∂Ts

≈ 9.4%/K, (3.31)
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(a) (b)

Figure 13: Comparison of (a) surface temperature and (b) tropospheric relative humidity
between our two-layer model (circle) and the MIT full radiative-convective model (cross).
Horizontal axis has been changed to albedo for the ease of comparison.

− 1

q∗sHs − q∗m
∂(q∗sHs − q∗m)

∂Ts
≈ −4.1%/K, (3.32)

1

Q1

∂Q1

∂Ts
− 1

Q2

∂Q2

∂Ts
≈ −2.9%/K. (3.33)

Again, they are the values when SST is 300K. Substituting Eqs.(3.31)(3.32)(3.33) into
Eq.(3.26) and taking Hm as 0.55, we get

1

Hm

∂Hm

∂Ts
≈ 2.0%/K, (3.34)

which is a good estimate for the green dashed line in Fig. 12.
One might have noticed that fixing the layer emissivity will not change the behavior of

surface relative humidity too much (black dashed line in Fig. 12). That is because the state
dependency of emissivity only enters the term B in Eq. (3.19), and as we have mentioned,
B is a small term and it will not change the results too much in two cases.

To further test our hypothesis about the stabilizing effect of radiation-convection cou-
pling on the tropospheric relative humidity, we have also used a full radiative-convective
model (MIT column RCM) and the results are shown in Fig. 13. In the MIT full RCM,
we can modify surface albedo to change the external forcing, so for the ease of comparison,
we use surface albedo as horizontal axes in Fig. 13. For the cases with varying emissivity
(red), both models exhibit an almost unchanged relative humidity; for the cases with fixed
emissivity (blue), both models exhibit increasing relative humidity when the system gets

258



warmer. Those trends agree especially well when albedo is in the range of 0.05 to 0.20,
and surface temperature is in the range of 15oC to 30oC, which is exactly the temperature
range of current tropics.

4 Conclusions and discussions

This study develops two idealized models with different simplifications from the full radiative-
convective equilibrium system. The first model is a one-dimensional tropopause model with
multiple layers but less coupling. We find that this 1-D model, even without any explicit
dynamics, can well reproduce the observed meridional structure of tropopause height, and
can also explain why the tropical tropopause is higher, colder, and sharper than the extrat-
ropical tropopause. Brewer-Dobson circulation is a key element in explaining the observed
features of the tropopause. We will use an idealized GCM to further test this hypothesis.

The second model is a two-layer RCE model with interactive hydrological cycle. This
extremely simplified model captures the main features of RCE states very well, and its
simplicity helps us better understand the basic physics of RCE. With this model, we find
that tropospheric relative humidity hardly changes climate in a broad range of SST from
15oC to 30oC, which is exactly the temperature range of current tropics. We want to
emphasize that it is an alternative argument, aside from the conventional argument with
large-scale circulation, on explaining the unchanged relative humidity with climates people
usually assume. The key element of this argument is the coupling between radiation and
convection. Once we kill this coupling or use an unrealistic relation between emissivity and
water vapor path, we might fail to observe this phenomenon.

For future investigation, we are hoping to combine the two simplified models to better
understand how the height of tropopause changes with climate (temperature, humidity,
etc.), and going further, large-scale circulation such as lateral transport and mid-latitude
eddies will be incorporated in the model as well to form a full picture.
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1 Introduction

Rossby waves arise in the oceans as a response to forcing, either by buoyancy or by the
actions of winds at the sea surface [3]. They have been observed in satellite altimeter data
(for example, Kelly and Thompson (2002)[1] show excellent agreement between observed
sea surface height and a Rossby wave model) as well as in moorings.

The case of Rossby waves in closed basins (i.e. Rossby basin modes) is a classical problem
in geophysical fluid dynamics [2, 3, 4]. There is observational evidence from moorings for
these modes; for example, Warren et al. (2002)[9] observed a large signal in moorings in
the Mascarene Basin (off the coast of Madagascar) which they attributed to a barotropic
Rossby mode.

When examining ocean circulation in basins with incomplete barriers, Pedlosky et
al. (1997)[7] and Pedlosky and Spall (1999)[8] found that barriers extending through most
of the ocean basin were surprisingly inefficient at blocking the transmission of Rossby wave
energy from one subbasin to the next. Pedlosky (2000)[5] developed the linear theory fur-
ther for the case of a long thin island extending nearly the entire meridional length of the
basin, with only small gaps between the north and south ends of the island and the basin
boundary, and found that for certain forcing symmetries, waves forced in the eastern sub-
basin were able to easily slip around the island into the western subbasin. Following this,
Pedlosky (2001)[6] looked at the amplitude of reflected and transmitted waves through a
barrier with two or three small gaps. However, the theory derived in Pedlosky (2000)[5]
and Pedlosky (2001)[6] neglects nonlinear effects and friction in the main basin interiors,
and it is unclear what effect these neglected processes will have. As such, investigation of
this problem in a laboratory setting might be able to shed some light as to how well the
linear theory captures the physics of Rossby waves impinging on a barrier with small gaps,
such as ocean ridges or island chains with small gaps between neighbouring islands.

The remainder of this report will proceed as follows. In section 2, the details of the linear
theory for the problem of Rossby modes interacting with a barrier with two gaps in it will
be outlined, as well as giving a scaling for the likely impact of nonlinear effects. In section 3,
the laboratory setup and the associated troubleshooting of the apparatus will be described.
Then, in section 4, the measured flows will be described and compared with the linear
theory. The quantitative details of the integral constraint derived in the linear theory will
be examined using the laboratory data, and some effects of nonlinearity will be examined.
We find that while the linear theory captures the large-scale structures of the flow as the
Rossby modes encounter the barrier, viscosity and nonlinearity appear to significantly affect

261



x

y

Ly

Lx

d

d

eastern 
subbasin

western 
subbasin

xe xwx1 x2 xf

south

north

y1

y2

Saturday, 30 August, 14

Figure 1: Geometry of basin, barrier, and forcing.

the flow along the boundaries and the barrier through strong boundary currents, and in the
gaps through the formation of vortices. Additionally, there is no indication of resonance in
the experimental results, despite the predicted resonance at the basin and subbasin normal
mode frequencies in the linear theory, indicating additional missing physics. Finally, in
section 5, future directions for the problem based on the laboratory results observed here
will be discussed.

2 Linear theory

The geometry of the system being considered, shown in figure 1, is similar to that of Pedlosky
(2001)[6]: a barrier from x1 to x2 extends the length of a square basin in the meridional
direction with only two small gaps of length d � L, and is symmetric with respect to the
y-coordinate. The flow is forced at the location x = xf , similar to the forcing in Pedlosky
(2000)[5].

As in Pedlosky (2000)[5], the governing equation for the flow is the linearized quasi-
geostrophic potential vorticity equation for the β-plane. The fluid is homogeneous and the
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flow is barotropic. In nondimensional form, with lengths scaled by the basin length L and
times scaled by the characteristic Rossby wave period (βL)−1, the equation of motion is

∇2Ψt + Ψx = −r∇2Ψ +A∇4Ψ +W (x, y, t) . (1)

The first term on the right-hand side of (1), proportional to r, is a linear drag term repre-
senting the effect of bottom friction, and may be thought of as a ratio between Stommel’s
boundary layer thickness to L. The second term, proportional to the nondimensional vis-
cosity A, represents the effect of lateral friction. It can be thought of as a cubed ratio of
the Munk scale δM to L [5]. Both A and r are assumed to be small parameters. Finally,
the third term is a forcing term.

As in Pedlosky (2000)[5], we assume that the forcing is harmonic with frequency ω0,

W = Re[eiω0tw(x, y)] . (2)

We then search for solutions Ψ(x, y, t) of the form

Ψ = Re[eiω0tψ(x, y)] . (3)

Substituting the above expressions for W and Ψ into (1) thus leads to the following partial
differential equation for the spatial structure of the stream function ψ(x, y):

iω∇2ψ + ψx = A∇4ψ + w(x, y) (4)

where ω = ω0 − ir.
On the basin boundaries and the peninsulas, we set ψ = 0, while the island is assumed

to have constant value ΨI , to be determined.
The vertical structure of the forcing may be represented as a Fourier sine series

w =
∑

n=1

wn(x) sinnπy . (5)

Additionally, if the forcing is localized in x, for instance at some location x = xf , then the
x-dependent coefficients wn(x) may be represented using a Dirac delta as

wn = Wnδ(x− xf ), x2 < xf < x . (6)

2.1 Gaps

In the gaps, the characteristic length scales of the flow are assumed to be much smaller in
the y-direction than in the x-direction. Correspondingly, x-derivatives are assumed to be
negligible when compared with y-derivatives, and (4) becomes

iωψyy −Aψyyyy = 0 (7)

in the gaps.
Defining y′ = y2 + d − y in the northern gap and y′ = y − y1 + d in the southern gap,

the solution to (7) is

ψ = A1 +B1
y′

d
+ C1 exp

(
(1 + i)y′

δ

)
+ C2 exp

(−(1 + i)y′

δ

)
, (8)
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where δ =
√

2A/ω. The corresponding boundary conditions are that the streamfunction ψ
be continuous across the gaps, i.e.

ψ = 0, y′ = 0 ,

ψ = ΨI , y′ = d , (9)

ψy = 0, y′ = 0, d .

Applying (9) allows for the determination of the coefficients in (8) as

A1 = −ΨI
ρ(1− q)

(1 + i)[1 + q − ρ(1− i)(1− q)] (10)

B1 = ΨI
(1 + q)

[1 + q − ρ(1− i)(1− q)] (11)

C1 = −ΨI
qρ

(1 + i)[1 + q − ρ(1− i)(1− q)] (12)

C2 = ΨI
ρ

(1 + i)[1 + q − ρ(1− i)(1− q)] (13)

with ρ = δ/d and q = exp(−(1 + i)/ρ). The values of A1, B1, C2, C2 are proportional to ΨI

which is yet to be determined.
Thus, the streamfunction along the longitudes of the barrier is

ψ =





0, 0 < y < y1 − d
ψgap, y1 − d < y < y1

ΨI , y1 < y < y2

ψgap, y2 < y < y2 + d

0, y2 + d < y < 1

(14)

which may be written as ψ = ΨIg(y).

2.2 Basins

In the basin interior, lateral friction is neglected and (4) becomes

iω∇2ψ + ψx = w(x, y) . (15)

The solution may be represented as

ψ = eikx
∑

n=1

φn(x) sinnπy , (16)

so that solving for ψ amounts to solving

d2φn
dx2

+ a2nφn =
wn(x)

iω
e−ikx , (17)

in which a2n = k2 − n2π2 and k = 1/(2ω), for φn.
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Solving (17) with the boundary conditions for ψ and continuity of the streamfunction
at x = xf ,

dφn
dx

∣∣∣∣
x=xf+

− dφn
dx

∣∣∣∣
x=xf−

= − i
ω
Wne−ikxf (18)

gives

φn =





A+
n

sin an(x−xe)
sin an(x2−xe)

, xf ≤ x ≤ xe
A−n

sin an(x−xe)
sin an(x2−xe)

+Bn
cos an(x−xe)
sin an(x2−xe)

, x2 ≤ x ≤ xf
Dn

sin an(x−xw)
sin an(x1−xw) , xw ≤ x ≤ x1

(19)

in which

Bn =
Wne−ikxf

iωan
sin an(x2 − xe) sin an(xf − xe) (20)

A−n = ΨIgne−ikx2 − Wne−ikxf

iωan
cos an(x2 − xe) sin an(xf − xe) (21)

A+
n = A−n +Bn cot an(xf − xe) (22)

Dn = ΨIgne−ikx1 (23)

In the above, gn refers to the Fourier sine transform of g(y),

gn = 2

∫ y

0
g(y) sinnπy dy . (24)

2.3 Integral constraint

To determine the value of ΨI , we may apply Kelvin’s circulation theorem by integrating
around a contour, CI , bordering the island. This gives

∮

CI

u · ds = 0 (25)

for time-periodic motion with frequency ω. This may be expressed as

iω

∮

CI

∇ψ · n dl −A
∮

CI

∇∇2ψ · ndl = 0 . (26)

When the above expressions for ψ are substituted into the above, the resulting algebraic
expression is for this integral constraint is

ΨI

[∑

n=1

µngnan cosnπy1
nπ

sin an[Lx − lx]

sin an(x2 − xe) sin an(x1 − xw)
− 2B1lx

d

]

= −i
∑

n=1

µnWn cosnπy1
ωnπ

exp ik(x2 − xf )
sin an(xf − xe)
sin an(x2 − xe)

(27)

where µn = 1− (−1)n. This may then be solved for the island constant ΨI .
It should be noted that when n is even, the resulting value of ΨI is identically zero.

This may be understood by considering that for the symmetric island geometry described
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here, the integral around the island may be satisfied on the eastern side of the island alone:
the meridional velocities along the eastern side integrate to zero.

However, when n is odd, ΨI 6= 0 in general. In contrast to the even-n case, the velocities
along the eastern side of the island do not integrate to zero. This requires some response
on the western side of the island in order to satisfy the integral constraint.

Finally, it should be noted that within the theoretical framework considered here, the
result for the integral constraint is also applicable to the nonlinear equations of motion,
i.e. integration around the island would still imply some response on the western side of the
island to satisfy the integral constraint.

2.4 Scaling for nonlinearity

While the theory presented above is a linearized theory for the problem being considered,
in a real fluid it is expected that nonlinear effects may become important in certain flow
regimes. By considering the relative importance of the nonlinear terms in the full nonlinear
quasigeostrophic potential vorticity equation, we can predict under what circumstances
nonlinear effects may become important.

We begin by defining a characteristic forcing velocity Ue = ω0Aforcing. Then, the (di-
mensional) stream function in the basin is expected to scale with this forcing velocity as
ψe ∼ UeL. In addition, x distances are expected to scale roughly with L everywhere. In the
basin, y distances scale approximately with L. We can then define a parameter NLbasin as
a scaling of the relative importance of the nonlinear J(ψ,∇2ψ) terms compared with the
linear βψx term, i.e.

J(ψ,∇2ψ)

βψx
∼ Ue

βL2
= NLbasin . (28)

However, in the gaps the y distances do not scale with L, but rather with d. A similar
parameter NLgap can thus be defined as

J(ψ,∇2ψ)

βψx
∼ UeL

βd3
= NLgap . (29)

For gaps which are small compared with the length of the barrier, d � L, this implies
that NLgap � NLbasin, i.e. nonlinear effects are expected to be more significant in the gaps
than in the basin interior.

3 Laboratory setup

The general experimental setup is shown in figure 2, with the corresponding parameters
listed in table 1. The resulting laboratory apparatus is shown in figure 3, and consists of
a square tank with a sloping bottom on a rotating table to create a laboratory analogue
to the β-effect. A meridional barrier, constructed from 1/8′′ acrylic, is placed in the tank;
the geometry of the barrier is symmetric with respect to y. The 45 cm-long forcing paddle
is mechanically forced by a scotch yoke-type mechanism which allows for different forcing
frequencies (O(0.10) rad/s) and amplitudes (up to 3 cm). A rigid lid is used in order to
reduce surface gravity-capillary modes in the system.
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Figure 2: Geometry of basin, barrier, and forcing for laboratory experiments. (a) xy-plane.
(b) yz-plane.
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Parameter Value Parameter Value

Lx 60 cm y1 15 cm
Ly 60 cm y2 45 cm
d 4 cm D 20 cm
xw 0 cm s 2/15
xe 60 cm Aforcing 0.7-3.0 cm
x1 22 cm ω0 0.05-0.15 rad/s

x2 − x1 1/8′′ f0 2.0-3.5 rad/s
xf 57 cm

Table 1: Experimental parameters used in laboratory experiments, corresponding to fig-
ure 2.

Two types of experiments are performed: dye visualization and particle image velocime-
try (PIV). For the dye experiments, a syringe pump capable of low flow rates (O(1 ml/hr))
is used to inject dye at various locations within the basin. For the PIV experiments, salt-
water with density ρ ≈ 1200 kg/m−3 is used as the working fluid. The fluid is seeded with
50µ particles with density ρ ≈ 1160 kg/m−3. A green laser (532 nm/1064 nm) is used to
illuminate the flow, with a pulse rate of 1-10 Hz. The software used to compute the flow
velocities is LaVision’s DaVis software.

The Ekman layer depth, relative to the change in depth due to the sloping bottom, is
δEk/∆D ∼ 0.01− 0.02. The Munk scale, relative to the gap width, is δM/d < 0.25 (where
the gap needs to be at least twice the Munk scale, to prevent the boundary layers from
blocking flow through the gap). Given that d� L, this confirms the assumption in § 2 that
A is a small parameter.

We anticipate a resonant response at approximately the normal-mode frequencies asso-
ciated with the full basin in the absence of the barrier as well as those for each individ-
ual subbasin [8, 5]. These frequencies are computed in nondimensional form (relative to
(βL) ∼ 1) by

ωnm =
1

2π
√
m2(Ly/Lx)2 + n2

, (30)

in which the integers m and n refer to the mode number in the x and y directions, respec-
tively [3]. These frequencies are ωF = 0.1075, ωE = 0.0802, and ωW = 0.0548 for the full,
eastern, and western basins respectively.

4 Results

4.1 Initial results and troubleshooting

Initial dye visualization experiments (not shown) showed evidence of oscillations at approx-
imately the forcing frequency. However, one limitation of the dye visualization technique is
that it only gives a Lagrangian description of particle paths, and not a full picture of the
overall flow field, which motivated the move to full PIV measurements of the flow.
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Figure 3: Laboratory apparatus corresponding to figure 2.
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However, upon taking initial PIV measurements of the flow, a high-frequency oscillation
of O(1 Hz) was observed with amplitude comparable to that of the signal being forced. The
high-frequency signal persisted even when the forcing was turned off entirely, as shown in
figure 4; as such, it was necessary to determine the cause of the oscillations in order to
reduce or eliminate them.

Several possible sources of oscillations were examined:

1. Surface gravity waves.
Although a rigid lid for the tank is included in the experimental apparatus, it seemed
possible that the lid may have still been able to wobble, thus forcing a flow in the
interior of the tank. However, sealing down the lid did not appear to reduce the
observed oscillations.

2. Table off-balance.
Given the addition of the camera, camera mount, and laser to the table, it was thought
that perhaps the weight may have unbalanced the table surface. However, adding
weight to the opposite side of the table to offset this potential imbalance did not
appear to reduce the oscillations.

3. Table not level.
It was found that the table was not properly level, i.e. the axis of rotation was not
parallel to gravity. Re-levelling the table appeared to help slightly but did not sub-
stantially reduce the oscillations.

4. Additional vibration introduced by control system.
Due to the setup of the control system used to maintain the table’s rotation speed, a
peak in frequency of O(1Hz) could be observed in the associated frequency spectrum.
By changing the manner in which the table was operated, the oscillations observed
within the tank were reduced significantly.

With the oscillations observed in figure 4 substantially reduced, the PIV measurements
of the forced flow could then be measured.

4.2 Comparison of PIV results with linear theory

PIV experiments were carried out at five forcing frequencies (ω0 = 0.0690, 0.0882, 0.1010,
0.1134, 0.1355 rad/s) and three forcing amplitudes (Aforcing = 0.7, 2.0, 2.7 cm) with a table
rotation rate of 15 rpm (f0 = 3.1 rad/s).

Figures 5 and 6 show the stream functions and velocities, respectively, from the lab-
oratory measurements and the corresponding linear theory for forcing with ω0 = ωF =
0.1355 rad/s (at f0 = 3.1 rad/s) and Aforcing = 2.0 cm. As the two figures show, despite
the noise apparent in the experimental data, the linear theory does capture many of the
large-scale features of the observed flow from the experiments. In particular, the computed
streamfunction shown in figure 5 shows the Rossby wave propagating through the barrier
with the correct frequency, as predicted by the linear theory.

Using the computed streamfunction from the experimental data, the experimental island
constant can be computed. This is done by taking the average value of the streamfunction
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Figure 5: Comparison of streamfunction in laboratory results (left) and theoretical model
(right) for ω0 = ωF = 0.1355 rad/s at f0 = 3.1 rad/s and Aforcing = 2.0 cm.
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Figure 6: Comparison of velocities (arrows) and speeds (colours) in laboratory results (left)
and theoretical model (right) for ω0 = ωF = 0.1355 rad/s at f0 = 3.1 rad/s and Aforcing =
2.0 cm.
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Figure 7: Mean value of streamfunction around island and corresponding computed fit,
ΨI cosωt.

around the island at each point in time, which oscillates with frequency ω, and computing
the root-mean-square velocity corresponding to this timeseries. An example of the data and
corresponding fit for ω0 = 0.1355 rad/s and Aforcing = 2 cm is shown in figure 7. Excellent
agreement is seen between the amplitude of the oscillations in the experimental data and
the computed amplitude ΨI .

A summary of the computed values of the island constant for all forcing frequencies
and forcing amplitudes is shown in figure 8. Of note is the apparent lack of resonance,
despite three of the forcing frequencies (ω0 = 0.0690, 0.1010, 0.1355 rad/s) corresponding to
the western subbasin, eastern subbasin, and full basin normal mode frequencies. This is
particularly surprising given that the theoretical predictions of Pedlosky and Spall (1999)[8]
and Pedlosky (2000)[5] indicate that resonant peaks should be observed in the value of ΨI

(see, for instance, figure 4 of [5]).
An additional way in which the experimental results may be compared with the linear

theory outlined above is by further examining the integral constraint defined in (25). We
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Figure 8: Computed values of island constant ΨI for different forcing frequencies and am-
plitudes.
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redefine this expression as ∮

CI

u · ds = residual . (31)

By computing the individual components of the contour integral, the residual is determined.
The mean value of the computed residual is shown in figure 9, and the rms amplitudes of

oscillation of each of the individual components of the contour integral are shown in figure 10.
The amplitudes of the mean values are smaller than the rms amplitudes; however, it is clear
from figure 10 that the amplitude of the residual value is comparable to that of some of the
individual terms in the contour integral. This points to some missing physics in the contour
integral. As the contour integral should be valid for nonlinear flows, the missing terms
are likely related to missing viscous effects not accounted for in the linear theory (e.g. the
assumption that lateral friction is negligible in the basin). This is, perhaps, unsurprising
given that the laboratory’s smaller length scales; viscous effects might be expected to be
more dominant in the laboratory than at, say, geophysical scales.

4.3 Nonlinear effects

Figure 11 shows a zoomed-in view of the northern gap for ω0 = 0.1134 rad/s and Aforcing =
2.7 cm. For these parameters, the scalings for nonlinearity in the basin and in the gaps are
NLbasin = 0.004 and NLgap = 13.7, respectively. As such, it is expected that significant
nonlinear effects will be observed in the gap regions for these parameters.

Examination of figure 11 does show evidence of nonlinear effects. In particular, we can
see the formation of a vortex on the western side of the barrier, and a strong boundary
current on the eastern side of the barrier. Both the vortex and the strong east-west asym-
metry are characteristic of strong nonlinear effects which are not well captured by the linear
theory.

5 Discussion and conclusions

Here we have presented laboratory experiments corresponding to the theory of Pedlosky
(2000)[5] and Pedlosky (2001)[6], which predicts that barriers with relatively small gaps
may be quite inefficient in preventing the transmission of Rossby waves through the barriers.
Comparisons between the linear theory and the experimental results indicate that the theory
does capture the large-scale structure of the flow; however, preliminary analysis of the
results points to the importance of additional physics not captured by the linear theory in
its current form.

First, additional forcing frequencies would be of great interest, particularly to determine
whether resonant peaks are seen in the laboratory experiments (as the linear theory sug-
gests) or not. Given that only five frequencies were considered above, it may be the case
that the resonant peaks were “missed” in some sense. On the other hand, if there is no
evidence of resonance, it may be indicative of some additional physics not fully captured
by the linear theory.

Modification of the forcing symmetry and/or the barrier symmetry and number of gaps
would be of interest. Blocking off one of the gaps to confirm that only smaller-scale struc-
tures are able to pass through the gap would be of interest, as would adjusting the forcing

276



0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15−6

−5

−4

−3

−2

−1

0

1

2

3x 10−6

ω (rad/s)

m
ea

n 
re

si
du

al
 (m

2 /s
)

 

 

low amplitude medium amplitude high amplitude

Figure 9: Mean values of the computed residual from (31).
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Figure 11: Velocities (arrows) and speeds (colours) in laboratory results, zoomed in around
the northern gap, for ω = 0.1134 rad/s at f0 = 3.1 rad/s and Aforcing = 2.7 cm.
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to one in which n is even. As Pedlosky and Spall (1999)[8] describe (see their figure 7), ad-
ditional gaps in the barrier allow for different ways in which the waves may be transmitted
through the barrier; comparing these scenarios with laboratory results could reveal further
interesting features of the flow.

Additional forcing amplitudes could also be considered. In particular, it would be in-
teresting to see if increasing the forcing could lead to separation of the vortex forming at
the western side of the gap, shown in figure 11. Additionally, varying the forcing may help
to quantify under what conditions these vortices form. As such vortices are an additional
means by which wave energy may be transmitted into the western subbasin, and are a
nonlinear effect not described by the linear theory described above, understanding their
behaviour is of great interest.

Finally, numerical simulations corresponding to the laboratory length scales would be
of great interest. In particular, while it is difficult to compute contributions due to viscosity
from the measured velocities, owing to the noisy nature of the data and the higher derivatives
that appear in viscous terms, these terms could be more easily computed from numerical
data. This may help in quantifying the effects of nonlinearity and viscosity suggested to be
of some importance by the experimental results.
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A Study of Heat Transport and the Runaway Greenhouse

Effect using an Idealized Model

Paige Martin

1 Introduction

The Earth, in its current state, is in a delicate balance of incoming radiation from the
sun, and outgoing radiation emitted by our planet. For the Earth to maintain a certain
climate, the amount of incoming and outgoing radiation must be equal, and thus we say that
the Earth is in radiative equilibrium. What would happen to the temperature on Earth if
something were to perturb our current equilibrium? This work looks into the possibility of a
runaway greenhouse effect and how an increase in the incoming solar radiation would affect
the temperature of the Earth’s surface. We use a one- and two-column model, first in pure
radiative equilibrium, then with added convection, and allow the atmosphere’s optical depth
to vary with temperature and allow for lateral heat transport between the two columns.
Our goal is to investigate whether the lateral heat transport from the equator toward the
poles might mitigate the impact of the runaway greenhouse effect.

2 Brief Background

The majority of the Earth’s energy comes from the incoming solar radiation, which passes
through most of the components of the atmosphere, straight to the ground. This light is
reflected back upwards through the atmosphere, largely in the form of infrared radiation,
some of which gets absorbed by the atmosphere. The absorbed radiation thus heats up the
atmosphere, and this is why the Earth’s surface temperature is warm enough for human
habitation [9] [3]. This atmospheric warming is called a greenhouse effect.

In this work, we will investigate the runaway greenhouse effect. This phenomenon
occurs when the Earth absorbs more radiation than it can emit, and thus is no longer in
equilibrium. If the surface temperature of the planet increases, more water vapor is formed
in the atmosphere, which then traps more of the upward infrared radiation, leading to an
even higher concentration of water vapor in the atmosphere, and so the cycle continues,
and hence the term ”runaway” [4] [5] [9]. In Ingersoll (1969), it is proposed that Venus
underwent such a runaway greenhouse effect that eventually caused its oceans to boil away
[4]. Here, we take a preliminary look into how close the Earth is to experiencing the same
fate as Venus.
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Symbol Meaning Value

S0 solar constant 1366 W/m2

α albedo 0.3
σ Stefan-Boltzmann constant 5.67 ∗ 10−8

Tg ground temperature
Ta atmospheric temperature

Table 1: Table of symbols used in this section.

Figure 1: A one-column, two-layer model of radiative balance.

3 The Model

3.1 One-Column Radiative Equilibrium

(Note: the following derivations are obtained by following the steps in Geoffrey Vallis’ 2014
GFD Lecture Notes [9]). We first consider a very simple radiative equilibrium model of
the atmosphere, starting with a single column, two-layer setup. As illustrated in figure 1,
the only radiative fluxes present are the incoming solar radiation, S0(1 − α), the upward
heat flux from the ground, given by the Stefan-Boltzmann Law, σT 4

g , and the upward and
downward heat fluxes emitted from the atmosphere layer, σT 4

a [7] [1] [8] [6]. (See table 1
for the meanings and values of the symbols used in this and following sections.) To keep
the notation consistent, it is common to represent the incoming solar radiation in the form
of the Stefan-Boltzmann Law in terms of an effective emitting temperature of the Earth,
which we call Te. In equation form, this gives [6] [2]

σT 4
e = S0(1 − α). (1)

The equations for the model illustrated in figure 1 can be written assuming radiative
equilibrium at each layer - the ground and the atmosphere.

At the surface of the Earth:
σT 4

e + σT 4
a = σT 4

g (2a)

At the top of the atmosphere:
σT 4

e = σT 4
a (2b)
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Figure 2: A one-column, two-layer model of radiative balance with an absorbing atmosphere.

This clearly gives Ta = Te, and thus Tg = 2
1
4Te. For an emitting temperature Te = 255K,

this implies a ground temperature of about Tg = 303K, which overestimates the actual
ground temperature of around 288K, so we choose to improve on this model.

The model assumes that the Earth is a perfect black body and thus absorbs no radiation.
A small tweak to this model yields slightly more realistic results; we assume that the
atmosphere boundary emits only a fraction ε (called the ”emissivity”) of the incoming
radiation flux (see figure 2) [2]. Again, balancing incoming and outgoing radiation at each
of the two layers in the model gives the following equations.

At the surface
σT 4

e + εσT 4
a = σT 4

g (3a)

At the top
σT 4

e = εσT 4
a + (1 − ε)σT 4

g . (3b)

We now have a set of equations that depend on the parameter ε, which varies between
0 and 1. However, this restriction on the value of ε is too strict to allow for a runaway
greenhouse effect , and so we chose to upgrade this model to one that is continuous in the
vertical direction. The new setup is still in one-column form, but instead of having layers
and setting up radiative balance at the interfaces for specific values of the emissivity, we have
a continuous atmosphere written in terms of the optical depth τ . The emissivity and optical
depth are essentially measuring the same quantity - how much of the incoming radiation
gets transmitted, i.e. a measure of the atmosphere’s opacity to long wave radiation. The
equations in this case are more complicated, and cannot be simply read directly from the
diagram, but are derived from the radiative transfer equations.

3.1.1 Radiative Transfer Equations

Let’s begin by considering a beam of radiating particles traveling through a medium that is
also emitting radiation. The intensity I of the beam of particles changes according to the
equation

dI = (B − I)dτ, (4)
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where B is the radiation emitted by the medium, given by the Stefan-Boltzmann Law (σT 4),
and τ is the optical depth. Applying this equation to the atmosphere, and assuming a two-
stream atmosphere, we allow for only upward (U) and downward (D) radiation. We define
τ in the standard way, i.e. decreasing with atmospheric height such that τ = 0 at the top
of the atmosphere. The equations are thus

dU = −(B − U)dτ (5a)

dB = (B −D)dτ. (5b)

Notice the negative sign in the first equation, since the upward radiation U increases with
decreasing τ . In the atmosphere, B refers to σT 4 for the T at a certain height, dictated by
the value of τ . Dividing both sides by dτ , we are left with the differential equations

dU

dτ
= U −B (6a)

dB

dτ
= B −D. (6b)

It turns out to be convenient to change variables to (U +D) and (U −D) , which gives

d(U +D)

dτ
= U −D (7a)

d(U −D)

dτ
= U +D − 2B. (7b)

d(U −D)

dτ
= 0 (8)

These are the equations that we would like to find solutions for, imposing the boundary
conditions

D = 0 (9a)

U = σT 4
e (9b)

for τ = 0.
The solution for the given boundary condition is the following:

D = σT 4
e

(τ
2

)
(10a)

U = σT 4
e

(
1 +

τ

2

)
(10b)

B = σTe

(
1 + τ

2

)
. (10c)

The final equation is the one we are interested in - the one that relates the temperature of
the atmosphere (in B) to the emitting temperature (Te).

We are interested in the ground temperature of the Earth, but so far we have not
accounted for a black surface at the ground level when z=0. From equation 10, we know
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Symbol Value

a 1.12
b .14
c 5413

Table 2: The values of the constants used in the expansion of optical depth in terms of
temperature.

the expression for the upward radiation. This is true at all levels, and so at z=0 with
temperature Tg, we have

T 4
g =

(
2 + τ

1 + τ

)
T 4
s , (11)

where I use Ts to denote the temperature of the surface, i.e. just above the actual ground.
Below we plug this equation in to replace Ts with Tg, the ground temperature which is the
desired value.

The next step is to expand the optical depth in terms of temperature. We write the
optical depth first in terms of z:

τ = τ0e
−z/Ha , (12)

where z is the vertical height (in km) and the constant Ha corresponds to the characteristic
height of water vapor in the atmosphere, which is taken to be 2 km. Because this work is
studying the temperature only at the surface of the Earth, we take z = 0. However, we
expand τ0 as a function of temperature, defined as

τ0(Tg) = a+ b

(
e
c
(

1
288

− 1
Tg

))
. (13)

The constants a,b, and c (see Table 2) are determined by model tuning in conjunction with
discussions with Andy Ingersoll.

With z = 0, and plugging in for τ and Tg, the final equation is

σT 4
g = σT 4

e


1 +

a+ b

(
e
c
(

1
288

− 1
Tg

))

2


 . (14)

The solutions to this equation for various emitting temperatures, as well as other anal-
ysis, are shown in the Results Section.

Before adding convection to the model, we first add a term to the equation that allows
for additional heat loss, and that will lead into the two-column model that will be discussed
later. The new term takes the form −kT and yields the slightly altered equation:

σT 4
g = (σT 4

e − kTg)


1 +

a+ b

(
e
c
(

1
288

− 1
Tg

))

2


 . (15)
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Figure 3: The temperature profiles of radiative and radiative-convective equilibrium.
(Graph by Kerry Emanuel [2])

In the next section we will allow for atmospheric convection to occur, in addition to
radiation.

3.2 One-Column Radiative-Convective Equilibrium

Convection plays an important role in the atmosphere, particularly in the troposphere, and
greatly influences the heating in the lower atmosphere, as shown in figure 3. From this
graph, the temperature profile in the lower atmosphere clearly changes with the addition of
convection; instead of a large increase in temperature very close to the ground in the purely
radiative case, the temperature change is roughly linear with both radiative and convective
effects [2]. Convection, therefore, is an important process to include in our model.

The approach differs from the purely radiative case outlined above. We can no longer
assume radiative balance as in the previous section, as we have extra terms in that come
into play from the convection. We will begin with the same radiative transfer equations

dU

dτ
= U −B (16a)
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Figure 4: A depiction of the approximation used in the RCE model.

dB

dτ
= B −D. (16b)

From here, we solve the equations in a different manner, and derive two equations with
two unknowns: Tg, which still refers to the ground temperature and HT , the height of the
tropopause. The tropopause is the boundary between the troposphere and the stratosphere.

We will only consider the first of the radiative transfer equations, and rearrange to give

1

U

dU

dτ
= 1 − B

U
, (17)

so that we can write it as

d(ln(U))

dτ
= 1 − B

U
. (18)

Next we make an assumption that has been shown to be a good match to data. As
depicted in figure 4, we assume that the quantity B/U varies linearly from the tropopause
down to the surface, according to the equation

B

U
= 1 − z

2HT
, (19)

where z is the height in the vertical direction (the altitude). This expression can be substi-
tuted into equation (18), which yields

d(ln(U))

dτ
=

z

2HT
. (20)

Since the right-hand side of the equation is now in terms of z, we make the substitution
from τ to z in the derivative term, according to

τ(z) = τse
−z
Ha . (21)

Thus,

dτ =
−1

Ha
τse

−z
Ha dz. (22)
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Note that here we use the symbol τs instead of τ0 as in the RE case. This is because
we use a different value of the optical depth when accounting for convection, in order to
keep the ground temperature at 288K. The dependence on temperature still takes the same
form, except for a scaling factor of 6.4 in the RCE case, compared to the RE constants. A
higher value of the optical depth for convection than radiation makes sense, if we look at
figure 3 and notice the rapid temperature increase very close to the ground in the radiative
equilibrium temperature profile in blue. For convection to play its role and heat the ground
to the same temperature, the optical depth must be greater.

The differential equation then becomes

d(ln(U))

dz
= − z

2HT

τs
Ha

e
−z
Ha . (23)

This equation can be solved using integration by parts, which gives

ln

(
U(z = HT )

U(z = 0)

)
=

∫ HT

0
−τsHae

−z
Ha

1

2HTHa
dz (24)

ln

(
2σT 4

T

σT 4
g

)
=

−τsHa

2HT
, (25)

where TT is the temperature of the tropopause, given by

TT =
Te

2
1
4

. (26)

Before we can evaluate the left-hand side of the equation, we introduce an equation
that will be used in the remainder of this section. The following equation relates the
temperature of the tropopause to the temperature of the ground, which is the quantity we
are truly interested in. To do this, we use the lapse rate (denoted Γ), which is a measure
of how much the temperature in the atmosphere decreases with increasing altitude. i.e.
dT
dz . For simplicity, we are assuming a constant lapse rate, and so the temperature of the
tropopause is related to the temperature of the ground in a linear fashion:

TT = −ΓHT + Tg. (27)

So Γ is the slope of the line in a temperature vs. height graph that connects the ground
temperature with the tropopause temperature. In our model, we use a global average value
of 6.5 K/km for the lapse rate [9].

Going back to equation (25), the left-hand side can be approximated as

ln

(
2T 4

T

T 4
g

)
= ln(2) + 4ln

(
1

1 + ΓHT
TT

)
(28)

= ln(2) − 4

(
ΓHT

TT

)
, (29)

where we plug in for Tg according to equation (27) and approximate the last term in the
first equation above by using a Taylor series to obtain equation (29). If we put all of these
approximations together, we get a quadratic equation in HT :

289



Figure 5: The two-column model of radiative balance with an absorbing atmosphere.

−8ΓH2
T + 2ln(2)(HTTT ) + τsHaTT = 0. (30)

Solving for HT gives one of the two equations used in the one-column RCE model, and the
other is simply equation (25):

HT =
1

16Γ

(
CTT +

√
C2T 2

T + 32ΓτsHaTT

)
(31a)

Tg = TT + ΓHT , (31b)

with C = 2ln(2). Equations 31 are the two equations with two unknowns, the height
of the tropopause HT and the temperature of the ground Tg, that we solve to find the
radiative-convective equilibrium solutions in a one-column model.

3.3 Two-Column Radiative Equilibrium

Now we take a step backwards and disregard convection, but create a two-column model
that allows for lateral heat transport between the two columns. The setup is identical to the
one-column RE model (see figure 5), with different values of the emitting temperature (Te)
and ground temperature (Tg), and thus also the optical depth (τ), as well as an added term
defined as k(Tgi −Tgj ) to represent the exchange of heat between the columns (where i and
j denote either column 1 or column 2). Here, k is considered to be a diffusion coefficient,

and this diffusion term is an approximation to the standard diffusion term k d2T
dy2

, where
y denotes the latitude. We consider column 1 to be a rough analogy to the tropics, and
column 2 to represent the midlatitudes. This is taken into account by allowing for the
emitting temperatures to be those corresponding to the specific regions.

The final equations for the two-column case are simply extensions from the one-column
case, and therefore I will not go through the derivations a second time:
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σT 4
g1 = (σT 4

e1 − k(Tg1 − Tg2))(1 +
τ(Tg1)

2
) (32a)

σT 4
g2 = (σT 4

e2 − k(Tg2 − Tg1))(1 +
1 + τ(Tg2)

2
). (32b)

As before, the optical depth τ is written as a function of temperature according to the
equations

τ(Tg1) = a+ b

(
e
c
(

1
288

− 1
Tg1

))
(33a)

τ(Tg2) = a+ b

(
e
c
(

1
288

− 1
Tg2

))
. (33b)

4 Preliminary Results

4.1 One-Column RE

We begin by showing the solutions for the ground temperature Tg of the RE equations
(equations 14) as a function of the emitting temperature Te, as shown in figure 6. There
are a couple features worth noting; first, the shape of the solution resembles a backward
C-curve. This implies that for temperatures below about 268K, there are two equilibrium
solutions. The bottom branch is the branch we are currently on (for our current emitting
temperature of 255K, the ground temperature is the expected 288K), and the top branch
shows a much higher ground temperature for a given emitting temperature.

Another important feature is that there is a critical temperature (in this graph at 268K)
above which there are no solutions to the equations. That is, there are no equilibrium points
in the system, and we thus deduce that the system is in a runaway greenhouse regime, where
the planet is endlessly warming.

We are also interested in the stability of these equilibrium points. If we start by consid-
ering a time-dependent equation:

C
dTg
dt

= (1 +
τ

2
)σT 4

e − σT 4
g , (34)

and linearizing, we find that the bottom branch (the branch we are currently on) is stable,
whereas the top branch is unstable.

In the one-column RE model, we also added in a term that allowed for additional
heat loss (see equation 15), and the solutions in this case are shown in figure 7. Allowing
for additional heat loss creates an added upper branch to the C-curve diagram, but one
that curves upward rather steeply. This branch arches into an extremely high ground
temperature range, and so is likely not of great importance to our current Earth (thankfully),
but this does reveal an interesting aspect of the system that we are studying. If we take
another look at equation 15, we notice that for high ground temperature, the kT term will
dominate. The different shape of the curve, then, at high ground temperatures is not a
surprise.
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Figure 6: Emitting temperature plotted vs. ground temperature for the RE model.

Figure 7: Emitting temperature plotted vs. ground temperature for the RE model with
additional heat loss term.
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Figure 8: Emitting temperature plotted vs. ground temperature for the RCE model.

It is also worth noting that the tip of the C-curve is at a much higher critical temperature
of nearly 300K. This also makes intuitive sense, as the extra term is allowing for heat to
be taken out of the system, allowing for an equilibrium solution for greater amounts of
incoming solar radiation.

4.2 One-Column RCE

In the RCE model, we observe the same C-shaped curve (see figure 8) as we did in the RE
case. This time, however, the critical emitting temperature before the onset of a runaway
greenhouse effect is a couple of degrees higher, around 272K. This is a bit misleading,
however, because we have increased the constants in the equation for optical depth, and so
the comparison must take this into account. In figure 9, we show the RE C-curve using
the values for the optical depth in the RCE model. We see here that the critical emitting
temperature has dropped to under 200K. When taking this into account, we see that adding
convection to the model greatly mitigates the runaway greenhouse effect.

Since we had a second variable, HT in the RCE model, we show the solution of the
tropopause height also for varying emitting temperatures (see figure 10). The shape of the
curve is still C-like, though slightly asymmetric. Still, there exist two solutions for a range
of emitting temperatures, and above a critical value there exist no solutions.

This work is meant to be a study of the system described in previous sections, and so
we present here a couple of parameter studies, meant to shed light on the behavior of our
model. Figure 11 shows the model’s dependence on the lapse rate Γ. The three curves
plotted are the full solution for the ground temperature for 3 different values of the lapse
rate, shown in the plot’s legend. Similarly, figure 12 depicts the height of the tropopause
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Figure 9: Emitting temperature plotted vs. ground temperature for the RE model when
using the values for the RCE optical depth.

Figure 10: Emitting temperature plotted vs. ground temperature for the RCE model.
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Figure 11: Emitting temperature plotted vs. ground temperature for the RCE model with
three values of gamma.

for the same three values of the lapse rate. In both cases, as the lapse rate decreases, the
critical emitting temperature increases and the range of ground temperatures increases, as
well. In the previous plots, the lapse rate used was a constant 6.5 K/km. However, in
reality the lapse rate also depends on temperature, and taking this into account would be
a logical next step in this study.

Figure 13 illustrates the relationship between the emitting temperature and the lapse
rate. As mentioned in the previous paragraph that the critical temperature increases with
decreasing lapse rate, this figure shows the whole spectrum. According to the plot, today’s
emitting temperature of 255K would be critical if the lapse rate were a constant value of 10
K/km across the globe. We portray the same information in a different way in figure 14. The
vertical axis still shows the lapse rate, but the horizontal axis shows the fractional distance
to the sun (according to the Earth-sun distance) needed to obtain the critical emitting
temperature. For example, the Earth is located at 1 Earth-sun distance and would reach
critical emitting temperature at a lapse rate of 10 K/km. Venus, located at about 0.72
Earth-sun distance away from the sun requires a lapse rate of just over 2 K/km to achieve
a runaway greenhouse effect. For the global average lapse rate of around 6.5 K/km [9], as
used in this work, the Earth would need to be at roughly 0.9 Earth-sun distance to be at a
critical emitting temperature, assuming all other elements of the system remain the same.
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Figure 12: Emitting temperature plotted vs. tropopause height for the RCE model with
three values of gamma.

Figure 13: Critical emitting temperature plotted vs. lapse rate for the RCE model.
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Figure 14: Distance to the sun vs. lapse rate for the RCE model.

4.3 Two-Column RE

Finally, we take a look at the two-column radiative equilibrium case. Figure 15 shows two
plots, one for each of the two columns. Once again, we see the familiar C-curves, though
this time there appear to be more than one C-curve in each column. Even though the plots
do not show two full C-shaped curves, they both indicate that the full solution may actually
be made up of two C-curves, as we postulated. This is more obvious in the top graph, for
column 1 (the warmer temperature, mimicking the tropics). The outer C-curve is visible,
and the upper branch of what appears to be a second C-curve is visible. We postulate that
there is a missing lower branch to the inner C-curve, which may be missing due to numerical
difficulties. Having two C-curves makes intuitive sense, since each column displays a C-curve
separately as we showed in the one-column RE case, and with the exchange of heat between
the columns, each column now portrays two C-curves in the solution. More work is certainly
required to confirm our speculations.

Regarding the runaway greenhouse effect and its onset, the two-column model does not
show a great improvement; i.e. the critical emitting temperature is only slightly higher
than the 268K that we obtained from the single column case. The first column has a very
similar value of around 269K, while the second column appears to have a slightly lower
critical emitting temperature, which we infer to be in the neighborhood of 265K. However,
the system is quite different with two columns, and the emitting temperature Te is defined
as 20 Kelvin lower in the second column than in the first. So it is possible that the two-
column RE approach mitigates the runaway greenhouse effect very slightly, but the system
is different enough and the numbers are not robust enough at this time to draw any further
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Figure 15: Emitting temperature plotted vs. ground temperature for both columns in the
two-column RE model. Upper graph: column 1 (the tropics); Lower graph: column 2 (the
midlatitudes).

conclusions.

5 Conclusions and Future Work

These results are preliminary, as this is but the starting framework for understanding the
Earth system’s behavior regarding the runaway greenhouse effect and lateral heat transport.
However, there are a couple key features that are worth pointing out. We find that in both
the RE and RCE models, there exists a critical emitting temperature, above which there
are no equilibrium solutions, and the system experiences a runaway greenhouse effect.

In the one-column RCE model, we find a critical emitting temperature of around 268K.
In the one-column RCE model, it is a couple degrees higher, around 272K. However, because
we use a different value of the optical depth for the RCE than the RE model, these numbers
are not easily comparable. In fact, if using the more realistic RCE value of the optical
depth, we see that our planet would already be in a runaway greenhouse regime in the
RE model. So, convection mitigates the runaway greenhouse effect quite a bit, raising the
critical emitting temperature from just under 200K in the RE model to 272K in the RCE
model.

Adding a second column hardly alters the critical emitting temperature, contrary to
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what we expected. With a warmer column pumping heat into a cooler column, we antici-
pated a higher critical emitting temperature in the first column, and thus a higher threshold
for the onset of the runaway greenhouse effect. However, the two-column model is still in
need of tuning and we will thus continue developing the system and hopefully better un-
derstand it in a future work.

Beyond a more in-depth analysis of the two-column RE model in the future, we would
like to add an analysis of a two-column RCE model as well. We would also like to express
the lapse rate as a function of temperature, in addition to the temperature-dependence of
the optical depth, as we have done here. Finally, we would like to perform more parameter
studies in order to have a more thorough understanding of the Earth system’s behavior.
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Abstract

The downstream development of baroclinic instability is studied in a 2-layer non-linear
Quasi-Geostrophic (QG) model with a semi-infinite downstream extense and rigid merid-
ional walls. Starting with a baroclinic current in a channel, a perturbation is invoked at the
entrance of the channel upstream and its spatial and temporal downstream development
is studied. For matters of simplicity, the study considers 2 y-modes which offers two ad-
vantages: it’s simple enough to follow the 2 modes easily, and it also gives insight into the
more complicated scenario of having more than a mode leading to interaction of the differ-
ent modes and hence modifying the dynamics of the flow. The boundary condition at the
channel entrance upstream is a temporally oscillating perturbation at x = 0; downstream,
the potential vorticity is zero at x = ∞. In the y−direction, the derivatives of the stream
function (i.e velocity) at the meridional walls are zero.

It has been found by Pedlosky (2011) that in a simple finite amplitude model of a
spatially developing baroclinic instability, there’s a regime during which the spatial and
temporal evolution of the instability amplitude along x, t characteristics exhibits chaotic
behaviour. This chaotic behaviour resulting from periodic initial conditions at the channel
entrance leads to sharp and abrupt spatial variations downstream. In the current study, the
non-linear development of a baroclinic instability is studied numerically in a slightly more
complicated but compelling manner. In the current study, persistence of these features and
the circumstances over which this behaviour persists in a more realistic oceanic model forms
the main motivation for the study.
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The Model

Consider the Quasi-Geostrophic(QG) equations for a two-layer model similar to the one
studied in (Pedlosky, 1970) and (Pedlosky, 2011). Here, the formulation will be given in
terms of the potential vorticity, q. The equations of motion in the two layers are given as
below:

(
∂

∂t
+ U1

∂

∂x

)
q(1) +Qy1

∂ψ(1)

∂x
+ J(ψ(1), q(1)) = −r∇2ψ(1). (1)

(
∂

∂t
+ U2

∂

∂x

)
q(2) +Qy2

∂ψ(2)

∂x
+ J(ψ(2), q(2)) = −r∇2ψ(2). (2)

Where the jacobian, J , is defined as J(a, b) =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
and for a channel with no

topography as is the case in this study,

Q1 = ∇2ψ1 − F1(ψ1 − ψ2) + βy.

Q2 = ∇2ψ1 + F2(ψ1 − ψ2) + βy.

Proposing a truncated Fourier series solution to the equations (1) and (2) of the form

(
q(1)

ψ(1)

)
=

(
q
(1)
1 (x, t)sinπy + q

(1)
2 (x, t)sin2πy + · · ·

ψ
(1)
1 (x, t)sinπy + ψ

(1)
2 (x, t)sin2πy + · · ·

)
. (3)

(
q(2)

ψ(2)

)
=

(
q
(2)
1 (x, t)sinπy + q

(2)
2 (x, t)sin2πy + · · ·

ψ
(2)
1 (x, t)sinπy + ψ

(2)
2 (x, t)sin2πy + · · ·

)
. (4)

Substituting equation (3) into equation equation (1) and projecting onto sinπy and sin2πy
yields equations (5) and (6) respectively

(
∂

∂t
+ U1

∂

∂x

)
q
(1)
1 +Qy1

∂ψ
(1)
1

∂x
− π2

2
q
(1)
2

∂ψ
(1)
1

∂x
+
π2

4
q
(1)
1

∂ψ
(1)
2

∂x
−

π2

4
ψ
(1)
1

∂q
(1)
2

∂x
+
π2

2
ψ
(1)
2

∂q
(1)
1

∂x
= −rq(1)1 . (5)

(
∂

∂t
+ U1

∂

∂x

)
q
(1)
2 +Qy1

∂ψ
(1)
2

∂x
+
π2

4
q
(1)
1

∂ψ
(1)
1

∂x
− π2

4
ψ
(1)
1

∂q
(1)
1

∂x
= −rq(1)2 . (6)

In the reduced model, the equations (5)and (6) are the equations of motion in layer 1. In
a similar way, the equations of motion in layer 2 are obtained as :

(
∂

∂t
+ U2

∂

∂x

)
q
(2)
1 +Qy2

∂ψ
(2)
1

∂x
− π2

2
q
(2)
2

∂ψ
(2)
1

∂x
+
π2

4
q
(2)
1

∂ψ
(2)
2

∂x
−

π2

4
ψ
(2)
1

∂q
(2)
2

∂x
+
π2

2
ψ
(2)
2

∂q
(2)
1

∂x
= −rq(2)1 . (7)
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(
∂

∂t
+ U2

∂

∂x

)
q
(2)
2 +Qy2

∂ψ
(2)
2

∂x
+
π2

4
q
(2)
1

∂ψ
(2)
1

∂x
− π2

4
ψ
(2)
1

∂q
(2)
1

∂x
= −rq(2)2 . (8)

q ≡ potential vorticity, ψ ≡ stream function, r ≡ dissipation coefficient.
Linearising the equations (5),(6),(7) and (8) yields a slightly modified set of equations

from which the linear stability of the equations can be investigated. Proposing potential
vorticities and stream functions of the form below:

q
(`)
j = q̂

(`)
j eik(x−ct) and ψ

(`)
j = ψ̂

(`)
j eik(x−ct) for ` = 1, 2; j = 1, 2. (9)

where x is the downstream coordinate and k is the x-direction wave number.
The superscripts in equation (9) denote layers while the subscripts denote the wave mode
under consideration. The linearised forms of equations (5) and (7) can be presented in
matrix form as




r + ik(U1 − c)−
ikQy1(K

2
1 + F2)

K2
1(K

2
1 + F1 + F2)

−ikQy1F1

K2
1(K

2
1 + F1 + F2)

−ikQy2F2

K2
1(K

2
1 + F1 + F2)

r + ik(U2 − c)−
ikQy2(K

2
1 + F1)

K2
1(K

2
1 + F1 + F2)




(
q̂
(1)
1

q̂
(2)
1

)
= 0

(10)
where K2

1 = k2 + π2 and k is the x-direction wave number.
The linearised forms of equations (6) and (8) take a similar form and can be presented

in matrix form in the same form as equation (10) but with K1 swapped for K2 = k2 + 2π2.
For non-trivial solutions, the determinant of the matrix in equation (10) must vanish,

thus,

(
r + ik(U1 − c)−

ikQy1(K
2
1 + F2)

K2
1(K

2
1 + F1 + F2)

)(
r + ik(U2 − c)−

ikQy2(K
2
1 + F1)

K2
1(K

2
1 + F1 + F2)

)
−

( −ikQy1F1

K2
1(K

2
1 + F1 + F2)

)( −ikQy2F2

K2
1(K

2
1 + F1 + F2)

)
= 0 (11)

For matters of simplicity, discarding the β-effect from our consideration and also defining
the shear as Us = U1 −U2. Also considering that F1 = F2 = F, then

Qy1 = FUs, Qy2 = −FUs thus

Qy1 +Qy2 = 0, Qy1 ·Qy2 = −F2U2
s (12)

Equation (11) generates a quadratic equation in c whose solution is obtained to be

c =

(−ir
k

+
1

2
(U1 + U2)

)
± Us

2

(
1− 4F

(
F3

y2
− Fx2

y2
+
x

y

))1/2

(13)

where x = K2
1 + F, y = K2

1(K
2
1 + 2F) and thus

c−UB =
−ir
k
± Us

2

(
K2

1 − 2F

K2
1 + 2F

)1/2

. (14)
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Thus c is generally complex and can be written as c = cr + ici where cr and ci are the real
and imaginary parts of c respectively. In case the term in the last parentheses vanishes,
then the dispersion relation reduces to

c =

(−ir
k

+ UB

)
where UB =

1

2
(U1 + U2), the barotropic flow. (15)

It is also observed that the decay of the perturbation is proportional to the dissipation in
the system and is higher for lower wave numbers. In this case, the shear does drop out of
the dispersion relation rendering the dissipation, r, and the magnitude of the barotropic
flow as the parameters governing the flow dynamics in the channel under study.

However if K1 < (2F)1/2, then the last parentheses in equation (14) also contribute to
the complex part of c and in turn the shear, Us and the Froude number, F become effective
parameters of the system.

In the following, simulations will be conducted in two main categories; the first being
the case when the dissipation, r = O(1) and the second being the case when the dissipation
is almost zero in the system i.e r = O(∆) for very small ∆.

(i) r = O(1)
In this case, the only way of having a growing instability is that 2F > K2

1 and the

whole term in the parentheses must be large enough to outweigh the decay term,
−ir
k

.

This yields the relation for the marginal condition on Us in order to have a growing
instability. With values selected as r = 4.6,F = 40, l = π and 0 < k < 5.0

Us =
2r

k

(
2F + K2

1

2F−K2
1

)1/2

(16)

(ii) r = O(∆)
With r small, the marginal curve is given in terms of the parameter, F and takes the
form

F =
K2

1

2
=
k2 + l2

2
(17)

F thus has a parabolic form with a minimum at k = 0 and takes the form below:
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Numerical Simulations and Results

The case r = O(1)

The model set up is such that the system is slightly above its neutral criticality. The
barotropic velocity in the channel is set at UB = 13.125 and the most unstable mode is to
be k = 4.34 . The parameter values of the model when neutrally critical and those used in
the numerical simulation are given in table 1.

Table 1: Model parameters used for the case r = O(1)

Parameter Symbol Critical values Simulation value

Shear Us 3.00 3.25
Froude number F 40.0 40.0
Dissipation r 4.60 4.60

With the shear slightly increased above the neutrally critical value of the shear, an initial
perturbation is set up at the entrance of the channel (i.e at x = 0) and it’s downstream
development with time is studied. The boundary conditions are such that at the channel
entrance, a perturbation, Aosin(ωt) with frequency ω = kUB is seeded. At the end of the
channel, spongy boundaries are considered such that whatever is incident on the wall, goes
in and none of it is reflected back into the channel. The meridional walls are rigid and the
potential vorticities there are zero*.
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Discussion

It’s observed that to first order, the solution has both the barotropic and baroclinic modes
on sin(πy) as the leading terms of the solution to the nonlinear set of equations (5,6,7 and
8). The leading terms of the solution exhibit the oscillations of the initial perturbation
imposed at the entrance of the channel (see figures 1 and 3) all the way downstream.
The amplitude of the perturbation grows initially until it reaches a finite amplitude and
thereafter momentarily stabilises before eventually decaying off to zero. The stabilisation
in growth of the perturbation at finite amplitude is longer downstream.

In all cases and for all the modes considered, it is observed that the part of the growing
perturbation behind the front reaches finite amplitude before saturation such that in the
regions ahead of the front, the amplitude of the perturbation remains constant in the vicinity
of the front and decays quite quickly away from the front downstream. The slightly unique
cases amongst the modes considered in this study are those of the baroclinic and barotropic
modes on sin(2πy) which appear to be relatively smooth compared to the leading order
terms. With the exception of a few oscillations whose amplitudes are still small near the
channel entrance, any information about the oscillatory nature of the perturbation is lost
downstream and the resulting correction to the mean flow is of a largely smooth structure.

Behind the front, wiggles are observed in the spatial and temporal structure of the
perturbation before finally reaching finite amplitude in the vicinity of the front. Ahead
of the front, the perturbation has already reached finite amplitude and therefore remains
constant (for longer time scales) or immediately decays (for shorter time scales) ahead of
the front. This is in agreement with Pedlosky (2011) who highlighted that the correction to
the mean flow carries the oscillatory information of the perturbation only behind the front
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Figure 1: Snapshots of the barotropic potential vorticity on the sin(πy) mode with Us =
Uso + 0.25 and r = ro

during which time the perturbation also attains finite amplitude. In that study, they also
observe that ahead of the front, the structure is basically a smooth one with the perturbation
having reached finite amplitude.

However, it is also observed that the baroclinic mode on sin(2πy) is also the largest
of the projections on the sin(2πy) modes. This is consistent with the results obtained by
(Pedlosky, 2011) which highlighted that the first order correction to the mean flow was fully
baroclinic.

However, the non-linear simulations carried out in this study reveal that there’s a
small contribution to the mean flow correction by the barotropic component carried by
the barotropic component on the sin(2πy) mode. It’s the smallest of all the components
but it is worth mentioning that although the asymptotic approach adopted using the finite
amplitude model in Pedlosky (2011) fails to capture this contribution, it is not necessarily
zero as observed in figure 2.

A probable explanation as to why the asymptotic approach shows that the sin(2πy)
barotropic mode does not contribute to the mean flow correction could be that as observed
from figure (2), the average of this mode over a period is zero. So, it could be asserted that
the reason for the failure to capture to this mode in the theory is not because it’s so small
in magnitude but it’s because it vanishes on average. More interestingly for all time, apart
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Figure 2: Snapshots of the baroclinic potential vorticity on the sin(2πy) mode with Us =
Uso + 0.25 and r = ro

from the initial transients, the sin(2πy) barotropic mode manifests as a periodic oscillation
whose average over a period vanishes.
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The case r=O(∆)

Table 2: Model parameters used for the case r = O(∆)

Parameter Symbol Critical values Simulation value

Shear Us 1.30 1.30
Froude number F 4.9348 4.9348 + 0.02
Dissipation r 0.001 0.001

The barotropic flow in this case is reduced to UB = 1.65 and the most unstable mode
corresponds to the wave number k = 0.15.

Several simulations are carried out with various degrees of super criticalities (i.e for
increasing values of ∆) and the results are presented in the following figures. For most
values of ∆, the flow does not seem to change significantly but it happens that as ∆
increases, more features emerge ahead of the front for longer times.

As the theory predicts, the largest component of the correction to the leading order
solution is baroclinic (the sin2πy baroclinic mode). However, the fully non-linear solution
shows that a barotropic contribution is also present. The latter is initially small (≈ 0) but
develops with time until it is one order of magnitude lower than the baroclinic correction.
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Discussion

It’s observed that at the leading order, the dominant part of the flow is the sinπy barotropic
mode. The sinπy baroclinic mode is lower than the former but it’s significantly appreciable.
This is in agreement with the findings of Pedlosky (2011) that showed that in this regime,
the leading order solution is the sinπy mode and that its baroclinic counterpart is an order
of magnitude lower. Although not as much as an order of magnitude, the fully nonlinear
solutions strongly yield similar results.

At the next order, the major correction component to the mean flow is found to be fully
baroclinic (i.e the sin2πy baroclinic mode). The sin2πy barotropic mode is consistently
zero throughout the time of the simulation. This is also in agreement with the findings
from the multi-scale asymptotics which yielded that the correction to the mean flow is fully
baroclinic.

Increasing the degree of super criticality leads to a complete break down of the predic-
tions of the linear and weakly non-linear theory. In this case, at leading order, the dominant
term is the sinπy baroclinic mode as opposed to the sinπy barotropic mode predicted by
theory. Also, at the next order, the barotropic correction to the mean flow becomes appre-
ciable which is, of course, another difference from the case considered when the dynamics
are slightly super critical. The other remarkable feature that emerges with increasing levels
of supercriticalities is that the features formed ahead of the front become more apparent and
highly variable downstream as one would expect when the non-linearirities in the system
are at full operation.

In conclusion, the findings from this study qualitatively show that the degree of dissi-
pation in the system is a major determinant of the dynamics of the flow. When the system
is substantively dissipative, the marginal curve is given in terms of the shear and the dom-
inant correction component to the mean flow is largely baroclinic. In the case when the
dissipation is so small, the marginal curve is expressed in terms of the parameter, F - the
Froude number. In this case, the lowest order compnent is found to be barotropic and the
correction is fully baroclinic.

For further study, it would be meaningful to consider using a periodic channel so that the
flow statistics can be obtained with a good degree of accuracy to enable giving a quantitative
account of the dynamics of the flow and how the different components exchange the energy
in both spatial and temporal considerations. Of course, inclusion of the β− effect would also
serve the purpose of comparing the results obtained to what happens in a real oceanographic
scenario.
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Figure 5: Snapshots of the barotropic and baroclinic potential vorticities. ∆ = 0.02
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Figure 6: Snapshots of the barotropic and baroclinic potential vorticities. ∆ = 0.05
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Figure 7: Snapshots of the barotropic and baroclinic potential vorticities. ∆ = 0.1

315



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40

A
m
p
l
i
t
u
d
e

X

q at t =   2.00

barotropic1

barotropic2

baroclinic1

baroclinic2

Front position

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40

A
m
p
l
i
t
u
d
e

X

q at t =   3.00

barotropic1

barotropic2

baroclinic1

baroclinic2

Front position

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40

A
m
p
l
i
t
u
d
e

X

q at t =   7.00

barotropic1

barotropic2

baroclinic1

baroclinic2

Front position

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40

A
m
p
l
i
t
u
d
e

X

q at t =   9.00

barotropic1

barotropic2

baroclinic1

baroclinic2

Front position

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40

A
m
p
l
i
t
u
d
e

X

q at t =  15.00

barotropic1

barotropic2

baroclinic1

baroclinic2

Front position

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100

A
m
p
l
i
t
u
d
e

X

q at t =  30.00

barotropic1

barotropic2

baroclinic1

baroclinic2

Front position

Figure 8: Snapshots of the barotropic and baroclinic potential vorticities. ∆ = 0.7
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1 Introduction

Polar amplification, the increased response of surface warming at high latitudes to radia-
tive forcing relative to the global mean, is found in idealized models, paleoclimate records
and in observations of the Arctic [3, 4, 7]. However, attribution of its causes is a complex
problem because of the high degree of interaction between the different mechanisms at work.

Recent research has focused on the role of longwave feedbacks in polar amplification. Win-
ton [2006] used twelve climate models from the fourth IPCC assessment report to compare
the relative magnitudes of various feedbacks in the Arctic and globally for CO2 doubling in
1%/year CO2 increase experiments. He found that a large portion of the enhanced warming
in the Arctic is attributable to the effect of longwave feedbacks, which include cloud, water
vapor and temperature effects. Neutralizing the surface albedo feedback at high latitudes
by replacing it by its global mean value in the feedback calculation still resulted in some
degree of Arctic amplification relative to the global mean, indicating that the surface albedo
feedback is important, but not dominant, in explaining polar amplification.

The temperature feedback can be broken into the Planck feedback, the background equilib-
rium response of the climate system, and the lapse rate feedback, the non-uniform change in
temperature vertically. Both have been argued to be important to polar amplification in re-
cent work. Pithan and Mauritsen [2014] performed a feedback analysis on data from phase
5 of the Coupled Model Intercomparison Project (CMIP5) and found that the tempera-
ture feedback dominates Arctic amplification, attributing this dominance to the interaction
between the Planck feedback and the lapse rate feedback. Pithan and Mauritsen [2014] at-
tribute a large part of the polar amplification to the Planck response itself, arguing that
colder temperatures, as found at high latitudes relative to the low latitudes, require greater
temperature increases for a given radiative forcing. The role of the lapse rate feedback in
relation to the surface albedo feedback was investigated in Graversen et al. [2014] . By sup-
pressing the lapse rate feedback in Community Climate System Model, version 4 (CCSM4)
simulations, they found that a portion of polar amplification can be explained by its effect
at high latitudes. However, the high level of interaction with the surface albedo feedback
makes it difficult to consider the lapse rate independently.
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The complexity of the problem highlights the importance of a simplified approach to gain in-
sight into the roles of the Planck feedback and the lapse rate feedback on polar amplification.
Here, we use a hierarchy of simple conceptual models to isolate the two different feedbacks
and investigate whether (and if so, how much) polar amplification can be attributed to each.

As discussed in Pithan and Mauritsen [2014], the Planck feedback is indeed much weaker
in the colder high-latitudes. However, we argue that this by itself cannot cause polar am-
plification. Instead, it is the qualitative difference in the lapse rate response between the
low- and high-latitudes which is expected to contribute to polar amplification. While the
low-latitude lapse rate is set by moist convection and is expected to decrease with increasing
temperatures, leading to a negative lapse rate feedback, in the high-latitudes, models gen-
erally suggest a destabilization of the vertical temperature profile with warming [6], leading
to positive lapse rate feedback.

The paper is organized as follows. In section 2, we describe our model setup, data, and
method of quantifying feedback parameters. In section 3 we describe the radiative equilib-
rium response of surface temperature to increases in emissivity in a simple two-layer energy
balance model. Against this equilibrium baseline, we investigate the Planck feedback and
the lapse rate feedback in sections 4 and 5, respectively, using a hierarchy of models. In
section 6, we look at the impact of these feedbacks on polar amplification, with and without
the water vapor feedback. We summarize our results and future directions in section 7.

2 Data and Methods

2.1 Models

��

��

���
�

�����
�

�����
�

�����
�

Figure 1: Illustration of a simple two-layer energy balance model with a surface layer and
an atmospheric layer. Fs is the incoming solar radiation, Fa is atmospheric heat transport,
Ts is the temperature of the surface layer, Ta is the temperature of the atmospheric layer,
εa is the atmospheric emissivity and σ is the Stefan-Boltzmann constant.

We investigate the role of the longwave temperature feedback using a hierarchy of simple
models. The simplest is a two-layer one-dimensional energy balance model (EBM), in which
the system is represented by two layers; the bottom layer represents the planetary boundary
layer and the top layer represents the free troposphere (Fig. 1). Energy input to the system
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is in the form of solar insolation, Fs and meridional atmospheric heat transport, Fa, which
can be turned on or off. The temperatures of the surface layer and the atmospheric layer
are represented by Ts and Ta, respectively. The influence of increasing CO2 concentration
on warming is translated as increases in atmospheric emissivity, εa, which is assumed to be
less than one.

For this simple model, we can write a system of equations that describe the balance of
radiation in the two layers:

Cs
dTs
dt

= Fs + εaσT
4
a − σT 4

s , (1)

Ca
dTa
dt

= Fa + εaσT
4
s − 2εaσT

4
a , (2)

where, Cs and Ca are the heat capacities of the surface and atmospheric layers, respectively.

coupler

radiation

Annual 

average 

insolation

Region 

specific 

albedos

________

convection

Hard 
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to moist 

lapse rate
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ocean
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turbulence

Latent heat 

flux turned 

off at the 

surface

diffusion

________

Figure 2: An illustration of the column model composed using the CliMT package, in which
various components are linked through a coupler.

To step up complexity, we use a 26-layer radiative-convective column model. The model is
based on the Climate Modelling and Diagnostics Toolkit (CliMT), available as a Python
wrapper to various existing Fortran components [1]. Figure 2 describes the package set-up,
in which ocean, radiation, convection and turbulence components interact using a coupler.

With the CliMT package we set up two different configurations. The first is a column
model equivalent of the simple two-layer EBM described previously, in which a grey-gas ra-
diative scheme is coupled to a slab ocean and a simple turbulence scheme. For this model,
as well as for the simple two-layer EBM described previously, the role of water vapor is
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not incorporated. The second model has an added level of complexity, with a multi-band
radiative scheme based on the Column Radiation Model by the NCAR Community Climate
Model (CCM3). In order to maintain the energy budget of the column model, but also to
constrain the role of moisture, we turn off latent heat flux at the surface and fix relative
humidity to 80% in the model troposphere and to zero in the model stratosphere.

When considered, convection is parameterized by hard adjustment to the moist adiabatic
lapse rate. For each timestep, the temperature profile of the moist adiabatic lapse rate is
calculated from the surface temperature. The intersection of this profile and the model-
calculated temperature profile is found and all temperatures below that level are adjusted
to the moist adiabat. The additional heat to the column due to this adjustment is pulled
from the slab ocean and assumes efficient redistribution of heat from the surface throughout
the column.

For the column model, in order to provide some level of comparison to the simple two-
layer model, we use the average of the temperature profile between 500 and 600 hPa to
represent the atmospheric temperature, Ta.

2.2 Data

We use ERA-Interim reanalysis to constrain parameter values in the following analysis, cal-
culated as the climatological mean of the zonal average. In the following analysis, we will
consider a “high-latitude” (HL) column and a “low-latitude” (LL) column. Parameter val-
ues for each of these columns are estimated based on ERA-Interim reanalysis data at 80◦N
and 20◦N, respectively. An average insolation value of 367 W m−2 is used for non-region
specific calculations.

To approximate the role of meridional atmospheric heat transport, we use the zonally av-
eraged vertically integrated convergence of total energy flux (W m−2) (Fig. 3a). In a given
location, for the column models, we represent the atmospheric heating profile as a normal
distribution that is capped at the tropopause and constrained to integrate to the value of
total energy flux corresponding to its latitude, converted to units of K day−1 (Fig. 3b).

2.3 Feedback analysis

In order to quantify the contribution of the Planck and lapse rate feedbacks to changes
in the surface temperature, we use the partial radiative perturbation method [9]. By this
method, a feedback, λx, is represented as:

λx =

(
∂R

∂x

)(
∂x

∂Ts

)
, (3)

where R is the radiation at the top of the atmosphere (TOA) and Ts is the surface temper-
ature. As our focus is on temperature feedbacks, Eqn. 3 becomes:

λT =

(
∂R

∂T

)(
∂T

∂Ts

)
, (4)
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Figure 3: (a) Meridional variation of zonally averaged total energy flux calculated from
ERA-Interim reanalysis (climatological mean over 1979 to 2013). (b) Heating rate profiles
for the (solid line) low-latitudes and (dashed-line) high-latitudes in the column model.

and,

λT = λP + λLR (5)

where λP is the Planck feedback and λLR is the lapse rate feedback.

In order to calculate the lapse rate feedback, we solve for the temperature feedback, λT
and the Planck feedback, λP . The Planck feedback is the response of the TOA radiation
budget in the absence of all other feedbacks and is based on the Stefan-Boltzmann law,
so that the feedback is larger for higher temperatures. It is calculated as the derivative of
the Stefan-Boltzmann equation and is negative as it dampens the temperature response to
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perturbations in R by increasing the emission of longwave radiation1:

λP = −4σT 3
e , (6)

where, Te is the effective emission temperature:

Te =
1

σ
(Fs + Fa)1/4 (7)

The temperature feedback, λT , is calculated as the TOA radiative response associated with
the atmospheric and surface temperature changes, per degree of surface warming:

λT =

(
∂R

∂Ta

)(
∂Ta
∂Ts

)
+

(
∂R

∂Ts

)(
∂Ts
∂Ts

)
, (8)

where, from Fig. 1, the energy balance at the top of the atmosphere for OLR, R, can be
written as:

R = −εaσT 4
a − (1 − εa)σT 4

s (9)

Taking the partial derivatives of Eqn. 9 with respect to Ta and to Ts and fitting them back
into Eqn. 8, the temperature feedback is calculated as:

λT = −
(
4εaσT

3
a

)(∂Ta
∂Ts

)
− 4 (1 − εa)σT 3

s (10)

so that:

λLR = −
(
4εaσT

3
a

)(∂Ta
∂Ts

)
− 4 (1 − εa)σT 3

s −
(
−4σT 3

e

)
(11)

3 Radiative equilibrium

Here, we consider the system in radiative equilibrium and the response of surface temper-
ature to changes in emissivity. From Fig. 1, at equilibrium and assuming no atmospheric
heat transport (Fa = 0), we can write the balance of radiation at the TOA as,

Fs = (1 − εa)σT 4
s + εaσT

4
a , (12)

where, solving for the Ta term in Eqn. 1, we can simplify Eqn. 12 to:

2Fs = 2σT 4
s − εaσT

4
s (13)

We use Fs = σT 4
e , to rewrite Eqn. 13 as:

T 4
e = T 4

s − 1

2
εaT

4
s , (14)

1The Planck response could alternatively be defined as the radiative response to vertically uniform warm-
ing. While not formally identical, the two definitions yield virtually the same results.
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and substitute εa + δεa and Ts + δTs for εa and Ts, respectively, into Eqn. 14,

T 4
e = (Ts + δTs)

4 − 1

2
(εa + δεa)(Ts + δTs)

4 (15)

To find the response of surface temperature to changes in emissivity, we solve Eqn. 15 for
δTs,

δTs =
Ts

4(2 − εa)
δεa (16)

At equilibrium, we can see from Eqn. 16 that the most basic state of the system shows
that the change in surface temperature is proportional to the background state of surface
temperature, Ts. For a given change in emissivity, assumed to be globally constant, we can
compare the response of the high-latitudes (HL) and low-latitudes (LL):

δTHL
s

THL
s

=
δTLL

s

TLL
s

(17)

We, therefore, expect a somewhat larger change in low-latitude surface temperature, δTLL
s ,

relative to the change in high-latitude surface temperature, δTHL
s , because of the greater

initial temperatures (in general) in the low-latitudes relative to the high-latitudes. Thus, for
this radiative equilibrium state, amplification of surface temperatures occurs in the tropics
rather than at high-latitudes. Tropical amplification is evident in solutions to Eqns. 1 and 2
at equilibirum. Figure 4 shows the difference in surface temperatures for a (blue) high- and
(orange) low-latitude column.

4 The Planck feedback

The radiative equilibrium response discussed above implies a change in the lapse rate. To
isolate the effect of the Planck feedback on the surface temperature response to changing
emissivity, we consider a configuration of the two-layer EBM with a fixed lapse rate, in which
the temperature of the atmospheric layer is dependent on the surface temperature. We
present a perturbation analysis of surface temperature to changes in emissivity in section 4.1
and in section 4.2, we compare the solution for the two-layer experiment to its equivalent
in the column grey-gas model. For this section, we use an average insolation value of 367
W m−2.

4.1 Fixed lapse rate

Modifying the setup in section 3, we fix the lapse rate, so that the change in temperature
with height is a constant, ∆Tc. As in section 3, we perform a perturbation analysis using
the simple two-layer EBM, but with the added constraint:

Ta = Ts − ∆Tc, (18)

which we fit into Eqn. 12 and, using the definition of Fs, get:

T 4
e = (1 − εa)T 4

s + εa(Ts − ∆Tc)
4 (19)
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Figure 4: Comparison between solutions for the two-layer model between (orange) low-
latitude surface temperature and (blue) high-latitude surface temperature response to in-
creasing emissivity, where the legend indicates the total change in Ts for each region.

As in section 3, we are interested in the surface temperature response to changing emissivity.
Thus, we substitute εa + δεa and Ts + δTs for εa and Ts, respectively, in Eqn. 19:

T 4
e = (1 − (εa + δεa)) (Ts + δTs)

4 + (εa + δεa) ((Ts + δTs) − ∆Tc)
4 (20)

Linearizing and ignoring higher order terms (where we assume Ts is much greater than the
perturbation terms), we are left with:

4εaT
3
s δTs − 4εa(Ts − ∆Tc)

3δTs − 4T 3
s δTs = δεa(Ts − ∆Tc)

4 − δεaT
4
s (21)

Solving Eqn. 21 for δTs:

δTs =
(Ts − ∆Tc)

4 − T 4
s

4εa(T 3
s − (Ts − ∆Tc)3) − 4T 3

s

δεa (22)

Assuming that ∆Tc is much less than Ts we can simplify Eqn. 22 to:

δTs ≈ ∆Tcδεa (23)

Equation 23 shows that the change in surface temperature is proportional to the magnitude
of the lapse rate, ∆Tc. Thus, for a given lapse rate we do not expect amplified surface
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warming at high latitudes based on the differential Planck response alone. Instead, we may
expect reduced warming in the high-latitudes, due to the typically small lapse rate found
there.

4.2 Comparison to column model and feedback analysis

We extend the analysis in section 4.1 to the column model with a grey-gas radiative scheme,
as described in section 2.1. Results for the column model are qualitatively similar to those
of the two-layer model. Figures 5a and 5b show a comparison between the response of (grey
line) atmospheric temperature to increasing atmospheric emissivity relative to (black line)
surface temperature, in (solid) radiative equilibrium and with (dashed) a fixed lapse rate,
for the two-layer and column grey gas models, respectively. For the fixed lapse rate solution,
∆Tc is adjusted so that the atmospheric temperature at an emissivity of 0.3 is equal to the
temperature of the radiative-equilibrium solution in each model and approximates the dry
adiabatic lapse rate.

The results discussed above may seem to be at odds with the notion that the Planck feed-
back ought to be weaker at high-latitudes. The reason for the lack of enhanced warming
lies in the similarly weaker radiative forcing, associated with a given increase in the optical
thickness of the atmosphere. The effect of the Planck feedback in modifying radiative forc-
ing is seen in Fig. 6a, which shows the radiative forcing for the (solid) radiative equilibrium
state and (dashed) fixed lapse rate case for the two-layer EBM. Due to our use of a constant
Planck feedback calculation, the slight residual difference between the radiative forcing and
Planck feedback is manifested as a small lapse rate feedback, even for the fixed lapse rate
case. For comparison, Fig. 6b shows the (black) fixed lapse rate radiative forcing seen in
Fig. 6a plotted with the radiative forcing for fixed lapse rate in the (blue) high- and (orange)
low-latitudes. At higher emissivity, the larger lapse rate for the radiative equilibrium state
shows the larger radiative forcing.

5 Lapse rate changes and feedbacks

Here, we include the role of meridional atmospheric heat transport to investigate its role in
setting the sensitivity of the lapse rate feedback to changes in atmospheric emissivity. We
consider two cases: (1) a system in radiative-dynamic equilibrium, that is with the lapse
rate controlled by the interaction of radiation and a prescribed atmospheric heat transport,
and (2) a system with a convective lapse rate in the low-latitudes. As atmospheric heat
transport changes sign in the meridional direction, we now consider two columns for each
experiment: (1) a high-latitude column and (2) a low-latitude column.

5.1 Two-layer EBM

5.1.1 Radiative equilibrium

For a small change in atmospheric emissivity, δεa, we assume a small change in the surface
temperature, δTs, and the atmospheric temperature, δTa. How amplification will affect
meridional heat transport is an active area of research, however, to isolate out the effects
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Figure 5: Comparison between solutions for the (a) two-layer model and (b) column grey-gas
model showing the trend in (black line) surface and (grey line) atmospheric temperatures
for the (solid line) radiative equilibrium and (dashed line) fixed lapse rate experiments.

of local feedbacks versus changes in the heat transport, we will assume a constant heat
transport which is unaffected by changes in emissivity. At equilibrium, with these small
changes, Eqn. 2 becomes,

Fa + (εa + δεa)σ(Ts + δTs)
4 = 2(εa + δεa)σ(Ta + δTa)4 (24)

Linearizing Eqn. 24 and ignoring higher order terms, leaves us with an expression for the
response of the lapse rate to a change in emissivity,

8εaσT
4
a

(
δTa
Ta

− δTs
Ts

)
= −Fa

(
δεa
εa

+ 4
δTs
Ts

)
(25)

For a positive atmospheric heat flux convergence, where Fa > 0, the L.H.S. of Eqn. 25
must be negative, and thus δTa/Ta < δTs/Ts. Since generally Ts > Ta, this implies that
δTa < δTs and, thus, an increase in the lapse rate. If the atmospheric heat flux convergence
is negative (i.e. Fa < 0), we may instead expect a decrease in the lapse rate.

Due to the meridional differences in the energy balance between incoming solar insola-
tion and outgoing longwave radiation, the low-latitudes are characterized by a net export of
heat and the high-latitudes are characterized by a net import of heat. This can be seen in
Fig. 3. Based on Eqn. 25, we, therefore, expect to see a greater increase in surface temper-
atures relative to atmospheric temperatures in the high-latitudes (an increase in the lapse
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Figure 6: For the two-layer EBM, (a) comparison between the (black) radiative forcing and
the (grey) lapse rate feedback for the (solid line) radiative equilibrium and (dashed line)
fixed lapse rate experiments. (b) Comparison of the radiative forcing between the (blue)
high- and (orange) low-latitudes with the (black) radiative forcing for the fixed lapse rate
experiment.

rate). For the tropics, the radiative-dynamic equilibrium solution in Eqn. 25, would instead
suggest a decrease in the lapse rate. However, the radiative-dynamic equilibrium solution is
also statically unstable in the tropics, which would trigger convection. In practice, Eqn. 25
is thus not applicable in the tropics, where the lapse rate is set by convection.

We compare solutions of Ts and Ta for the high-latitude column to a convective low-latitude
column in the next section. The system of equations for the high-latitudes are then (from
Eqns. 1 and 2, at equilibrium):

Ts =

[
Fa + 2Fs

2σ − εaσ

]1/4
, (26a)

Ta =

[
Fa + εaFs

2εaσ − ε2aσ

]1/4
, (26b)

5.1.2 Convective lapse rate

We add a level of realism to our two-layer model by allowing the lapse rate in the low-
latitude scenario to be set by convection. In the low-latitudes, where the lapse rate is set
by convection, the two-layer system is described by the energy balance at the TOA and by
a temperature dependent lapse rate:

Fs + Fa = (1 − εa)σT 4
s + εaσT

4
a , (27a)

Ta = Ts − ∆T (27b)
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In contrast to section 4.1, ∆T is not constant, but is dependent on the moist adiabatic lapse
rate, Γw,

Γw = g
1+Lvr/RdT

Cpd+L2
vr/RvT2

, (28)

where Lv is the latent heat of vaporization, Rd is the specific gas constant of dry air, Cpd

is the heat capacity of dry air at constant pressure, and Rv is the specific gas constant of
water vapor. Since the amount of moisture is dependent on temperature, the mixing ratio
of the mass of water vapor to that of dry air, r changes with temperature and pressure:

r =0.622es /(P−es), (29)

where es is the saturation vapor pressure:

es = 6.11 exp
Lv

Rv

(
1

273
− 1

T

)
(30)

The atmospheric temperature is assumed to be at 500 hPa and is calculated by integrating
the change in temperature, T , along the moist adiabatic lapse rate profile with height.

5.2 Comparison to column model and feedback analysis

Here, we compare the solutions of the two-layer EBM to those from the column grey-gas
model. The column grey-gas model is setup for the same two cases as the two-layer model:
(1) a radiative-dynamic equilibrium case, and (2) a case with a radiative-convective column
in the low-latitudes.

5.2.1 Role of atmospheric heat transport

In this section, we want to examine the effect of atmospheric heat transport on the radiative-
dynamic equilibrium solution. We are thus assuming a radiative-dynamic equilibrium solu-
tion also for the low-latitude column, ignoring the effects of convection. The more realistic
case with a convective lapse rate in the tropical column is discussed in section 5.2.2.

The interpretation of Eqn. 25 in section 5.1.1 is supported by solutions for the two-layer
EBM and the column grey-gas model. Figure 7 shows a comparison of the temperature re-
sponse to changes in optical thickness for the (solid lines) radiative equilibrium and (dashed
lines) radiative-dynamic equilibrium for the (a,c) two-layer model and (b,d) column grey-gas
model. Temperature trends for the two models are very similar and consistently show an
increase in the lapse rate with the introduction of heat transport, evident in the flattening
of the atmospheric temperature trend in Figs. 7c and 7d. In the high-latitudes, the lapse
rate of the radiative-dynamic equilibrium state increases with increasing optical thickness.
The opposite occurs at low-latitudes.

While there is a large response in the lapse rate to atmospheric heat transport, the surface
temperature response still shows a slightly higher increase in low-latitude surface tempera-
tures relative to high-latitude temperatures. Introduction of heat transport to the models
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slightly reduces the amount of surface heating in the low-latitude scenario and slightly
increases the surface heating in the high-latitudes. However, the models still show amplifi-
cation of low-latitude surface temperature relative to the high-latitudes.

Focusing on the high-latitudes where there is a large response to atmospheric heating, Fig. 8
shows the radiative response (the product of the total surface temperature change with the
feedback parameter) of the Planck and lapse rate feedbacks to changes in emissivity at high
latitudes for the two experiments (a) without and (b) with atmospheric heat transport. As
inferred from Fig. 7, the magnitude of the lapse rate feedback is larger in the presence of
atmospheric heat transport. However, the dynamic heat transport also strongly changes
the radiative forcing by changing the lapse rate of the background state, as discussed in
section 4.1. The effect of the dynamic heat transport on the base-state lapse rate, and thus
the radiative forcing, here approximately cancels the effect of the lapse rate feedback. For
the high-latitude atmospheric temperature response, near εa = 0.3 in Fig. 8, the radiative
forcing changes sign from negative (cooling) to positive (warming). This change in sign is
associated with a change in sign of the lapse rate, which for a small epsilon is very efficiently
stabilized by the atmospheric heat transport.

5.2.2 Effect of convection on low-latitude temperature response

In the previous section, no polar amplification was evident due to the amplified response
of the low-latitudes to increases in atmospheric emissivity (or optical depth). In order to
investigate the effect of convection on the comparative role of the low-latitudes to the high-
latitudes and polar amplification, we compare the temperature response at low-latitudes,
with active heat transport, with- and without- convection in the two models (Fig. 10). Two
processes must be taken into account to adequately explain the figure: (1) the role of con-
vection on the lapse rate of the background state and (2) the negative lapse rate feedback
set by moist convection.

Figure 9 shows the same as Fig. 8, but for the (a) non-convective and (b) convective low-
latitudes. Comparison of the two panels shows a large decrease in the amount of radiative
forcing for a given change in emissivity. The role of convection in the tropics acts to decrease
the lapse rate of the background state. This reduction results in the large decrease of radia-
tive forcing, as discussed in section 4.1. Superimposed on its influence on the background
state lapse rate, convection also imposes a negative lapse-rate feedback in the tropics, as
the moist adiabatic lapse rate decreases with increasing temperature. Figure 9b shows an
increasingly negative lapse rate feedback with increasing emissivity, associated with the in-
crease in the lapse rate feedback with rising temperature (causing an exponential rise in the
saturation specific humidity).

The reduction of the radiative forcing and the negative lapse rate feedback, resulting from
the addition of moist convection, have strong implications for the sensitivity of the surface
temperature with increasing optical thickness. Figure 10 shows the weakening of the tropi-
cal surface temperature response when convection is taken into account. Compared to the
almost constant lapse rate in Fig. 7, there is a large decrease in the lapse rate, which is
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reflected in the feedback analysis.

6 Impact on polar amplification

6.1 Dry longwave perspective

Here, we bring together the results from previous sections to compare the high- and low-
latitude columns in the two-layer EBM and column grey-gas models in order to investigate
their impact on polar amplification. We use a low-latitude scenario with a convective lapse
rate and negative heat transport and a high-latitude scenario with a lapse rate set by radi-
ation and positive heat transport.

Figures 11a and 11b show temperature trends for the two-layer model and column grey-
gas model, respectively. Both models show an amplification of surface temperatures in the
high-latitudes relative to the low-latitudes. This amplification is associated with a large
increase in the high-latitude lapse rate, as opposed to a decrease in the low-latitude lapse
rate, which can be seen in Fig. 11c and 11d, where the response of lapse rate in each re-
gion is plotted against emissivity. These results are in line with the perturbation analysis
in section 5 and provide evidence for the role of the lapse rate feedback in modifying the
sensitivity of surface temperature to changes in emissivity (or optical thickness).

The amplification of polar surface temperatures relative to the tropics implies a weakening
of the surface temperature gradient. In the free troposphere, the opposite case is found,
where polar atmospheric temperatures increase at a smaller rate than tropical atmospheric
temperatures, in line with the sign of the lapse rate feedback response in each region. The
difference in the warming pattern between the surface and atmosphere in the two regions is a
robust feature found in previous research [8] and has implications on mid-latitude dynamics
and changes in the atmospheric heat transport with warming.

6.2 The role of water vapor and heat transport

The analysis in the previous sections focused on the roles of the Planck and lapse rate
feedbacks in a dry atmosphere. Here, we use a multi-band radiative transfer scheme based
on CCM3 in the column model, and allow for changes in specific humidity. For simplicity,
the relative humidity is held fixed at 80%. We will compare temperature trends between a
convective low-latitude scenario and a high-latitude scenario, both with atmospheric heat
transport.

Figure 12a shows the temperature trends for the column model, with the absolute tempera-
ture shifted such that the atmospheric temperature is the same as the surface temperature
at 280 ppmv for better comparison. The results indicate that the more realistic column
model is in agreement with the lapse rate results from the simpler models, where lapse rate
increases in the high-latitudes and decreases in the low-latitudes. However, amplification
of polar surface temperatures is no longer evident relative to low-latitude surface tempera-
tures. Surface warming in the low-latitudes is almost double that at high-latitudes.

330



The difference between the results in section 6.1 and those in Fig. 12a is directly attributable
to the the presence of the water vapor feedback. To isolate this feedback, we fix the vertical
specific humidity profile to their value at 380 ppmv. We then compare the low-latitude
surface temperatures for this fixed scenario to one in which water vapor instead responds
to increasing CO2 concentrations. Figure 12b shows the difference in low-latitude surface
temperatures for the two experiments. Suppressing the WV feedback leads to a suppres-
sion of surface temperature warming in the convective tropics and the re-emergence of
polar amplification. Without the water vapor feedback, the model behaves similarly to the
results described in section 6.1, using a grey-gas radiative transfer scheme or the EBM.
However, with an approximately constant relative humidity in the models, the water vapor
feedback results in a strongly enhanced tropical warming, while having little effect at high
latitudes. This cancels the differential effect of the lapse rate feedback, and instead leads
to low-latitude amplification. Additional feedbacks (such as ice-albedo or clouds) and /or
changes in the atmospheric heat transport are, thus, likely to be necessary to explain polar
amplification in Earth’s atmosphere and in GCMs.

7 Summary and conclusions

In this project, we used a hierarchy of conceptual models of increasing complexity to test
the roles of the Planck feedback and the lapse rate feedback in polar amplification. Using a
simple column model with a fixed lapse rate, we argue that the Planck feedback alone can-
not explain polar amplification. Instead, the surface warming expected for a given change
in atmospheric optical thickness depends primarily on the prescribed lapse rate itself (but
not on the temperature of the base state). While the strength of the Planck feedback does
increase with the temperature of the base state, the effective radiative forcing, associated
with a given change in atmospheric optical thickness, increases approximately similarly with
the base state temperature. As a result, the net warming for a given change in atmospheric
optical thickness is approximately independent of the base state temperature. The differing
response of the lapse rate at high- and low-latitudes instead does cause polar amplification.
At high latitudes, the lapse rate is sensitive to atmospheric heat transport and increases
strongly in response to increasing atmospheric optical thickness.

When we consider the role of water vapor in our column model by using a multi-band
radiative transfer scheme, and holding atmospheric relative humidity constant, low-latitude
surface temperatures changes in response to CO2 increases are amplified relative to high-
latitude surface temperature changes. This indicates that the stronger water vapor feed-
back in the tropics cancels the polar amplification associated with the lapse rate feedback.
To isolate the role of water vapor, we fix water vapor to 380 ppmv for a range of CO2

concentrations. With the water vapor feedback essentially removed, high latitude surface
temperatures are again amplified relative to low-latitude surface temperatures. These re-
sults suggest that, while the lapse rate feedback does play a role in Arctic amplification of
surface temperatures, the effect is masked in comparison by the large water vapor feedback
at low latitudes.
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Future work for this project includes:

• The calculation of feedback parameters for the column models for better comparison to
the results of the two-layer model experiments. This task is important for quantifying
the role of the lapse rate feedback in the higher order models. In addition, we can use
feedback analysis in the realistic radiative scheme column model to investigate the
role of the water vapor feedback in relation to the Planck and lapse rate feedbacks.

• The parameterization of a dynamic heat transport between the high- and low-latitudes
in the two-layer EBM and column models. In the current setup, the two regions are
completely decoupled and used only for comparison. Our results suggest a decrease
in the meridional temperature gradient at the surface and an increase in the gradient
in the free troposphere. This has implications on dynamic heat transport in the
mid-latitudes.
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Figure 7: (a,b) Surface temperature and (c,d) atmospheric temperature response to increas-
ing emissivity for the (orange) low-latitudes and (blue) high-latitudes, (solid line) without
and (dashed line) with atmospheric heat transport for the (a,c) two-layer EBM and (b,d)
column grey-gas model. The numbers in the legends of each panel show the temperature
change between the thickest atmospheric limit and the thinnest limit for each scenario.
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Figure 8: At high-latitudes, the radiative response of the (blue) Planck feedback and the
(pink) lapse rate feedback to (black) radiative forcing (a) without atmospheric heat trans-
port and (b) with atmospheric heat transport.
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Figure 9: At low-latitudes, the radiative response of the (blue) Planck feedback and the
(pink) lapse rate feedback to (black) radiative forcing (a) without and (b) with convection.
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Figure 10: Comparison between (dark orange) surface temperature and (light orange) at-
mospheric temperature (solid line) without convection and (dashed line) with convection
for the (a) two-layer EBM and (b) column grey-gas model.
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Figure 11: For the (a,c) two-layer EBM and the (b,d) column grey-gas model, (a,b) Surface
temperature and atmospheric temperature response to increasing emissivity (optical depth)
and (c,d) lapse rate changes for the (blue, black dashed) high- and (orange, black solid)
low-latitude scenarios. The numbers in the legends of panels (a) and (b) are the same as in
Fig. 7
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Figure 12: (a) (dark colors) Surface temperature and (light colors) atmospheric tempera-
tures for the (orange) low- and (blue) high-latitudes in the column model with a multi-band
radiative transfer scheme. (b) Comparison between the convective tropical surface temper-
ature response to increasing CO2 for a realistic radiative scheme with (light grey) moisture
fixed to 380 ppmv levels and (dark grey) freely varying atmospheric moisture.
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Thermobaric Effects on Double-Diffusive Staircases

Erica Rosenblum
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1 Introduction

Under the sea ice of the polar oceans, warm salty water flows below the cold, fresh surface
waters. Meanwhile, deep below the surface, geothermal heating warms the cold, salty waters
of the deep Arctic. In each of these systems, an unstable temperature gradient competes
with a stabilizing salinity gradient, creating conditions susceptible to two instabilities. One
of these instabilities, called double-diffusive convection, is due to the fact that heat diffuses
100 times faster than salt. This instability can lead to the formation of thermohaline
staircases in which a series of well-mixed, convective layers are separated by sharp interfaces
in both temperature and salinity. A second instability that exists in this system, called the
thermobaric instability, arises because cold water is more compressible than warm water
and therefore becomes denser with pressure

In the Arctic, waters from the North Atlantic provide the warm, salty water in the
aforementioned system, leading to the formation of double-diffusive staircases (Figure 1).
Contained within this North Atlantic water is enough heat to melt all of the Arctic sea
ice, were it transported to the surface [10],[13]. Processes controlling vertical heat flux in
this area of the world are not well understood, but double-diffusive convection has been
identified as an important mechanism [9], and may therefore play an important role in the
rapid disappearance of the Arctic sea ice.

Figure 1: Examples of double-diffusive staircases found in the deep Arctic (left) and the
shallow Arctic (right). Profiles taken from [13], [12]
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Figure 2: Cartoon description showing that the Atlantic was stably stratified by a salt
gradient during the last glacial maximum, taken from [1]

Several thousand meters deeper, quietly sits the strongly salt-stratified waters of the
deep Arctic. This water is slowly being heated from below by geothermal vents, again
leading to a salt-stratified system that is heated from below. Double-diffusive staircases
exist in this context as well, however, these staircases are notably thicker than than those
found in the shallow Arctic (Figure 1).

This system is under a large amount of pressure and is potentially thermobarically
unstable despite its strong salinity gradient. Interestingly, because this system has a strong
salinity stratification and is being heated geothermally, it bears resemblance to the Atlantic
Ocean during the last glacial maximum (Figure 2). It has been proposed that the bottom
of this glacial Atlantic Ocean slowly warmed until an intense overturn occurred due to the
thermobaric instability, leading to the rapid warming events observed in the paleoclimate
record [1].

On the other side of the planet, cool, fresh surface water flows above warm, salty water
near the coasts of Antarctica. Because the salinity is weakly stratified, it is susceptible to
both double-diffusive convection and thermobaric instability, making it surprisingly similar
to the deep Arctic, rather than its shallow Arctic counterpart. Susceptibility to these two
instabilities has been observed in the Weddell sea. Here, the thermobaric instability has been
invoked to explain periods of persistent deep convection and the formation of polynas [7],
which have important implications for general ocean circulation as well as sea ice formation.
Secondly, a recent study has suggested that double-diffusive convection may also have an
important impact on the vertical heat transport in this area [11].

Despite their coexistence in these important and exciting areas of the ocean, neither
the impact of thermobaricity on double-diffusive staircases, nor the influence of double-
diffusion on the thermobaric instability has been examined. Here, we take the first step in
studying how these two effects may interact by recreating a simple 1-D model of double-
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diffusive staircases [4] and, for the first time, including thermobaric effects. Specifically,
we examine how large changes in the thermal expansion coefficient affect the structure of
the double-diffusive staircases found in the polar oceans. In the following section, these
two instabilities are described in greater detail. In Section 3, we present the theory and
numerical model which form the basis of our work, followed by our additions that allow us
to include thermobaric effects in Section 4. Preliminary results are discussed in Section 5
and lastly, possible implications and future work is discussed in Section 6.

2 One system, two instabilities

When a pot of water is being heated from below, regular thermal convection can occur
because cold water is denser than warm water. However, when a stable salinity gradient is
added, the stability of the system depends on the ratio of the two background gradients.

This quantity is well described by the density ratio: R0 = βSz

αTz
, where Tz and Sz are the

background temperature and salinity gradients, α is the thermal expansion coefficient, and
β is the saline contraction coefficient. Thus, a larger density ratio describes a more stable
system and vice versa (see Figure 3).

Figure 3: Cartoon describing the various stages of stability as function of the density ratio
(see text) in a system with a negative temperature and salinity gradient.

2.1 Thermobaric instability

The thermal expansion coefficient is a negative value that is defined as

α =
1

ρ0

(
∂ρ

∂T
+

∂2ρ

∂T∂P
+
∂2ρ

∂T 2
+ ...

)
, (1)

where ρ0 is a mean density, p is pressure, and T is temperature. The first term is negative
and implies that the density of a parcel decreases as its temperature increases. The two
nonlinear terms describe cabbeling and thermobaricity, respectively, which imply that α
varies as both a function of pressure and temperature (Figure 4). This implies that by
simply moving our system to a deeper pressure, the density ratio (and the stability) will
decrease.

Moreover, as described by the thermobaric term, cold water is more compressible than
warm water. Therefore, the thermal expansion coefficient increases with depth more rapidly
for cold water. This allows for the possibility of a local instability in which a small per-
turbation to the system could cause a cool, fresh water parcel to fall towards the warmer,
saltier part of the system. The colder parcel compresses enough (equivalently, α increases
enough) to make the parcel denser than its salty surroundings causing it to continue to fall
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Figure 4: The thermal expansion coefficient (left) and the ratio of the salinity contraction
coefficient to the thermal expansion coefficient (right) as a function pressure for several
temperatures. The figures demonstrate that the thermal expansion coefficient increases
with depth more rapidly in cold water compared to warm water.

towards the warm, salty part of the system [3],[6]). This instability is notably different and
often stronger compared to regular thermal convection because it is internally driven by
this thermobaric effect rather than continually forced at a boundary [2], [7].

2.2 Double-diffusive convection

Between the stable and fully convective states lives the double-diffusive instability (Figure
3). The initial instability of double-diffusive convection is well-described by a linear stability
analysis [17]. Conceptually, it can be understood by imagining a small perturbation that
causes a cool, fresh fluid parcel to fall toward the warm, saltier region of the system. The
parcel will quickly diffuse in the surrounding heat but its salinity will remain nearly constant,
causing the parcel to become warmer but remain fresher than its surroundings. Now much
lighter than its environment, the parcel will float to a point somewhat higher than its initial
position, where it will quickly diffuse its heat, maintaining its salinity to become denser
than its surroundings and fall into the warm, salty area below. This fluid motion continues
to oscillate, with the amplitude growing with each oscillation. Eventually, turbulent effects
become dominant and a coherent structure emerges. This is called a thermohaline staircase,
where each ’step’ is made up of a cool, fresh layer over a warmer, saltier layer separated by
a well-mixed interface.

3 Previous work

Turner and Stommel[14] performed the first laboratory experiments in which a stable salt
gradient was heated from below. They found that within a few minutes, the bottom layer
would overturn and form a well mixed layer. Within the hour, a series of well-mixed layers
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Figure 5: Image from Stommel and Turner 1964, showing results from a laboratory experi-
ment where a stable salinity gradient is heated from below. (a) shows that one mixed layer
has formed after 10 minutes. (b)-(d) shows that subsequent layers form after 25, 60 and 90
minutes, respectively.

(i.e. a double-diffusive staircase) formed in a similar fashion (Figure 5). In this section, we
discuss a theory and numerical model that was developed to describe what had been seen
in these laboratory experiments and form the foundation of our work.

3.1 Theory

Turner[15] describes the evolution of a system with an initially linear, negative salt gradient,
Sz, and a uniform background temperature, T , that is heated from below by a constant
heat flux, H (Figure 6). In particular, the evolution of the first layer as well as the growth
and eventual formation of the second layer are discussed.

3.1.1 Evolution of the first layer

By implementing the conservation of heat and salt, the salinity (S1), temperature (T1) and
thickness (h1) of the first well mixed layer can be described by

∆S1 =
−1

2
hSz, Ht = ρch1∆T1, (2)

where ∆S1 and ∆T1 are the change in salt and temperature across the top of the 1st layer
(and are positive), t is time, ρ is the mean density of the system and c is the specific heat.
To close this system of equations, we invoke
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Figure 6: Cartoon depiction of the theory describing the formation of the first two mixed
layers. The green arrows indicate that the layer warms, freshens and grows with time.

α∆T1 + β∆S1 = 0, (3)

which relates the two interfaces and implies that the density contributions from the heat
and salt combine to create a continuous density profile (Figure 7).

By algebraically solving these equations, the expressions for the evolution of ∆T1, ∆S1

and h1 are

h1 =

√√√√
(
H̃∗t

S̃∗

)
, −αg∆T1 = βg∆S1 =

√
H̃∗S̃∗t, (4)

where H̃∗ and S̃∗ are the buoyancy fluxes, defined by

H̃∗ =
−αgH
ρc

, S̃∗ =
−βgSz

2
. (5)

Thus, this layer, which is heated from below, warms and grows taller with time. As the
layer grows, it overtakes the less salty water above and becomes fresher (Figure 6).

3.1.2 Evolution of boundary layer, formation of layer 2

While this layer grows, heat and salt are diffused through the top of the interface, causing
a boundary layer to form. Because heat diffuses 100 times faster than salt, the diffusion
of salt through the interface is neglected and a simple heat equation is used to describe its
thermal evolution,

∂θ

∂t
= κ

∂2θ

∂z2
, θ(z = h1) = T1 (6)

θ(z →∞) = T ,
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Figure 7: Cartoon depiction of equation (3)

where κ is the thermal diffusivity, θ is the temperature of the boundary layer and T is the
initial uniform background temperature.

As heat diffuses through the boundary layer, cool, fresh water lies above increasingly
warmer, salty water. These are the conditions necessary for the double-diffusive instability
to occur. Turner suggests that this boundary layer will overturn and consequently form
a second convective mixed layer when the temperature gradient grows strong enough such
that it is linearly unstable to double-diffusive convection. The criterion for overturn is then
given by Veronis[16], who found that the onset for double-diffusive convection between two
freely moving boundaries is given by

R = RT −
σ

σ + 1
RS ≥

27π4

4
, (7)

where RT = −αg∆BLTδ
3

κν , RS = βg∆BLSδ
3

κν , δ is the scaling length of the boundary layer, ν
is the kinematic viscosity, and σ = ν

κ is the Prandtl number. ∆BL is a positive value that
signifies the change in temperature and salinity above the interface. Thus,

∆BLT = T1 − T , ∆BLS = −Szδ,
because we have assumed that the diffusion of salt through the top of the layer can be
neglected (Figure 6).

3.2 Numerical model

Using the framework put forth in [15], Huppert[4] developed a one-dimensional numerical
model that could describe this system with multiple (N) layers. However, some additional
assumptions are included in this model:

• Loss of heat through the top of the staircase can be neglected in the heat budget.

• Only the top layer grows. Interior layers have a constant thickness unless they merge
together to form a thicker layer.

• If two layers create a neutral density profile, the two layers merge.
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• heat and salt fluxes across the interface are given by experimentally determined flux
laws [5]:

φi = 0.32κ

(−αg
κν

)1/3

(∆Ti)
4/3

(
α∆Ti
β∆Si

)2

(8)

ψi =





−α
β φi

(
1.85 + 0.85

(
β∆Si

α∆Ti

))
, 1 < β∆S

−α∆T ≤ 2

−0.15φi

(
α
β

)
, 2 < β∆S

−α∆T .

(Equations (8) appear slightly differently in [5] because we have followed the formalism of
[15] and [4] and defined α as a negative value).

3.2.1 Evolution of initial layer

The equations describing the evolution of the initial layer are given by equation 4. When
only one layer is present in the simulation, the magnitude of the interfaces are given by

∆T1 = T1 − Tt ∆S1 = S1 − St. (9)

Tt and St are the background temperature and salinity at the top of the staircase, which
can be expressed as

Tt = T , St = Szh1 + S0, (10)

where S0 is the initial salinity at the bottom of the system (Figure 8).

3.2.2 Evolution of multiple layers

Once two or more layers are present in the staircase, flux conservation laws are used to
describe the evolution of the layers. The general form of these equations are

ρc
d

dt
[hi(Ti − Ti] = ρc(φi−1 − φi),

d

dt
[hi(Si − Si)] = ψi − ψi− 1,

where φi and ψi are the fluxes through the ith layer.

Ti = T , Si = Sz(di − hi/2) + S0

are the background temperature and salinity imposed by the initial conditions, where di =∑i
j=1 hj .

3.2.3 Evolution of interior layers

Because Ti,Si, and hi are constant for all interior layers (i < N), equation (11) becomes

ρch1
dT1

dt
= H − ρcφ1, h1

dS1

dt
= −ψ1 (11)

for the first layer, and
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Figure 8: Cartoon depiction of the N-layer model.

hr
dTr
dt

= φr−1 − φr, hr
dSr
dt

= ψr−1 − ψr, (12)

for all other layers, where 1 < r ≤ N − 1.

3.2.4 Evolution of top layer

The thickness of the top layer grows with time, and the heat and salt flux exiting the top
of the staircase are neglected, thus equation (11) becomes

d

dt

(
hN (TN − TN )

)
= φN−1,

d

dt

(
hN (SN − SN )

)
= ψN−1. (13)

Finally, by satisfying equation (3), the third equation describing the top layer is

α
(
TN − T t

)
+ β

(
SN − St

)
= 0.

Again, T t = T , but now St = SzdN + S0.

3.2.5 Boundary layer

Equation (6) describes the evolution of the initial layer and boundary layer, with the ad-
justed boundary condition, θ(z = dN ) = TN . The criterion for overturn is given by equa-
tion (7) where, by assuming that the temperature profile of the boundary layer becomes
relatively linear at the time of overturn, we let
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δ =
2

TN − TN

∫ ∞

dN

θdz.

3.2.6 Formation of new, N+1 layer

Once a boundary layer has overturned to form a new layer, the characteristics of this new
layer are determined by conserving heat and salt and by satisfying equation (3):

(
TN+1 − T

)
hN+1 =

∫ ∞

dN

θdz, SN+1 = Sz

(
dN +

hN+1

2

)
+ S0

α
(
TN+1 − T t

)
+ β

(
SN+1 − St

)
= 0,

where the salinity at the top of the staircase has become St = Sz (dN + hN+1) + S0.

3.2.7 Merging layers

Lastly, if the density is neutral across an interface (i.e. α∆T + β∆S = 0), the two layers
will merge while conserving heat and salt. So the characteristics of the new layer are given
by

Tnew =
hiTi + hi+1Ti+1

hi + hi+1
, Snew =

hiSi + hi+1Si+1

hi + hi+1
,

hnew = hi + hi+1.

4 Adding thermobaric effects

The equations presented in the previous section differ slightly from those found in [4]. This
is because they assume that T = S0 = 0 and also because their equations are written
using the following non-dimensional scaling where hatted variables indicate dimensional
quantities:

t =
√
S∗t̂, z =

S
3/4
∗

H
(
∗1/2)

ẑ, T =
−α0gT̂

H
1/2
∗ S

1/4
∗

S =
βgŜ

H
1/2
∗ S

1/4
∗

, φ =
−α0gφ̂

H∗
, ψ =

βgψ̂

H∗
.

The scaling for the buoyancy fluxes are defined as

H∗ =
−α0gH

ρc
, S∗ =

−βgSz
2

, (14)

where α0 is a constant, mean thermal expansion coefficient (note that this differs from H̃∗).
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In order to include thermobaric effects, we simply introduce a new, non-dimensional
variable,

α =
α̂

α0
.

We set α̂ = α0 + cẑ, where c is determined by linearizing alpha near the local pressures
of each experiment. The resulting equations using this non-dimensionalization are given
below.

4.1 Heat and salt fluxes through interfaces

Non-dimensionalizing equations (8) leads to

φ = 0.32

(
αQ

σ

)1/3

(∆T )4/3

(
α∆T

∆S

)2

ψ =

{
αφ
(
1.85− 0.85

(
∆S
α∆T

))
, 1 < ∆S

α∆T ≤ 2

0.15αφ, 2 < ∆S
α∆T .

4.2 Growing 1st layer

Non-dimensionalizing equations (4) leads to

h1 =
√
αt, T1 = T +

√
t

α
, S1 = S0 −

√
αt.

4.3 Evolution of interior layers

Non-dimensionalizing equations (11) and (12) leads to

h1
dT1

dt
= 1− φ1, h1

dS1

dt
= ψ1

hr
dTr
dt

= φr−1 − φr, hr
dSr
dt

= ψr−1 − ψr.

4.4 Evolution of top layer

Non-dimensionalizing equations (13) leads to

d

dt

(
hN (TN − T0)

)
= φN−1,

d

dt
(hN )) = ψN−1 −

dhN
dt

(2dN − S0)

α(TN − T̄ ) = SN + 2dN − S̄0.

After much algebra, these equations can be rewritten as
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dhN
dt

=
1

2hN
(αφ− ψ),

dTN
dt

=
1

hN

(
φ− TN − T

2h
(αφ− ψ)

)

dSN
dt

=
1

hN

(
ψ − αφ− ψ

2hN
(SN + 2dN − S0)

)
.

4.5 Evolution of boundary layer

Non-dimensionalizing equations (6) and (7) leads to

∂θ

∂t
= Q

∂2θ

∂z2
, R =

δ3

σQ2

(
α(TN − T )− 2σδ

σ + 1

)
.

This is semi-analytically solved using the solution for heat through a finite, one-dimensional
system with temperatures fixed on each boundary, where the length of the system, xf , is
chosen such that it is effectively infinity. Following [8], that semi-analytical solution is given
by

θ(x, t) = v + w, v(x) = TN + (T − TN )
x

xf
(15)

w(x, t) =

Nmax∑

n=1

bn sinλnx exp−λ2
nkt, λn =

nπ

xf
(16)

bn =
2

xf

∫ xf

0
−v(x) sin

nπx

xf
dx. (17)

4.6 Formation of new layer

Non-dimensionalizing equations (14) leads to

(
TN+1 − T

)
hN+1 =

∫ ∞

dN

θdz ≡ γ, SN+1 = −2

(
dN +

hN+1

2

)
+ S0

α
(
TN+1 − T t

)
+
(
SN+1 + 2(dN + hN1)− S0

)
= 0.

After much algebra, we find that this leads to

hN+1 =
√
αγ, TN+1 = T +

√
γ/α

SN+1 = S0 − 2dN −
√
γα.

4.7 Merge layers

Finally, while the criterion for merging becomes α∆T = ∆S, the equations which describe
the new layer that results from merging (equations (14)), remain unchanged.
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5 Preliminary results

To begin exploring how the thermobaric instability and double-diffusive convection interact,
we first address the question of how the structure of the staircases may change as a function
of α. One could imagine two possible outcomes of such an experiment. First, increasing
α may have the same effect as increasing the heating rate or increasing the background
temperature gradient. This would cause the density ratio to decrease as α increases, leading
to a less stable system that transports heat and salt more efficiently. Alternatively, one could
imagine that the steps might reorganize in such a way as to maintain its density ratio. In
this case, the salinity interface would increase or the temperature interface would decrease,
causing Sz/Tz to increase and the density ratio to remain constant. Finally, in either case,
we would expect the overall thickness of the layers to increase with α in order to sustain
the larger interfaces or fluxes that would result in either scenario.

To try to answer this question, we ran our model using the same parameters that were
used by [4] for a variety of αs. Specifically, we chose αs such that they were equivalent
to systems where double-diffusive staircases are found in the deep and shallow Arctic, a
laboratory and finally, one that would correspond to the Marianas trench, as a way to
gauge how the staircases would behave for very large, yet realistic expansion coefficients
(see Tables 1 and 2 for full description of parameters used). Although α is computed as
a function of depth within each experiment, the staircases presented are sufficiently small
that we may consider α to be constant.

Our results are presented in Figures 9-14. Figure 9 shows how the top of each layer
evolves in time for each experiment and demonstrates that layers appear to form and merge
more rapidly for larger values of α. This can be rationalized upon inspection of equation
(7), the expression for R, which must reach a critical value in order for a new layer to form.
One can see that R increases as a function of α and thus a smaller temperature gradient is
required for overturn.

The rapid formation of layers also appears to correspond to rapid merging events. This
might be because a layer that takes a short time to form will be smaller, less resilient and
will then quickly have a similar density to the layer below compared to a layer that takes
longer to form.

Secondly, the fourth subplot of Figures 12-14, which show the evolution of the layer
heights for the first three layers and compares them to each experiment, demonstrate that
once a quasi-steady layer forms (i.e. persists without merging immediately), it is likely to
be larger when formed under conditions with a larger α. This result is consistent with what
is observed in the shallow Arctic compared to the deep Arctic (see Figure staircase).

This result is further supported by Figures 10 and 11, which show the final form of
the staircase at the end of each experiment. Moreover, one can see that the interfaces in
salinity seem to increase as a function of α, while the temperature interfaces behave in the
opposite manner. This can be explored further through the first and second subplots of
Figures 12-14, which show how the two interfaces evolve for the first three layers. Although
the result is far from indisputable, the same trend seems to exist, particularly for the more
stable bottom two layers.

The size of the temperature interfaces, ∆T , are closely related to the fluxes across the
interfaces (equation (8) but are also functions of α. These two quantities appear to have
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opposite effects on both fluxes. Interestingly, the fifth and sixth subplots of Figures 12-
14 clearly demonstrate that the heat flux decreases with α while the salt flux (even more
strongly) increases with α. This implies that for the heat flux, the impact of ∆T outweighed
that of α while the opposite was true for the salt flux. Again, these results are most clear
for the more stable bottom two layers.

Lastly, we test our hypothesis from the beginning of this section and analyze how the
density ratio varies for large changes in α. Upon inspection of the third and sixth subplot
of Figures 12-14, it appears that the ratio of the two interfaces, ∆S/∆T , increases with
α, leaving the density ratio fairly constant by comparison (although there may be a small
decrease as a function of α). This result suggests that increasing α has consequences which
may not include destabilizing the water column but are reflected in the structure of the
staircase.

Table 1: Simulation Parameters
κ σ H∗ S∗ TBG (◦C) SBG (psu)

1.4 · 10−7 7 −1.48α0 · 10−2 .167 .1 35

Table 2: Experiments

Description α0 (10−4 ◦C−1) c (10−8 ◦C−1m−1) depth range (m)

lab -.53 -2.88 0-.85
shallow Arctic -.61 -2.86 292-316

deep Arctic -1.24 -2.6 2611-2814
Marianas Trench -2.92 -1.67 10800-10860

6 Implications, speculations and future work

Although we have not yet directly tested the effects of thermobaricity on double-diffusive
staircases, these results help us to understand how the staircases change as a function
of α. From our results, we might expect that in a system where thermobaric effects are
important (i.e. α increases quickly with depth), the staircase will have certain features.
First, we would expect that the layer thickness and salinity interfaces would increase with
depth while the the temperature interfaces would decrease with depth (or increase less with
depth , as this seems to be a necessary characteristic of all staircases). This in turn would
lead to a divergent heat flux and a convergent salinity flux.

These results may explain why and how double-diffusive steps appear to increase with
depth in nature. Furthermore, one could speculate that these thermobaric effects on the
staircases may be important for understanding thermobaric convection. For example, be-
tween thermobaric overturning events, one might suspect that the system could be double-
diffusively unstable (see Figure 3) and would therefore contain double-diffusive staircases.
If the staircase supports converging and diverging vertical fluxes, they may impact the rate
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at which the system reaches the density ratio required for the system to be thermobarically
unstable.

However, these are merely speculations and require further scrutiny. Specifically, in the
future we aim to determine how and under what conditions we might expect thermobaric
effects to be important. This will be done by comparing experiments in which α is held
constant to those in which α is allowed to vary appreciably within a staircase, based on
the temperature gradient. We will explore a parameter range in which we will vary the
heating rate, the salinity gradient and α. These experiments will include simulations with
parameters that correspond to those found in the Antarctic as well as the shallow and
deep Arctic, where both double-diffusion and thermobaricity may be important. This will
hopefully lead us to a nice set of predictions that will allow us to begin to compare our
results to observations.
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Figure 9: The evolution of the layer heights for the four experiments.
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Figure 10: Final form of the staircases in temperature-depth space for the four experiments.
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Figure 11: Final form of the staircases in salinity-depth space for the four experiments.
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Figure 12: Comparison of the bottom layer between the four experiments. Evolution of the
layer heights, magnitude and ratio of the interfaces, heat and salt fluxes, and density ratio
is plotted.
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Figure 13: Comparison of the 2nd layer between the four experiments. Evolution of the
layer heights, magnitude and ratio of the interfaces, heat and salt fluxes, and density ratio
is plotted.
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Figure 14: Comparison of the third layer between the four experiments. Evolution of the
layer heights, magnitude and ratio of the interfaces, heat and salt fluxes, and density ratio
is plotted.
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The Most Minimal Seed

for Transition to Turbulence in Shear Flow

Geoff Stanley

September 30, 2014

Abstract

A key question to develop our understanding of turbulence in shear flows is: what is the
smallest perturbation to the laminar flow that causes a transition to turbulence, and how
does this change with the Reynolds number R? Finding this so-called “minimal seed” is as
yet unachievable in direct numerical simulations of the Navier-Stokes equations, but there
exist low-dimensional dynamical systems that model those aspects of the full flow which
are considered essential to turbulence. We search for the minimal seed in one such model,
owing to Waleffe (1997). We employ an optimization technique, reviewed by Kerswell et
al. (2014), to find non-linear optimal perturbations, with some modifications. In particular
we apply the technique to a new regime in which the edge that is sought is an internal
boundary to the basin of attraction of the laminar flow state. We find such a boundary in
Waleffe’s model and calculate the minimal seed on this edge.

1 Introduction

1.1 Shear Turbulence

It is well known that the Navier-Stokes equations for fluid flow present one of the greatest
challenges of classical physics. The equations in general have not been solved analytically,
and even numerical solutions have been unobtainable until recent decades owing to the
vast range of scales that must be captured in a turbulent flow. One aim of study has
been to consider the simplified case of a constant density, incompressible fluid with simple
boundary conditions such as for flow through a pipe first studied by Reynolds, or between
two concentric cylinders as first studied by Couette. Yet fluid flow even in these idealized
settings remains far from understood. One major problem is how a laminar flow transitions
to a turbulent flow.

For instance, plane Poiseuille flow1 (PPF) admits a laminar flow that is linearly stable
for all R < Rc = 5772.22, where R = LU/ν is the Reynolds number, Rc is the critical
Reynolds number, L is the half-width of the channel, U is the maximum flow speed, and ν is

1This is flow between two infinite parallel plane sheets with a no-slip boundary condition and forced by
a pressure gradient also parallel to the sheets.
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the kinematic viscosity (Orszag, 1971). Yet laboratory experiments of such flows typically
observe the laminar flow transitioning to turbulence at much lower Reynolds numbers,
around R ≈ 1000. A similar scenario exists for plane Couette flow2 (PCF): the laminar
flow is linearly stable for all R out to∞ but turbulence is typically observed with Reynolds
numbers as low as R ≈ 350. This disagreement between experiment and linear stability
theory ultimately owes to noise in the experimental setup: finite perturbations to the linear
flow can, in dynamical systems parlance, move the system out of the basin of attraction
of the stable laminar flow and into the basin of attraction of some other, turbulent state.
Since the basin of attraction of the laminar flow diminishes in size with increasing R, a
given experimental setup subject to a certain amount of noise will observe transition to
turbulence at some sub-critical R.

Reversing this problem presents a key question, as posed in an illuminating paper by
Trefethen et al. (1993): for a given R, what is the minimal perturbation to the laminar flow
that causes the flow to transition to turbulence? This perturbation is called the “minimal
seed”, although sometimes this term simply refers to the magnitude of the actual pertur-
bation. These authors conjectured that the magnitude of the minimal seed should be of
order Rγ for some value of γ which will depend on the problem under consideration. For
shear flows with stable eigenvalues for the laminar flow, they state γ ≤ −1 citing a technical
report that was later published (Kreiss et al., 1994).

Following this conjecture there has been significant work to determine γ for differ-
ent flows, using theory, laboratory experiments, direct numerical simulation, and low-
dimensional model analogues. Many studies focus on a particular form of perturbation
that is thought to be especially effective at generating turbulence—effective in the sense
that a small energy injection to this mode then excites other modes in such a way as to
amplify the total energy. By careful study of the asymptotics of flows with initial conditions
in these particular modes,Chapman (2002) derived a R−1 scaling for PCF and R−3/2 for
PPF.

In the laboratory, Hof et al. (2003) searched for the minimal seed in pipe Poiseuille flow
by injecting fluid through six small drill holes equally spaced around the circumference of
the pipe downstream of where the flow was deemed to be laminar. The magnitude and
total time of the injections was controlled and downstream observations made to determine
whether the flow became turbulent. They found extremely good agreement with a R−1

scaling for the minimal seed, in this case the energy of their injections.
However, there is a common problem with the above studies: they begin with a specified

form of initial perturbation, then determine the magnitude of that perturbation which is
necessary for transition to turbulence. This is even true in the laboratory where the drill
holes are specified and therefore allow only certain forms of perturbations. A complete
solution to the minimal seed problem must determine the form of the perturbation as well
as its magnitude. This is certainly a very difficult problem, and the above studies are
important steps towards a full understanding.

Another approach, and the one taken here, is to study low-dimensional analogues of the
full Navier-Stokes equations for shear turbulence. In these simpler systems it is possible
(though still non-trivial) to find the exact form of the minimal seed. Many such models for

2This flow is the same as PPF but is forced instead by a constant velocity difference between the sheets.
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various flow geometries were developed in the 1990’s; Baggett & Trefethen (1997) compared
them and found the particular γ for each. We focus in particular on the model by Waleffe
(1997, hereafter W97). Waleffe formed by Galerkin truncation a four-dimensional model of
sinusoidal flow3 and speculated an R−1 scaling for the minimal seed of this flow, based on
the fact that one component of the lower branch fixed point in the 4D model scales as R−1.
However, the minimal seed will involve non-zero values for the other three components; the
possibility exists that the minimal seed could scale as Rγ with γ < −1. Waleffe’s model also
elucidated a “Self-Sustaining Process” that is supposedly a crucial building block of shear
turbulence. This will be further discussed in Section 3.1; for now note that streamwise
vortices are a critical flow structure in initiating turbulence: a small amount of energy
in a streamwise vortex mode can, by advecting the mean shear, lead to a large transient
growth of energy. Indeed these or their close cousins constitute the particular form studied
intensively, as in the aforementioned studies.

The W97 model is a development of an earlier model (Waleffe, 1995,a) model that was
included in the study by Baggett & Trefethen (1997). However, the 1995 and 1997 mod-
els are significantly different, and only much later was the first attempt made to find the
minimal seed and the particular γ for the W97 model (Cossu, 2005). Cossu employed a
three-dimensional search algorithm (having eliminated one dimension as described in Sec-
tion 3.4). The particular “minimal seeds” found by Cossu are those minimal perturbations
(for each R) which lead to permanent turbulence. However, initial conditions for the W97
model can be quickly found which demonstrate transient turbulence—they behave turbu-
lently for a time but ultimately decay to the laminar state. It is these perturbations which,
we argue, constitute candidates for the minimal seed.

To find these minimal seeds (over a range of Reynolds numbers), we will use a new opti-
mization technique, recently reviewed by Kerswell et al. (2014) and discussed in Section 2.
With some modifications, we apply it to a new class of problems wherein the turbulence
is transient, versus those problems illustrated by Kerswell et al. or even the region of the
W97 model that was studied by Cossu (2005) in which the turbulence is persistent. The
W97 model itself and results from the search for its minimal seed are given in Section 3,
before concluding in Section 4.

1.2 Definitions and Examples: Optimal Perturbations, The Edge, and
the Minimal Seed

We now formulate the problem in dynamical systems terms and give a few brief definitions.
The Navier-Stokes equations are shifted so that the laminar state is at the origin. They

may then be written in the following generic form:

dx

dt
= F (x) = Lx +N(x), (1)

where L is a linear operator and N a non-linear function. This dynamical system defines a
new function X(t,x0) that is the solution to (1) which also satisfies X(0,x0) = x0.

The standard dot product is used together with the L2 norm ‖x‖2, written simply as
|x|. For Navier-Stokes, the state x represents the discretized velocity field u and hence the

3This is PCF but with free-slip boundary conditions, leading to a sinusoidal crosswise profile of the
laminar streamwise flow.
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kinetic energy E = 1
2

∫
u · u dV is technically given by the quadratic form 1

2x · x. Since

this maps one-to-one onto |x| = (2 · E)1/2, we often refer to |x| as simply the energy and
sometimes write it as E(x).

The orbit starting from an initial condition x0 is the set of points {X(t,x0) : t ∈ [0,∞)}.
A fixed point of a dynamical system is an xFP for which F (xFP ) = 0. The stability of

the fixed point is found by computing the eigenvalues and eigenvectors of F linearized about
xFP . If all eigenvalues have negative real part, xFP is stable. If at least one eigenvalue has
a positive real part, xFP is unstable.

The stable manifold of the fixed point xFP , written SM(xFP ), is an invariant set {x0 :
limt→∞X(t,x0) = xFP }.

The basin of attraction of a set A is {x0 : limt→∞X(t,x0) ∈ A}.
For the Navier-Stokes equations shifted about the laminar shear flow solution, as in

(1), the linear operator L is stable, having eigenvalues all with negative real part, but is
non-normal, i.e. L does not commute with its adjoint. These properties of L imply that
any solution of the linearized problem dx

dt = Lx has limt→∞ |x(t)| = 0, but some solutions
can exhibit a large transient growth before decay. The non-linear function N is quadratic
in x and conserves the energy E .

The Linear Optimal Perturbation (LOP) xLOP satisfies

max
t
{|X(lin)(t,xLOP )|} ≥ max

t
{|X(lin)(t,x)|} ∀ |x| = 1 (2)

where X(lin)(t,x0) is the solution to the linearized problem dx
dt = Lx, and having X(lin)(0,x0) =

x0. In fact there are two LOPs, with −xLOP also satisfying the above. In words, xLOP
maximizes the furthest distance from the origin obtained by the orbit of the linearized
problem. When L is non-normal, transient growth of |X(lin)(t,x0)| is possible even when
all eigenvalues have negative real part (e.g. Farrell, 1988).

We define the Non-Linear Optimal Perturbation (NLOP) xNLOP , for a given d and T ,
to satisfy |xNLOP | = d and

|X(T,xNLOP )| > |X(T,x)| ∀ |x| = d. (3)

That is, the NLOP maximizes, over all initial conditions with magnitude d, the distance
from the origin of the orbit at time T .

The Edge E is the boundary of Ω, the basin of attraction of the origin. Recall that the
boundary of a set Ω is the set defined as {x : ∀ ε > 0, Bε(x)∩Ω 6= ∅ and Bε(x)∩Ω 6= ∅},
where Bε(x0) = {x : |x − x0| < ε}, and Ω is the compliment of Ω. That is, for a point
x ∈ E and any ε > 0, the ball of radius ε centred at x contains a point in Ω and another
point not in Ω. For all problems considered here, it will be a co-dimension one invariant
manifold.

A Strong Edge is an edge, or subset of an edge, which separates orbits on one side which
return to the origin from orbits on the other side which do not.

A Weak Edge is an edge, or subset of an edge, for which the orbits of initial conditions
on either side both return to the origin but do so in a qualitatively different way: orbits
started on one side return to the origin directly while orbits started on the other side take
a more circuitous route and/or require more time to return to the origin.

The Edge is, in general, the union of the Strong Edge and the Weak Edge.
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The Minimal Seed xMS is the initial condition on the Edge that is closest to the laminar
fixed point (the origin): xMS ≡ argminx{|x| : x ∈ E}.

1.3 A 2D Example

An illustrative two-dimensional dynamical system was explored by Lebovitz (2012). The
equations are:

dx1

dt
= −δx1 + x2 + x1x2 − 3x2

2, (4)

dx2

dt
= −δx2 − x2

1 + 3x1x2 (5)

where δ = 1/R. The origin is a fixed point for all R. A saddle-node bifurcation occurs at
R = 2: hence for R > 2 an additional pair of fixed points exists, the lower branch point
xLB and the upper branch point xUB. For a full bifurcation analysis, see Lebovitz (2012).

Let us consider this example system with R = 2.45, as shown in Figure 1. The LOP
shows transient growth: its orbit at a particular time is actually further from the origin
than where it began at a radius d from the origin. Most other orbits started at radius d do
not have this property. Note that because L(ax) = aLx for any scalar a, trajectories of the
linearized system have a scale invariance, and hence so too does the LOP.

Four NLOPs are shown. In each case it is seen that its orbit (magenta curve) finishes (at
time T ) further from the origin than other orbits (black curves) started the same distance
from the origin.

Here, the stable manifold of the lower branch point SM(xLB) extends from xLB in
two directions: positive in x1 and negative in x1, roughly speaking. The first extends to
+∞ in x1, while the second winds around xUB and hence does not extend to −∞ in x1.
Thus, SM(xLB) does not divide phase space into two separate regions. Orbits started on
either side of SM(xLB) eventually return to the origin, but they do so by qualitatively and
significantly different paths. Thus, SM(xLB) forms the weak edge. Orbits started below
the weak edge return to the origin with at most one instance of transient growth, which
can be thought of either as due to the linearized dynamics or due to the orbit, started near
SM(xLB), must move to near to xLB. Orbits started above SM(xLB) must wind their way
around xUB before returning to the origin.

The strong edge is, clearly, the periodic orbit P surrounding xUB. Orbits started outside
P eventually return to the origin, while those started inside P eventually reach xUB.

The edge, being the union of its strong and weak components, is therefore the union of
SM(xLB) and P .

The Minimal Seed xMS is that point on the edge with least distance from the origin.
This distance |xMS | happens to be approximately 0.2384. Furthermore, xMS is the NLOP
for d = |xMS |, since X(T,xMS) will be near xLB while any other x with |x| = |xMS | has
X(T,x) near the origin, for sufficiently large T . In fact, the d = 0.2384 ball is slightly below
the edge everywhere, and hence the orbit of its NLOP (third magenta curve moving radially
outward from the origin) goes towards xLB then decreases towards the origin. Increasing
this NLOP by a multiplicative factor of 1.0005 yields a new initial condition that is slightly
above the edge: its orbit (cyan curve) goes to xLB then increases (eventually returning to
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the origin given enough time, but here it is only shown up to T = 16). Thus the exact
minimal seed lies somewhere near these points and has magnitude between 0.2384 and
1.0005× 0.2384. These bounds can be tightened considerably, but for illustrative purposes
we shall leave it at that.

For small d where the linearized dynamics well approximate the full dynamics, the NLOP
tends to be near to the LOP (scaled by d). This is not in general true for larger d. Note
that it is merely coincidental that here the LOP scaled by |xUB| is in fact xUB. It is also
not in general true that the LOP scaled by 0.2384 is the NLOP with d = 0.2384.

2 Optimization Algorithm

In this section we describe the optimization technique, which is the subject of a recent
review paper (Kerswell et al., 2014), that we employ to find the NLOP. The basic idea
is described in the next section, followed by a more careful discussion of the convergence
criteria. We then discuss how this algorithm fits into a bisection of energy levels to find
the minimal seed. The reader may find it useful to keep Figure 1 in mind throughout this
section.

2.1 Basic Algorithm

The technique described here is an algorithm to determine the NLOP, i.e. the initial con-
dition x0 ≡ x(0) having |x0| = d which maximizes |x(T )|. The leftmost branch of the
flowchart in Figure 2, beginning with “K” and ending with “A”, “U”, or “MS”, shows the
algorithm. The underlying idea is to maximize a Lagrangian

L = L(x,ν, λ; d, T ) = |x(T )|2 +

∫ T

0
ν ·
(

dx

dt
− Lx−N(x)

)
dt+ λ (|x(0)| − d) (6)

where ν and λ are the Lagrange multipliers which respectively ensure that x is a solution
of the dynamical system (1), and that the initial condition lies on a sphere of radius d from
the origin, i.e. has a specified energy.

Taking the variation of L with respect to x gives

δL = [x(T ) + ν(T )]︸ ︷︷ ︸
A

·δx(T )−
∫ T

0

[
dν

dt
+ ν · ∂F

∂x

]

︸ ︷︷ ︸
B

·δx dt+ [λx(0)− ν(0)]︸ ︷︷ ︸
C

·δx(0) (7)

When L has been maximized, the perturbation δL = 0 for an arbitrary perturbation
δx(t), t ∈ [0, T ], and thus the quantities labelled A, B, and C must all vanish. Thus, the
optimization procedure is as follows:

Step 0: Guess an initial condition x(n)(0) with n = 1.
Step 1: Integrate the dynamical system (1) forwards from x(n)(0) to obtain x(n)(T ).
Step 2 (Apply A = 0): Set ν(n)(T ) = −x(n)(T ).
Step 3 (Apply B = 0): Integrate the dual dynamical system,

dν(n)

dt
= −ν(n) · ∂F

∂x
, (8)
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backwards in time4 from ν(n)(T ) to obtain ν(n)(0).
Step 4 (Apply C to maximize L): Having now ensured A = 0 and B = 0, L varies with

x(t) only through x(0). Therefore, use

δL
δx(n)(0)

= λx(n)(0)− ν(n)(0) (9)

to maximize L by a maximum ascent method: for some small step-size ε(n), the next
iteration’s guess for the NLOP is

x(n+1)(0) = x(n)(0) + ε(n)
[
λx(n)(0)− ν(n)(0)

]
. (10)

Note that, although L is being maximized for arbitrary values of the Lagrange multipliers
ν and λ, their specific values are important, and here we must simultaneously choose λ to
satisfy

d =
∣∣∣x(n+1)(0)

∣∣∣ =
∣∣∣x(n)(0) + ε(n)

[
λx(n)(0)− ν(n)(0)

]∣∣∣ (11)

Using the squared L2 norm |x| = ‖x‖22 = x ·x, this condition on λ yields an easily solved
quadratic equation (dropping (n) superscripts for clarity):

(ε2 x0 · x0)λ2 + (2ε x0 · x0 − 2ε2 x0 · ν0)λ+ (ε2 ν0 · ν0 − 2ε x0 · ν0) = 0. (12)

The choice of the step-size ε is critically important for convergence and is discussed next.
The choice of T is also important and may need to be adjusted as d changes, as discussed
in the subsequent section.

2.2 Convergence

How one chooses the step size ε is of great practical importance. With ε too small, the
method will take too long to feasibly complete, while too large an ε can lead to ∆x0 =
x(0)(n+1) − x(0)(n) also being so large that ∆L = L(n+1) −L(n) ≈ (δL/δx0) ·∆x0 is a poor
approximation and L actually decreases. We therefore employ some additional measures,
applied in each iteration of the algorithm, to determine a good step-size ε, so as to prevent
both the above problems.

First, we require ε ≤ εmax,λ, where the latter is defined as the maximum ε for which λ
can be real. Requiring λ ∈ R in turn requires the discriminant of (12) to be non-negative,
giving another quadratic equation, this time for ε, the solution of which is

εmax,λ =

(
(x0 · x0)2

(x0 · x0)(ν0 · ν0)− (x0 · ν0)2

)1/2

, (13)

having chosen the positive root so as to maximize, not minimize, L. This criterion is applied
at each iteration (n).

4This requires knowing x(t) at each time step (and sub-steps) of the ODE integration method. For high
dimensional dynamical systems such as a direct numerical simulation of the Navier-Stokes equations, the
full forward integration of x(t) cannot be stored in memory, and therefore a check-pointing procedure is
required, as discussed by Kerswell et al. (2014), wherein x(t) is saved only at some times tj and these x(tj)’s
are used, when needed in solving for ν(t), to initiate another forward integration of x from tj to tj+1.
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Figure 1: The system (4) with R = 2.45. Blue circles indicate the three fixed points: the
origin O, the lower branch point xLB, and the upper branch point xUB. The unstable
manifold of xLB (red curves) consists of two orbits, beginning in opposite directions but
both converging to O. The stable manifold of xLB (green curves) winds around an unstable
periodic orbit P (blue) which encloses the basin of attraction of the stable fixed point xUB.
The LOP and its negative are indicated by the the orange circles, together with their orbits
in the linearized system (orange curves). Other orange lines show orbits of the linearized
system started at 30◦ intervals around the origin and at a radius of 0.075 (dashed orange
circle). Any point on the dashed orange line is an LOP. The NLOP (magenta circles) is
shown for each of d = 0.1, 0.21, 0.2384, 0.265 (black dashed circles), with T = 8, 8, 16, 8
respectively. The NLOP is calculated by the iterative procedure described in Section 2:
successive orbits (black curves) begin with the orbit started at an angle from the +x1 axis
of 50◦ (for this illustration) and converge to the NLOPs orbit (magenta curves). The orbit
started from the NLOP with d = 0.2384 scaled by a factor 1.0005 is shown (cyan curve).
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A := x0 · ν0/x0 · x0

B2 := ν0 · ν0/x0 · x0

λ := A− ε−1 + (ε−2 +A2 −B2)1/2

dL := λx0 − ν0

x′0 := x0 + ε dL

Run x′(t) Orbit: x′0 → x′(T )

|x′0 − x0|
< δNLOP

xNLOP := x′0yes MS

|x′(T )| >
|x(T )|

no

x0 := x′0
yes

K1

ε := ε/2

no

K2

Eh − El
< δMS

Stop
yes

x′(t)
Above
Edge?

no

U
?

T := T × 1.25

K

A yes

bisect := True
Eh := E0

E0 := (El + Eh)/2
T := T (L)

x0 := xNLOP E0 / Eh

K

n ≥ N OR
bisect = True

no

El := E0

E0 := (El + Eh)/2 yes

n := n+ 1
E0 := E(n)

0

no

x0 := xNLOP E0 / |xNLOP |
T (L) := T

K

? yes

no

Figure 2: Flowchart showing the optimization procedure to calculate the NLOP (left branch,
K to A, U, or MS), the energy incrementation and bisection procedure (right branch, MS
to K or Stop), and the initialization for the whole algorithm (centre branch, Start to K).
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The above criterion is useful when beginning the iterations, telling us how large a step
size we can feasibly take. But it will not bring ε → 0, so we add another criterion which
limits the contribution ν can make to ∆x0 in (10):

ε
(n)
max,ν = ε(n−1) |ν

(n−1)
0 |
|ν(n)

0 |
. (14)

and require ε(n) ≤ ε(n)
max,ν .

Another criteria that was considered was to require that the jump in x0 between succes-

sive iterations does not increase. That is,
∣∣∣x(n+1)

0 − x
(n)
0

∣∣∣
2
≤
∣∣∣x(n)

0 − x
(n−1)
0

∣∣∣
2
≡ D(n)

0 . Using

(10) this yields another upper bound for ε(n), which is

ε
(n)
max,x0 =

(
D0(x0 · x0)−D2

0/4

(x0 · x0)(ν0 · ν0)− (x0 · ν0)2

)1/2

, (15)

all evaluated at iterate (n). However, this was found to be too restrictive. Consider when
the initial guess x0 begins in a fairly “flat” region of phase space (i.e. where |x(T )| changes
little with changes in x(0)) and is also not near the local maxima of |x(T )|. Including this
restriction forces all subsequent steps after the initial step in x(0), which is small owing
to flatness, to be at least as small; hence convergence to the NLOP requires an enormous
number of iterations. Without this condition, small initial steps are taken, followed by
larger steps when x(0) has left the flat region.

The two criteria used above attempt to limit ε but do not themselves ensure that L,
and hence |x(T )|, increases with each iteration. Since this is essential, one final condition is
added: the dynamical system is integrated forward to obtain x(n+1)(T ) and

∣∣x(n+1)(T )
∣∣ >∣∣x(n)(T )

∣∣ is explicitly checked. This requirement becomes more stringent as the iterations

proceed. If this check fails, ε(n) is halved, x
(n+1)
0 re-calculated from (10), and this criteria

checked again. This halving process is repeated until the condition passes, or some maximum
number of halvings is reached, currently set to 20.5

Not only does this ε-halving technique give us confidence that we are finding a local
maximum of L, numerical experiments suggest that it may even hasten the whole optimiza-
tion algorithm by preventing overshooting of the NLOP and thereby reduce the number of
iterations (n) required.

The final statement regarding convergence regards when the NLOP is deemed to be
found and the full optimization algorithm finishes. During the forward integrations of the
ε-halving procedure (which also serve as performing Step 1 in Section 2.1 above; see also
Figure 2) we determine whether

∣∣x(n+1)(0)− x(n)(0)
∣∣ < Etol

0 , for some small number Etol
0 ,

for which we tend to use a default value of 10−8. When this is true we declare the NLOP
found and finish the algorithm.

5For additional numerical safety, subsequent applications of the ODE solver for forward integration of
x(t) at this iteration level (n) will do the following: sub-sample the output x(t) by a further factor of two, to
help ensure the backwards integration of ν is accurate, and raise by tenfold the accuracy of the ODE solver
(which reduces the size of the time steps).
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2.3 Energy Incrementation and the Two Sides of the Edge

Having a procedure to find the NLOP on a given energy ball {x : |x| = E0} (and for a
given integration time T ), we now desire an algorithm that applies the above procedure on
successively larger energy spheres, in order to find the minimal seed. The basic idea here
is to increase the size of the energy spheres until the edge is passed, and then to refine the
energy by bisection down to a desired precision.

2.3.1 Which Side of the Edge?

This procedure will require a function that determines whether a particular orbit is above or
below the edge, or whether this is unclear from the information available. The information
available is the full orbit x(t), t ∈ [0, T ], as well as, in principle, all previously calculated
orbits, although in practice only the orbits of the previously calculated NLOPs are needed
and generally just some metric (such as the gain) of them.

This function will vary between problems. Clearly, if the problem has a strong edge
(the basin of attraction of xUB) but not a weak edge, a criteria could be the following: if
|x(T )| < δO then x0 is below the edge; if |x(T ) − xUB| < δUB then x0 is above the edge;
otherwise, it is unclear whether x0 is above or below the edge.

However, if the problem has a weak edge which is sought then a different function must
be used. One approach is use the ratio of the gain G ≡ maxt{|x(t)|} / |x(0)| between the
current orbit and the orbit of the last NLOP determined to be below the edge. If this ratio
exceeds a certain value6 then x0 is above the edge; if |x(T )| < δO then x0 is below the edge;
otherwise, it is unclear whether x0 is above or below the edge.

This approach has been successful in simple problems such as the 2D system studied by
Lebovitz (2012) (Section 1.3), and also in the 2D example problem used by Kerswell et al.
(2014) which only has a strong edge.

However, the geometry of the problem may prevent this gain-based approach from work-
ing. This is easily seen if we had |xLB| > |xUB|. Then two orbits started nearby but on
either side of the edge would, as per the usual understanding, go near xLB; then one goes
directly back to the origin O while the other goes around xUB before returning to O. But
the gain of both orbits would be approximately |xLB|/|x(0)|, with no obvious difference
between them.

For the W97 4D model, we do have the desirable |xLB| < |xUB| but the separation is
not so large and a formulation in terms of the gain, as above, was not robustly successful.
The following, more reliable approach, was found instead. Find all local maxima of the
function |x(t)|, then for numerical reasons discard all those having |x(t)| < δ0. If there
are one or fewer local maxima—the orbit either directly relaminarizes or does so after a
transient growth as per a non-normal linear system—the orbit is deemed below the edge.
If there are two or more local maxima—the orbit first undergoes transient growth, then
undergoes secondary growth when repulsed on the far side of the saddle that is xLB—and
their magnitudes exceed some specified thresholds (for each maxima), the orbit is deemed

6This value need not be much great than 1. For the 2D problem of Section 1.3, we choose a value of 1.2.
If the incremental increase of the energy spheres is small enough then, for two spheres below the edge, the
ratio of the gains of their NLOPs will be nearly 1, while for two spheres straddling the edge this ratio grows
without bound as the distance between the energy spheres shrinks.
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above the edge. The thresholds chosen were 0 for the first peak (any size peak will do), and
|xLB| + max(δLB, 0.2 · |xUB − xLB|), where δLB is defined below. This function, together
with another improvement detailed below, is illustrated as a flowchart in Figure 3.

When, in all examples above, it is deemed unclear whether the orbit is above or below
the edge, the correct thing to do is to choose a larger T . Clearly this works as desired in
the first example above when all of phase space (except for a measure zero set, the stable
manifold of the lower branch point) is in the basin of attraction of either O or xUB. In the
second example, the added time may allow further gain to be realized (supporting an above-
edge result), or it may simply bring the orbit closer to the origin (supporting a below-edge
result). Thus, increasing T is still the correct response, but one must have carefully chosen
the threshold for the ratio of the gains, based on previous experience with the particular
problem.

When, by bisection of energy levels, the orbits under question are very near the minimal
seed, they will track the stable manifold of xLB until near xLB itself; this point being a
fixed point, velocities near xLB are small so the orbit lingers for much time near xLB.
If increasing T sufficiently to escape xLB is infeasible, a complimentary condition may
be added that applies when the orbit enters a small ball δLB � 1 of xLB wherein the

linearized dynamics dominate. First, linearize F about xLB: FLB = ∂F/∂x
∣∣∣
xLB

. Second,

find all stable eigenvectors of FLB and (as by Gram-Schmidt) orthonormalize them to get
v1, . . . , vn−1. Third, calculate the vector rejection of the unstable eigenvector vn of FLB:

vO = vn −
n−1∑

i=1

(vn · vi)vi. (16)

This vO is orthogonal to the hyperplane formed by the stable eigenvectors. Fourth, calculate
the orbits starting from xLB + δLBvO and xLB− δLBvO and decide which is below the edge
and which is above. The orbit below the edge may be said to be the one that requires less
time to reach a δ0-ball around the origin7, or the one that has a lesser gain. If xLB−δLBvO
is the one below the edge, then re-assign vO := −vO. Hence vO points, following the
dynamical system’s trajectories, from xLB towards the origin. Now, for any orbit x(t), find
the time tc which minimizes DLB = |x(tc) − xLB|. If DLB > δLB then it is unclear from
this analysis whether the orbit is above or below the edge. If DLB < δLB then the orbit
x(t) is deemed below the edge if

S = (x(tc)− xLB) · vO (17)

is positive, and above the edge if S is negative.

2.3.2 Energy Incrementation

Now the task is to increase the size of the energy spheres upon which the NLOP is calculated,
until a sphere intersects the edge. The fundamental outline of the algorithm is, in words,
as follows.

7There are systems, such as the 2D system of Lebovitz (2012), where the orbit from xLB that winds
around xUB , thereby obtaining a much larger gain, actually relaminarizes (reaches the δ0-ball centred at the
origin for δ0 � 1) in less time.
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Start

x(t), t ∈ [0, T ]
δLB, δ0, vO

α

Find all ti ∈ [0, T ], i = 1..N
such that E(ti) ≡ |x(ti)|
is a local maximum.

N ≥ 2 AND
E(t2)− |xLB| >

max(δLB, α)

tc := argmint{|x(t)− xLB|}
no

|x(tc)− xLB| < δLB
(x(tc)− xLB) · vO

< 0yes ABOVEyes

BELOW

no

Stop

E(T ) < δ0

no

yes

no

UNCLEAR

no

yes

Figure 3: Flowchart to determine whether an orbit x(t) is above or below the edge, or
whether this is unclear. This formulation was used to work on the W97 problem, with
δLB = 10−2, and α = (|xUB| − |xLB|)/5. δ0 was initially chosen as 10−2 but can be
made larger (as discussed in Section 2.3.2) once the minimal seeds for some values of R are
available and an approximate scaling law for the minimal seed can be made.



Step 0: Choose a series of energy spheres El ≡ E1, . . . EN ≡ Eh. Choose δ0: an orbit
entering the δ0-ball from outside is deemed going to the origin and below the edge. Set
x0 := El xLOP , where xLOP is the Linear Optimal Perturbation with unit magnitude. Run
the orbit starting at x0 until the smallest time T such that |x(T )| < δ0.

Step 1: Calculate, by the optimization algorithm above, xNLOP .
Step 2: Check whether the orbit from xNLOP is above or below the edge, or if this is

unclear.
If unclear: increase T .
If above: set Eh := E0; reduce E0 by bisection between Eh and El; scale x0 to x0 E0 / |x0|.
If below: set El := E0; increase E0 by bisection between El and Eh if previously an orbit

was found above the edge, or if the Ei set is exhausted; otherwise set E0 to the next element
in Ei; set x0 to xNLOP E0 / |xNLOP |.

Step 3: Check convergence. If Eh−El < δMS for some specified δMS , exit the algorithm;
otherwise, go to Step 1.

There are several additional points which can improve the basic algorithm, which we
now discuss. The flowchart in Figure 2 includes many of these improvements.

In all problems considered so far, the condition for an orbit to be below the edge rests
on whether |x(T )| < δ0. When beginning this energy incrementing algorithm, this δ0 must
be chosen very small so that there is complete confidence that any orbit which crosses from
outside to inside of the δ0-ball centred at the origin will continue directly to the origin, i.e.
with no later growth of |x(t)|. However, this δ0 can be increased to El, the size of the energy
sphere upon which the NLOP was last found to be below the edge: if the NLOP on the
El-ball goes to the origin and an orbit started on the E0-ball passes from outside to inside
of the El-ball, then this orbit must also go to the origin.

When an orbit is above the edge, we don’t need to find the NLOP for that energy sphere.
We simply decrease the energy and try again. Thus, at each iteration in the optimization
algorithm, the orbit is passed to the function that determines whether it’s above or below
the edge. If it’s above the edge, then the energy sphere is immediately shrunk (“A” in
Figure 2).

Relatedly, if it is unclear whether the orbit is above or below the edge, but the orbit is
in fact below the edge, then since further iterations of the optimization procedure will only
increase |x(T )|, the orbits of all further iterations will also be deemed unclear. Hence, T
should be immediately increased and the optimization procedure restarted. Similarly, if it
is unclear whether the orbit is above or below the edge, but the orbit is in fact above the
edge, then increasing T will likely accelerate the whole algorithm and at the very least will
not lead to an incorrect answer. Hence, shortcut “U” is taken in Figure 2.

When the NLOP is found to be below the edge, it is scaled radially outward to the
next energy sphere. But note, when an x0 is detected above the edge (shortcut “A”), the
NLOP is not found and so it is the last NLOP that is scaled to the next energy sphere. x0

should similarly not be updated when it is unclear whether the orbit of the optimization
procedure is above or below the edge (but this case can only occur on the first iteration of
the optimization procedure, before x0 could be updated.)

In the W97 model, the fourth and final component of an orbit that relaminarizes decays
to 0 much faster than the other components. This component can quickly become less than
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the absolute error tolerance of the ODE solver used to integrate the dynamical system—a
situation that can cause numerical issues. Thus, it was found extremely helpful to nudge the
initial condition x0 given to the optimization algorithm. In this case we chose to increase
the fourth component to a minimum of 10−4, while scaling down the other components of
x0 such that the total energy |x(0)| is unchanged.

3 In Search of the Minimal Seed

In this section we give the results obtained by applying the optimization algorithm of
Section 2 to the W97 four-dimensional model. We begin by describing this model, then
discuss how the optimization technique operates for this model, then show our results and
briefly compare them to the previous results of Cossu (2005).

3.1 The Waleffe (1997) 4D Model

While significant progress has been made recently, a complete understanding of shear turbu-
lence arising from the full Navier-Stokes equations, even in simple geometries such as plane
Couette flow or plane Poiseuille flow, remains out of reach. When viewed as a dynamical
system, such a system would have roughly 105 degrees of freedom, obfuscating visualization
as well as the implementation of many numerical techniques. A lower dimensional system
that still captures the important features of a potentially turbulent shear flow is therefore
desired.

One such low dimensional model for plane Couette flow was developed in the 1990’s
by Waleffe and collaborators, culminating in a 1997 paper (Waleffe, 1997). One feature of
this work was to recognize that organized, coherent structures may exist within a turbulent
shear flow. These structures, uncovered in their analysis, are streamwise roll vortices,
streaks (spanwise perturbations of the streamwise flow), and a streamwise wave dominated
by spanwise velocity perturbations. The streamwise rolls advect the mean shear, pulling
positive streamwise flow down and lifting negative streamwise flow up, thereby creating
streaks. Even for roll vortices that are weak (relative to the mean shear), the streaks
represent significant spanwise variation of the streamwise flow and can be linearly unstable,
leading to the growth of the streamwise wave. Through careful analysis, Waleffe showed
that these waves non-linearly force a streamwise roll vortex very near to the original rolls,
thereby amplifying the original perturbation. Thus, this is an energetically “self-sustaining
process”, thereby avoiding the decay to the laminar state.

In addition to the physical understanding of these structures and their interaction, this
work led to a four-dimensional dynamical system. It has been much studied and seems to
capture many important features of the full Navier-Stokes equations for shear turbulence.

Writing x = (m,u, v, w)T , the Waleffe’s model in the general form (1) has

L =




−k2
mR
−1 0 0 0

0 −k2
uR
−1 σu 0

0 0 −k2
vR
−1 0

0 0 0 −k2
wR
−1


 (18)
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Figure 4: Magnitude of fixed points of the W97 model over a range of Reynolds numbers
R. See text for details.

and

N(x) =




σmw
2 − σuuv

−σww2 + σumv
σvw

2

(σwu− σmm− σvv)w


 . (19)

The non-linear terms conserve the energy, recycling it between the different modes. The
linearized problem admits a globally attracting fixed point at the origin—the laminar state.
The same is true for the full non-linear problem when R is small.

For values of R > RSN = 104.5467 where a saddle-node bifurcation occurs, two ad-
ditional fixed points are born: the lower branch fixed point, xLB, and the upper branch
fixed point xUB. Their magnitudes are shown in Figure 4. A sub-critical Hopf-type bi-
furcation occurs at RP2 = 137.2569: an unstable periodic orbit is born and for R > RP2,
xUB becomes a stable attractor—it has two complex pairs of eigenvalues, both pairs having
negative real parts. For 104.6434 = RP1 < R < RP2, xUB one pair of complex eigenvalues
has positive real part, so xUB is unstable. For RSN < R < RP1, these eigenvalues become
real but remain positive and hence xUB is unstable here as well.

This 4D model has been a popular choice for study, but so far only one attempt has
been made to find the minimal seed systematically over a range of R values. That study,
by Cossu (2005), found that |xMS | scaled closely with R−1. However, the orbits started
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Figure 5: Magnitude of orbits beginning from the minimal seeds found by Cossu (2005).
Colours are for different R values. All minimal seeds have orbits that are attracted to the
upper branch point. Hence, they are within the basin of attraction of the upper branch
point, not the origin, and are on the far side of the strong edge.

from these minimal seeds are seen (Figure 5) to go to the upper branch point8 rather than
to return to the origin. Thus, Cossu’s results are for the minimal distance from the origin
to the strong edge. If there exists a weak edge, it is entirely possible and perhaps likely
that it contains a point closer to the origin than any point on the strong edge, in which
case the minimal seed will be smaller than stated by these previous results. We will give
results from applying the search method of Section 2 to the W97 model, which first requires
a discussion of local maxima.

3.2 Optimizing to the Global Maximum

The optimization procedure of Section 2.1 finds a local maximum of L, i.e. it maximizes
|x(T )|. A common difficulty with such optimization algorithms lies in whether the result is
the global maximum or merely a lesser, local maximum.

We therefore calculate |x(T )| for two degrees of freedom of initial conditions x(0), con-
strained to have a specified w and a specified |(m,u, v)| = E0 (Figure 6). When these con-
straints place all x(0) well below the edge (top panel), |x(T )| appears a smooth function of
initial conditions with only two local maxima, and for very small E0 these are nearly equal, as
expected from the linearized problem which has a−1 symmetry (i.e. X(t,x0) = −X(t,−x0);

8Cossu (2005) only studied values of R for which the upper branch point is a stable attractor.
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Figure 6: The final energy |x(T )| (colours), as a function of φ ∈ [0, π] and θ ∈ [−π, π]
which define an initial condition x(0) = (E0 cosφ, E0 cos θ sinφ, E0 sin θ sinφ,W0). The W97
system with R = 200 and T = 80 then gives x(T ). The values E0, W0 are respectively (top)
10−2, 2.1894 · 10−3, (middle) 4.3 · 10−2, 9.4142 · 10−3, and (bottom) 0.3, 6.5681 · 10−2. The
chosen E0 place the top, middle, and bottom panels well below, just below, and well above
the edge, respectively. To complement this W0 was chosen as wMS · (E0/|xMS |), but the
qualitative results are not sensitive to small changes of W0. Well below the edge (top) there
are two nearly equal local maxima of |x(T )|, one the negative of the other, as expected
from the non-normal linearized problem. Just below the edge (middle), there is one clearly
global maxima and one lesser, local maxima. Well above the edge (bottom) there are many
local maxima.
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Figure 7: Left: The energy, E(x(t)) ≡ |x(t)|, of successive orbits x(t) in the iterative proce-
dure to find the minimal seed, for the W97 model with R = 200. Each curve corresponds
to the orbit started from an initial condition with energy indicated by colour. For orbits
below the edge, the initial condition is the NLOP. Thick lines show the orbits of those initial
conditions straddling the edge. Right: The two thick-lined orbits from the left panel, shown
in phase space. Both orbits begin near the origin (blue circle) and track each other closely
until they near the lower branch point (green circle), at which point the black orbit (below
the edge) returns directly to the origin while the red orbit (above the edge) circumnavigates
the upper branch point (black circle) before returning to the origin. The top, middle, and
bottom panels show x1 vs. x2, x3 vs. x2, and x3 vs. x4, respectively.

also note that the W97 model is symmetric about the w = 0 hyperplane). For larger E0 up
to and below the minimal seed, one local maxima dominates and becomes the global max-
ima (middle panel). For E0 above the minimal seed (bottom panel), SM(xLB) folds (back
and forth, or perhaps around xUB) across this domain of x(0). In the limit of T → ∞,
all orbits started off of SM(xLB) will have |x(T )| ≈ 0 or |xUB|, while those started on
SM(xLB) will have |x(T )| ≈ |xLB|, suggesting the folds of SM(xLB) represent different
local maxima of |x(T )| with finite but large T . Thus, for such high E0, many local maxima
of |x(T )| emerge.

These calculations provide evidence that the optimization procedure of Section 2, applied
to successively larger energy spheres and initiated in the correct hemisphere (the right
hemisphere in Figure 6) will find the global maximum when below the minimal seed. Above
the minimal seed, there is no guarantee that the optimization procedure will find the global
maximum, which is why the algorithm was chosen so that finding the NLOP for energy
spheres above the minimal seed is not necessary.
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3.3 Results

We have found the minimal seed xMS for the W97 model for values of R ranging from 105
to 2000. Let us first illustrate the search: the left panel of Figure 7 shows the progression
of orbits in the search for the minimal seed when R = 200. The orbit of an NLOP below
the edge shows transient growth with one well-defined maximum in energy. The growth is
transient as would be had in the linearized system, with the orbit returning to the origin,
hence producing a single maximum.

An orbit started above the edge shows similar initial transient growth followed by at
least one further growth episode. When the initial condition is near the edge, the initial
transient growth sends the orbit into a region of phase space where it is attracted towards
the lower branch point. This much of the orbit, so far, has therefore been on or near the
non-linear stable manifold of the lower branch point. The lower branch point being a saddle
point, it has one unstable eigenvector vu. An orbit that began just above the edge will,
when it gets near to xLB, be pushed off the stable manifold of xLB by its unstable dynamics
vu and away from the origin, generating a second local maxima in the orbit’s magnitude.
An orbit started just below the edge, however, would be pushed towards the origin by the
unstable dynamics of −vu. This weak edge, which is the stable manifold of the lower branch
point, separates initial conditions whose orbits follow qualitatively different routes back to
the origin (right panel of Figure 7). These orbits that straddle the edge also linger for a
long time near xLB itself (t ∼ 80—125 in Figure 6): since xLB is a fixed point, the velocity
through phase space in nearby regions is small.

Note that there are often additional small maxima of energy at large time (not visible),
owing to numerical inaccuracies when the orbit becomes extremely close to the origin. This
necessitates the condition involving α in Figure 3.

Before showing the main result of this work—how the minimal seed scales with R—
we ask how the minimal seed scales relative to |xLB|. In this model we know that |xLB|
asymptotes to a non-zero value for large R, and that the minimal seed |xMS | asymptotes
to zero for large R. Hence the ratio |xLB|/|xMS | should go to ∞ as R→∞. But how does
it behave for finite R, in particular for R→ RSN . This is shown in Figure 8 over the range
of R tested. The relationship is remarkably linear over almost all R, shallowing only for R
very close to RSN where the lower branch point is born and its magnitude changes rapidly
with R.

Now in Figure 9 we show the scaling of the minimal seed against R. First, note that for
each R the size of the minimal seeds found here is less than that found by Cossu (2005).
This is indeed because we have found the minimal distance to the weak edge, which lies
closer to the origin than does the strong edge. Second, we are now able to add to the
discussion regarding how the minimal seed should scale with R. Cossu found reasonably
good agreement with an asymptotic R−1 scaling, and we do too. For comparison, we found
that the asymptotic (i.e. requiring the R = 2000 data point to be matched perfectly)
scaling with a minimal least squares fit is R−1.0361—reasonably close to R−1. However, the
exceptionally linear relationship shown in Figure 8 suggests we can do even better if we
include not just R but also the (easily attainable) information of |xLB|: we find the scaling
|xLB|R−1 fits especially well. Indeed, |xLB| is asymptotically flat at large R (recall Figure 4),
so this scaling is equivalent to the R−1 scaling in the large R limit. However, the increase of
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Figure 8: The ratio between the magnitude of the lower branch point |xLB| and the minimal
seed |xMS | shown in black stars over a range of R, for Waleffe’s 4D model. The upper solid
line with a slope of 1 has been added to guide the eye, indicating a linear relationship
between R and |xLB|/|xMS |.

|xLB| going to smaller R allows this scaling to capture a great deal of how the minimal seed
grows (as R decreases) faster than the R−1 scaling in the finite, non-asymptotic R regime.

Finally, we show in Figure 10 how the first, second, and fourth components of the
minimal seed compare against its third component v, over a range of R. Recall that in the
W97 model, v represents the amplitude of streamwise rolls. That v is always the largest
component confirms that, in this model, perturbing the laminar flow with streamwise rolls
is, broadly speaking, the most effective way to transition to turbulence. However, the
other components being non-zero, the minimal seed—the most effective perturbation—is
somewhat different from a pure streamwise roll perturbation, having finite but smaller
perturbations from the laminar state in all modes (components of x).

3.4 Cossu’s Necessary Condition

Cossu (2005) gives a necessary condition for an initial condition x0 to be that point with
minimal magnitude E(x0) which satisfies

lim
t→∞
E(X(t,x0)) 6= 0, (20)

i.e. for x0 to be what Cossu had called the minimal seed. Following his argument, consider
a candidate x0 for the minimal seed, and perturb it by following its orbit forward for a
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Figure 9: The Minimal Seed as a function of R for Waleffe’s 4D model. Previous calculations
by Cossu (2005) are shown in blue crosses, while our data is shown in black stars. The dash-
dot and dotted lines show the R−1 and R−1.4 scalings, respectively, while the dashed line
shows the R power law with a least squares fit; since these are asymptotic (R→∞) scalings
they are all fit to match the largest R data point. The solid line is the curve |xLB|R−1/a
where a is the least-squares fit to |xLB|/|xMS | vs. R from Figure 8.

short time ∆t. The perturbation energy, in a Taylor series expansion, is

E0(∆t) ≡ E(X(∆t,x0)) = E0(0) + ∆t

(
dE0

dt

∣∣∣∣
∆t=0

)
+

∆t2

2

(
d2E0

dt2

∣∣∣∣
∆t=0

)
+O(∆t3). (21)

If dE0
dt

∣∣∣
∆t=0

< 0, then E(X(∆t,x0)) < E(x0). So X(∆t,x0), since it shares an orbit with

x0, must also satisfy (20), and hence x0 is not the minimal seed. Similarly if dE0
dt

∣∣∣
∆t=0

> 0,

then X(−∆t,x0) shows that x0 is not the minimal seed. Therefore, it is necessary that the
minimal seed xMS must satisfy

dE(X(t,xMS))

dt

∣∣∣∣
t=0

= 0 and
d2E(X(t,xMS))

dt2

∣∣∣∣
t=0

≥ 0 (22)

This argument also applies when finding the minimal seed when the edge contains a
weak component, i.e. when the minimal seed is on the stable manifold of, in this case, the
lower branch point: xMS ∈ SM(xLB). But note, however, that this argument does not
apply so easily when searching for the NLOP subject to E(x0) equal to some specified d.

These ideas afford us a way to check our results. First, for the W97 model and any
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seed to the third component v. We found m > 0 for all minimal seeds, but Cossu (2005)
had m < 0 for most R, hence |m| is shown here.

other in which the non-linear terms are energy preserving,

d

dt

(
1

2
E(x)2

)
=

1

2

d

dt
x · x = x · (Lx) + x · (N(x)) = x · (Lx). (23)

This measure of the error is immediately calculable and shown in Figure 11, scaled by
xMS · xMS , over the range of R tested. That there is no particular pattern suggests the
error is due to numerical noise.

However, what is an acceptable magnitude for the above error? If we shift xMS along
its orbit by a small time ∆t, then E2/2 will change by approximately ∆t xMS · (LxMS).
But the size of ∆t is presently unknown: too large a ∆t and higher order terms in (21)
will become significant. Thus, for a given R and estimate of xMS , we follow the orbit from
xMS backwards, or forwards, in time until dE/dt = 0 is had, and therefore a more minimal
xMS is found. Carrying this out on the xMS for R = 120 manages to reduce |xMS | by only
5 · 10−12, or 2 · 10−11 for R = 800, or 2 · 10−13 for R = 2000, suggesting our estimate of xMS

is quite accurate.
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4 Conclusion

We have undertaken a search, across a range of Reynolds numbers R, for the minimal seed in
the low-dimensional model of W97. One previous attempt (Cossu, 2005) at this was made.
Cossu kindly shared his data with us in private communication, from which we discovered
that his results for the minimal seed are in fact the least distance from the origin (the laminar
flow state) to the boundary of the basin of attraction of the upper branch fixed point (a
flow state that exists within turbulence yet itself is stable). The latter marks the (“strong”)
edge of the basin of attraction of the laminar fixed point, separating orbits that eventually
return to the laminar flow state from those that never return. However, we have shown
that in the W97 model there exists a boundary that is internal to the basin of attraction of
the laminar fixed point: this so-called “weak” edge separates orbits that both return to the
laminar flow state given sufficient time but do so by qualitatively different routes: orbits
below this “weak” edge return fairly directly to the origin, while orbits above undergo a
circuitous route that must wind around the upper branch fixed point before returning to
the origin. The latter orbit, it would be said, did indeed transition to turbulence, despite
that it ultimately relaminarizes. Thus the true minimal seed lies on this “weak” edge, and
is in fact smaller than any point on the “strong” edge. We have found a more minimal seed
than was previously known.

We have applied the relatively new non-linear optimization technique, reviewed by Ker-
swell et al. (2014). In this problem, the demarcation between states that are above and those
that are below the weak edge is more subtle than between states that are above or below
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the strong edge in which the demarcation is simply whether the orbit eventually relaminar-
izes. This marks new territory for this optimization technique and some modifications were
required.

Considering the magnitudes of the minimal seeds we found over a range of R, our
results support the hypothesis for a R−1 scaling law of the minimal seed in the W97 model.
However, we discovered an even better scaling can be obtained if an additional piece of
information is used: the magnitude of the lower branch point. Now, the minimal seed is the
point on the stable manifold of the lower branch point closest to the origin. At large R the
lower branch point is relatively insensitive to increases in R, and the decreasing minimal
seed with increasing R is due to this stable manifold shifting closer to the origin. At finite
R however, the lower branch point moves towards the origin with increasing R, translating
its stable manifold closer to the origin along with it. This shifting of the lower branch point,
it seems, causes the minimal seed to decrease somewhat faster than R−1. In fact, we found
that the ratio of the lower branch point to the minimal seed was exceptionally linear with
R, leading to a new scaling for the minimal seed that goes as the product of the magnitude
of the lower branch point with R−1. The agreement of this scaling law with our results is
quite encouraging, but whether such a scaling law is unique to the particular model studied
here is not presently known.
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Vortex Filament Dynamics

Jim Thomas

August 16, 2015

1 Introduction

Formation of large coherent vortices is a recurring theme in two-dimensional turbulence
investigations [1]. DNS simulations and lab experiments have demonstrated this time and
again. Once these large vortices form, like-signed vortices merge together in an inelastic
process. During this merger process filamentation occurs leading to the formation of thin
strips of vorticity. While some filaments remain attached to the large coherent vortices
others are expelled during the merger and remain detached from the large vortices. Under
normal conditions one would naturally expect these filaments to be unstable to perturba-
tions, the growth of instabilities leading to roll up of these filaments. But surprisingly, it has
been demonstrated that in the presence of other coherent vortices, the rolling up of these
filaments is inhibited [2]. The strong external shearing and straining fields prevents the
rolling up of these filamnets. As a result, the filaments form a characteristic feature of fully
developed 2D turbulence. This work aims to capture the dynamics of these filaments using
a simple new model. An integro-differential equation is derived for this purpose, which is
then solved for a variety of cases.

In Sec. 2 derivation of the relevant equations and some of its properties are discussed.
Sec. 3 involves studying the effect of disturbances on filaments and response of filaments
to externally imposed velocity fields. Possibility of equilibrium states for filaments in the
presence of external fields is discussed in Sec. 4 . Some filament-point vortex and filament-
filament interactions are investigated in Sec. 5 .

2 Mathematical Model

A vortex filament (VF hereafter) is a very thin strip of vorticity in the x − y plane. The
small thickness assumption will be used to characterize the filament by its center line curve.
Mass (area) conservation and material transport of vorticity are used to describe variation
in local thickness and vorticity.
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Figure 1: A vortex filament: z(s,t) is a curve in the complex plane parametrised by s,
varying with time, and b(s,t) is the local filament thickness.

2.1 Derivation of the VF equation

The VF equation is derived from first principles here.
Vorticity at any point is

ω = ∇× v

∇ · v = 0 ⇒ v = ẑ ×∇ψ .

Combining above two equations gives

∆ψ = ω

If vorticity field is compact, this can be uniquely solved to get

ψ(x) =
1

2π

∫

x′∈R2

ω(x′) ln |x− x′|dx′

which leads to

v(x) =
1

2π

∫

x′∈R2

ẑ × (x− x′)
|x− x′|2 ω(x′)dx′

This is the 2D version of the infamous Biot- Savart law.
Using small thickness approximation, we write dx′ = b(s′)dl(s′), ω = γ(s′)

This is analogous to thin airfoil approximation in aerodynamics [3].
Thus, self-induced velocity of the filament at any point is

v(x, t) =
1

2π
−
∫

L

γ(s′)
ẑ × (x(s, t)− x(s′, t′))
|x(s, t)− x(s′, t)|2 b(s′, t)dl(s′)
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The sum of this and the external velocity is the total velocity at any point on the
filament, i.e.

∂x(s, t)

∂t
= U(x(s), t) +

1

2π
−
∫

L

b(s′, t)γ(s′)
ẑ × (x(s, t)− x(s′, t′))
|x(s, t)− x(s′, t)|2 dl(s′)

Or in complex variable notation,

∂z∗(s, t)
∂t

= U∗(z) +
1

2πι
−
∫

L

b(s′, t) |zs(s′, t)| γ(s′)
z(s, t)− z(s′, t)

ds′

where z = x+ ιy
To close the system, we need an evolution equation for thickness. This can be derived

by demanding local area conservation of the VF.

Figure 2: Centerline curve of a VF at two different times

On demanding that local area remains same at t and t+ δt

b(s+ δs/2, t) |z(s+ δs, t)− z(s, t)| = b(s+ δs/2, t+ δt) |z(s+ δs, t+ δt)− z(s, t+ δt)|

b(s, t) |zs(s, t)δs| = (b(s, t) + δtbt(s, t)) |zs(s, t)δs+ zst(s, t)δsδt|+O(δs2)

1

b

∂b

∂t
+

1

2|zs|2
∂|zs|2
∂t

= 0

After some simplifications, this yields

b(s, t) |zs(s, t)| = b(s, 0) |zs(s, 0)| = b0(s)|z0
s|

This is a remarkable result since it implies that thickness in this model is slaved to the
curve. As a consequence, one need not solve for the thickness simultaneously with the curve
points. Once the curve is known, thickness can be calculated and updated.

The final equation is then
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∂x(s, t)

∂t
= U(x) +

1

2π
−
∫

L

b0(s′)|x0
s|γ(s′)

ẑ × (x(s, t)− x(s′, t))
|x(s, t)− x(s′, t)|2 ds′

which is in complex notation

∂z∗(s, t)
∂t

= U∗(z) +
1

2πι
−
∫

L

b0(s′)|z0
s|γ(s′)

z(s, t)− z(s′, t)
ds′ (1)

This formulation can be extended to include multiple filaments as given below:

∂xi(si, t)

∂t
= U(xi)

+
1

2π
−
∫

Li

b0i (s
′
i)|xi0si |γi(s′i)

ẑ × (xi(si, t)− xi(s′i, t′))
|xi(si, t)− xi(s′i, t)|2

ds′i

+
∑

j

1

2π
−
∫

Lj

b0j (s
′
j)|xj0

sj
|γj(s′j)

ẑ × (xi(si, t)− xj(s′j , t))
|xi(si, t)− xj(s′j , t)|2

ds′j

The last summation over all other filaments is the mutual interaction term.

Analogous to Contour Dynamics (CD) we shall call this model Filament Dynamics (FD
hereafter)

As a special singular limit, let b → 0, γ → ∞ holding bγ fixed and L → ∞ . Then (1)
reduces to:

∂z∗(s, t)
∂t

=
1

2πι
−
∞∫

−∞

dΓ(s′)
z(s, t)− z(s′, t)

This is the Birkhoff-Rott equation used to model the evolution of a vortex sheet [4,5].

2.2 Conservation laws for self interacting filament (U=0)

Equation (1) has a Hamiltonian formulation.
Hamiltonian,

H[x] = − 1

2π
−
∫

s

−
∫

s′

b0(s)
∣∣x0
s(s)

∣∣ γ(s)b0(s′)γ(s′)
∣∣x0
s(s
′)
∣∣ ln

∣∣x(s, t)− x(s′, t)
∣∣ ds′ds

Thus, (1) can be written as Hamilton’s equations

∂x

∂t
=

1

ζ

δH

δy

∂y

∂t
= −1

ζ

δH

δx
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where ζ = γ(s)b0(s)
∣∣x0
s(s)

∣∣

Thus, the Hamiltonian (Energy) is an invariant of the system, i.e. Ht = 0
The Hamiltonian can be modified to include the effect of external velocity field using

the stream function.
An invariant center of vorticity x can be defined for a VF such that

−
∫

L

b0(s′)|x0
s′ |γ(s′)

ẑ × (x− x(s′, t))
|x− x(s′, t)|2 ds′ = 0

The center of vorticity x, is the point where the velocity induced by the whole filament
is zero.

Equation (1) conserves angular momentum.

Angular Momentum,

L = −
∫

s

b0(s)
∣∣x0
s(s)

∣∣ γ(s) |x(s, t)|2 ds

2.3 Numerical solutions

Examples are calculated by a numerical scheme in which the VF is discretized into rectan-
gular strips with N points on it. The system of 2N equations are then solved using RK-4.
The integral is replaced with a desingularised summation [6]

∑

j

1

|xi − xj |2 + δ2

with midpoints between two points used to evaluate the sum. Thickness is at the
midpoint between two points. After each time step (n), the thickness is updated using

bn+1
j ln+1

j = bnj l
n
j

3 Effect of Disturbances on VFs

It is well known that thin strips of vorticity are unstable to disturbances and tend to roll
up. Here we test this using our model. We study two cases: a parabolic VF and a circular
VF.

A parabolic VF has thickness variation

b(s) = bmax(1− s2), s ∈ [−1, 1]
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Figure 3: A parabolic VF

This is now disturbed by a finite amplitude sinusoidal perturbation and allowed to
evolve. In the configuration that we study, maximum thickness, bmax = 10−5

The initial and long time states are shown below:
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Figure 4: Initial and long time state of a perturbed parabolic VF

The second case we study is a slightly perturbed circular VF. The circular VF is of
constant thickness, b = .02

The initial and long time states are shown below:
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Figure 5: Initial and long time state of a perturbed circular VF

Thus VFs, as expected do roll up on being disturbed. For the case of a slightly disturbed
circular VF, we compare this model with a Contour Dynamics calculation. Various stages
of evolution are as shown:
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Figure 6: Comparison between FD and CD

Note that disturbances propagate and grow in both models. Thickening happens in
certain regions leading to the formation of beads of vorticity. However, the FD model is
unable to maintain regions of constant vorticity as CD and it rolls up into a spiral in the
final stages as seen above.

3.1 Shape of VFs and their influence on dynamics

The dynamics of VFs depend a lot on their shapes. It is seen that an elliptical VF(
(xa )2 + (yb )2 = 1

)
rotates without change of shape.

Figure 7: Elliptic VF-red is initial configuration and blue is state after a small time

Hyper-ellipses ((xa )n + (yb )n = 1, n > 2) rotate with their tips leading the main body
of rotation.
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Figure 8: Hyper-elliptic VF-red is initial configuration and blue is state after a small time

A parabolic filament (b = bmax(1 − s2)) rotates with its tip lagging behind the main
body of rotation.

Figure 9: Parabolic VF-red is initial configuration and blue is state after a small time

Further investigations indicate that sharper filament tips tend to lag while blunter fila-
ment tips have a tendency to lead the main body of the filament.

3.2 Effect of external velocity field on VFs

Here we impose an external velocity field and study the response of the VF. The previous
case of perturbed parabolic VF is used but now a velocity field equivalent to the presence
of a point vortex at (0,3) is imposed. i.e., vr = 0, vθ = Γ

2π|x−3ŷ|
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Two cases are considered. Case of weak external field (Γ/ (2πbmaxLγ)� 1) and strong
external field (Γ/ (2πbmaxLγ)� 1) as shown below:

Figure 10: Counterclockwise from top: Initial state, long time state in the absence of
external field, long time state in the presence of external field

In the case of weak external velocity, rolling up of the VF occurs as expected. But in
the presence of strong external velocity field, the filament is extremely stretched out and
flattened, preventing all rolling up activities.

Further numerical experiments indicate that a strong external field can stretch the VF
so as to prevent rolling up from occurring. On the other hand, a weak external flow is
unable to impact the VF. This leads to the natural question of equilibrium. Are there
critical velocity fields that can hold the whole VF in equilibrium?
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4 Equilibrium states of VFs

The relevant equations for equilibrium states are

U∗(z) +
1

2πι

∫

L

b(s′)γ(s′)
z(s)− z(s′)

∣∣zs(s′)
∣∣ ds′ = 0

Closed filaments

For the class of closed filaments, a circular filament of constant thickness and vorticity is in
self equilibrium , i.e. U=0. This is easily verified by using z = eιθ to evaluate the integral.

Open filaments

Consider straight filaments placed on the x-axis with constant vorticity along the curve.
Thus z = s is the equation of the VF. We prescribe various thickness distributions and find
the corresponding flow fields based on the equation:

U(s) =
ιγ

2π

∫

L

b(s′)
s− s′ds

′ (2)

1. b(s) = bmax
√

1− (s/a)2

.

Figure 11:

This is an elliptic thickness variation as shown. For this b(s), the critical velocity field
is

u = ky, v = −kx⇒ ω = −2k (k = γbmax/2a)

This is a flow with constant vorticity that can hold an elliptic VF in equilibrium. Half
the vorticity of this external field is exactly the rotation rate of an elliptic VF.

Consider an ellipse x2

a2
+ y2

c2
= 1
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In the filament approximation, we obtain the rotation rate as

Ωf = γλ

where λ = c
a is the aspect ratio

If we had an elliptic patch of constant vorticity [7],

Ω = γ
λ

(1 + λ)2

If λ� 1, binomial expansion gives Ω ∼ Ωf +O(λ2).

Thus, in the filament approximation, the ellipse tends to rotate faster, the difference
being O(λ).

2. b(s) = bmax(1− s2)3/2

Figure 12:

The critical velocity field is

u = ko

(
3

2
y + y3 − 3x2y

)
, v = −ko

(
3

2
x− x3 + 3y2x

)

3. b(s) = bmax(1− s2)

This is a parabolic thickness variation.

b(s) = bmax(1− s2)

The critical velocity field in complex notation is

U = −kp
(

(1− z2) ln
1 + z

1− z + 2z

)

The ki’s are constants that depend on the central region thickness of the filament and
similar other parameters.
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Figure 13:

Stability of equilibria

Here the stability of equilibria of VF is tested. We shall consider small local perturbations
on an elliptic VF and study its evolution.

The disturbance equations are:

∂ẑ∗(s, t)
∂t

= Û
∗
(ze, ẑ)− 1

2πι

∫

L

be(s
′) |ze(s′)| γ0(s′)

(ze(s)− ze(s′))2 (ẑ(s, t)− ẑ(s′, t))ds′

Consider small perturbation on a straight elliptical filament with constant vorticity
distribution in an equilibrium flow field. Then ze = s, U = ιβz, be(s) =

√
1− s2 and after

dropping ̂ ’ s leads to

(zt(s, t) + ιβz)∗ = − γ0

2πι

a∫

−a

b0

√
1− (s′/a)2

(s− s′)2

(
z(s, t)− z(s′, t)

)
ds′

Setting s = aξ

(zt + ιβz)∗ = − β
πι

1∫

−1

√
1− ξ′2

(ξ − ξ′)2

(
z(ξ, t)− z(ξ′, t)

)
dξ′

where β = γ0b0/(2a) which can be written as

(zt + ιβz)∗ = − β
πι
F [z]

Looking for solutions in terms of the normal modes,

z =
∑

Ane
σntφn

where φn satisfies F [φn] = λnφn and for the functional F [z], one can show that the
eigenvalues are λn = nπ

Thus,

σn = ±β
√
n2 − 1
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which implies that all modes except n = 0 and 1 are unstable.
Hence, in spite of having critical velocity fields being capable of holding the whole VF

in equilibrium, these states are in general unstable.

5 Interaction experiments

Here we study two types of interactions with point vortices and VF-VF interaction.

5.1 Interaction with point vortices

The original VF equation can be modified to include the effects of point vortices. Here we
place two point vortices symmetrically inside a circular VF. Initially the point vortices just
rotate about the center of the circular VF. Due to numerical instabilities the center of point
vortices slightly shifts from the center of the circular VF. Once this happens, the point
vortices destabilizes the VF by increasing thickness (hence vorticity) in certain regions at
the expense of other regions and the region then rolls up as shown in the figures above.
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Figure 14: Interaction between circular VF and 2 point vortices

5.2 Interaction between VFs

The interaction between two circular VFs is investigated here. Two circular VFs of same
strength and thickness are kept at a very small separation. The resulting interaction is
shown above. Each VF rotates around the other, shears each other and sweeps thickness
to a certain region which then starts to roll up. The spirals of roll up then merge together
to form a complex pattern at the center. Rolling up is also initiated at other regions on the
VFs.
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Figure 15: Interaction between 2 circular VFs

6 Conclusions

This work was undertaken with the goal of constructing a new reduction of the 2D Euler
equations to model thin strips of vorticity or VFs. The new model (Filament Dynamics or
FD) solves for a curve in the plane but has thickness slaved to it. Qualitative features of
thin filaments such as rolling up and response to straining fields seems to be captured by
the model. Comparisons with Contour Dynamics indicate similar behavior. Quantitative
details and comparisons of instabilities in this model vs instabilities in the CD model remain
to be examined.

CD often has difficulties capturing dynamics of very thin filaments, more so if the tips
are sharp. CD tries to smooth the tips by adding in more points, taking up the role of
viscosity. The number of points required also becomes larger with reduced thickness. These
aspects force one to use techniques such as contour surgery[8]. As an application of the
new model, one could imagine building a hybrid CD-FD code, where if the thickness of a
certain strip reduces below a certain limit, the code would switch from CD to FD.
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