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North section transports are denoted by 

dashed lines and south section transports 

are denoted by solid lines . For the 

transport differences, true salinities are 

denoted by solid lines while pseudo 

salinities are plotted as dashed 

lines. 17 

].]. 



Tables 

Table 1: Pseudo and real dynamic heights (dyn m) for 

the Sargasso Sea stations. . 7 

Table 2: Pseudo and real dynamic heights (dyn m) for 

Slope Water CTD stations; values in 

parentheses exclude shallow casts. . 8 

Table 3: Pseudo and real dynamic heights (dyn m) for 

the Gulf Stream stations. . 8 

Table 4: Summary of transports and transport 

differences in isopycnal layers for real 

and pseudo salinity sections of EN88. 

Transport figures in Sv, area in km2 • Rank 

33 and 36 reference velocities used are 

from PJ. 16 

iii 



ABSTRACT 

We have addressed the degree to which Acoustic-Doppler Cur rent 

Profiler (ADCP) and expendable bathythermograph (XBT) data can 

provide quantitative measurements of the velocity structure 

and transport of the Gulf Stream. An algorithm has been used 

to generate salinity from temperature and depth using an 

historical Temperature/Salinity relation for the NW Atlantic . 

Results have been simulated using CTD data and comparing real 

and pseudo salinity files. Errors are typically less than 2 

dynamic ern for the upper 800 rn out of a total signal of 80 ern 

(across the Gulf Stream). When combined with ADCP data f o r a 

near-surface reference velocity , transport errors in isopycnal 

layers are less than about 1 Sv (10 6 rn3 /s), as is the 

difference in total transport for the upper 800 rn between real 

and pseudo data . The method is capable of measuring the real 

variability of the Gulf Stream, and when combined wi t h 

altimeter data, can provide estimates of the geoid slope with 

oceanic errors of a few parts in 108 over horizontal scales of 

500 krn . 
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1 INTRODUCTION 

Soon after it leaves Cape Hatteras, the Gulf Stream transport 

increases to values of 150 Sv (1 Sv = 106 m3 /s), over five 

times that of its parent, the Florida Current. Little is known 

about the structure and variability of the recirculation 

regime responsible for the transport increase. Altimeter 

measurements at the surface suggest that the spectrum of 

variability is broad: ranging from month-scale changes, 

associated with meandering, as well as seasonal and annual 

shifts in position and strength of the Gulf Stream. In order 

to be able to extend surface measurements to depth, in-situ 

hydrographic studies using shipboard measurements can use the 

geostrophic approximation and infer transport relative to some 

reference level of known motion . Historical measurements (see 

Worthington, 1976) have used deep current measurements from 

floats or current meters. Recently Halkin and Rossby (1985) 

have reported on Pegasus velocity profiles in which Gulf 

Stream transects have been made with an acoustically tracked 

device. While adequate for Gulf Stream monitoring, the 

technique is very labor-intensive, requiring a bottom 

transponder array, several days of ship time for a single 

crossing, and repeated sections for time series study . An 

alternative method using CTD stations and Acoustic Doppler 

Current Profilers (ADCP) reported by Joyce, Wunsch, and 

Pierce, 1986 (JWP) and Pierce and Joyce, 1988 (PJ) also 

requires the use of a dedicated research vessel, but not as 

much ship time nor any transponder network. In this report, we 

will investigate a variant of the ADCP/CTD/inverse method used 

by JWP and PJ , which would use expendable bathythermographs 

(XBT' s) and an ADCP from a moving vessel . While the method 

suffers from making measurements only in the upper ocean, it 

has the advantage that the vessel does not need to stop, and 

offers the further possibility that these measurements can be 

made from ships-of-opportunity in the future . 
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In this report , we will use data collected from sections 

across the Gulf Stream made in the Warm Core Rings experiment: 

the same data as that used in JWP and PJ. The ADCP data were 

used to provide an initial guess at the reference level 

velocity, and were combined with deep CTD casts to estimate 

the total velocity field on two intersecting transects of the 

Gulf Stream (Fig 1) . 

Inverse methods (eg . Wunsch, 1978) were invoked to refine the 

reference velocities so as to conserve total mass (to 0.1 Sv) 

as well as transports in individual layers. Readers are 

referred to JWP and PJ for a discussion of the methods and 

results. The ADCP data alone suffer from random and systematic 

errors, the latter of some concern as they create large 

initial imbalances in transport comparing the two sections in 

Fig. 1. The cause of these errors comes from gyro/transduc er 

misalignment and deviations from the ideal beam geometry (see 

Joyce, 1988) . Despite these shortcomings of the ADCP 

measurements, the combined data are superior to the 

hydrographic measurements alone because the velocity of the 

Gulf Stream is large and extends all the way to the ocean 

bot torn (i.e. , there 1.s no level of no motion) . The s t ation 

pattern and near surface (60- 100m) c urrents during a four day 

survey in August 1982 in Fig 1 has a pie-shaped geometry with 

the open side along the 200 m isobath . A similar pattern to 

that in Fig 1 (from PJ) was observed in June and reported by 

JWP . Arguments were made that the open boundary along the 

continental shelf contributed negligible volume transport into 

the region and could be ignored in comparison to the large 

transports across the two Gulf Stream sections. 
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SLOPE WATER TO SARGASSO SEA 
60 METER ACOUSTIC VELOCITIES 

Figure 1: Station locations for CTD/02 casts and ADCP 
measurements at a depth of 60 m during EN88 (from PJ) during 
August 1982. Also shown (dashed lines) is the track pattern 

from EN86 used in JWP. 
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We have used the "corrected" ADCP data from the i nverse 

calculation for this study. In order to simulate XBT ' s, the 

salinity measurements were deleted from the CTD file s a nd an 

algori thm was used to regenerate an estimated salinity from 

temperature and depth alone. In the next section, we will 

descr i b e the results from the pseudo-salinity calculat i on (the 

algor i thm is given in the appendix) in terms of tabula ted 

errors in dynamic height as a function of d e p th and 

hydrographic regime. This is followed by a comparison of 

velocity and transport calculations in the upper 800 m as well 

as in selected potential density layers. A final section 

summarizes the results and considers the possibility of 

application to future Gulf Stream investigations. 

2 SALINITY ESTIMATION AND 

DYNAMIC HEIGHT ERRORS 

The CTD data from two cruises aboard the R/V ENDEAVOR (8 6 , 88 ) 

were truncated at 800 m. In the pseudo salinity fi l e s, the 

original salinity was replaced by one calculated from 

temperature and depth (or pressure) alone. Results are 

summar ized in tables 1-3 for the Sargasso Sea, Slope Wat er, 

and Gulf Stream, respectively. The procedure used in 

gener a ting the pseudo salinities was as follows: 

0 Starting at the bottom 
temperature and depth and 
Atlantic Central Water 
estimate a salinity. 

of the cast ( 800m ) use 
the T/S relation for t he NW 
(Arrni and Bray, 198 2) to 

o When a depth of 200 m is reached, take the sal inity to 
be constant to the surface unless a s pecified 
temperature inversion (typically 0.5°C) is encounte red. 

0 If an inversion is encountered, use 
depth and linearly interpolate the 
towards a T/S value of 8°C/32.5 
characteristic of the shelf water. 

-6-
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The method was tested on the EN86 data and applied to both 

data sets comparing the measured salinities and dynamic 

heights. The latter are of particular interest since we desire 

to use the pseudo salinity data for dynamic calculations for 

the geostrophic flow relative to the ADCP data. Because of the 

change in the algorithm at 200 m depth, we have tabulated 

dynamic heights from the pseudo and real data for 0-200 m, 

200-800m and 0-800m depth. 

Table 1: Pseudo and real dynamic heights (dyn m) for the Sargasso Sea 
stations. 

Endeavor 86 

Sta # 0-200 db 200-800 db 
pseudo read diff. 

0-800 db 
pseudo real diff. pseudo real diff. 

47 .4935 .4971 -.0036 .9344 .9285 +.0059 1. 4279 1. 4256 +. 0023 
48 .4718 .4598 +.0120 .9662 .9600 +.0062 1.4380 1. 4198 +.0182 
49 .4324 .4349 - .0025 1.0036 .9981 +.0055 1.4360 1. 4330 +.0030 

Endeavor 88 

52 .4656 .4761 -.0105 .9439 . 9449 -.0010 1 . 4095 1.4210 -.0115 
53 .4766 .4880 -. 0114 . 9778 .9782 -.0004 1.4544 1. 4662 -. 0118 
54 .4882 .4967 -.0085 . 9772 .9784 -.0012 1.4654 1.4751 -.0097 
55 .4684 .4754 -.0070 .9570 .9588 -.0018 1. 4254 1. 4342 -.0088 
56 .5041 .5155 -. 0114 .9846 .9840 +.0006 1. 4887 1.4995 -.0108 
57 .5144 .5299 -.0155 .9888 .9894 -.0006 1. 5032 1.5193 -.0161 
58 .5185 .5277 -.0092 .9917 . 9911 +.0006 1. 5102 1. 5188 -.0086 
59 . 5136 .5204 - . 0068 . 9945 . 9925 +.0020 1. 5081 1. 5129 -.0048 

------ ------ --- ---
Average -.0068 +.0014 - . 0053 
Std Dev .0072 .0030 .0097 
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Table 2: Pseudo and real dynamic heights (dyn m) for Slope Water CTD 
stations; values in parentheses exclude shallow casts. 

Endeavor 86 

Sta j 0-200 db 200-800 db 0-800 db 
pseudo real diff. pseudo real diff. pseudo real diff . 

-------------------------------------------------------------------
43 .3753 .3661 +.0092 .3769 .3778 -.0009 .7522 .7439 +.0083 
53 .3769 .3359 +.0410 .3153 .3168 -.0015 . 6922 .6527 +.0395 
54 .3322 .3168 +.0154 .3245 .3212 +. 0033 . 6567 .6380 +.0074 
55 .3213 .3156 +.0057 .3294 .3277 +. 0017 .6507 .6433 +.0017 
56 .3390 .3125 +.0265 .3483 .3425 +.0058 .6873 .6550 +.0323 
57 .3463 . 3156 +.0307 .3486 .3503 - . 0017 .6949 . 6659 +.0290 
58 .3222 .2962 +.0260 .3479 .3488 -.0009 .6701 .6450 +.0251 
60 . 3163 .3125 +.0038 .3651 .3703 -.0052 .6814 .6828 -.0014 

Endeavor 88 

47 . 3943 .3846 +.0097 
65 .3564 .3448 +. 0116 . 3411 .3379 +. 0032 .6975 .6827 + . 0148 
66 .3517 .3326 +.0191 .3233 .3239 -.0006 .6750 .6565 +.0185 
67 .3968 .3775 +.0193 .3310 .3320 -.0010 . 7278 .7095 +.0183 
68 .3607 .3451 +.0156 .3387 . 3391 -.0004 .6994 .6842 +.0152 
69 .3121 . 3171 -.0050 .3340 .3430 -.0090 .6461 .6601 -. 0140 
70 .3070 . 3131 -.0061 .3497 .3527 -.0030 .6567 .6658 -. 0091 
71 . 3115 .3273 -.0158 

------ ------ ------
Average +.0129 (. 0152) -.0007 +.0145 
Std Dev .0146 (.0133) .0037 . 0152 
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Table 3: Pseudo and real dynamic heights (dyn m) for the Gulf Stream stations . 

Endeavor 86 

Sta j 0-200 db 200-800 db 0-800 db 
pseudo real diff. pseudo real diff. pseudo real diff . 

----------------------------------------------------------------------
44 .5422 .5122 +. 0300 . 4741 . 4780 - . 0039 1.0163 . 9902 +. 0261 
45 .5523 .5563 -.0040 .7960 .7978 -.0018 1. 3483 1.3541 -.0058 
46 . 5399 . 5491 -.0092 .8859 .8831 +.0028 1.4258 1.4322 -.0064 
50 .5305 .5386 -.0081 . 9472 .9437 +.0035 1. 4 777 1.4832 -.0046 
51 . 5570 . 5561 +. 0009 .8020 .8027 -.0007 1. 3590 1.3588 +.0002 
52 .4271 .4212 +.0059 .4410 . 4425 -.0015 .8681 . 8637 +.0044 

Endeavor 88 

48 . 4844 .4370 +.0474 .3941 .3963 - . 0022 . 8785 .8333 +. 0452 
49 .6197 .6308 -. 0111 .5510 .5534 -.0024 1.1707 1.1842 -.0135 
50 .5702 .5875 - . 0173 .8344 .8341 +. 0003 1.4046 1.4216 -.0170 
51 . 4983 .5108 - . 0125 . 9200 . 9206 -. 0006 1. 4183 1.4314 -.0131 
60 . 5355 . 5376 -.0021 .9908 .9885 +.0023 1. 5263 1. 5261 + . 0002 
61 . 5384 .5464 -.0080 .9409 . 9391 +.0018 1. 4793 1.4855 - . 0062 
62 .5353 .5533 -.0180 . 8135 .8114 +.0021 1. 3488 1.3647 -.0159 
63 .5704 . 5690 +.0014 .5206 . 5204 +. 0002 1.0910 1.0894 +. 0016 
64 .4428 . 4010 +.0418 .3406 .3367 +.0039 .7834 .7377 +.0457 

------ ------ ------
Average +.0025 +. 0003 +.0027 
Std. Dev . . 0207 . 0024 .0203 

Differences between pseudo and real data are given as well as 

statistics for groups of stations in each of the above t hre e 

regimes . Errors are largest in the upper 200 rn c omparing 

dynamic height differences, but random errors in the 

differences are <= 2 dynamic ern . Systematic changes 1.n the 

water masses across the Gulf Stream account for the average 

differences between the pseudo and real data: in other words, 

the real T/ S profiles are NOT constant across the Gulf Stream . 

Comparing the Slope Water and Sargasso Sea results for the 

differences in dynamic height, one sees an average difference 

(0-800 rn) of 2 dyn ern, with a similar standard error , out of a 

total cross-stream difference of 80 ern. Thus, errors are o f 
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order 2% of the signal. In the next section, dynamic heights 

and calculated densities will be used to compare velocities 

and transports of the Gulf Stream. The FORTRAN code used to 

generate a pseudo salinity is given in the appendix. One 

possible way to improve the algorithm would be to use an 

observed surface salinity and an interpolation scheme for the 

upper 200 m. There is a slight salinity decrease between 200 

m and the surface due to the injection of shelf water onto the 

slope by 

across the 

reduce the 

upper 200 

variations 

layer cap 

warm-core rings, and by transfer of Slope Water 

Gulf Stream by cold-core rings. This might further 

systematic errors across the Gulf Stream in the 

m. However, as we show in fig 2, the salinity 

in the upper 200 m indicate that the fresh surface 

is relatively shallow making a simple linear 

interpolation between the surface and 200 m depth a 

questionable next step . 
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SALINITY 

\36.6 

20 km 

SALINITY 

20 km 

Figure 2: Salinity sections for EN88 in the upper 200 rn. The 
upper panel is for the "south", or shorter section, while the 

lower panel is for the "north" section (see fig. 1). 
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3 VELOCITY AND TRANSPORT 

COMPARISONS 

The "true" profiles of absolute velocity and volume transport 

for PJ are shown in Figure 3 for the upper 800 m with the 

"south" ("north") section on the left (right). The Slope Water 

is on the left and the Sargasso Sea on the right in both 

cases. The sections are approximately balanced in total 

transport as a result of the inverse calculation with the 

combined CTD/ADCP data as described above. The maximum 

velocity of the south section is 120 cm/s at the surface over 

the intersection of the 15°C isotherm and 200 m. The maximum 

velocity in the longer north section has increased to 140 

cm/s. The total volume transport for both sections is 

approximately 80 Sv. The difference between the velocity and 

transport of the pseudo sections and the true sections is 

shown in Figure 4. Velocity errors are generally less than 5 

cm/s and total transport errors are less than 1 Sv. 
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Figure 3: 
integrated 

velocity (cm/s, middle) Density (upper panel), 
transport (Sv) for the "real" 

EN88 transects of the Gulf 
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POTENTIAL OENSITY 

d VELOCITY (cm/s) 

DISTANCE 

0 200 
300 -"' 

0 200 JCO 400 500 ... 

Figure 4: As in previous figure except the density is for the 
"pseudo" salinity data, with the velocity and integrated 

transport difference (pseudo-true). Positive differences are 
denoted by cross-hatching . 
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In order to examine aspects of the volume transport in 

different parts of the water column, the sections were divided 

into six layers defined by surfaces of constant potential 

density. These layers were chosen in an attempt to resolve 

the major water mass features. It should be noted that the 

density layers chosen for this summary are not the same as 

those used in the inverse calculations of PJ. Also, the 

present data, to be consistent with XBT limitations, do not 

contain any information from deeper than 800 m. If we assume 

that the flow is entirely along layers of constant potential 

density, the transport within each layer should be in 

approximate agreement between the north and south sections . 

Table 4 lists the chosen isopycnals and the corresponding 

volume transports for the EN 88 sections. Two different 

inverse solutions are shown for the true (CTD) data, one 

assuming a degree of linear independence of rank 33 

(underdetermined solution) , and one assuming a fully 

determined solution of rank 36. Per PJ , t he differenc e 

between these solutions represents the limits of uncertain t y 

for the inverse solution technique. The pseudo section 

transports based on the rank 33 solution are also shown . 

The difference in total transport between the real and pseudo 

data is less than the difference between the rank 33 and rank 

36 solutions , indicating that for overall t ranspor t 

calculation , the XBT data and the salinity algorithm gives 

results within the accuracy of the CTD data. For dens ity 

sorted transport , the difference between true and pseudo 

section transports has approximately twice the standard 

deviation of the difference between the rank 33 and rank 36 

transports. When north vs south section transports are 

compared, the pseudo section transport differences have a 

standard deviation only slightly higher than the true section 

transport differences. Figure 5 shows the section integrated 

transports and north-south transport differences for t h e 

selected density layers. 
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Table 4: Summary of transports and transport differences in isopycnal 
layers for real and pseudo salinity sections of EN88. Transport figures in 

Sv, area in km2 • Rank 33 and 36 reference velocities used are from PJ . 

DENSITY SOUTH SECTION TRANSPORTS TRANSPORT DIFFERENCES 
LEVEL AREA RANK 33 RANK 36 PSEUDO 33-36 33-PSEUDO 

26.0 36.1 15.1 15 .0 15.5 .1 - . 4 
26.4 47.8 13.4 13.5 13.3 -.1 .1 
26.6 75.6 19.6 19.9 18 . 4 -.3 1.2 
27.0 70.0 18 . 7 18 . 7 19 . 5 .0 -.8 
27.6 37.2 11.4 10 . 5 11.8 .9 -.4 
27.8 14.4 1.7 1.3 2.0 .4 -.3 

TOTALS 281.1 79.9 78 . 9 80.5 1.0 -.6 
STD DEV .4 .7 

DENSITY NORTH SECTION TRANSPORTS TRANSPORT DIFFERENCES 
LEVEL AREA RANK 33 RANK 36 PSEUDO 33-36 33-PSEUDO 

26.0 47 . 3 17.3 17 . 1 18.5 .2 -1.2 
26.4 43.4 13.0 12 . 7 12.8 .3 .2 
26.6 72 .2 19.8 19.4 17.4 .4 2.4 
27.0 75.8 18 . 0 17 .9 19.9 .1 -1.9 
27.6 94.1 12.1 12.9 11.9 -.8 .2 
27.8 104.1 -.1 1.1 . 2 -1. 2 - .3 

TOTALS 436 .9 80.1 81.1 80.7 -1.0 -.6 
STD DEV .7 1.5 

DENSITY NORTH-SOUTH TRANSPORT DIFFERENCES 
LEVEL TRUE SECT PSEUDO SECT 

26.0 -2.2 -3.0 
26.4 . 4 . 5 
26.6 -.2 1.0 
27.0 .7 -.4 
27.6 -.7 - .1 
27.8 1.8 1.8 

SUM - .2 - .2 
STD DEV 1.4 1.7 
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Figure 5: Section integrated transports and transport 
differences (north-south) for selected density layers (see 
Table 4). North section transports are denoted by dashed 

lines and south section transports are denoted by solid lines. 
For the transport differences, true salinities are denoted by 

solid lines while pseudo salinities are plotted as dashed lines. 
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4 DISCUSSION 

A procedure has been presented that evaluates the possible 

combined use of XBT and ADCP data for quantitative estimates 

of the velocity structure and transport of the upper levels 

(surface-800 rn) of the Gulf Stream. While inverse methods 

are a major element of the technique, we hav e not 

recalculated new solutions for the data and pseudo data 

employed. Rather, we have taken previous estimates of the 

"corrected" ADCP data and incorporated them into new 

estimates of the isopycnal transports in the upper 800 rn 

based on temperature and depth alone. Transport errors arise 

in two distinct ways: dynamic height errors which result in 

relative velocity errors, and isopycnal layer thickness 

err ors, which combined with the above will produce 

additional errors in layer volume transports . 

We have shown that uncertainty in estimation of the volume 

transports in individual layers using the pseudo salinity 

data are 1 . 5 Sv in the upper 800 rn, as opposed to 0. 7 Sv 

uncertainty due to our limitations in determining ADCP 

corrections in the inverse method. An error of 0.7 (1 . 5) Sv 

in transport over a section length of approximately 500 krn 

(the north section) and depth of 800 rn results in a layer 

velocity uncertainty of 0 .18 ( 0 . 33) ern / s for the section. 

These figures, if applied to the upper layer , are 

equivalent to sea surface slope uncertainties of 

1.9 (4 . 1) x 10- 8 , which as JWP discuss, are smaller than can 

be obtained gravimetrically (Zlotnicki, 1984) . Thus, the 

method could be used to estimate, with satellite altimetry, 

the earth's geoid . 
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Of further interest is whether the errors may overwhelm the 

natural variability in the Gulf Stream, thus limiting the 

application of the method to the study of the time-varying 

transport (and sea surface slope) of the Gulf Stream. 

Worthington (1976) has assembled a composite of the time­

varying transport relative to a reference level of 2000 db 

giving a mean and standard deviation of 77 and 7 Sv, 

respectively, with a suggestion that there is a significant 

seasonal component to the transport variation. A related 

study by Fu, Vazquez, and Parke (1986) shows temporal 

variations in sea surface height across the Gulf Stream of 

order 10 em as estimated from Geos-3 altimeter data, again 

equivalent to a time-varying signal with an amplitude that 

is approximately 10% of the mean. The combined errors in 

reference velocity and layer transports above amount to 

about 2-3% of the total integrated signal . Therefore , the 

method should be able to resolve the temporal variations in 

Gulf Stream transport with a "signal/noise" ratio of 

approximately 4. It could also determine the variation in 

transport as a function of density, at least for those 

layers with substantial volume transport in the upper 800 m. 
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Appe~di~ A 

Program 1isti~gs 

Program description 

NAME: DUMYSALT 

TYPE: Main program. 

PURPOSE: Read in CTD data and overwrite salinities using 
historical temperature/salinity relationship 
for the NW Atlantic (Armi-Bray/Worthington-Metcalf) . 

MACHINE: VAX-11 

SOURCE LANGUAGE: FORTRAN 77 

PROGRAM CATAGORY: Data manipulation 

DESCRIPTION: A nominal salt value, bottom pressure and 
salinity are used to calculate a potential 
temperature(theta). The theta value is then 
used to calculate a new salinity (function 
THSAL, representation of Worthington-Metcalf). 
The program works from the bottom to the surface 
(or user specified pressure level) with each 
newly calculated salinity used as input for 
the next theta, salinity calculation. 
From the user-specified pressure level to the 
surface, the salinities remain constant unless 
the current temperature is less than the previous 
temperature minus a user specified delta ( the 
current temperature must also be less than a 
nominal shelf water/slope water value, currently 
set at 12 deg.). If the temperature criteria are 
met, a linear interpolation is done, using temperature , 
from the last salinity to a reference salinity of 32.5 
and temperature of 8. degs. 
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c 

INPUT: CTD data in VAX format. The data must be stored in a 
standard ctd-type subdirectory. 

OUTPUT: CTD data in vax format. User specifies cast number; 
station number remains the same ,data type is assigned 
an 'f' (fake). 

USAGE: User is queried for an initial nominal salinity 
value, a minimum allowable temperature change, and 
a pressure level (above which all salts are the same). 

Program to generate salinity 

PROGRAM DUMYSALT 

C THIS PGM WAS CTDED. IT NOW READS IN CTD DATA, AND OVERWRITES 
C SALINITIES WITH THETA BRAY-ARM! SALTS (REPRESENTATION OF 
C WORTHINGTON-METCALF). 
c 
C USER ENTERS INITIAL SALT VALUE, CALCULATES THETA FROM BOTTOM 
C PRS & TEMP AND NOMINAL SALT. THEN, THETA IS USED WITH BOTTOM 
C P & T AND A NEW SALT VALUE IS CALCULATED FOR THE BOTTOM SALT. 
C A BOTTOM VALUE THETA IS CALCULATED, AND THEN USED TO CALCULATE 
C BOTTOM-2 SALT.TMJ & JAD 
C$LINK DUMYSALT,PLEVEL,CTDA:<CTDEV.LIST>GRADPROP,CTDOPENW, ­
C<CTDEV.GETDAT>PUTDATl,<CTDEV>ISWl,SEAPROP/LIB,­
C<CTDEV.GETDAT>CTDATA/LIB,BIGA:[WCRSOFT.NODC)CREAD,­
CNODC/LIB,CTD80SUB2,PHYPROPSW/LIB 
c 

c 

c 

c 

c 

CHARACTER*4 IDVICE 

INCLUDE 'CTDA:<CTDEV.GETDAT> IDXREC.DIM' 

COMMON /RAWDATA/ P(6000),T(6000),S(6000) 

DIMENSION ENG(lO) 
DIMENSION DATA(3300,0:15) 

C HAVE TO INCREASE SCAN LENGTH FOR XTRA VARS 
c 

c 

c 

c 

DIMENSION TEMP(3300) ,SALT(3300),0XYGN(3300),QUALY(3300) 
DIMENSION PRESS(3300) 

INTEGER EDVERS(4) 
INTEGER OLDNTOT,EDSCAN 
INTEGER IDAY(3),ITME(2) 

REAL TTEMP,STEMP,NPMIN , NPMAX 
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c 

c 
c 

c 

EQUIVALENCE (TEKP(1),DATA(1,1)), (SALT(l) ,DATA(1,2)) 
EQUIVALENCE (OXYGN(l),DATA(l,3)), (PRESS(l),DATA(l,O)) 

BYTE DATVER,PROVER,IAGAIN,NO 

DATA EDVERS/2HED,2H88,2H08,2H88/ 
DATA SNOKINAL/35.00/ 
DATA PLESS/200./ 
DATA NO/'N'/ 
DATA DT,TK/.5,0.0/ 
DATA SWSS/12./ 
DATA NOBS/3300/ 
DATA FLAG/0/ 

c **************************** 

c 

c 

c 

c 
c 

c 

c 

c 

WRITE(6,*) I 

WRITE ( 6, *) I I 

PGK DUMYSALT ver 4 August 1988 1 

WRITE(6,*) 1 ENTER INITIAL NOMINAL SALT VALUE (DEF=35.0) 1 

READ(5,*)SNOKINAL 
CONTINUE 

WRITE(6,*) 1 ENTER MIN TEMP CHANGE FOR DECREASING TEMP (DEF=.5) 1 

READ(5,*)DT 
CONTINUE 

WRITE(6,*) 1 ENTER PRS (ABOVE WHICH ALL SALTS ARE THE SAME) 1 

WRITE(6,*)' (DEF=200) I 

READ(5,*)PLESS 

WRITE(6,*) I ENTER DEVICE (/ FOR DEFAULT) I 

READ(5,1000) IDVICE 
IF(IDVICE(l:l).EQ. 1

/') IDVICE = ' 
CALL DEVCE(IDVICE) 

PRINT *, 1 ENTER SHIP,SUBDIRECTORY VERSION CHARACTER' 
READ(5,1005) ISHIP,PROVER 
IF(PROVER .EQ.' ') PROVER= 1 D1 

CALL PVER(PROVER) 

PRINT *, ' ENTER CRUISE,PROJECT ' 
READ(5,*) ICRUIS,IPROJ 
CALL CRUISE(ISHIP,ICRUIS,IPROJ) 

C OPEN SUBINDEX FILE 
CALL INDEX(ll) 
LREC=LSTREC 

c 
c 
C **MAIN LOOP** 
c 

10 CONTINUE 
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c 

c 

c 

c 

IF(IFLAG. EQ . l)THEN 
WRITE(6,*)' ANOTHER STATION? (Y/N)' 
READ(S,lOOO)IAGAIN 
IF(IAGAIN . EQ. NO) GO TO 2000 

END IF 

WRITE(6,*)' ENTER INPUT DATA VERSION CHARACTER' 
READ(5,1000) DATVER 
CALL DVER(DATVER) 

PRINT *, ' ENTER STATION , CAST ' 
READ(S,*) ISTAT,ICST 
CALL STATION(ISTAT,ICST,lO) 

222 CALL GETDAT(lO,DATA,NOBS,MSCAN) 
c 
c 

c 

c 

ISTART=l 
IEND=NTOT 
PMAX=PRESS(NTOT) 

PMIN=PRESS(l) 
CALL PVERP(PROVER) 
CALL CRUISEP(ISHIP,ICRUIS,IPROJ) 

C OPEN OUTPUT DATA FILE 
c 

c 

DATVER='F' 
CALL DVERP(DATVER) 
PRINT *, ' ENTER OUTPUT CAST i ' 
READ(S,*) !CAST 
CALL STATONP(ISTAT,ICAST,l5) 

NPMIN=PMIN 
NPMAX=PRESS(NTOT) 

C******************** REDEFINE PMIN FOR UP PROFILE***** 
PMIN=PRESS(l) 

c 
c 

c 

IF(PRSINT.LT . O.O) THEN 
PRINT*,' UP PROFILE CONVERSION TO DOWN FORMAT' 
PRSINT=ABS(PRSINT) 
END IF 

CALL PUTINT(lS,MSCAN) 

C SALINITY RECALCULATED 
c 

DO 175 J=IEND,ISTART,-1 
PP=PRESS(J) 
SS=SNOMINAL 
TT=TEMP(J) 
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IF(PP .GE. PLESS .OR. J .EQ. lEND )GO TO 170 
IF(TT .LE. (TM-DT) .AND. TT . LE. SWSS)THEN 

SN=32.5+(SM-32.5)*(TT-8.)/(TM-.8) 
GO TO 172 

ELSE IF(TT .LE. TM)THEN 
GO TO 172 

ELSE IF (TT .GT. TM)THEN 
TM=TT 
SN=SM 
GO TO 172 

END IF 
170 SN=THSAL(THETA(SS,TT,PP,O.)) 

TM=TT 
SM=SN 

172 SALT(J)=SN 
SNOMINAL=SN 

175 CONTINUE 
c 
c 

c 

c 

DO J=ISTART,IEND 
DO K=1,MSCAN 

ENG(K)=DATA(J,K) 
END DO 

CALL PUTDAT(ENG,ISTAT1) 
END DO 

ENG(1)=-999. 
CALL PUTDAT(ENG,ISTAT1) 

C NEED UTILITY TO ASSIGN VARIABLE DESCRIPTORS 
c 

c 

c 

LPGVER(1)=EDVERS(1) 
LPGVER(2)=EDVERS(2) 
LPGVER(3)=EDVERS(3) 
LPGVER(4)=EDVERS(4) 
VARDES(3,KSCAN)=NPMIN 
VARDES(4,KSCAN)=NPMAX 

OLDNTOT=NTOT 
OLDPMIN=PMIN 
NTOT=NELEM(NPMAX)-NELEM(NPMIN)+l 
PMIN=NPMIN 
CALL IDXRECP 
NTOT=OLDNTOT 
PMIN=OLDPMIN 

C FLAG SET, BACK TO MAIN LOOP 
c 

WRITE(6,1010)ISTAT,DATVER,ICAST 
IFLAG=1 
GO TO 10 

c 
C **FORMATS** 
c 
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c 
c 

1000 FORMAT(A) 
1005 FORMAT(A2,X,A1) 
1010 FORMAT(' STATION' ,I4, I VERSION I ,1A,' CAST' ,I4, I -COMPLETED') 

2000 CONTINUE 
WRITE(6,*)' END PROGRAM DUMYSALT' 
STOP 
END 

A.3 Salinity from T/S relation 

C THSAL FCN ******** JULY 6 1977 ******************* 
C BY NAN BRAY 

FUNCTION THSAL(T) 
c 
C TAKES UP TO 25 CUBIC SPLINES TO GENERATE A SALINITY FROM 
C POTENTIAL TEMPERATURE REFERRED TO THE SURFACE .• INPUT DATA 
C CONSISTS OF LOWER SPLINE BOUNDARY FOLLOWED BY FOUR COEFFICIENTS. 
C INITIAL COEFFICIENTS ARE FROM L. ARMI'S FIT TO ISELIN AND 
C WORTHINGTON METCALF THETA-SAL DATA. 
c 

DIMENSION C(5,25) 
C DATA 

c 

c 

DATA C/0 . 00,34.738063,0.0,0.0,0.0, 
*0.50,34.738053,.107290,.584849E-02,-.253429E-02, 
*1 . 20,34.815152,.111753,.523726E-03,.582151E-01, 
*1.50,34.850297,.127785,.529320E-01,-.135379, 
*1.75,34.883436,.128868,-.485828E-01,-.129913, 
*2.00,34.910587,.802174E-01,-.146093,.228920, 
*2.25,34.925087,.500936E-01,.255484E-01,-.267382E-01, 
*2.50,34.938790,.578544E-01,.552526E-02,-.359945E-01, 
*2.75,34.953036,.538681E-01,-.214953E-01,- .374594E-01, 
*3.00,34.964575,.360969E-01,-.495364E-01,.509274E-01, 
*3.20,34.970220,.223936E-01, - .189292E-01, . 580683E-01, 
*3.40,34.974406,.217901E-01,.157868E-01,.479730E-02, 
*3.60,34.979434,.286805E-01,.185975E-Ol, - .294172E-01, 
*3.80,34.985679, . 325895E-01, . 102958E-02,-.279688E-01, 
*4.00,34.992014,.296450E-01 , -.157123E-01, .643397E-02, 
*5.00,35.01238, .175223E-01,.357759E-02, . 114377E-02, 
*7.00,35.07089,.455579E-01,.104386E-01,.865592E-05, 
*10.00,35.30174,.108423,.105172E-01 ,- .763343E-03, 
*13.00,35.70106,.150916,.364790E-02,.310805E-04 , 
*16.00,36.18748,.173643,.392926E-02 ,- .689782E-02, 
*19.00,36.557, .032, -.9142857E-2,0., 
*20.75,36.585, 0., -.512E-2 , 0., 
*22.00,36.577, -.01175, - . 875E-3, 0., 
*26.00,36.516, 0., 0., 0., 
*5*0/ 

DATA KNOTS/22/ 
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250 X = 0.0 
DO 310 I=1,KNOTS 
DT = c (1 I I) - T 
IF(DT)305,320,320 

305 X = -DT 
310 CONTINUE 
320 D = X 

ID = I-1 
IF(ID)325,325,330 

325 ID = 1 
D = 0.0 

330 THSAL =((C(5,ID)*D+C(4,ID))*D+C{3,ID))*D+C{2,ID) 
RETURN 
END 
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