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We report the derivation and experimental evaluation of a stable adaptive identifier to estimate rigid body
rotations using rotors in Geometric Algebra (GA). This work is motivated by the need for in situ estimation of
the alignment between sensors commonly used in underwater vehicle navigation. Here we derive an adaptive
identifier using a geometric interpretation of the error to drive first-order rotor kinematics. We prove that it is
Lyapunov stable, and we show that it is asymptotically stable in the presence of persistent excitation. We use
the identifier to estimate the alignment between the Doppler velocity log sonar and the fiber optic gyrocompass
used by underwater vehicles for dead reckoning (DR). We evaluate this method in the laboratory with a
remotely operated vehicle (ROV), and then with an autonomous underwater vehicle (AUV) operating in the
field at 1,200 m depth. Our results show that this technique reduces dead reckoning navigation errors on these
platforms and provides comparable performance to previously reported SO(3) constrained Linear Algebra (LA)
approaches. The rotor identifier has a number of advantages over these previously reported methods, including
a more straightforward derivation, simpler gain tuning, increased computational efficiency, and reduced data
manipulation. C© 2015 The Authors. Journal of Field Robotics published by Wiley Periodicals, Inc.

1. INTRODUCTION

Rotations are ubiquitous in robotics and engineering. Ex-
amples include sensor alignment, manipulator kinematics,
and attitude control. Here we focus on the sensor align-
ment problem, and specifically the task of identifying an
unknown rigid body rotation from measured input-output
data. This problem has been solved previously in various
contexts using Linear Algebra (LA) or quaternion algebra,
but the existing methods possess shortcomings and are dif-
ficult to visualize geometrically. This paper casts the sensor
alignment problem into the language of Geometric Algebra
(GA) and reports a novel adaptive identifier on the group of
rotors. Solving the problem in GA addresses the shortcom-
ings of existing alignment identification methods and leads
to a simpler formulation and stability analysis.

Consider the linear mapping between an input u(t) ∈
R

3 and an output y(t) ∈ R
3. In LA, this transformation is

written

y = Mu, M ∈ R
3×3. (1)

The vector signals u(t) and y(t) are known but M is un-
known and must be identified. This problem is simple in

two dimensions—the rotation is fully described by a single
parameter (Figure 1a). But it is important to note that the
problem is underconstrained in higher dimensions—two
vectors in 3-space do not uniquely identify a rotation (Fig-
ure 1b) (that would require two pairs of nonparallel vectors).

Given sufficient measurements of u(t) and y(t), M can
be estimated using the least squares (LS) techniques (Law-
son & Hanson, 1974; Strang, 1986). If the mapping is known
to be a rotation, it can be restricted to the group of rigid
body rotations by enforcing orthogonality and normality
constraints. In LA, a rotation is represented by a matrix
R ∈ SO(3), which can be estimated using existing con-
strained least squares (CLS) (Wahba, 1965; Farrell et al., 1966;
Arun, Huang, & Blostein, 1987; Markley, 1988; Umeyama,
1991) or adaptive identifier (Kinsey & Whitcomb, 2007a)
techniques.

Here we use rotors in GA to formulate a novel adaptive
identifier for unknown rotations. We prove that the rotor
identifier is stable using Lyapunov methods, and we show
that the system is asymptotically stable in the presence of
persistent excitation. Then we validate the identifier in ex-
periments with underwater robots in the laboratory and in
the field.
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Figure 1. The rotation between two vectors in two dimensions
(a) is described by a single parameter, the angle ϕ. The rotation
is inherently constrained to the two-dimensional plane. Identi-
fying this rotation becomes more difficult in three dimensions—
the plane of rotation is no longer constrained by the space
(b). The input vector (red) could rotate along an infinite number
of paths (purple) to reach the output vector (blue).

This work is motivated by the practical problem of
in situ estimation of navigation sensor alignment for dead
reckoning (DR) navigation for underwater vehicles orig-
inally reported in Brokloff (1994), Whitcomb, Yoerger, &
Singh (1999), and Kinsey & Whitcomb (2004) and solved
using constrained LS in Kinsey & Whitcomb (2007b), and
an adaptive identifier on the group of rotation matrices in
Kinsey & Whitcomb (2007a). The SO(3) adaptive identifier
successfully identified the unknown alignment, but it pos-
sessed several shortcomings:

1. The rotation matrix adaptive identifier has a 3 × 3 gain
matrix that makes manual tuning tedious.

2. Chains of rotation matrices are computationally ineffi-
cient when compared to alternative rotation representa-
tions such as quaternions and rotors.

3. The geometry of the alignment problem is difficult to see
when using rotation matrices—in Kinsey & Whitcomb
(2007a), the parameter error is a rotation matrix, but the
output error is a vector, and it is not clear how the two
relate geometrically.

4. Depending on the input/output data, additional prepro-
cessing may be necessary for the rotation matrix identi-
fier to work in practice.

In terms of position residuals in DR navigation, the ro-
tor identifier proposed in this paper performs comparably
to the existing constrained least squares and rotation matrix
adaptive identifier methods, but it offers several advantages
over the rotation matrix adaptive identifier from Kinsey &
Whitcomb (2007a). First, the rotor identifier has a single
scalar gain as opposed to a 3 × 3 gain matrix, which solves
shortcoming 1. The rotor identifier is more computationally
efficient than the rotation matrix identifier, thus addressing
shortcoming 2. While computational efficiency could also
be improved by using quaternions, we prefer using rotors
because GA enables a geometric understanding of the prob-
lem. In GA, we are able to define three related metrics for
both the parameter and output error, and we describe the

relationships between them, solving shortcoming 3. Finally,
the rotor identifier requires no preprocessing, so it avoids
shortcoming 4. These advantages, discussed in more detail
in Section 7, make our rotor identifier superior to previously
reported methods.

The remainder of this introduction reviews existing ap-
proaches to rotation identification. Section 2 presents the
mathematical preliminaries required for the identifier for-
mulation and stability proof. Section 3 reports the formu-
lation of the rotor identifier, and its asymptotic stability is
proven. In Section 4, we apply the identifier to estimate the
alignment between two sensors in underwater navigation.
We then validate the identifier and characterize its perfor-
mance on data from a remotely operated vehicle (ROV) in
controlled laboratory conditions (Section 5) and on field
data from an autonomous underwater vehicle (AUV) (Sec-
tion 6). Section 7 discusses the advantages of this technique
over previously reported SO(3) constrained alignment ro-
tation identifiers.

1.1. Related Work

The alignment identification problem is a specific example
of the more general problem of estimating rigid body ro-
tations from a collection of uncertain data. Approaches to
this problem can be loosely divided into batch methods and
iterative methods.

Least squares (Lawson & Hanson, 1974; Strang, 1986)
methods are perhaps the most common techniques for iden-
tifying an unknown linear map between known input-
output data, but they do not guarantee that the resulting
map is a rigid-body rotation, which must be orthonormal
with a positive unit determinant. The first constraint can
be satisfied by solving the orthogonal Procrustes’ prob-
lem (Schönemann, 1966). The singular value decomposition
(SVD) technique proposed by Arun et al. (Arun, Huang, &
Blostein, 1987) constrains the solution to have a unit de-
terminant, but it may be negative—this would produce a
rotoreflection instead of a rotation. Many fully constrained
techniques have been produced as solutions to Wahba’s
problem (Wahba, 1965), including the TRIAD and QUEST
algorithms (Shuster & Oh, 1981), as well as SVD-based
methods in Farrell et al. (1966) and Markley (1988). We use
Umeyama’s SVD implementation (Umeyama, 1991), which
refines the technique by Arun, as the LS-SO(3) method for
comparison.

General iterative methods in LA, such as adaptive iden-
tification (Narendra & Annaswamy, 1988; Sastry & Bodson,
1989), also do not guarantee that the solution will be a rota-
tion.

The large body of existing work on attitude control
[see, e.g., Meyer (1971); Wen & Kreutz-Delgado (1991);
Bullo, Murray, & Sarti (1995); and Bullo & Murray (1995)]
and tracking [see, e.g., Koditschek (1988); Caccavale &
Villani (1999); and Akella (2001)] provides many useful
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contributions toward the rotation identification problem,
particularly with respect to kinematics, dynamics, and sta-
bility on SO(3). Some cast their solutions in quaternion al-
gebra [see, e.g., Shuster & Oh (1981); Bar-Itzhack & Oshman
(1985); and Choukroun, Bar-Itzhack, & Oshman (2006)],
while others use the tools of Lie group theory [see, e.g.,
Bullo, Murray, & Sarti (1995) and Bullo & Murray (1995)].
A comprehensive survey of several existing nonlinear at-
titude estimation methods is given in Crassidis, Markley,
& Cheng (2007). However, most of these existing attitude
control, tracking, and estimation methods [see, e.g., Shuster
& Oh (1981); Koditschek (1988); Caccavale & Villani (1999);
Akella (2001); Wen & Kreutz-Delgado (1991); Bullo, Murray,
& Sarti (1995); and Bullo & Murray (1995)] assume a unique
estimate of the orientation at each time step, and therefore
they do not directly apply to the specific alignment identi-
fication problem addressed here. Mahony et al. developed
complementary filters directly on SO(3) to estimate attitude
using angular rate, acceleration, and magnetic measure-
ments (Mahony, Hamel, & Pflimlin, 2005). They adapted
that approach in Hamel & Mahony (2006) and Mahony,
Hamel, & Pflimlin (2008) to handle direction inputs from
a single sensor, but they still require angular rates. Sanyal
et al. developed another attitude estimator using single di-
rection measurements and treating uncertainty with ellip-
soids in Lee et al. (2007) and Sanyal et al. (2008), but they
also assumed knowledge of attitude dynamics (i.e., angular
rates). Some properties of the work by Mahony and Sanyal
are similar to the specific alignment identification problem
addressed here, but neither work applies directly. Kinsey &
Whitcomb solved the same alignment identification prob-
lem with an adaptive identifier on SO(3), and they proved
its stability using Lyapunov theory (Kinsey & Whitcomb,
2007a). This adaptive identifier performs favorably when
compared to the batch LS methods in Kinsey & Whitcomb
(2007b).

Batch methods for rotor identification in GA have also
been developed recently. Doran studied the estimation of
an unknown rotor from noisy data in the context of cam-
era localization in Doran (2000). Buchholz and Sommer
investigated the related problem of averaging in Clifford
groups (Buchholz & Sommer, 2005).

Here we report an iterative online GA method for iden-
tifying a constant and unknown alignment between two
point sets. The formulation of the asymptotically stable
adaptive identifier was originally reported in Stanway &
Kinsey (2011), along with preliminary simulation results.
The application to underwater navigation, including lab-
oratory and field experiments in Section 5 and Section 6
and the discussion in Section 7, are presented here for the
first time. The alignment identification problem discussed
in this paper is subtly different from the related problems
of attitude estimation and control. Most methods for atti-
tude estimation and control [see, e.g., Bullo, Murray, & Sarti
(1995); Bullo & Murray (1995); Akella (2001); and Caccavale

& Villani (1999)] assume sufficient information at each time
step for a complete, unique observation of the orientation. In
the problem addressed in this paper, that assumption does
not apply. Two vectors in three dimensions do not uniquely
describe a rotation, as illustrated in Figure 1b.

2. PRELIMINARIES

This section defines notation and reviews preliminaries in
GA necessary for the derivation of the adaptive rotor iden-
tifier in Section 3. The presentation is geared primarily to-
ward G3, the GA of the three-dimensional Euclidean model,
but basic principles apply to algebras of other dimensions
as well. Refer to Hestenes (2002); Doran & Lasenby (2003);
Dorst, Fontijne, & Mann (2007); and Gull, Lasenby, & Do-
ran (1993) for a more in-depth introduction to GA. Refer
to Bayro-Corrochano and Sobczyk (2001), Sommer (2001),
Bayro-Corrochano (2005), Bayro-Corrochano (2010), and
Bayro-Corrochano & Scheuermann (2010) for examples of
GA applied to problems in robotics, computer vision, and
engineering.

2.1. Nomenclature

This paper uses both Linear Algebra (LA) and Geometric Al-
gebra (GA), so some discussion on notation is necessary to
avoid confusion. Scalar quantities are denoted by lowercase
Greek letters (e.g., α), while vectors are in lowercase italic
(e.g., a). Both scalars and vectors are directly interchange-
able between LA and GA. Matrices in LA are uppercase
bold Roman (e.g., R). GA multivectors are uppercase italic
(e.g., R). Juxtaposition of two factors represents the natural
product in that algebra: y = Ru is a matrix product, while
M = ab is a geometric product.

Sections 4–6 discuss rotations between different refer-
ence frames. In those sections, we use the same notation as
Kinsey & Whitcomb (2007a,b). A leading superscript indi-
cates the frame of reference for a vector quantity: wṗd (t),
vṗd (t), and iṗd (t) represent the Doppler velocity log (DVL)
velocity in the world, vehicle, and instrument frames of ref-
erence, respectively. A trailing subscript denotes the sensor
source: wṗd (t) represents the DVL velocity and wpl(t) rep-
resents the measurement from long baseline (LBL) acoustic
positioning, both in world coordinates. Two leading sub-
scripts on a rotation matrix indicate the frames of refer-
ence involved in a rotation. For example, w

v
R(t) is the rota-

tion matrix from the vehicle frame to the world frame, i.e.,
wṗd (t) = w

v
R(t) vṗd (t).

2.2. Multiplying Vectors

Every vector has two intrinsic properties: magnitude and
direction. GA defines inner, outer, and geometric products
to describe relationships between these properties. These
products expand the language of GA to include elements of
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lower and higher grade (i.e., dimension), and even elements
of mixed grade.

2.2.1. Inner Product

The inner product of two vectors a, b in GA is essentially
the same as in LA—it is commutative, and it defines a scalar
α (grade 0):

a · b = b · a = α = |a||b| cos ϕ, (2)

where ϕ is the angle between a and b.

2.2.2. Outer Product

The outer product of two vectors is anticommutative and
defines a new entity called a bivector B (grade 2):

a ∧ b = −b ∧ a = B = |a||b| sin ϕB̂. (3)

This bivector should be thought of as a directed plane seg-
ment in much the same way as a vector is a directed line
segment.

2.2.3. Geometric Product

The inner and outer products complement each other: one
lowers the grade while the other raises it, one is commuta-
tive while the other is anticommutative. They are combined
in the geometric product:

ab = a · b + a ∧ b = b · a − b ∧ a = α + B = M, (4)

which produces a multivector M that contains both scalar
and bivector parts. It may seem odd at first to add to-
gether elements of different grades, but it is no different
than adding together the real and imaginary parts of a com-
plex number (Gull, Lasenby, & Doran, 1993).

The geometric product is actually the most basic prod-
uct in GA. The inner and outer products can be derived
axiomatically as the symmetric and antisymmetric compo-
nents of the geometric product (Hestenes, 2002; Doran &
Lasenby, 2003),

a · b = 1
2

(ab + ba) , (5a)

a ∧ b = 1
2

(ab − ba) . (5b)

The geometric product itself is generally neither com-
mutative nor anticommutative. Reversing the order of fac-
tors is still an important operation, known as reversion:

reverse(ab) = ba = (ab)∼ = M̃. (6)

2.3. Useful Bivector Properties

2.3.1. Reversion

Since a pure bivector has no scalar part, the reverse of a
bivector is its negative:

B = a ∧ b = 1
2

(ab − ba) (7a)

⇒ B̃ = 1
2

(ba − ab) = b ∧ a = −B. (7b)

2.3.2. Magnitude

Bivectors in G3 are like imaginary numbers; they square to
a negative scalar:

B2 = BB = −β2. (8)

Since the reverse of a bivector is its negative, and any bivec-
tor is parallel to itself, the magnitude β can be written sev-
eral ways:

β =
√

BB̃ = √−BB = √−B · B. (9)

Using the scalar α to define another bivector A parallel
to B,

A ‖ B ⇒ A = αB, (10)

shows that the geometric product of any two parallel bivec-
tors with the same sign is negative-definite:

AB = (αB)(B) = −αβ2 < 0 ∀ α > 0. (11)

2.3.3. Commutativity

Bivectors neither commute nor anticommute in the geomet-
ric product. However, any pair of G3 elements in the same
grade can be decomposed into parallel and perpendicular
parts. For two bivectors, A, B:

A = A‖B + A⊥B ; B = B‖A + B⊥A. (12)

Parallel (i.e., dependent) bivectors commute:

A‖BB = BA‖B, (13a)

and orthogonal (i.e., independent) bivectors anticommute:

A⊥BB = −BA⊥B. (13b)

The symmetric part of the geometric product of two bivec-
tors in G3 therefore reduces to their inner product:

1
2

(AB + BA) = 1
2

(A‖BB + A⊥BB + BA‖B + BA⊥B ) (14a)

= A‖BB = A · B. (14b)
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If A‖B has the same sign as B, this inner product is negative-
definite:

A · B = A‖BB = (αB)(B) = −αβ2 < 0 ∀ α > 0, (15)

if the sign is opposite, the inner product is positive-definite.
In the case in which either bivector is actually zero, the inner
product becomes zero.

2.4. Representing Rotations

Rotations in GA are encoded by special elements called ro-
tors. These are normalized elements of the even subalgebra
G

+. In the three-dimensional Euclidean model G3, rotors
form the group

Spin(3) = {
R : R ∈ G

+
3 , RR̃ = R̃R = 1

}
, (16)

which provides a double-cover over SO(3).
Three-dimensional rotors are isomorphic to the quater-

nions H [see, e.g., Murray, Li, & Sastry (1994) and Kuipers
(1999)], but rotors emphasize geometric interpretation and
extend to higher dimensions more easily (Doran & Lasenby,
2003; Dorst, Fontijne, & Mann, 2007). Using the richer lan-
guage of GA also explicitly includes scalars, vectors, and
bivectors from the start. The bivectors, in particular, are im-
portant in our application—they play a principal role in the
identifier formulation and in its stability proof. Bivectors
are not present in quaternion algebra.

Bivectors are linked to rotors via the exponential map
(i.e., the bivector exponential and rotor logarithm). This ex-
ponential map highlights an important correspondence be-
tween GA and Lie group theory—every Lie algebra can be
represented as a bivector algebra, hence every Lie group can
be represented as a spin group (Doran, Hestenes, Sommen,
& van Acker, 1993).

Three-dimensional rotors have four coefficients: one
scalar and three bivectors. The orthogonality constraint
is implicit in the algebraic structure. The unit norm
constraint is simple to enforce, but often unneces-
sary because of good numerical stability properties
shared with quaternions (Brown, 1989; Breckenridge,
1999; Farrell, 2008). In contrast, rotation matrices have
nine coefficients, and enforcing orthonormality is more
complicated.

Rotors can be composed by chaining together multiple
rotors, using repeated reflections, or as the exponential of a
bivector (Figure 2).

2.4.1. Rotor Chains

The rotor group is closed under multiplication in the geo-
metric product, so the geometric product of two or more
rotors will always produce another rotor:

RaRb = Rc ∈ Spin(3) ∀ Ra,Rb ∈ Spin(3). (17)

2.4.2. Repeated Reflections

The Cartan-Dieudonné theorem states that any Euclidean
transformation can be expressed by a combination of re-
flections (Cartan, 1966). An even number of reflections pre-
serves the chirality (i.e., handedness) of a coordinate frame,
and produces a proper rotation.

Forming a sandwich product with a unit vector n̂ on
each side produces a reflection:

z = n̂un̂, (18)

so the geometric product of an even number of unit vectors
is a rotor:

y = m̂n̂un̂m̂ = RuR̃, R = m̂n̂. (19)

Since this composition method produces a rotation in the
plane spanned by two vectors, it can be used to calculate
the shortest rotor between them [see, e.g., Doran & Lasenby
(2003) and Dorst, Fontijne, & Mann (2007)]. This is used in
Section 3.4 to define the output error rotor.

2.4.3. Bivector Exponential and Rotor Logarithm

A bivector B can encode the plane B̂ and angle θ (i.e., the
direction and magnitude) of a rotation. The rotor that gen-
erates this rotation is the exponential of the bivector:

R = exp
(

−1
2
θB̂

)
= e− 1

2 B, (20)

where the factor of 1/2 is because we multiply the rotor twice
(once on each side) and the negative sign is a convention so
that positive angles produce a counterclockwise (i.e., right-
handed) rotation. The concept of an exponential function is

Ra

Rb
Rc

(a) rotor chain

a

n̂
b

m̂

c

(b) repeated reflections

B̂

u
θ

y

(c) bivector exponential

Figure 2. Three main methods of composing rotors and generating rotations: (a) from two or more other rotors as a chain, (b) from
two vectors using the concept of repeated reflections, or (c) from a bivector and generating rotations using the exponential map.
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easily generalized to operate on multivectors; see Hestenes
(2002) or Doran & Lasenby (2003).

The bivector B is invariant in the rotation generated by
R since that rotation is in the same plane as B:

RBR̃ = B ∀ R = e− 1
2 B. (21)

It is useful to define a multivector logarithm so that the
bivector B can be determined from the rotor R. We adopt
the definition given in Hestenes (2002) and denote the rotor
logarithm:

B = −2 ln R. (22)

If R = 1, B = 0, like the familiar natural logarithm for
scalars. Otherwise, B is a bivector describing the direction
and magnitude of the rotation produced by R.

2.4.4. First-order Rotor Kinematics

Since B describes the rotation angle, dB/dt describes the
rotational velocity. We adopt the notation Ḃ = �, where �

is the natural bivector form of the rotational velocity.
Using the chain rule to differentiate the bivector expo-

nential (20) gives the first-order rotor differential equation:

d

dt
(R(t)) = dB

dt

dR

dB
, (23a)

Ṙ = −1
2
�R. (23b)

3. AN ADAPTIVE IDENTIFIER ON THE GROUP OF
ROTORS

Here we propose an adaptive identifier based on first-
order rotor kinematics and a geometric interpretation of
identification error. We begin by defining the rotation
plant in terms of input and output vectors. Then we
discuss several relevant error metrics, commenting on
the geometric meaning of each of them. We use first-
order rotor kinematics and a proportional gain error state
feedback regulator to formulate a rotor identifier, and
then we prove its asymptotic stability using Lyapunov
theory.

3.1. Plant

Given known vector input u and output y signals, the plant

y = RuR̃, (24)

describes the rotation from input to output. The unknown
rotor R ∈ Spin(3) is a stationary element of the even subal-
gebra, and it encodes a rigid body rotation. The goal of the
method proposed here is to identify this unknown rotor, R.

3.2. Identification Plant

With the time-varying estimate of the rotor defined as S(t) ∈
Spin(3), the expected plant output v is

v = SuS̃. (25)

The goal of the identifier is to drive the estimated rotor S

toward the actual rotor R. Since each time step provides an
incomplete observation of the actual rotor, we achieve this
using feedback on the output error, driving the expected
output v toward the observed output y.

3.3. Parameter Error

The parameter error rotor is

Q = RS̃ : Q ∈ Spin(3). (26)

This describes the difference between the estimated rotor
and the actual rotor. Applying the parameter error rotor
directly to the estimated output will rotate it into the actual
output:

QvQ̃ = (RS̃)(SuS̃)(SR̃) = RuR̃ = y.

In this way, the parameter error rotor resolves the difference
between the identification plant and the actual plant.

The evolution of the estimate S is characterized by the
time derivative of the parameter error rotor:

Q̇ = ṘS̃ + R ˙̃S = R ˙̃S. (27)

The parameter error bivector is derived from the natu-
ral logarithm of the parameter error rotor:

X = −2 ln(Q) : Q = e− 1
2 X. (28)

This metric encodes both the magnitude and the direction
of the error, which can be interpreted as the angle and the
rotation plane.

The magnitude of the parameter error is a scalar:

χ =
√

XX̃. (29)

This is the natural distance measure on the three-
dimensional unit sphere S

3, and concisely summarizes the
error state. It is distilled down to the angle between the
estimate and the truth, and it is analogous to the distance
measure defined in Bullo & Murray (1995). As a scalar, χ is
convenient for visualization and for stability analysis, but
the lack of directional information makes it less useful for
feedback.

3.4. Output Error

Since a pair of input/output vectors does not uniquely de-
fine a rotation in three dimensions (Figure 1b), the param-
eter error is only partially observed at each time step. We
define output errors to characterize the observable part of
the misalignment.
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Figure 3. We compose the output error rotor P using repeated
reflections (Section 2.4.2). If the expected output v is parallel to
the observed output y, then m̂ = n̂, and P = 1. Otherwise, P

rotates v into y along the shortest path on the sphere.

We use repeated reflections (19) to compose the output
error rotor:

P = m̂n̂ = y + v

|y + v|
v

|v| : P ∈ Spin(3), (30)

so that it rotates the estimated output v directly into the
measured output y along the shortest path on the sphere
(Figure 3).

The output error bivector is analogous to its parameter
error counterpart:

Y = −2 ln(P ). (31)

This bivector form of the output error encodes informa-
tion on both magnitude and direction—we will use it in the
update law (34) as a rotational velocity to drive the identifi-
cation plant kinematics.

Similar to the parameter error angle (29), the output
error angle is

ψ =
√

Y Ỹ . (32)

Again, this scalar provides a useful summary of the out-
put error, but the lack of directional information makes it
unsuitable for feedback.

Note that the error rotors tend toward unity as S → R,
while the bivectors and angles tend toward zero. When
y ‖ v, m̂ = n̂, so the output error rotor P = 1, the output
error bivector Y = 0, and the output error scalar ψ = 0.

Incidentally, this formulation allows the rotor identi-
fier to avoid the unwinding phenomenon sometimes en-
countered in quaternion controllers and estimators. Since
the output error rotor P is explicitly defined in (30) to trace
the shortest path on the sphere from the expected output v

to the observed output y, it will always describe a rotation
with the output error angle ψ < π . So if S0 = 1, then S will
stay closer to 1 than to −1 for all time.

3.5. Update Law

We formulate the rotor identifier as an output error feedback
regulator with proportional gain, using the output error
bivector to drive the rotational velocity of the estimated
rotor:

�(t) = κp(t)Y (t), (33)

where κp(t) is a positive-definite scalar, i.e., κp(t) > 0. For
the remainder of the paper, we will use constant κp , but the

stability proof still holds for a time-varying gain, as long as
κp is always positive.

Feeding the rotational velocity (33) into the first-order
rotor kinematics (23b) gives the continuous-time update
law:

Ṡ = −κp

2
YS and ˙̃S = κp

2
S̃Y. (34)

Error due to finite precision numerical integration is of little
concern—the algebraic structure of the rotor enforces or-
thogonality, and the unit norm constraint can be enforced
by periodic renormalization if necessary. This paper also
provides an exact discrete-time update in Section 3.8.

3.6. System

Substituting the update law (34) into the parameter error
(27) gives the continuous-time system:

Q̇ = R
(κp

2
S̃Y

)
= κp

2
QY. (35)

This looks very similar to the first-order rotor differential
equation (23b). In fact, (35) simply states that the rotational
velocity of the parameter error is proportional and opposite
to the rotational velocity of the estimate:

Q̇ = −1
2
ẊQ, (36)

− Ẋ = 2Q̇Q̃ = κpQYQ̃ = �′, (37)

where �′ is the rotational velocity expressed in the reference
frame of R. Note that the time derivative of a bivector (Ẋ)
is still a bivector.

3.7. Stability

We apply Lyapunov methods (Murray, Li, & Sastry, 1994;
Khalil, 1996) to prove the asymptotic stability of the contin-
uous time system (35). The proof is broken into three parts:
a general Lyapunov candidate function for rotor identifiers;
a geometric discussion of the criteria for stability; and the al-
gebraic proof of asymptotic stability for the specific update
law and system proposed here.

3.7.1 Lyapunov Candidate Function

Consider a Lyapunov candidate function based on the pa-
rameter error angle χ :

V = 1
2
χ 2. (38a)

This function is analogous to the Lyapunov candidate func-
tions employed in Bullo & Murray (1995) and Kinsey &
Whitcomb (2007a). By expanding the parameter error an-
gle χ , the Lyapunov candidate function can also be written
directly in terms of the parameter error bivector:

V = 1
2
‖X‖2 = 1

2
XX̃. (38b)
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The time derivative of the Lyapunov candidate function
(38b) is

V̇ = d

dt

(
1
2
XX̃

)
(39a)

= 1
2

(
ẊX̃ + X ˙̃X

)
. (39b)

Recalling that the reverse of a bivector is its negative (7b):

V̇ = −1
2

(
ẊX + XẊ

) = −Ẋ · X. (39c)

This form of the Lyapunov derivative applies to all rotor
identifiers using the candidate function (38)—the specific
identifier update law and resulting system have not yet
entered into the equation. To produce a stable system, the
update law must make (39c) negative-semidefinite.

3.7.2 Geometric Understanding

The Lyapunov derivative (39c) shows that any component
of Ẋ orthogonal to X is inconsequential in the stability anal-
ysis. Furthermore, for the Lyapunov derivative (39c) to be
negative-semidefinite, the component of rotational velocity
Ẋ that is not orthogonal to the parameter error bivector X

must be antiparallel to it, i.e., the part of Ẋ parallel to X must
have opposite sign; see (15). This is equivalent to an exten-
sion of Gauss’ Lemma reported in Bullo, Murray, & Sarti
(1995). With this geometric understanding of the V̇ ≤ 0 sta-
bility criterion, consider the update law (33) and resulting
system (37).

3.7.3 Stability of the proposed system

Substituting the system (37) into the Lyapunov derivative
(39c) gives

V̇ = 1
2
κp

(
QYQ̃X + XQYQ̃

)
. (40a)

Recall (21), which for X and Q is X = QXQ̃. Thus,

V̇ = 1
2
κp

(
QYQ̃QXQ̃ + QXQ̃QYQ̃

)
(40b)

= 1
2
κp

(
QYXQ̃ + QXYQ̃

)
(40c)

= 1
2
κpQ (YX + XY ) Q̃. (40d)

Since both sides of the equation are scalars, the rotation by
Q does nothing, leaving

V̇ = 1
2
κp (YX + XY ) . (40e)

Recalling (14b), this reduces to the inner product:

V̇ = κpY · X ≤ 0. (40f)

Since Y has been defined so that the part parallel to X has
the same sign as X, the inner product is a negative-definite

scalar (15). If the output error had been defined in the oppo-
site sense, the stability criterion (40f) would simply require
that κp be negative instead of positive.

Three conditions can cause Y · X = 0 and the inner
product V̇ to be negative-semidefinite:

1. When the parameter error X is zero and the rotor is
identified;

2. when the output error Y is zero—this corresponds to
an unstable equilibrium where the expected output is
parallel and directly opposed to the observed output (a
topological limitation sometimes referred to as almost
global stability); and

3. when the remaining parameter error is orthogonal to the
observed output error.

In these cases, the system is still stable, but not asymp-
totically stable. Condition (1) is achieved when the esti-
mated rotor equals the actual rotor and the identification is
complete. Condition (2) can be avoided by proper selection
of the initial condition, i.e., the initial estimated rotor gen-
erates an expected output that is not parallel and directly
opposed to the observed output. In practice, measurement
noise and persistent excitation quickly move the system
out of this unstable equilibrium. Persistent excitation is also
necessary to avoid condition (3) and ensure that the pa-
rameter error is completely observed (see the more detailed
discussion below). Thus both (a) persistent excitation and
(b) proper initial conditions are theoretically necessary for
(40f) to become strictly negative-definite, although in prac-
tice persistent excitation is sufficient.

If this identifier were operating in two dimensions, it
would have a complete observation of the parameter error
at every time step—Y and X would always be on the same
plane, and could never be orthogonal. But in three dimen-
sions, X can be orthogonal to Y , which makes Y · X = 0,
and part of the parameter error remains unobserved. Recall
(Figure 1b), which showed that two vectors do not com-
pletely define a rotation in three dimensions—that requires
two pairs of vectors. The identifier can estimate the com-
ponents of the alignment in the planes it has observed, but
it needs observations in different directions to be fully ex-
cited. This means that the plant input u has to be varied in
all directions in order to accurately estimate all components
of the alignment—if that happens, (40f) becomes negative-
definite.

Consequently, the proposed Lyapunov candidate func-
tion (38) satisfies the following conditions:

1. V is a continuous, scalar function.
2. V is positive-definite when χ �= 0.
3. When χ = 0, V = 0.
4. V̇ ≤ 0.

5. In the presence of persistent excitation, V̇ < 0.
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Figure 4. The components of the estimated rotor S computed
by the proportional gain rotor identifier converge to the com-
ponents of the unknown rotor R (marked by dash-dot lines).

When all of the above conditions are satisfied, the sys-
tem is asymptotically stable and the identified alignment
converges to the actual alignment as time approaches
infinity.

3.8. Discrete-time Implementation

Most applications will provide measurements of the input
u and the output y in discrete time, so it makes sense to
develop a discrete-time version of the proportional update
law (34).

Define the discrete update of the rotor estimate:

δS = SkS̃k−1 : Sk = (δS)(Sk−1). (41a)

Assuming the gain and rotational velocity of the rotor esti-
mate are constant over the time step, we use Euler’s method
to integrate the update law (34) directly:

δS =
∫ δt

0

(
−κp

2
YS

)
dτ = e− 1

2 (κpδt)Y , (41b)

Sk = e− 1
2 (κpδt)Y Sk−1. (41c)

This discrete-time form of the rotor identifier was imple-
mented in C using a base library generated by Gaigen2.5

(Fontijne, 2010), the latest version of the GA implementation
generator (Fontijne, Bouma, & Dorst, 2001; Fontijne, 2006).

Figure 4 shows the four components of the estimated
rotor S converging toward the true rotor R in a simulation
using the discrete-time rotor identifier. In other simulations,
several levels of random Gaussian noise were added to the
output y. Figure 5 illustrates how the scalar parameter error
χ decreases in time until it reaches the level of the noise.

3.8.1. Gain Selection

The proportional gain on this identifier operates as would
be expected on any system driven with proportional feed-
back: higher κp speeds up convergence, but it leaves the
system more susceptible to measurement noise; lower κp

rejects noise better, but it produces longer transients and
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Figure 5. Evolution of the scalar parameter error when the in-
put/output vector pairs are corrupted by additive white noise.
The estimated rotor converges to the actual rotor until χ ap-
proaches the noise floor. The estimate then oscillates around
the truth with magnitude controlled by the gain and the noise
level.
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Figure 6. Evolution of the scalar parameter error, normalized
by its initial value. Results are ensemble-averaged over 20 ran-
domly generated datasets and compared for four proportional
gains: κp ∈ {0.001, 0.01, 0.1, 0.25}.

slower convergence. Figure 6 illustrates this convergence
speed tradeoff—it shows ensemble averages of the scalar
parameter error χ for four different values of κp . The en-
sembles are averaged over 20 randomly generated datasets,
and χ is normalized by its initial value to show that the
identifier behaves similarly across the random datasets in
the ensemble, and it converges at different rates for different
κp . Optimal or adaptive gain selection is outside the scope
of the current paper, but it could be an interesting topic for
future research.

4. APPLICATION TO UNDERWATER ROBOT
NAVIGATION

Our motivation for investigating this class of adaptive iden-
tifiers arises from challenges in underwater navigation.
Navigation remains difficult for robots operating underwa-
ter, where a Global Positioning System (GPS) is unavailable,
and the limited precision and update rate of acoustic posi-
tioning systems is often insufficient for closed loop feedback
control of underwater robotic vehicles. Historically, under-
water controllers have been developed and implemented
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for the heading, altitude, depth, and attitude degrees of
freedom (Yoerger and Slotine, 1991; Fossen, 1994; Choi &
Yuh, 1996; Whitcomb & Yoerger, 1996). Only in the past
decade has closed-loop control in the horizontal degrees of
freedom become common in ocean robots (Whitcomb et al.,
2003), and this is the direct result of the development of new
navigation systems with sufficient resolution and update
rate (Whitcomb, Yoerger, & Singh, 1999; Kinsey & Whit-
comb, 2004). Navigation is also crucial in obtaining impor-
tant measurements for oceanographic research. For exam-
ple, AUVs use sonar and cameras to make high-resolution
seafloor maps that are not obtainable from surface ships
(Singh et al., 2007; Caress et al., 2008; Pizarro, Eustice, &
Singh, 2009). Improved navigation enhances both the con-
trol of underwater vehicles and the scientific value of data
obtained by these vehicles.

Underwater vehicles employ a variety of sensors to
estimate the XY position. GPS provides three-dimensional
navigation for both surface and air vehicles, however the
rapid attenuation of GPS radio-frequency signals prevents
them from being used by submerged vehicles. The accuracy,
update rate, and range of acoustic positioning systems de-
pend on many factors, including the nominal frequency of
the acoustic signals used. Long-baseline (LBL) acoustic sys-
tems estimate vehicle position based on ranges computed
from two-way travel times to and from fixed transponders
deployed on the seafloor. LBL systems used in the field typ-
ically have a center frequency of 12 kHz, with a precision
of ±0.25–10 m and update periods as long as 20 s (Hunt
et al., 1974; Milne, 1983). Ultra-short baseline (USBL) acous-
tic tracking is becoming more widely used in navigation for
scientific, industrial, and military underwater vehicles. The
geographic position of the submerged vehicle is calculated
by adding the acoustic range, azimuth, and elevation mea-
surements from a single ship-mounted transducer to the
GPS position of the ship. However, as with LBL systems, the
limited precision and update rate of USBL measurements
precludes their use for underwater robot control. Inertial
navigation systems (INSs) offer excellent strap-down nav-
igation capabilities, but they require help from additional
sensors to limit integration drift in the position estimates
(Britting, 1971; Titterton & Weston, 1997). To date, power
consumption and cost have precluded the widespread use
of high-grade INSs in civilian underwater vehicles. Refer to
Kinsey, Eustice, & Whitcomb (2006) for an extensive review
of underwater vehicle navigation.

DVL-based DR navigation is commonly used in under-
water vehicles (Brokloff, 1994; Whitcomb, Yoerger, & Singh,
1999; Kinsey & Whitcomb, 2004). The DVL measures the
velocity of the vehicle with respect to the seafloor, and it
reports it as a 3 × 1 vector in the instrument frame:

i
ṗd (t) =

⎡
⎣ ẋ(t)

ẏ(t)
ż(t)

⎤
⎦ . (42)

The instrument-frame velocity, iṗd (t), is converted
to the world-frame velocity, wṗd (t), by the linear
transformation

w
ṗd (t) = w

v
R(t)

v

i
R

i
ṗd (t), (43)

where w

v
R(t) is the time-varying rotation matrix from the

vehicle frame to the world frame, measured by a three-axis
orientation sensor. The accuracy and precision of this orien-
tation sensor are crucial (Joyce, 1989; Pollard & Read, 1989;
Brokloff, 1994; Münchow et al., 1995; Whitcomb, Yoerger, &
Singh, 1999; McEwen et al., 2005). A three-axis gyrocompass
based on fiber-optic gyroscopes (FOGs) provides dynamic
accuracy on the order of 0.1◦, and using a FOG gyro-
compass for DR navigation gives better results than using a
gyrostabilized magnetic compass (Kinsey & Whitcomb,
2004). The DVL alignment v

i
R is the constant rotation matrix

from the DVL instrument frame to the vehicle frame—our
goal is to use the rotor identifier presented in Section 3 to
estimate this rotation.

The DR position estimate, wpd , is computed by inte-
grating the world velocities iṗ in time:

w
pd (t) = w

pd (t0) +
∫ t

t0

w

v
R(τ )

v

i
R

i
ṗ(τ )dτ, (44)

where wp(t0) is the initial position estimate. For a more de-
tailed discussion of DR navigation in underwater vehicles,
see Brokloff (1994); Whitcomb, Yoerger, & Singh (1999); Kin-
sey & Whitcomb (2004); and Stanway (2012).

4.1. The Alignment Calibration Problem

If a FOG is used to estimate the vehicle’s orientation, then
the principal source of error in the DR position estimate (44)
is the alignment, v

i
R, between the DVL and the FOG (Whit-

comb, Yoerger, & Singh, 1999; Kinsey & Whitcomb, 2004).
In cases in which the DVL and the attitude sensor can be
assembled as a single mechanical unit, e.g., Alameda (2002),
the alignment can be calibrated once under controlled lab-
oratory conditions by the manufacturer. The in situ align-
ment problem arises when the DVL and the orientation
sensors cannot be assembled as a single unit because of
size, weight, power, pressure housing limitations, or recon-
figurability requirements. These concerns often necessitate
that the DVL and FOG be mounted at different locations
on the vehicle. For example, on the Sentry AUV, the DVL is
mounted forward on the keel of the vehicle, while the FOG
is mounted inside a pressure housing approximately 1.5 m
away. This arrangement precludes calibrating the alignment
of the sensors during manufacture, thus necessitating in situ
alignment calibration from data available during normal
submerged vehicle operations.

In situ estimation of FOG/DVL alignment using LS
techniques has been previously reported by researchers
using the DVL for navigation (Brokloff, 1994; Kinsey &

Journal of Field Robotics DOI 10.1002/rob



642 • Journal of Field Robotics—2015

Whitcomb, 2007b) and for water velocity measurements
(Joyce, 1989; Pollard & Read, 1989; Münchow et al., 1995).
Kinsey and Whitcomb derive an SO(3) constrained adap-
tive identifier and apply it to this problem in Kinsey & Whit-
comb (2007a). Recently, Troni and Whitcomb have adapted
the LS methods to estimate the alignment between DVL and
INS (Troni & Whitcomb, 2010, 2011; Troni, Kinsey, Yoerger, &
Whitcomb, 2012). Their method eliminates the need for ex-
ternal position measurements, effectively making it a strap-
down calibration technique.

The sensor alignment problem differs from the inter-
nal gyrocompass calibration problem (e.g., identification of
bias, temperature dependence, and nonorthogonality). As
with previously reported results, we assume the presence of
an internally calibrated FOG gyrocompass, and we are con-
cerned with estimating the alignment between the FOG and
DVL. This paper differs from previously reported results in
that it uses GA to formulate a rotor adaptive identifier to
estimate the DVL/FOG alignment.

In Kinsey & Whitcomb (2007b), the authors integrate
(44) by parts to obtain

v
wR(t)wpl(t) −

∫
v
wṘ(τ )wpl(τ )dτ︸ ︷︷ ︸

y(t)

= v
i R︸︷︷︸
R

∫
i ṗd (τ )dτ︸ ︷︷ ︸

u(t)

, (45)

which is the LA form of the identification plant (24). The
input signal, u(t), and the output signal, y(t), are functions
of in situ sensor measurements.

In our experiments, these signals are based on data
obtained from the following three navigation sensors:

1. DVL: A bottom-lock DVL providing three-axis transla-
tional velocities, iṗd (ti), in instrument coordinates. Com-
mercially available units can provide velocity measure-
ments with single-ping standard deviations less than
0.3% with an accuracy of 0.2–0.4% and update rates up
to 7 Hz.

2. FOG: A three-axis North-seeking FOG gyrocompass
providing absolute orientation, w

v R(τ ), and orientation
rate, w

v Ṙ(τ ), with respect to true North and the local grav-
itational field. Commercially available units can provide
dynamic measurements at up to 100 Hz with a precision
of about 0.1◦.

3. LBL: An LBL acoustic positioning system providing
absolute three-dimensional vehicle position measure-
ments, wpl(tk), at relatively low update rates. Commer-
cially available 10–40 kHz systems can provide absolute
precision of 0.1–10 m with update rates varying from 1.0
to 0.05 Hz over ranges of approximately 10 km. Higher-
frequency 200–500 kHz systems are capable of subcen-
timeter precision and update rates of up to 10 Hz, but
they are limited to ranges less than 100 m.

Our goal is to use these sensor signals to experimentally
determine an estimate of the unknown sensor alignment.

The rotor identifier will use the integrated vector input and
output signals (u(t) and y(t), respectively) from (45) in the
identification plant (24):

y = Ru �→ y = RuR̃, (46)

to estimate the alignment rotor R. Once the alignment is
known, the DVL and FOG signals can precisely determine
the vehicle position by DR (44), or with stochastic state esti-
mation techniques such as Kalman filtering (Kalman, 1960).

For simplicity of exposition, we have assumed that (i)
the LBL transponder is colocated with the DVL at the origin
of the vehicle’s reference frame, and (ii) the coordinate axes
of the FOG define the coordinate axes of the vehicle frame.
While these assumptions greatly simplify the navigation
equations, they can easily be relaxed without requiring any
fundamental change in the proposed methodology. This as-
sumption was also made in the experiments reported in
Kinsey & Whitcomb (2007a,b).

The DVL, FOG, and LBL all provide asynchronous
measurements in discrete time. We first resample the data
to provide synchronous measurements, and we use (45) to
calculate the input and output signals of the rotation plant.
We then estimate the unknown DVL/FOG alignment using
the discrete-time form of the rotor identifier (41c).

In the following sections, we report the experimental
validation of the rotor identifier using data collected by
underwater robots in the laboratory and in the field. For all
experiments, the initial condition of the rotor estimate was
S = 1. Analysis starting with alternate initial conditions also
converged to the same alignment estimate.

For the following experiments, we numerically tested
several gains and chose κp = 0.001. This value was not
overly sensitive to noise in the input measurements, and
it provided a convergence speed roughly comparable to
the SO(3) adaptive identifier method. As mentioned in Sec-
tion 3.8.1, the effect of the gain on the rotor identifier is
consistent with any other proportional identifier or con-
troller: higher proportional gain renders the system more
sensitive to noise, but lower proportional gain slows the
system response.

5. LABORATORY EXPERIMENTS

We first evaluate the performance of the rotor identifier by
using it to estimate the DVL/FOG alignment on a labora-
tory ROV. The experiments were conducted in the Hydro-
dynamics Test Facility at Johns Hopkins University (Kin-
sey, Smallwood, & Whitcomb, 2003) using the JHUROV
(Figure 7), a testbed vehicle for dynamics, control, and nav-
igation studies for deep submergence vehicles (Smallwood,
Bachmayer, & Whitcomb, 1999). JHUROV is instrumented
with sensors similar to those found on vehicles in the field,
except that some of the laboratory systems have higher pre-
cision and shorter range. The sensors relevant to this study
are listed in Table I.
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Figure 7. The Johns Hopkins University ROV is a laboratory
system outfitted with sensors similar to those typically found
on oceanographic research vehicles. It is a testbed vehicle used
for dynamics, control, and navigation studies for deep submer-
gence vehicles (photo credit: JHU DSCL).

The rotor identifier was used to estimate DVL/FOG
alignment on JHUROV during six laboratory experiments.
Each experiment was 40 min long, during which the robot
was in closed-loop position control following predefined
trajectories. The duration of the data acquisition is long
enough to converge on a solution but short enough to avoid
potential problems from unmodeled DR integration drift.
These experiments are discussed extensively in Kinsey &
Whitcomb (2007b).

5.1. Methodology

Using these data, four techniques were used to compute the
DVL/FOG alignment:

� Visual: This is a visual alignment estimate of the DVL
alignment with the instrument. Relative to the FOG, the
DVL rotated 45◦ in heading and 0◦ in roll and pitch.

� LS-SO(3): The SO(3) constrained least squares method
originally reported in Umeyama (1991) and applied to
DVL/FOG alignment in Kinsey & Whitcomb (2007b).

� ID-SO(3): The adaptive identifier on SO(3) reported in
Kinsey & Whitcomb (2007a). This has been slightly mod-
ified by normalizing the input u and output y fed to the

identifier. This change preserves directional information
in the measurements, but it changes the behavior of the
identifier with respect to gains. It was necessary for the
identifier to work on the field experiments.

� ID-Spin(3): The adaptive identifier on Spin(3), the group
of rotors in G3, as introduced in Stanway & Kinsey (2011)
and detailed in this paper.

To experimentally evaluate the rotor identifier, we com-
pare DR trajectories (44) calculated with the rotor alignment
estimate to LBL observations. The DR trajectories were also
computed for the visual, LS-SO(3), and ID-SO(3) alignment
estimates. This analysis uses the same renavigation imple-
mentation as in Kinsey & Whitcomb (2007a,b). Rotor align-
ment estimates were translated directly into equivalent ro-
tation matrices using the basis vector image method (Dorst,
Fontijne, & Mann, 2007).

Having recomputed the DR trajectories, we calculate
the position residual p which is the difference between
the DR estimate and the LBL measurement of vehicle
position:

p = pn
DR − pn

LBL, (47a)

⎡
⎣x

y

z

⎤
⎦ =

⎡
⎢⎣

xn
DR − xn

LBL

yn
DR − xn

LBL

zn
DR − zn

LBL

⎤
⎥⎦ . (47b)

Figure 8 shows the components of the position residual in
laboratory experiment 070.

The position residual serves as the basis for several
other performance metrics:

1. The components of the position residual (47b) are sorted
into bins, and the distribution is plotted for the resid-
ual along each direction. These are the residual compo-
nent distributions. The horizontal axis shows the residual,
and the vertical axis shows the normalized frequency
(Figure 9).

2. We summarize the residual component distributions by
computing the standard deviations of the residual in the
x, y, and z degrees of freedom. These are the residual

Table I. Navigation sensors on JHUROV used in laboratory experiments [adapted from Kinsey & Whitcomb (2007a, 2007b)].

Quantity Sensor Sample rate Precision Range

(x, y) position 300 kHz LBL (Marquest SHARPS) 5 Hz 5e−3 m 100 m
depth pressure transducer (Paroscientific Digiquartz) 1.4 Hz 1e−4 m 10 m
orientation FOG gyrocompass (IXSEA PHINS) 10 Hz 0.01◦ 360◦

velocity 1200 kHz DVL (TRDI WHN) 7 Hz 0.3% �30 m
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Figure 8. Components of the position residual from labora-
tory experiment 070. In the left column, residuals from DR
with the visual alignment estimate are plotted in gray. In the
right column, residuals from DR with the ID-Spin(3) alignment
estimate are plotted in green. Note that the vertical compo-
nent of the residual from the visual alignment is much larger
than the others, and that the ID-Spin(3) alignment reduces it
considerably.

component standard deviations. These are collected in the
residual component standard deviation vector

σ =
⎡
⎣ σx

σy

σz

⎤
⎦ =

⎡
⎢⎣

std
(
xn

DR − xn
LBL

)
std

(
yn

DR − yn
LBL

)
std

(
zn

DR − zn
LBL

)
⎤
⎥⎦ ∈ R

3. (48)

The Euclidean norm of this vector is termed the standard
deviation vector norm. This provides a scalar metric for
computing ensemble statistics.
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Figure 9. Distributions of the position residual components
from laboratory experiment 070. The thick vertical line marks
the mean of the residual, the medium vertical lines show one
standard deviation (1σ ), and the thin vertical lines show three
standard deviations (3σ ).

3. We also compute the Euclidean norm of the position
residual at each point in time:

‖p‖2 =
√

(p) (p)T ∈ R
n×1. (49)

This is the residual magnitude. Since the magnitude of p
is always positive, this produces a one-sided distribution
(Figure 10a). The frequency axis is normalized so that the
distribution integrates to 1. The integral of this distribu-
tion is the cumulative residual magnitude distribution—it
shows the fraction of the residuals that fall below a cer-
tain magnitude. For example, (Figure 10b) shows that
half of the position residual vectors are less than 0.053 m,
and 90% of them are less than 0.094 m. We use the mean
and median to summarize this metric.

5.2. Alignment Identification

Figure 11 shows the normalized distribution of the residual
magnitude for experiment 070. Table II shows the standard
deviations. For the visual alignment, the range of the resid-
uals exceeds 1 m. Applying the rotor alignment estimate
decreases the range to 0.14 m and is comparable to the LS-
SO(3) and ID-SO(3) methods.

Journal of Field Robotics DOI 10.1002/rob



Stanway and Kinsey: Rotation Identification in Geometric Algebra • 645

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

residual norm, p̃ 2 [m]

0

5

10

15

20

25

30

no
rm

al
iz

ed
de

ns
it
y

(a) Distribution

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

residual norm, p̃ 2 [m]

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
cu

m
ul

at
iv

e
de

ns
it
y

(b) Cumulative distribution

Figure 10. Distribution (a) and cumulative distribution (b) of the position residual magnitude from laboratory experiment 070,
using the alignment estimated by the rotor identifier. On the distribution in the left panel (a): the thick vertical line marks the mean,
and the dashed vertical line marks the median. On the cumulative distribution in the right panel (b): the dashed lines show that
50% of the residuals fall below 0.053 m, and 90% fall below 0.094 m.
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Figure 11. Residual magnitude distribution on JHUROV laboratory dataset 070, renavigated using different DVL/FOG alignment
estimates. The left figure is a zoom into the left side of the right figure, to see the small differences between the alignment methods.
Vertical lines indicate the mean of the residual magnitude. The rotor identifier presented here performs comparably to the LS-SO(3)
batch method in Kinsey & Whitcomb (2007b) and the ID-SO(3) method with normalized inputs, adapted from Kinsey & Whitcomb
(2007a). All three methods perform significantly better than the visual alignment estimate.
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Figure 12. Cumulative residual magnitude distribution for JHUROV laboratory dataset 070, renavigated using different DVL/FOG
alignment estimates. The left figure is a zoom into the left side of the right figure, to see the small differences between the alignment
methods. The rotor identifier presented here performs comparably to the LS-SO(3) batch method in Kinsey & Whitcomb (2007b) and
the ID-SO(3) method with normalized inputs, adapted from Kinsey & Whitcomb (2007a). All three methods perform significantly
better than the visual alignment estimate.

Figure 12 shows the normalized cumulative distri-
bution of the residual magnitude. For example, 50%
of the residuals in expt070 are below 0.053 m for
the rotor identifier, but that same fraction of residu-

als extends as high as 0.53 m using the visual align-
ment estimate. Again, the ID-Spin(3) case provides
comparable performance to the LS-SO(3) and ID-SO(3)
methods.
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Figure 13. Experimental validation of alignment estimates on laboratory data. Self-validation (left) is illustrated by the normalized
standard deviation vector norm calculated using data from the same experiment as was used to estimate the alignment. All datasets
show an improvement in navigation over the original (visual) alignment estimate. Cross-validation statistics (right) were computed
using the alignment estimate from one dataset to renavigate all other datasets. Bars show the mean normalized magnitude of the
standard deviation vector, and whiskers indicate the standard deviation of this magnitude across the other datasets.

Table II. Position residual statistics after renavigation of lab datasets collected by JHUROV.

dataset alignment method σNorth σEast σdepth ‖σ‖ ‖σ‖
‖σ visual‖ mean ‖p‖ median ‖p‖

expt063 visual 0.048941 0.051171 0.562006 0.566449 1.000000 0.493259 0.477453
LS-SO(3) 0.048044 0.045893 0.026068 0.071372 0.125999 0.065268 0.062575
ID-SO(3) 0.049499 0.045983 0.031374 0.074491 0.131505 0.068100 0.064871
ID-Spin(3) 0.049080 0.045934 0.021666 0.070627 0.124683 0.063832 0.061798

expt064 visual 0.054306 0.055148 0.559550 0.564878 1.000000 0.491591 0.477783
LS-SO(3) 0.050364 0.052372 0.026778 0.077437 0.137086 0.071144 0.069237
ID-SO(3) 0.051481 0.052184 0.024861 0.077405 0.137030 0.070971 0.068505
ID-Spin(3) 0.051152 0.052090 0.023962 0.076838 0.136026 0.070451 0.068020

expt066 visual 0.055127 0.063670 0.634868 0.640429 1.000000 0.561986 0.539055
LS-SO(3) 0.051213 0.081422 0.016910 0.097664 0.152498 0.089230 0.087373
ID-SO(3) 0.049993 0.080407 0.018780 0.096526 0.150721 0.088191 0.085575
ID-Spin(3) 0.049093 0.079424 0.018137 0.095117 0.148521 0.086825 0.083930

expt067 visual 0.045764 0.054911 0.652066 0.655972 1.000000 0.575595 0.593576
LS-SO(3) 0.056585 0.067803 0.018521 0.090234 0.137558 0.080677 0.077294
ID-SO(3) 0.037244 0.053945 0.021890 0.069111 0.105356 0.060573 0.056939
ID-Spin(3) 0.038036 0.057167 0.019969 0.071509 0.109012 0.062514 0.057791

expt069 visual 0.050956 0.061569 0.593581 0.598937 1.000000 0.523565 0.527018
LS-SO(3) 0.047439 0.053742 0.019076 0.074179 0.123850 0.067636 0.065466
ID-SO(3) 0.045226 0.052778 0.018236 0.071857 0.119974 0.065144 0.063387
ID-Spin(3) 0.046041 0.053130 0.021236 0.073441 0.122618 0.066976 0.065171

expt070 visual 0.060111 0.053238 0.624291 0.629433 1.000000 0.552794 0.531055
LS-SO(3) 0.040129 0.040330 0.027860 0.063349 0.100645 0.058784 0.054766
ID-SO(3) 0.042558 0.040951 0.030262 0.066363 0.105432 0.061415 0.057304
ID-Spin(3) 0.041485 0.040701 0.020898 0.061760 0.098120 0.056765 0.052385

The other laboratory datasets show similar results.
When using the rotor identifier alignment:

� The residual component distributions possess lower
standard deviations—the standard deviation vector
norm is 9–15% of the value using the visual alignment.

� The mean residual magnitude is on the order of
10−2 m, compared to 10−1 m using the visual
alignment.

� Half of the residuals have a magnitude less than
0.09 m, compared to 0.60 m using the visual
alignment.
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Similar results are observed for the LS-SO(3) or ID-
SO(3) alignment estimates showing that the rotor identifier
provides comparable performance.

Table II summarizes the statistics of the renavigation
residuals for all six laboratory experiments. The rotor iden-
tifier provides modest reductions in the navigation errors
for the horizontal components (σNorth, σEast) and significant
reductions in the vertical direction (σDepth). Figure 13 shows
the normalized residual component standard deviation vec-
tor norm normalized by the value for the visual estimate
(i.e., this value equals unity for the visual estimate). Using
the alignment estimated by the rotor identifier reduces the
standard deviation vector norm to 10–15% of its original
value with the visual alignment estimate. The mean and
median of the magnitude of the residuals are similarly re-
duced. Again, the rotor identifier performs comparably to
the previously reported rotation matrix methods, and all of
these perform significantly better than the original visual
alignment.

5.3. Cross-validation

Given that the JHUROV is a rigid-body and the sensors
are not moved between experiments, we expect that an
alignment estimate from one experiment should perform
comparably on the other experiments. To test this hypoth-
esis, we renavigated each experiment using alignment es-
timates from the other five experiments. We computed the
position residuals and the accompanying normalized resid-
ual component standard deviation, which is itself a vector.
The results are summarized by computing the statistics of
this vector for each experiment. The right plot in Figure 13
shows the mean and standard deviation of the magnitude
of the residual standard deviation vector. When compared
to an experiment’s own alignment estimate, the alignment
estimates from other experiments provide a comparable re-
duction in the navigation errors. We also tested the cross-
validation hypothesis on the LS-SO(3) and ID-SO(3) tech-
niques, and we observed a similar result. This is consistent
with results reported in Kinsey & Whitcomb (2007a,b).

6. FIELD EXPERIMENTS

Having validated the performance of the rotor identifier
with laboratory data, we then evaluated its performance
on data obtained with an AUV operating in the field. The

Figure 14. The National Deep Submergence Facility (NDSF)
AUV Sentry is an unmanned oceanographic research vehicle
that dives as deep as 6,000 m to perform various scientific mis-
sions. Sentry navigates primarily by DR with a FOG and DVL.
The FOG is located in the main pressure housing, roughly amid-
ship and just below the name label. The DVL is on the keel just
aft from the bow. The large separation between these sensors
on a vehicle that may deform under extreme pressure (even
slightly) motivates our study of stable, in situ sensor alignment
methods (photo credit: D Yoerger, ABE/Sentry Group, WHOI).

data were obtained by Sentry (Figure 14), a 6,000 m depth-
rated AUV used for scientific research (Kinsey et al., 2011)
during an expedition to the Håkon Mosby mud volcano,
at 1,200 m depth on the continental slope of the Barents
Sea. Table III summarizes the navigation sensors used on
this cruise. The velocity and attitude sensors are identical to
those used in the laboratory experiments. The depth and XY
position sensors are similar to those used in the laboratory
experiments, but with increased range to allow for use in
the deep-ocean. For example, instead of using the 300 kHz
acoustic positioning system used with the JHUROV, a net-
work of three 12 kHz LBL transponders was deployed and
surveyed prior to the dives. The tradeoff for this increase in
range is a degradation in precision. For example, the preci-
sion of the LBL systems goes from 5e−3 m in the laboratory
experiments to 2.5e−1 m for the field experiments and the
update rate decreases from 5 to 0.1 Hz.

The reported rotor identifier was applied to naviga-
tion data from five dives on this cruise. We used the same
analysis methodology as for the laboratory experiments
(Section 5). Since the measurement period of the field LBL

Table III. Sensors on Sentry used in field experiments.

Quantity Sensor Sample rate Precision Range

(x, y) position 12 kHz LBL (WHOI) 0.1 Hz �0.25 m >10,000 m
depth pressure transducer (Paroscientific Digiquartz) 1.4 Hz 0.02 m 6,500 m
orientation FOG gyrocompass (IXSEA PHINS) 10 Hz 0.01◦ 360◦

velocity 300 kHz DVL (TRDI WHN) 2 Hz 0.3% �200 m
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Figure 15. Distributions of residual components for Sentry075,
renavigated using different DVL/FOG alignment estimates.
The rotor identifier presented here performs comparably to the
LS-SO(3) batch method in Kinsey & Whitcomb (2007b) and the
ID-SO(3) method with normalized inputs, adapted from Kinsey
& Whitcomb (2007a).

system is an order of magnitude longer than the laboratory
system, the analyzed datasets are 2–4 h long.

6.1. Alignment Identification and Renavigated
Trajectory

Figure 15 shows the normalized distribution of each com-
ponent of the residual, and Figure 16a shows the nor-

malized distribution of the residual magnitude for dive
Sentry075. The magnitude distribution of the residuals for
the rotor identifier alignment is slightly smaller than those
for the visual estimate of the alignment. This is also reflected
in the mean of the distribution. Again, the rotor identifier
performs comparably to the previously reported rotation
matrix identification methods.

Figure 16b shows the normalized cumulative distribu-
tion of the residual magnitude. For Sentry 075, 50% of the
residuals are lower than 3.3 m for the rotor identifier. The
ID-SO(3) provides comparable performance. For the visual
alignment estimate, 50% of the residuals are above 5.7 m
magnitude.

Table IV lists the summarized statistics of the renav-
igation residuals for all five field experiments. Figure 17
shows these quantities graphically. As in the laboratory
experiments, the rotor identifier performs comparably to
the previously reported rotation matrix methods. For some
dives, these perform only slightly better than the original vi-
sual alignment method. This suggests that the visual align-
ment estimate is very close to the actual DVL/FOG align-
ment, and a finer alignment is difficult to identify in these
trajectories with the field LBL system.

6.2. Cross-validation

Again, it is reasonable to ask how the alignment estimated
using one dataset performs on another. We cross-validated
the alignment estimates using the same methodology used
in the lab experiments. The right plot in Figure 17 shows the
normalized standard deviation vector magnitude. It varies
across alignment estimates—staying close to 1 for the most
part.

The alignment estimates from dive 076 perform poorly,
probably because Sentry was operating at low altitude and
came into contact with the seafloor a few times. The DR data
from that dive are suspect, but they are still included here
for completeness.
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Figure 16. Distribution (a) and cumulative distribution (b) of the position residual magnitude from Sentry075, renavigated using
different DVL/FOG alignment estimates. The rotor identifier presented here performs comparably to the ID-SO(3) method with
normalized inputs, adapted from Kinsey & Whitcomb (2007a). On the distribution in the left panel (a): the vertical lines indicate
the mean of the residual magnitude. The cumulative distribution in the right panel (b) shows that 50% of the residuals fall below
3.25 m for the adaptive identifier methods, while the LS and visual methods produce larger position residuals.
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Figure 17. Experimental validation of alignment estimates on field data. Self-validation (left) is illustrated by the normalized
standard deviation vector norm calculated using data from the same experiment as was used to estimate the alignment. All
datasets show an improvement in navigation over the original (visual) alignment estimate. Cross-validation statistics (right) were
computed using the alignment estimate from one dataset to renavigate all other datasets. Bars show the mean normalized magnitude
of the standard deviation vector, and whiskers indicate the standard deviation of this magnitude across the other datasets.

Table IV. Position residual statistics after renavigation of field datasets collected by Sentry.

dataset alignment method σNorth σEast σdepth ‖σ‖ ‖σ‖
‖σ visual‖ mean ‖p‖ median ‖p‖

sentry073 visual 4.925604 7.024044 0.199698 8.581297 1.000000 7.626768 6.779823
LS-SO(3) 3.107703 6.747554 4.000094 8.437302 0.983220 7.834738 7.582955
ID-SO(3) 2.821279 6.756833 2.519565 7.743553 0.902376 7.020782 6.495987
ID-Spin(3) 2.886001 6.755998 3.344796 8.072185 0.940672 7.369756 6.960915

sentry074 visual 2.097726 1.492669 0.570155 2.636966 1.000000 2.485443 2.453175
LS-SO(3) 2.082878 1.223801 0.122710 2.418911 0.917308 2.274189 2.264834
ID-SO(3) 2.091771 1.361575 0.483944 2.542360 0.964123 2.396811 2.369539
ID-Spin(3) 2.089810 1.317990 0.316806 2.490938 0.944623 2.342860 2.332514

sentry075 visual 3.464273 1.699159 5.669578 6.858020 1.000000 6.160024 5.700183
LS-SO(3) 3.545474 1.823476 2.246371 4.576203 0.667277 4.201113 4.155020
ID-SO(3) 3.581354 1.714496 0.447683 3.995750 0.582639 3.485687 3.222189
ID-Spin(3) 3.596213 1.696875 0.467718 4.003859 0.583821 3.489983 3.242537

sentry076 visual 5.554410 1.854264 5.938688 8.340131 1.000000 7.277020 6.342527
LS-SO(3) 5.791469 0.743226 1.286456 5.979002 0.716895 4.311404 2.746244
ID-SO(3) 5.761885 0.850114 1.652750 6.054222 0.725914 4.501826 2.912722
ID-Spin(3) 5.764633 0.738832 1.984426 6.141238 0.736348 4.592775 2.975477

sentry077 visual 1.264703 2.807797 1.114158 3.274835 1.000000 2.933720 2.768180
LS-SO(3) 1.217805 2.753298 0.308248 3.026337 0.924119 2.636209 2.552532
ID-SO(3) 1.200990 2.745069 0.204503 3.003266 0.917074 2.607675 2.519493
ID-Spin(3) 1.169840 2.751775 0.422730 3.019849 0.922138 2.643394 2.551747

The statistics from dive 073 also show that the iden-
tified estimates tend to do worse than the visual estimate
across the other datasets. Sentry073 covered more distance
at high altitude, with little change in depth—a trajectory
that may not have provided enough information for any of
the identifiers.

7. DISCUSSION

Looking at these experimental results, we observe a num-
ber of trends. First, while all three methods significantly
reduced the normalized error for the laboratory experi-
ments, the improvements are less dramatic for the field
experiments. There are two possible causes for this: (1) the
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position measurements from the 12 kHz LBL system (which
has a lower resolution and update rate than the 300 kHz sys-
tem used in the laboratory experiments) have more noise,
limiting the precision that the identifier can achieve; and (2)
the visual DVL/FOG alignment estimate on Sentry is very
close to the actual alignment, and identification techniques
can only provide a modest improvement. The second cause
is also noted by Troni et al. (Troni & Whitcomb, 2011) in
their field validation of a SO(3)-based alignment technique
using DVL velocity and INS acceleration measurements.
Because their method does not use position measurements
but provides a similar result, the second cause is likely.

Second, we observe that the laboratory and field re-
sults show that the ID-Spin(3) method proposed in this
paper is comparable to the previously reported LS-SO(3)
and ID-SO(3) techniques. For example, in 6 of the 11 exper-
iments, the ID-SO(3) method marginally outperforms the
ID-Spin(3) method. This is consistent with the derivation of
these methods—neither of them should be expected to pro-
vide significantly better performance than the other. Both
methods should identify the alignment up to the level of
sensor noise in the measurements, as illustrated in the sim-
ulation results for the rotor identifier (Figure 5).

7.1. Advantages over Previously Reported
Methods

Although the rotor identifier does not outperform existing
methods in terms of navigated position residuals, the GA
approach has several theoretical and practical advantages.

7.1.1. Simple Scalar Proportional Gain

The rotor identifier proposed here uses a simple single scalar
proportional gain, κp , and the acceptable values for a stable
system are well-defined. This provides the practitioner with
a single parameter to tune the system for desired response
time and noise sensitivity. The system responds to changes
in κp in an intuitive way, similar to other proportional gain
systems: higher κp leads to faster response at the cost of in-
creased noise sensitivity, and lower κp makes the system less
susceptible to noise at the cost of slower convergence time.
The simplicity of this single scalar gain allowed us to tune
the system quickly and easily, but it could also be benefi-
cial for future efforts in gain scheduling or dynamic tuning.
This is in contrast to some of the previous work using rota-
tion matrices in LA [see, e.g., Kinsey & Whitcomb (2007a)]
where the gain could potentially be a 3 × 3 matrix, compli-
cating any manual or automated tuning. Furthermore, our
approach might allow the addition of a derivative gain that
would add damping to the system and provide better noise
rejection—this is a subject for future research.

7.1.2. Computational Efficiency

The compactness and computational advantages of quater-
nions are widely documented [see, e.g., Brown (1989),

Kuipers (1999), and Farrell (2008)]. Rotors in G3 are
isomorphic to quaternions and have the same computa-
tional advantages, so the rotor identifier provides a more
efficient method for estimating rotations in real time than
the existing SO(3)-based methods. This advantage is im-
portant in applications with higher data update rates or for
real-time estimation on lower-power computers that are be-
ing increasingly used in robots. Furthermore, representing
the rotations as rotors instead of rotation matrices allows us
to average alignment estimates directly (Buchholz & Som-
mer, 2005; Doran, 2000).

Existing quaternion-based methods also have these
computational advantages, but most assume a complete ob-
servation at each time step, and they are not directly appli-
cable to this particular problem. The identifier described in
this paper could be implemented using quaternions instead
of rotors, but GA adds concepts to simplify the formulation
and stability proof (Section 7.1.3), so it makes more sense to
use rotors.

7.1.3. Geometric Understanding, Straightforward
Formulation, and Stability Proof

One of the main advantages of using GA is the clarity it
brings to the mathematical formulation of the identifier and
the proof of asymptotic stability. Using rotors in GA inher-
ently constrains the solutions to valid rigid-body rotations.
We define both parameter and output error first as rotors,
and then we show how those rotors connect to bivector
and scalar metrics for the same errors. These error metrics
are more geometrically meaningful than the error measures
used in previous work using LA, and GA makes the rela-
tionships between the error metrics clear.

We compose the output error rotor directly from the
expected and observed output vectors using repeated re-
flections. We derive the output error bivector from the loga-
rithm of the output error rotor. Then we solve the alignment
problem by driving the first-order rotor kinematics with a
simple proportional feedback regulator on the output error
bivector.

The scalar parameter error angle provides a natural
starting point for our Lyapunov stability analysis, and ex-
panding the Lyapunov candidate function in terms of the
parameter error bivector leads to a geometric understand-
ing of the criteria for stability. This explains why a sim-
ple first-order output error feedback regulator can provide
asymptotically stable identification, using only the most ba-
sic parts of GA.

7.1.4. Reduced Data Manipulation

The ID-SO(3) method reported in Kinsey & Whitcomb
(2007a) required the input and output data from the field
datasets to be normalized prior to running the adaptive
identifier (Section 5.1). Without normalizing first, the mag-
nitude of the input and output vectors defined in (45)
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Figure 18. Scalar residual with respect to LS-SO(3) alignment
estimate.

varies. Since the output error in Kinsey & Whitcomb (2007a)
is defined using the cross-product between expected and
observed outputs, this means that the magnitude of the
output error varies over an even wider range. Normalizing
the inputs and outputs limits the range of magnitudes for
the output error while preserving the directional informa-
tion and minimizing changes to the published algorithm.
Effectively, this change means that the adjusted ID-SO(3)
method operates on the sine of the angle between expected
and observed outputs, where the original ID-SO(3) method
operated on the scaled sine of the angle.

In contrast, the ID-Spin(3) method reported here does
not require any data modification or preprocessing. Our
definition of the output error rotor (30) focuses on the direc-
tional information and not the magnitude of the expected
and observed outputs. Since the output error rotor is de-
fined to rotate the estimated output directly into the mea-
sured output along the shortest path on the sphere, the
rotor identifier effectively operates on the angle between
expected and observed outputs. This means that the effect
of the proportional gain does not change with the angle be-
tween expected and observed outputs, as it does in both the
original and adjusted forms of the ID-SO(3) method, which
operate on the sine of that angle.

7.2. Transient Response

Transient response is an important consideration for all dy-
namic systems, including the adaptive identifier reported
here. Numerous factors affect the transient response—one
especially important consideration is the effect of unknown
excitations resulting from measurement noise. Figure 18
compares the time history of the ID-SO(3) and ID-Spin(3)
identifiers on expt070. Since there is no ground truth avail-
able in these experiments, we use a scalar (geodesic) resid-
ual with the estimate from the batch LS-SO(3) method as a
reference. We choose the LS-SO(3) as the basis for our com-
parison because it is a batch method and does not have a
transient response—not because it provides superior esti-
mates. In fact, for several of the experiments and renaviga-

tion performance metrics, the LS-SO(3) method performs
worse than one or both of the adaptive identifiers (see, e.g.,
Fugure 10b and Table II).

Both adaptive identifiers initially converge toward
the same rotation estimate as the LS-SO(3) method—
the differences between the estimates are approximately
10−3 radians. Then, the adaptive identifiers fluctuate be-
tween input/output vector pairs 4000 and 8000. The mag-
nitude of the input u and output y is initially large, and
both pass through zero near vector pair 6000 before increas-
ing in magnitude again. This is because the means of u and
y were set to zero when mapping the DR measurements
into the form of the identifier (Section 4.1). As u and y pass
through zero, any noise in the measurements becomes pro-
portionally larger, and both online identifiers will react to
that noise. The issue here is that the identifiers encounter
vanishingly small signal-to-noise ratio partway through the
data as a result of preprocessing that was necessary to cast
the data into the identifier form. The most obvious way to
mitigate this problem is to average the estimated rotor over
several time steps, e.g., using methods in Doran (2000) and
Buchholz & Sommer (2005). The rotor adaptive identifier
formulation presented within provides a potential alterna-
tive solution—adding a derivative gain to the update law
will introduce damping into the solution; this is a topic for
future research.

8. CONCLUSION

This paper detailed a novel alternative approach to the sen-
sor alignment problem. Rotations were encoded using ro-
tors in Geometric Algebra, so that algebraic structure implic-
itly constrains parameter estimates to describe rigid body
rotations. We proposed a stable adaptive identifier in Sec-
tion 3, and we proved its stability using Lyapunov theory on
the continuous-time system. We then provided an equiva-
lent discrete-time implementation of the identifier. Section 4
provided the necessary information to apply the rotor iden-
tifier to the DVL/FOG alignment problem for DR in under-
water navigation, and several performance metrics were
defined. Section 5 applied the rotor identifier to identify
DVL/FOG alignment on an ROV operating in controlled
laboratory conditions, and Section 6 demonstrated the rotor
identifier using field data from the AUV Sentry. In the end,
the rotor identifier improved DR performance comparably
to previously reported rotation matrix methods. The Geo-
metric Algebra formulation provides a clear geometric and
kinematic interpretation of the proposed rotor identifier,
which provides accurate, stable alignment estimates. It may
offer a clearer path forward in improving online alignment
identifiers, including, for example, enhanced noise rejec-
tion using a proportional-derivative feedback formulation.
It may also prove useful in formulating an identifier for full
rigid body motions—including rotation and translation—
which can be encoded by rotors in higher dimensions.
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