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This study investigates the relationship between spatial and temporal patterns of wave-driven sediment
mobility events on the U.S. East Coast continental shelf and the characteristics of the storms responsible
for them. Mobility events, defined as seafloor wave stress exceedance of the critical stress of 0.35 mm
diameter sand (0.2160 Pa) for 12 or more hours, were identified from surface wave observations at
National Data Buoy Center buoys in the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) over
the period of 1997–2007. In water depths ranging from 36–48 m, there were 4–9 mobility events/year of
1–2 days duration. Integrated wave stress during events (IWAVES) was used as a combined metric of
wave-driven mobility intensity and duration. In the MAB, over 67% of IWAVES was caused by extra-
tropical storms, while in the SAB, greater than 66% of IWAVES was caused by tropical storms. On average,
mobility events were caused by waves generated by storms located 800þ km away. Far-field hurricanes
generated swell 2–4 days before the waves caused mobility on the shelf. Throughout most of the SAB,
mobility events were driven by storms to the south, east, and west. In the MAB and near Cape Hatteras,
winds from more northerly storms and low-pressure extratropical systems in the mid-western U.S. also
drove mobility events. Waves generated by storms off the SAB generated mobility events along the entire
U.S. East Coast shelf north to Cape Cod, while Cape Hatteras shielded the SAB area from swell originating
to the north offshore of the MAB.

Published by Elsevier Ltd.
1. Introduction

Near-bottom currents driven by tides, winds, and large-scale
patterns in ocean circulation combine with wave orbital motion to
induce a shear stress at the seafloor, with the largest stress events
typically associated with storms (Dalyander et al., 2013; Grant and
Madsen, 1979; Madsen, 1994; Nielsen, 1992; Oberle et al., 2014;
Soulsby, 1997). When the bottom stress acting on the seafloor (i.e.,
the skin friction) exceeds a grain size and density specific critical
threshold, sediment begins to move. Wave-driven bottom stress is
larger for longer period waves; for example, in 50-m water depth,
a JONSWAP (Hasselmann et al., 1973) spectrum of waves with
significant wave height of 5-m and dominant wave period of 8, 10,
and 14 s causes a stress on 0.35 mm diameter grains of 0.091,
0.293, and 0.747 Pa, respectively (Butman et al., 2008; Madsen,
1994; Wiberg and Sherwood, 2008). Through this interaction with
the bottom (including the movement of sediment), long period
waves dissipate energy during propagation over the shelf (e.g.,
er).
Ardhuin et al., 2002, 2003; Herbers et al., 2012). As a result, more
energetic shorter period swell or wind waves may dominate shear
stress over portions of the inner- to mid-shelf. Although the
physics of wave-driven bottom stress are generally well-known,
the origins of the waves that cause the largest bottom stress and
sediment mobility events have not been investigated. Under-
standing these relationships provides insight into processes cur-
rently shaping the shelf sedimentary environment and develops a
framework for assessing the effects of the future wave-stress
environment.

Investigations of the relationship between synoptic weather
systems and seafloor mobility have primarily focused on km-scale
geographic areas (e.g., Austin and Lentz, 1999; Kim et al., 1997;
Warner et al., 2012). Warner et al. (2012) explored how storms
impact waves and circulation at a 10 m site offshore of South
Carolina (SC; Fig. 1) using the Austin and Lentz (1999) classifica-
tion system for U.S. East Coast storms. This system divides wind
events into those where the low pressure system passes to the
east, but the site is still within the wind field of the system; those
where the storm tracks north of the region fromwest to east and a
cold front passes over the Cape Hatteras area; and those where the
storm tracks west of the region from south to north and a warm
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Fig. 1. Map showing the location of buoys fromwhich surface wave data were obtained in the Middle Atlantic Bight (MAB; gray symbols) and the South Atlantic Bight (SAB;
white symbols). Symbol shapes delineating individual buoys are the same as used in Figs. 7 and 9. State abbreviations are Florida (FL), North Carolina (NC), South Carolina
(SC), Virginia (VA), Maryland (MD), Delaware (DE), New Jersey (NJ), New York (NY), Connecticut (CT), Rhode Island (RI), and Massachusetts (MA).
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front passes the area. Warner et al. (2012) found that inshore low-
pressure centers could drive significant events at their �10 m site.
Kim et al. (1997) characterized phases of inner shelf sediment
response to a passing near-field extratropical storm. Studies along
the Pacific Coast of the United States (Drake and Cacchione, 1985;
Sherwood et al., 1994), the Gulf of Mexico (Snedden et al., 1988),
the Mediterranean Sea (Dufois et al., 2008), and Australia (Gagan
et al., 1990) have similarly identified sediment suspension at se-
lected locations on the inner shelf in response to near- and far-
field storms. Swell from the Pacific Ocean was identified through a
numerical modeling study as driving sediment suspension along a
broad region of the shelf along the coast of Australia (Porter-Smith
et al., 2004), but the relationship between storm characteristics
and shelf response was not explored.

Studies characterizing storms have focused on the atmosphere,
sea surface, or onshore, classifying events based on origin and
track and benchmarking them by wind speed, central pressure,
wave height, or coastal damage (e.g., Davis et al., 1993; Dolan and
Davis, 1992; Hart and Grumm, 2001; Keim et al., 2004; Mather
et al., 1964; Simpson, 1974; Zielinski, 2002). For example, Davis
et al. (1993) considered storms impacting Cape Hatteras and found
that “Bahamas lows” and “Florida lows”, two types of storms
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which originate to the south/southeast of Florida and slowly move
north, are the strongest of the extratropical storms when assessed
by wave height and wave power, a measure including both total
wave energy and storm duration.

Butman et al. (2008) developed a metric for wave-induced
bottom stress at a site in Massachusetts Bay (Fig. 1). Surface wave
observations of significant wave height and peak wave period
were used to estimate bottom wave stress. Integrated Wave Stress
(IWAVES), calculated as the sum of stress over 0.1 Pa, was used to
rank storm events. The ranking was applied at a single site and
identified extratropical Nor’Easters as the storm type responsible
for large bottom stress events. The current study uses a modified
IWAVES metric to quantify storms causing seafloor mobility.

The goals of the present study are to (1) identify the source of
waves that drive seafloor mobility events on the U.S. East Coast
continental shelf; (2) determine the relationship between storm
characteristics and resultant seafloor mobility; and (3) investigate
the spatial and temporal variability of mobility.
Table 1
Table of sites in the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB)
used in mobility and storm wave origin analysis. Table includes the water depth at
the site, the total number of years of data with 75% data availability, and the years
(starting in March of the given year) for which the criterion was met [NDBC; Na-
tional Oceanic and Atmospheric Administration National Data Buoy Center].

NDBC buoy Depth (m) Region Years Year list

44025 36 MAB, north 19 1991–1998, 2000–2006, 2008–
2010, 2012

44014 48 MAB, south 18 1991–1994, 1996, 1998–2002,
2004–2011

41004 38 SAB, north 16 1994–1995, 1997–1998, 2000–
2011

41009 44 SAB, south 23 1989–2011
2. Study site characteristics

The U.S. East Coast can be divided into two regions: the Middle
Atlantic Bight (MAB), extending from Cape Cod south to Cape
Hatteras, and the South Atlantic Bight (SAB), extending from Cape
Hatteras to the southern terminus of Florida (Fig. 1). The con-
tinental shelf is widest in the northern MAB (�100 km) and mid-
SAB (�130 km), narrowing offshore of Cape Hatteras (�40 km)
and in the southern SAB (�20 km). Sediment texture varies,
generally consisting of medium/coarse to fine sand closer to the
coast and fining to a mixture of silt and clay at the shelf break
(McMullen et al., 2011). An anomaly is the “Mud Patch”, a 100 km
alongshore and 50 km cross-shelf deposit south of Cape Cod
(Fig. 1) of greater than 25% mud in water depths of 55–65 m (Reid
et al., 2005; Twichell et al., 1981). In the MAB, the bulk of surface
sediments away from shore are Holocene quartz deposits, with an
increasing percentage of carbonate moving south toward Florida
(Ginsburg and James, 1974). The shelf has a shallow slope ranging
from 0.4 to 1 m/km (Ginsburg and James, 1974).

The U.S. East Coast is subject to tropical storms and hurricanes
during the summer months (TS) and extratropical storms (ETS;
also known as Nor’Easters) predominantly from October to March
(Zhang et al., 2000). The frequency of TS making landfall is highest
in the SAB (Fig. 1), where the average return interval along any
80 km stretch of coast is �40 years. The landfall frequency de-
creases northward to a return interval of more than 80 years, with
the largest drop north of Virginia (Fig. 1; McAdie et al., 2009;
Simpson and Riehl, 1981). In contrast, multiple ETS occur each year
and are the dominant cause of episodic storm erosion along the
shoreline of the U.S. East Coast (Zhang et al., 2001).

TS are low pressure systems that form over the ocean and
derive energy from a central warm core (McAdie et al., 2009).
These storms have a strong pressure gradient (on average 20 mb/
100 km), resulting in powerful winds (up to 252 km/h or higher)
generally confined near the center of the storm (Dolan and Davis,
1992; McAdie et al., 2009). Hurricanes typically impact �150 km
of coastline (Zhang et al., 2001). In contrast, ETS derive their
strength from a horizontal temperature gradient originating out
from a cold core (McAdie et al., 2009). The gradient in pressure
across ETS is on average 5 mb/100 km, resulting in winds ranging
from 20 to 30 km/h and extending over a large spatial area. Some
ETS last for days and impact the entire U.S. East Coast (Dolan and
Davis, 1992; Zhang et al., 2001).

Both TS and ETS drive sediment mobility on the U.S. East Coast
continental shelf (Butman et al., 1979; Chang et al., 2001; Churchill
et al., 1994; Lyne et al., 1990a; Twichell et al., 1981). In the MAB,
waves dominate bottom shear stress at depths of 20–100 m
throughout most of the region, with a modest contribution during
storms from wind-driven currents (Dalyander et al., 2013). Lyne
et al. (1990a; 1990b) determined that critical stress exceedance
and resuspension in the MAB in depths of 60–80 m only occurred
during storms. Harris and Coleman (1998) found that on the U.S.
East Coast, swell waves induced mobility of 0.1 mm sand on the
inner- to mid-shelf for 1–50% of a one year period in 1994–1995.
3. Methods

3.1. Identifying seafloor mobility events from buoy observations

Wave data were obtained from two National Oceanic and At-
mospheric Administration (NOAA) National Data Buoy Center
(NDBC) buoys in the MAB (44025 and 44014) and two in the SAB
(41004 and 41009) (Fig. 1, Table 1). Annual analysis of the wave
data was conducted with years starting on March 1 to keep con-
secutive winter months in the same year. Only years with 475%
data coverage were analyzed. These sites were selected because
they are within the mid-shelf water depth range of interest. In
addition, they have nearly continuous data availability for March
1997 to March 2007 (cumulative data coverage of 9.4, 8.7, 9.3, and
9.7 years for buoys 44025, 44014, 41004, and 41009, respectively),
the ten-year period covered by an ETS database used to identify
the origin of storm waves. There were some data gaps, the largest
being 111 days in winter of 1999 at buoy 44025 and 165 days in
winter of 1997 at buoy 44014.

Data from NDBC buoys are typically provided hourly; higher
frequency (20 min interval) data were interpolated to hourly in-
tervals for consistency. Bottom orbital velocity (ubr) and re-
presentative period (Tbr) were calculated from surface wave
parameters by assuming a JONSWAP (Hasselmann et al., 1973)
spectral shape and following the parameterized approach of Wi-
berg and Sherwood (2008). Values calculated using the para-
meterized spectrum and compared to those from the full spectrum
at the sites used in this study were also found to be skillful for ubr
(RMSE of 0.02 m/s) and Tbr (RMSE of 1.56 s). The parameterized
spectrum allowed use of data collected prior to deployment of
buoys that resolve the full wave spectrum.

Derived values of ubr and Tbr were used to calculate the wave
bottom stress acting on the seafloor following Madsen (1994). The
relevant stress component for seafloor mobility is the ‘effective
stress’ or skin friction (τw), the force acting on sand grains, cal-
culated using sediment diameter as the roughness in stress cal-
culations (Nielsen, 1992; Soulsby, 1997). The average (mean)
median grain size (D50) of non-cohesive sediments based on 307
samples distributed throughout the MAB and SAB in 30–50 m is
0.27 mm with a standard deviation (71s) of 0.18 mm (calculated
from data within McMullen et al., 2011). Seafloor mobility varies



Table 2
Top 25 storms ranked by Mobility Event Index (MEI; Eq. (3)) for the period 1997–2007. Values under the buoy identification number are the percentage of the total of
IWAVES resulting from the storm’s mobility event at each site, with the storm ranking (based on IWAVES) at that site in parentheses. If data were available from a buoy
during 95% of the time when the stormwas causing a mobility event elsewhere (i.e., “storm time”), but a mobility event was not recorded at that site, the site is marked “—”.
If a mobility event was not recorded and data were available for less than 5% of the storm time, or 5% and 95% of the storm time, the site is marked “n/a” (not available) or “p/
a” (partially available), respectively. Asterisks indicate a mobility event where data were available less than 95% of the storm time. Shaded sites are in the MAB. Sites are
delineated as the northern (N) or southern (S) site within each region.

Rank Time period Type Name 44025 MAB, N 44014 MAB, S 41004 SAB, N 41009 SAB, S MEI

1 1999Sep13 TS FLOYD – 1.4 (20) 30.2 (1)* 24.9 (1) 0.566
2 1999Aug27 TS DENNIS 0.4 (63) 13.1 (1) 2.9 (10)* 5.0 (4) 0.213
3 2005Apr15 ETS 0.5 (60) 8.3 (2) 0.1 (37) 6.9 (3) 0.157
4 1998Aug23 TS BONNIE 1.0 (37) 2.9 (10) 7.9 (4)* 3.4 (9) 0.152
5 2005Jan31 ETS 2.3 (11) 7.7 (3) 1.0 (17) 3.7 (8) 0.147
6 2004Sep02 TS FRANCES – 0.2 (45) 8.5 (3) 4.2 (7)* 0.129
7 1999Sep18 TS GERT 1.7 (17) 6.2 (5) n/a 4.9 (5) 0.128
8 2001Mar19 ETS 3.6 (5) 2.5 (15) 5.3 (5) 1.1 (17) 0.124
9 2003Sep15 TS ISABEL 3.0 (8) n/a n/a 8.7 (2) 0.117

10 2006Nov21 ETS 3.0 (7) 5.2 (6) 0.9 (18) 0.9 (24) 0.100
11 1998Feb03 ETS 4.5 (3) n/a 4.4 (6) 0.9 (21) 0.098
12 2004Oct22 ETS 4.6 (2) 4.8 (7) – 0.3 (46) 0.097
13 2005Sep08 TS OPHELIA – – 9.0 (2) 0.6 (38) 0.097
14 2003Feb16 ETS 3.8 (4) 3.4 (8) – p/a 0.072
15 2005Oct12 ETS 7.1 (1) – – – 0.071
16 2004Mar09 ETS 0.0 (86) 6.5 (4) – – 0.066
17 2005Oct24 TS WILMA 2.9 (9) 1.3 (21) – 1.1 (19) 0.053
18 2002Mar02 ETS 1.6 (19) 1.2 (22) 2.2 (12) – 0.051
19 2001Sep30 ETS 2.4 (10) 2.4 (16) – – 0.049
20 1999Dec01 ETS n/a 2.6 (13) – 1.9 (12) 0.045
21 2001Nov05 TS MICHELLE – – – 4.2 (6) 0.042
22 2000Mar19 ETS 0.5 (58) 2.6 (12) – 0.7 (32) 0.039
23 2004Sep24 TS KARL – 0.3 (42) 3.5 (7) n/a 0.038
24 1999Apr30 ETS 0.2 (78) 0.8 (27) 1.7 (15)* 1.1 (18) 0.038
25 2005Oct04 TS TAMMY – – 2.9 (11) 0.9 (23) 0.038
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on spatial scales of cm (Hurther and Thorne, 2011) to km (Da-
lyander et al., 2013). To capture the threshold at which most sand
grains in a flat bed would be mobilized, a grain-size roughness of
0.35 mm, equivalent to the diameter of medium-coarse sand, was
used to calculate τw. The presence of ripples and sand waves in-
creases bedform roughness, increasing the total shear stress. The
bulk of this increase is from form drag and does not impact se-
diment mobility (Li, 1994; Rankin and Hires, 2000; Smaoui and
Ouahsine, 2012). However, the skin friction will be higher at the
crest of the ripple and lower within the trough (Li, 1994). In the
case of rippled beds, sand grains within the trough may therefore
be immobile under the criterion used here for seafloor mobility,
with the threshold instead capturing sediment mobility higher in
the ripple profile.

Critical stress values (τcrit) were calculated using the Shields
parameter (Shields, 1936, as described in Soulsby, 1997). “Mobility
hours” were defined as times when τw exceeded 0.2160 Pa,
equivalent to τcrit for a 0.35 mm diameter (used as the roughness
in calculating τw) particle of density 2650 kg/m3 (quartz sand).

3.2. Identification of Storms

Storm systems that generated waves causing τw4τcrit were
identified using two databases. The National Oceanic and Atmo-
spheric Administration (NOAA) National Hurricane Center (NHC)
North Atlantic Hurricane Database (HURDAT 2, National Hurricane
Center, 2014) was used to identify TS. This database covers 1851 to
present and includes a 6-hourly time-series of the location of
minimum low pressure (LP). A database derived from the National
Centers for Environmental Prediction (NCEP) and National Center
for Atmospheric Research (NCAR) Reanalysis was used to identify
ETS (Serreze, 2009). This database includes 6-hourly data of storm
LP location for 1958–2008. For each mobility hour, the deep water
group wave speed (Cg, in m/s) was calculated following Airy linear
wave theory (Airy, 1845; described in Komar, 1998) from peak
wave period (TP, in s) and gravity (g, 9.8 m/s2):

C
gT

4 1g
p

π
= ( )

The calculated arrival time of waves originating from each
6-hourly storm location in the TS database, up to 10 days prior to
the time of interest, was compared to the actual arrival time (i.e.,
the mobility hour). The storm with calculated wave arrival time
closest to the mobility hour was chosen as an initial match. If no TS
was found with a wave arrival time within 6 h of the mobility
hour, the ETS database was checked. The result was a time series of
TS or ETS storm IDs for each mobility hour, with gaps where the
automated method did not identify a storm. The TS database was
checked prior to the ETS database because a TS may transition to
an ETS; these storms are in the TS database over all times, and
were considered tropical in origin.

Time-series plots of 10-m wind field from the Climate Forecast
System Reanalysis (CFSR; Saha et al., 2010) were used to confirm if
the correct wave-generating storm had been identified by de-
termining if the storm’s wind speed, fetch, angle, duration, loca-
tion, and timing (accounting for travel time) were consistent with
measured waves. Storm IDs were corrected when necessary. Se-
quential mobility hours with the same storm ID were identified as
a “mobility event”. Only mobility events lasting longer than 12 h
were retained, leaving some mobility hours not associated with a
mobility event.

The complexity of weather patterns occasionally made identi-
fying the storm source of an ETS mobility event uncertain. A single
LP system can spawn additional LP centers that might re-combine,
dissipate, or separate; in other cases, multiple independent LP
centers merge. The ETS with the LP cell closest to the center of the
wind field identified as generating the waves most responsible for
τw was selected. If the LP center did not correspond to a storm in
the ETS database, it was tagged as an unidentified extratropical



0 0.1 0.2 0.3
0

20

40

60

80

100

120

C
um

ul
at

iv
e 

# 
of

 S
to

rm
s

setiSfo#)sseltinu(IEM
0 0.1 0.2 0.3

TS
ETS
ACF

0

0.2

0.4

0.6

0.8

1
TS
ETS
ACF

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

1 2 3 4
0

10

20

30

40

50

60

70

ACF
ETS
TS

# 
of

 S
to

rm
s

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

of
 S

to
rm

s

ACF
ETS
TS

Fig. 2. Number (A) and cumulative distribution (C) of storms (tropical storm, TS; extratropical storm, ETS; anticyclone/front, ACF) exceeding a given value for MEI (Eq. (3)).
Sites impacted by number (B) and fraction (D) of each storm type. While there are fewer TS, they affect a larger spatial area (as indicated by number of sites) with greater
intensity (as indicated by MEI). The x-axis of plots A and C cuts off Hurricane Floyd, with MEI of 0.566 (Table 2). See Table 3 for log-rank p-values quantifying statistical
difference between the distributions.

Table 3
Log-rank p-value comparing the Kaplan–Meier distributions of calculated storm
parameters (tropical storm, TS; extratropical storm, ETS; anticyclone/front, ACF).
Values indicate the likelihood that the distributions are statistically equivalent;
values significant at the 95th percent confidence interval (less than 0.05) are in
bold. Distributions for each parameter are shown in the figure indicated. Storm
locations and hence distances from site to storm (Dτw,max; Dτw4τw,crit) were not
calculated for ACF.

Log-rank p TS, ETS TS, ACF ETS, ACF

MEI (unitless); Fig. 2c 0.001 0.012 0.364
Mean τw,max (Pa); Fig. 3d 0.183 0.016 0.029
Max τw,max (Pa); Fig. 3e 0.015 0.006 0.010
Mean duration (hours); Fig. 3f 0.019 0.125 0.831
Mean Dτw,max (km); Fig. 4c 0.012 – –

Mean Dτw4τw,crit (km); Fig. 4d 0.000 – –
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storm (uETS). Mobility events could also be tagged as an antic-
yclone or front (ACF) if the winds driving the mobility-inducing
waves did not result from counterclockwise rotation around a LP
center.

3.3. Quantification of storm strength

Mobility event strength was quantified with the Butman et al.
(2008) IWAVES metric, which incorporates the magnitude and
duration of a mobility event. IWAVES was calculated by subtract-
ing τcrit from τw, resulting in a time-series of “excess” stress. Excess
stress was set to zero when τw was less than τcrit, then integrated
over the duration of the event to obtain a single IWAVES value, in
Pa h.

IWAVES max , 0
2stormtimes

w crit∑ τ τ= ( − )
( )

The Mobility Event Index (MEI) was defined to rank a storm’s
shelf-wide impact (Table 2).

MEI
IWAVES

IWAVES 3sites

storm,site

storms site
∑=

∑ ( )

IWAVES for each mobility event at each site (IWAVESstorm,site)
was normalized by the total IWAVES summed over all mobility
events at that site (IWAVESsite) so MEI was not biased by sites with
greater overall mobility. In some cases one or more buoys were not
reporting data during the entirety of a mobility event, resulting in
an under-prediction of MEI.
4. Results

4.1. Relationship of seafloor mobility to storm Characteristics

A total of 145 storms generated waves resulting in mobility
events at one or more sites between March 1997 and March 2007.
Of these storms, 8 result in mobility events at all 4 sites; 11 at
3 sites; 35 at 2 sites; and 91 at 1 site (Fig. 2). Of the 145 storms, 106
(73%) were identified in the ETS database, 26 (18%) were identified
in the TS database, 9 (6%) were associated with ACF, and 4 (3%)
were associated with uETS. ACF and uETS typically drove mobility



0

50

100

150

Mean τw,max (Pa)

0

50

100

150

Mean Duration (hours)

0

50

100

150

Max τw,max (Pa)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1
0 0.5 1 1.5 2

TS
ETS
ACF

0 0.5 1 1.5 2

TS
ETS
ACF

0 25 50 75 100

0 0.5 1 1.5 2
0

0 0.5 1 1.5 2 0 25 50 75 100

TS
ETS
ACF

TS
ETS
ACF

TS
ETS
ACF

TS
ETS
ACF

C
um

ul
at

iv
e 

# 
of

 S
to

rm
s

Fig. 3. Number (A, B, C) and cumulative distribution (D, E, F) of storms by type (tropical storm, TS; extratropical storm, ETS; anticyclone/front, ACF) resulting in exceedance of
a given value of mean τw,max, maximum τw,max, and mean duration. τw,max is the maximum skin friction resulting from the storm at any site where it drove a mobility event;
mean and maximum for each storm were calculated from τw,max values at each site. Mean and maximum were only calculated for those sites where a mobility event was
identified. Similarly, duration was calculated for each storm’s mobility event at each site, with the mean value for the storm calculated as the average of the values from each
site where the storm drove a mobility event. TS are more intense (higher τw,max) and of longer duration than ETS or ACF. See Table 3 for log-rank p-values quantifying
statistical difference between the distributions.

P.S. Dalyander, B. Butman / Continental Shelf Research 104 (2015) 1–146
events at a single site that were of shorter duration (on average 27
and 24 h) compared to TS (impacting an average of 1.9 sites with a
mean duration of 41 h) and ETS (impacting an average of 1.5 sites
with a mean duration of 29 h).

Of the 25 largest storms ranked by MEI 14 were ETS and 11
were TS (Table 2). Individual TS accounted for 2–30% of total
IWAVES at the SAB locations and 0.4–13% of total IWAVES at the
MAB sites. Individual ETS tended to contribute a smaller percen-
tage of IWAVES than TS, accounting for a maximum of 8% of
IWAVES at any given site. Hurricane Floyd was the largest storm,
primarily caused by large IWAVES at 41004 and 41009. The two
highest ranked ETS occurred in April and January of 2005. The
total IWAVES was 316 Pa h, 250 Pa h, 273 Pa h, and 428 Pa h at
41004, 41009, 44014, and 44025, respectively, with Floyd ac-
counting for 30% and 25% of IWAVES at 41004 and 41009 (Table 2).

Distributions of the total number of storms of each type vs.
exceedance values of MEI, number of sites impacted, and distance
from storm to sites where mobility events occurred were used to
contrast the effects of TS and ETS on seafloor mobility. A Kaplan–
Meier (K–M) estimator (Kaplan and Meier, 1958) was applied to
the data to create a complimentary cumulative distribution func-
tion (also known as the survival or reliability function; this func-
tion determines the likelihood of the parameter of interest ex-
ceeding a given value). The log-rank value (Mantel 1966; Berty
et al., 2010) was calculated to determine if the difference in K–M
distribution between ETS and TS (or ACF) was statistically sig-
nificant (Table 3). ETS and TS resulted in mobility events observed
at all four sites and with high values of MEI (Fig. 2). More ETS
(Fig. 2A and B) drove mobility events than TS; however, their
individual impact tended to be small (MEI less than 0.05 for over
90% of ETS) and confined to a smaller area (over 60% of ETS re-
sulted in mobility events at a single site). TS had the largest values
of MEI and a larger fraction of TS drove mobility events across a
broader spatial area (2 or more sites). Only a single ACF impacted
two sites in the SAB, while the other eight registered as mobility
events at only one site and had a low MEI.

The maximum stress driven by a storm (τw,max) and the dura-
tion of its mobility events were also used to quantify TS and ETS
(Fig. 3). The magnitude of τw,max was larger for most TS than for
ETS; the difference in TS vs. ETS distributions of maximum τw,max

at a single site was significant at the 95% confidence interval, while
the difference in TS vs. ETS distributions of mean τw,max at all sites
where the storm was observed was not significant (Table 3). TS
resulted in longer duration events, calculated as the mean dura-
tion over all impacted sites (Fig. 3; Table 3) and as the longest
duration at a single site (not shown). The duration of individual TS
events was found to be extended by far-field swell of varying Tp
generated at the same time arriving over a span of hours to days.
ACF produced smaller values of τw,max than TS and ETS, while the
duration of ACF events exhibited a similar distribution to ETS
(Fig. 3; Table 3).

The distance between each site and the storm’s LP center at the
time of wave generation resulting in τw,max was determined (Dτw,

max) and the mean calculated for all impacted sites (mean Dτw,max;
Fig. 4A and C). The mean of the maximum distance from which
each storm produced waves resulting in mobility (Dτw4τcrit) was
also calculated over all impacted sites (Fig. 4B and D). The average
distance of TS to impacted sites was 2000–3000 km when waves
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producing τw,max were generated, and TS generated mobility
threshold exceedance at distances of up to 4000 km. In contrast,
ETS drove mobility events at sites less than 2000 km away.

4.2. Spatial variability in mid-shelf seafloor mobility response

The statistics of mobility events varied depending on location
(northern and southern parts of the MAB and SAB) and water depth
(Table 4). The percentage of mobility hours within mobility events
ranged from 71% to 88%; the remainder occurred in intervals less than
the 12 h criteria. The highest percentage of non-event mobility hours
occurred at the northern SAB site (41004). Mean event duration ran-
ged from 1.3 to 1.7 days, with slightly longer events at the deeper
water depths. Mean distance to storm LP center ranged from �800 to
Table 4
Characteristics of mobility events identified at sites in the MAB (shaded) and SAB (unsh
Other values given are as follows: mobility, the mean and standard deviation of the numb
the percentage of time each year when mobility threshold exceedance was within a 12
mobility events per year; event duration, the average length of time of mobility events
generating the waves driving mobility; and IWAVES, average IWAVES over all storms as

Buoy Depth (m) Region Mobility (days/yr) Event mobility (%) E

44025 36 MAB, N 12.374.5 79713 8
44014 48 MAB, S 8.975.0 79711 5
41004 38 SAB, N 6.173.4 71718 4
41009 44 SAB, S 7.374.1 8879 5
Avg 42 8.674.2 79713 5
1100 km, and was higher at the deeper sites in the MAB and SAB. LP
storm centers influencing the SAB sites were �200 km further away
than for MAB sites. Mean IWAVES was highest at the northern SAB
site, caused by fewer, generally more intense mobility events com-
pared to the other sites.

In the MAB, ETS and uETS accounted for a larger percentage of
mobility hours and a higher fraction of IWAVES than TS did (Ta-
ble 5). In the SAB, ETS and uETS accounted for approximately the
same percentage of mobility hours as TS, but the greater intensity
of TS resulted in a higher fraction of IWAVES coming from TS. In
contrast to the MAB sites and the northern SAB site (41004), where
ACF made negligible contributions to mobility hours and IWAVES,
ACF accounted for 11% of mobility hours and 8% of IWAVES at the
southern SAB site (41009). Davis et al. (1993) identified
aded) over the time period of 1997–2007. Depth is the water depth (in meters, m).
er of days of mobility each year; event mobility, the mean and standard deviation of
þ h mobility event; events/yr, the mean and standard deviation of the number of
; Distance, the average distance between the buoy and the LP center of the storm
calculated in Eq. (2).

vents/yr (yr�1) Event duration (days) Distance (km) IWAVES (Pa h)

.973.7 1.3 824 4.9

.473.5 1.6 966 5.7

.071.5 1.4 1073 7.9

.072.1 1.7 1128 5.0

.972.7 1.5 998 5.9



Table 5
Percentage of mobility hours (h) and percentage of IWAVES for each site attributable to tropical storms (TS), extratropical storms in the ETS database (ETS), extratropical
storms not in the ETS database (uETS), and anticyclones or fronts (ACF). Also given is the percentage of mobility hours not associated with a 12 plus hour mobility event (NE).
Shaded rows indicate sites in the MAB, unshaded rows indicate buoys in the SAB. Sites are delineated as the northern (N) or southern (S) site within each region.

Buoy Depth (m) TS ETS uETS ACF NE

Hrs (%) IWAVES (%) Hrs (%) IWAVES (%) Hrs (%) IWAVES (%) Hrs (%) IWAVES (%) Hrs (%) IWAVES (%)

44025 36 12 11 67 87 2 2 1 0 18 -
MAB, N
44014 48 21 33 61 67 0 0 0 0 18 -
MAB, S
41004 38 34 67 40 33 1 0 1 0 24 -
SAB, N
41009 44 41 66 36 25 1 1 11 8 11 -
SAB, S
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anticyclones as generating sufficiently energetic waves to drive
coastal change, and Warner et al. (2012) found that frontal systems
affected mobility in water depths of 10 m. Our result indicates ACF
also generate sufficiently energetic longer period swell to result in
seafloor mobility at mid-shelf depths (44 m) in parts of the SAB.

A storm’s location may be identified by the LP center (Fig. 5), but
the associated wind field may extend over 10’s–100’s of km. At 44025
(northern MAB), the LP centers of ETS driving mobility were located to
the east and west of the buoy and as far south as 30°N, while TS
driving mobility were located to the east and as far south as 20°N.
25
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Tropical Storms

Fig. 5. Location of the low-pressure center of tropical (TS, left four panels) and extratro
mobility events at 44025 (A,B), 44014 (C,D), 41004 (E,F), and 41009 (G,H). Buoy locations
mobility events were observed at the sites. For TS, the black (green for Hurricane Floyd, s
hours and the red circles indicate the location where waves were generated that resulted
numerical model output and storm locations are therefore confined to the locations of
individually would result in an indistinguishable overlapping pattern. Therefore, the perc
shown, and locations where the waves driving maximum bottom stress originated for a
Mobility at 44014 (southern MAB) was driven by ETS to the east and
south as far as 30°N, with fewer storms to the west. TS driving mo-
bility at 44014 had a similar spatial distribution to 44025.

In the SAB, the location of TS and ETS driving mobility events
was distinctly different than for the MAB (Fig. 5). For 41004
(northern SAB), ETS were located to the east and west, and as far
south as 25°N, while TS driving mobility events were pre-
dominantly confined to locations SE of the buoy. For 41009
(southern MAB), ETS generating mobility events were pre-
dominantly offshore to the E and NE. The location of TS driving
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pical (ETS, right four panels) storms at the time waves were generated that drove
are marked by pink triangles. The storm locations are hours to days prior to the time
ee Fig. 7) dots show locations where waves were generated that resulted in mobility
in the maximum bottom stress for that storm. Because the ETS database is based on
the model grid points, plotting the location of all event generating storm locations
entage of mobility hours at each buoy resulting from each possible ETS LP location is
t least one storm are circled.
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Table 6
Table of buoys in the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB)
used in long-term, large scale mobility occurrence analysis. Table includes the
water depth at the buoy, the total number of years of data with 75% data avail-
ability, and the years (starting in March of the given year) with sufficient data
coverage.

Buoy Depth (m) Region Years Year List

44017 45 MAB 8 2003–2010
44009 28 MAB 23 1987–1991, 1995–2012
41025 68 SAB 7 2003, 2005–2010
41036 31 SAB 5 2007–2009, 2011–2012
41013 24 SAB 8 2004, 2006–2012
41008 18 SAB 20 1988–1991, 1997–2012
41012 37 SAB 8 2004–2006, 2008–2012
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mobility events at 41009 had a similar pattern to 41004, but ex-
tended farther to the NE offshore of the MAB.

4.3. Hurricane Floyd

Patterns in bottom stress associated with Hurricane Floyd, the
strongest storm identified during March 1997–March 2007 (Ta-
ble 2), illustrates the differences in seafloor mobility in the SAB
and MAB that can be caused by the same storm. The WAVE-
WATCHIIIs numerical wave model (Tolman, 2007, 2009) was used
to simulate waves for 13-19 September 1999. A nested 3-grid set-
up employing the operational WAVEWATCHIIIs 30′ global, 10′
northwest Atlantic, and 4′ U.S. East Coast model domains was used
(Chawla et al., 2007), with wind forcing provided by CFSR winds
(Saha et al., 2010). Hourly values of ubr and Tbr were used to cal-
culate τw with the same 0.35 mm grain size roughness used for
buoy analysis. A new model run was required because archived
WAVEWATCHIIIs output does not include ubr and Tbr, and errors in
model Tp introduce large errors in calculated τw when using the
parameterized spectrum approach. The model was assessed
against buoy measurements and performed with good skill (mean
root-mean square error for the four buoys of 0.3 m, 1.9 s, and
0.1 Pa, and normalized root-mean square error of 0.03, 0.09, and
0.05, for significant wave height, TP, and τw, respectively).

Hurricane Floyd was a Cape Verde storm that approached the
SAB from the southeast (Lawrence et al., 2001). Long-period swell
arriving ahead of the storm resulted in mobility threshold ex-
ceedance at the SAB site on September 14, when the storm was
still far from the coast, and slight exceedance of mobility threshold
in the MAB on September 15 (Fig. 6A and B). A peak in τw occurred
at values up to 10 times τcrit when the storm was located near the
SAB site (Fig. 6C). At the same time, swell reaching the MAB drove
mobility threshold exceedance on the inner- and mid-shelf. As the
storm moved to the north (Fig. 6D), τw in the MAB continued to
increase, while in the SAB τw dropped below τcrit on September 16.

Storms located offshore of the SAB are positioned such that
winds in the powerful northeast quadrant generate waves directed
from the SAB north toward Cape Cod (Figs. 5 and 6), causing ele-
vated τw along the entire U.S. East Coast. In contrast, winds from
storms just offshore of the MAB region are aligned such that the
most powerful swell is directed toward the north and west, and do
not generate waves that propagate into the SAB with sufficient
energy to drive mobility events. The response at site 41009 vs.
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41004 to swell propagating from storms somewhat farther off-
shore of the MAB indicates that locations offshore and south of
Cape Canaveral may receive swell driving mobility events from
storms in these locations (Fig. 5), whereas the rest of the SAB is
shielded from these waves by Cape Hatteras.

4.4. Shelf-wide seafloor mobility

Mobility occurrence was analyzed at seven additional buoy
sites (Table 6; Fig. 1) to investigate variability over a wider range of
water depths, area, and time. Mean TP was between 6 and 8 s,
whereas mean TP when τw4τcrit was 9–14 s and increased with
depth (Fig. 7). Mean significant wave height (SWH) was 1–2 m
over all times and 2–4 m, increasing with depth, when τw4τcrit
(Fig. 7). The mean correlation between τw and wind stress was low
(0.25–0.53); in contrast, the correlation between SWH and wind
stress was 0.65–0.80. These results are consistent with the con-
clusion that at these water depths (18–70 m), as in the case of the
four mid-shelf sites, energetic swell from the far-field dominated
seafloor mobility. A study in Massachusetts Bay (Fig. 1) found the
largest IWAVE events came from ETS that ranked high by a metric
of local wind stress (Butman et al., 2008). The correlation with
local winds, higher than found here, is attributed to the fact that
the bay is a semi-enclosed basin, and local winds were likely well-
correlated to the large scale winds characteristics of ETS.

Percentage of mobility hours and annual IWAVES generally
decreased with increasing water depth (Fig. 7), except at 41008 in
18 m depth in the central SAB. Possible reasons for the lower va-
lues of IWAVES at 41008 include wave energy increase between
the shallow and deep sites due to offshore winds; wave refraction,
as 41008 is 110 km from the shelf break in the central SAB; swell
wave attenuation, which can be significant during storms (Ardhuin
et al., 2003); or temporal differences in the wave climate. Given
that waves generating mobility events were identified as origi-
nating from far-field storms, it is unlikely that local winds are the
driving factor. Comparison of SWH and Tp distribution at 41008 to
41012 (155 km to the south in 37 m of water) and 41004 (207 km
to the north in 38 m of water) shows that long-period swell of
sufficient energy for mobility occurred less frequently at 41008
than at the deeper sites (Fig. 8A–C). Numerical model output from
September 14, 1999 at 1000, when Hurricane Floyd was southeast
of the SAB, show a complex pattern of τw (Fig. 8D). Modeled and
observed Tp values (Fig. 6) from Cape Canaveral north to Cape
Hatteras (Fig. 1) were 12–17 s coming from the south-southeast,
consistent with swell from Floyd. Depressed values of τw in the
central SAB compared to similar depths to the north and south
suggest the influence of wave refraction (Fig. 7). In addition, where
the shelf is wide, model output shows a mid-shelf maximum in τw
likely as a result of wave attenuation due to bottom friction
(Fig. 8D). The numerical model output and buoy analysis suggests
that the depressed mobility at 41008 (Fig. 7) is the result of wave
refraction and swell attenuation over the wide shelf in the central
SAB, although cross-shelf observations of τw and mobility would
be required to confirm these findings.
5. Discussion

5.1. Sensitivity to sediment grain size

Grain size along the U.S. East Coast varies on meter to kilometer
scales, which affects τw and τcrit. The sensitivity of mobility pre-
dictions to grain size was quantified by comparing the baseline
value of 0.35 mm to values of 0.45 mm and 0.09 mm, representing
plus and minus one standard deviation around the median grain
size in 30–50 m water depth offshore of the U.S. East Coast. The
percentage of mobility hours for 1997–2007 differed by 8–15% of
the baseline values for the 11 buoys (1, 6), with higher mobility
percentages for the smaller grain size and lower mobility per-
centages for the larger grain size. For the purposes of identifying
seafloor mobility and the storms driving mobility events over the
bulk of the shelf where sand is the dominant component, the
single value of 0.35 mm was deemed sufficient.

5.2. Other contributions to seafloor mobility

Near-bottom currents not associated with waves can contribute
substantially to seafloor mobility. For example, analysis of nu-
merical model output indicated that strong tidal currents were
sufficient to induce mobility in the Nantucket Shoals region (Fig. 1;
Dalyander et al., 2013). Throughout the rest of the MAB, Dalyander
et al. (2013) found that non-tidal currents contributed to wave-
current shear stress in depths less than approximately 40 m, as
well as in the deeper Hudson Shelf Valley (Fig. 1). That study did
not account for internal waves, which occur in the MAB in summer
and can result in sediment resuspension (Butman et al., 1979;
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Churchill et al., 1994). Surface waves are often the primary force
mobilizing sediment, subsequently transported by currents, as was
found offshore of New Jersey (Fig. 1) during Nor’Ida, a hurricane
that transitioned into an ETS as it moved up the U.S. East Coast
(Miles et al., 2013). The duration of mobility will likely be con-
trolled by waves, as was observed offshore of North Carolina
(Fig. 1), where ETS were found to have an extended period of se-
diment suspension corresponding to the arrival of far-field swell
from the retreating storm (Kim et al., 1997). Similarly, modeling of
TS Floyd offshore of New Jersey (Fig. 1) determined that near-
bottom currents in 12 m of water peaked at 10–20 cm/s during the
height of the storm, but were considerably lower (few cm/s) when
the storm was not local to the site (Kohut et al., 2006).

Another potential driver of seafloor mobility is infragravity
motion. These waves have periods longer than 20 s (Munk, 1949;
Tucker, 1950), and originate via non-linear interactions (Hassel-
mann, 1962; Longuet-Higgins and Stewart, 1962, 1964) or energy
transfer to lower frequency waves through a time-dependent
wave breaking point (Symonds et al., 1982). Infragravity waves can
be bound to shore, or radiate out to deeper water (Herbers et al.,
1994, 1995a, 1995b). Infragravity wave energy can dominate the
surf zone and be significant (4100 cm2) at inner shelf depths of
o20 m (Herbers et al., 1994; Ruessink, 1998). The amplitude of
infragravity waves has an inverse relationship to depth, reducing
to O(10�2 m) in the deep Atlantic (Aucan and Ardhuin, 2013),
therefore the contribution to seafloor mobility at the mid-outer
shelf is likely small compared to the inner shelf and surf zone.

At shallow depths (o10m), shear stress may depend on wave
skewness (Elfrink et al., 2006); however, this effect is expected to be
minimal for waves and particularly swell over the shelf. Values of ubr
and Tbr calculated using linear wave theory and an assumed spectral
shape were assessed against observations of near-bottom currents in
depths of 30–60m byWiberg and Sherwood (2008) and Butman et al.
(2008), with resultant error generally less than 10%.

5.3. Interannual variability and climate change implications

To determine the representativeness of the study period, the
number and spatial distribution of storms was determined by
counting the number of occurrences of LP centers of each type in
5° x 5° grid cells covering the U.S. East Coast (�90°W to 50°Wand
20–45 °N). The frequency of storms for 1997–2007 was compared
to the 1958–2008 period covered by the ETS database. The spatial
distribution of TS and ETS for the study period was similar to the
50-year record; however, storm activity was higher than average.
There were 28% more TS hours/year during 1997–2007 (2083 TS h/
year) than for 1958–2008 (1628 TS h/year), and 7% more ETS
hours/year during 1997–2007 (8927 ETS h/year) than for 1958–
2008 (8310 h/year). The percentage of annual mobility hours and
IWAVES at mid-shelf depths varied by factors of six and ten over
the period of 1988–2012, respectively, with the MAB sites tending
toward higher values than the SAB (Fig. 9). This suggests that al-
though year-to-year variation in the types and tracks of storm will
introduce variability, the combined effect of far-field swell from TS
and more local ETS in the MAB results in persistently more mo-
bility in the MAB than in the SAB at similar mid-shelf depths, and
the 1997–2007 time period is representative of this phenomena
despite being more active in terms of storms than the 50 year
period of 1958–2008.

Storm patterns may evolve with climate change, although there
is uncertainty in the type and magnitude of any shift and how it
would compare to historic decadal variability (Kirtman et al.,
2013). Possible changes include a reduction in the number of ETS
or TS, more intense storms, and a shifting of storm tracks poleward
(Bengtsson et al., 2006). An increase in a storm’s intensity will
increase the maximum induced τw. An additional effect may arise
through changes in Tp; stronger storms can produce swell that
survives dissipation over greater distances, thereby resulting in a
greater number of storms that generate τw events on the mid to
outer shelf. In contrast, greater attenuation of longer period swell
through bottom friction may reduce the wave energy reaching the
inner shelf. Changes in storm track would also impact seafloor
mobility. For example, if storm tracks shift poleward, fewer storms
would pass to the southeast of the SAB, where waves capable of
impacting the entire U.S. East Coast shelf now originate, resulting
in fewer mobility events along the entire coast and particularly in
the SAB.

5.4. Implications for numerical modeling

The findings of this study have ramifications for accurate nu-
merical model prediction of seafloor mobility, as well as other
processes (such as wave runup) where swell waves contribute
significantly. A model domain extending approximately 2000 km
from any of the four sites considered would capture waves gen-
erated by all of the ETS driving sediment mobility over the period
of 1997–2007, but a domain of that size would exclude approxi-
mately half of the TS (Fig. 4D). In cases where a nested grid ap-
proach is used, application of full wave spectra on the boundaries,
such as done here for Hurricane Floyd (Section 4.3), may be nee-
ded to accurately capture swell propagating into the domain,
particularly in cases of bi-modal wave distribution.
6. Summary

This study used observations of surface waves at NDBC buoys to
identify when wave-driven seafloor mobility events likely oc-
curred at depths of 35–50 m along the U.S. East Coast during
March 1997–March 2007. Mobility events were gaged by intensity,
duration, and IWAVES (combined metric).

Storms located hundreds to a few thousand km away, parti-
cularly tropical cyclones due to their high wind speeds, were sig-
nificant drivers of mid-shelf mobility events. Of the 25 largest
mobility events, 14 were ETS and 11 TS, based on a Mobility Event
Index (MEI) that ranks the relative contribution of individual
storms. Thirty percent of TS drove mobility at three or four of the
mid-shelf sites considered here, indicating their spatial influence
away from the storm wind field. The wave stress caused by ETS
was primarily confined to areas within the storm wind field.
However, the broad wind fields associated with these storms re-
sulted in mobility events caused by winds from low-pressure
centers over the Gulf of Mexico, the central U.S., and offshore.

In the MAB, frequent ETS resulted in a dominant impact of
these storms, accounting for 61–68% of mobility hours and 67–87%
of IWAVES. In the SAB, 34–41% of mobility hours and 66–67% of
IWAVES were driven by relatively infrequent but powerful TS.
These TS were located to the south and southeast of the SAB, and
produced waves that generated stress events as far north as Cape
Cod. Over the period of 1990–2012, sediment mobility was esti-
mated to occur more frequently at mid-shelf depths in the MAB
than in the SAB, likely due to the combined impact in the MAB of
far-field TS and near-field ETS. Northward propagating waves
generated in the strong northeast quadrant of storms and the
eastward protrusion of Cape Hatteras resulted in little or no mo-
bility in the SAB driven by storms located offshore of Cape Hatteras
and points north.
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