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Abstract

Males and females may differ in stage-specific survival, maturation, fertility, or mating availability.
These demographic differences, in turn, affect population growth rates, equilibrium structure,
and evolutionary trajectories. Models considering only a single sex cannot capture these effects,
motivating the use of demographic two-sex models for sexually reproducing populations.

I developed a new two-sex modeling framework that incorporates population structure and
multiple life cycle processes through transition rate matrices. These models can be applied to a
variety of life histories to address both ecological and evolutionary questions. Here, I apply the
model to the effects of sex-biased harvest on populations with various mating systems.

Demographic considerations also affect evolutionary projections. I derived matrix calculus
expressions for key evolutionary quantities in my two-sex models, including the invasion fitness,
selection gradient, and second derivatives of growth rates (which have many applications, including
the classification of evolutionary singular strategies). I used these quantities to analyze the
evolution of the primary sex ratio, under various sex- and stage-specific offspring costs and maternal
conditions.

Demographic two-sex models lend insight into complex, and sometimes counterintuitive, results
that are not captured by models lacking population structure. These findings highlight the
importance of demographic structure in ecology and evolution.

Thesis Supervisor: Dr. Hal Caswell
Title: Scientist Emeritus, Department of Biology, Woods Hole Oceanographic Institution
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Chapter 1

Introduction

Demography, as the study of life cycle and population structure, explores the interaction between

individuals and populations (Caswell 2001). Individuals may vary in sex, age, size, life cycle phase,

condition, and many other characteristics. These individual differences are demographic or i-state

variables (Metz and Diekmann 1986) that denote various demographics or i-states — stages or

segments of the population with shared characteristics. The distribution of i-state variables is

described by p-state variables, such as age and stage distributions, that ultimately affect properties

like population growth rates or equilibria.

Through their effects on high-level population properties, demographic factors play important

parts in ecological processes, as well as evolutionary ones. Demography and evolution are connected

through many links of mutual feedback. Population dynamics drive genotype propagation, and

selective pressures change as evolving populations reshape their environments. Fitness depends on

how stage-specific survival and reproduction influence offspring production, and the evolution of

traits with demographic consequences (e.g., life history strategies) affects population dynamics that

feed back into evolution. As a result, there have been many calls to improve the integration of

demographic and evolutionary factors in biological research (e.g., Metcalf and Pavard 2007, Kokko

2007).

1.1 Sex structure

In sexually reproducing populations, a demographic factor of particular interest is sex structure,

typically in terms of males and females. The sex ratio (relative numbers of each sex) affects mating

opportunities and subsequent reproduction, ultimately determining the population’s growth rate.

As discussed below, sex structure is central to a variety of management and conservation issues.

In each case, demographic factors such as sex, size, and condition are important considerations for

making population and evolutionary projections.
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� Sport and trophy hunting. Harvest by hunters is often male-biased and significantly

exceeds natural mortality levels (e.g., Festa-Bianchet 2003, Milner 2007). Such harvest

may alter population structure, reproductive strategies, and trait evolution. Other species

respond to sex-biased harvest in even more extreme ways. African lions, for instance, commit

infanticide when male harem leaders are killed (Whitman et al. 2014), which exacerbates the

effects of male harvest on population growth.

Sex-biased hunting strategies are often also stage-biased, as larger (older) males with

well-developed adult characteristics (e.g., antlers, horns, or tusks) are the most desirable

targets. Additionally, changes in fecundity with age may drastically alter the outcome of

sex-biased harvest strategies (e.g., Ginsberg 1994 for African impala). All these factors

motivate the use of a demographic two-sex model for projecting harvest effects.

� Conservation of threatened and endangered species. Population growth may be

restricted by the availability of a given sex. In polygynous mating systems (one male mates

with many females), for example, total reproduction is limited by the number of breeding

females. Artificially manipulating the sex ratio in favor of the more limiting sex could thus

increase the viability of small, declining, or otherwise vulnerable populations (Wedekind 2002).

However, parental or environmental conditions may affect the proportion of male and female

offspring produced (Trivers and Willard 1973). Endangered kakapo parrots, for instance,

produce more sons when well-fed, so providing wild birds with supplementary food induces

overly male-biased sex ratios unfavorable for breeding (Clout et al. 2002). While failing to

anticipate condition-dependent sex ratio shifts can stymie conservation attempts, factors like

multiple parental conditions may be challenging to incorporate into evolutionary projections

without an explicitly-demographic model.

� Biocontrol and pest management. Just as sex ratios can be manipulated to promote

endangered species, they can be manipulated to control unwanted pests. Sterile insect

technique (SIT, reviewed in Robinson 1983, Dyck et al. 2005) is a biocontrol method that

reduces pest insect reproduction by altering natural sex ratios – specifically, the ratio of females

to fertile males. Male insects are raised and rendered sterile in laboratory environments, then

released to compete with wild fertile males for mates. This method has successfully controlled,

and even eradicated, parasites and agricultural pests such as screwworms and fruit flies in

North America (Dyck et al. 2005).

The efficacy of a SIT program depends on the population’s sex structure, male stage structure

(i.e., the relative abundances of sterile and fertile males), and the insect mating process. The

competition between sterile and wild males could be captured by a demographic two-sex model

with different female mating preferences for different types of males. Additionally, SIT release

programs are often used in tandem with other stage-specific management strategies, such as

12



larvicides or adulticides (Dyck et al. 2005), and would accordingly benefit from demographic

models with life cycle structure.

1.2 Two-sex models

Models that neglect sex structure only consider a single, dominant sex (typically females). As a

result, they implicitly assume that both sexes have identical vital rates and that the availability of

the neglected sex (i.e. males) does not affect fertility.

In reality, both of these assumptions are frequently violated. Due to sexual dimorphism, males

and females may differ in vital rates, behavior, and even harvest pressure (e.g., Caswell 2001, Rankin

and Kokkko 2007). Additionally, population, environmental, and evolutionary changes can vary

the limiting sex over time (e.g., Hardy 2002, Miller and Inouye 2011). Under such circumstances,

one-sex models may be insufficient to model population dynamics, making two-sex models a desirable

alternative.

Because age- and stage-structure may have significant effects on two-sex population dynamics

(e.g., Sundelöf and Aberg 2006, Ginsberg 1994), an explicitly demographic two-sex model that

incorporates both multiple sexes and stages would be especially valuable. Additionally, multiple

demographic factors, including sex-biased mortality, have been speculated to affect the evolution

of the primary sex ratio (proportion of offspring that are born male) (Fisher 1930). Because

reproduction is shaped by the entire life cycle, sex ratio theory would benefit from two-sex models

with life cycle structure. However, few, if any, studies have examined sex ratio evolution with an

explicitly demographic two-sex model.

Ultimately, such models are needed to capture the effects of sex (and other population structure)

on ecology and evolution. As a result, my overarching objective is to develop a general demographic

modeling framework that can be used to explore two-sex population dynamics and the evolution of

traits like sex ratio.

1.3 Demography in adaptive dynamics

Evolutionary analyses often focus on finding evolutionarily stable strategies (ESSs) as potential

evolutionary endpoints (e.g., Charnov 1982, Hardy 2002, Otto and Day 2007). However, additional

methods are needed to determine whether the population will ultimately converge to an ESS, or if

other evolutionary outcomes occur in the long run. To this end, adaptive dynamics (AD) identifies

and characterizes evolutionarily singular strategies in terms of both evolutionary and convergence

stability (Geritz et al. 1998).

While AD is useful for modeling frequency-dependent evolution, of which sex ratio evolution is

a prominent example, it often assumes that individuals are asexual and phenotypically identical,

save for the evolving trait of interest (Waxman and Gavrilets 2005). Previous extensions of AD
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to structured population models have utilized a variety of approaches. ESS analysis, in particular,

has been applied to populations with multiple developmental stages (e.g., models including both

juveniles and adults in Van Dooren and Metz 1998, Hardy 2002, and Otto and Day 2007), sizes

(e.g., via integral projection models in Childs et al. 2003, Metcalf et al. 2008), and spatial locations

(e.g., with multiple habitats in Otto and Day 2007 and dispersing metapopulations in Gyllenberg

and Metz 2001). More general AD approaches, including singular strategy characterization and

pairwise invasion plots, have also used structured population models to some extent (e.g., Claessen

and Dieckmann 2002, Metcalf et al. 2008 for size-structured populations, Parvinen 2002, 2006 for

metapopulations).

This thesis develops evolutionary analyses for a broad range of two-sex, stage-structured

populations. I have integrated adaptive dynamics methods into my demographic two-sex modeling

framework, and have used these methods to explore the evolution of sex ratio under various

conditions.

1.4 Thesis overview

My thesis explores how demographic considerations in two-sex models affect both population

properties, such as growth and equilibrium structure, and the evolution of traits, namely the primary

sex ratio.

The four chapters are as follows:

� Chapter 2 introduces the underlying demographic two-sex population model.

� Chapter 3 uses the two-sex model to explore sex ratio evolution when male and female

offspring differ in their costs.

� Chapter 4 derives second derivatives for population growth rates, which are used to

characterize the stability of evolutionary outcomes in adaptive dynamics.

� Chapter 5 considers the evolution of facultative sex ratios that depend on maternal condition.

Chapter 2 - A stage-classified two-sex model incorporating multiple life cycle processes.

Chapter 2 introduces a new two-sex modeling framework that incorporates multiple sexes, stages,

and life cycle processes.

In this model, population dynamics are given by a series of rate matrices that describe mating,

reproduction, and transitions between stages. Matrix models like these classify individuals into

stages based on sex, age, or any other i-state variables of interest, and link demographic life cycle

information (i.e. stage-specific vital rates in the projection matrix) to population-level properties

important for evolution (e.g., long-term growth rates or equilibria) (Caswell 2001).

The resulting model can be used to investigate the effects of stage and sex structure, including

sex-biased vital rates such as differential mortality or maturation. As an example, I project the
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long-term dynamics of populations with various mating systems and their responses to sex-biased

harvest. I find that mating factors, including both harem size and persistence, affect not only

unharvested population growth, but also the responses of growth rate and sex ratio to sex-biased

harvest.

Chapter 3 – A demographic model for sex ratio evolution and the effects of sex-biased

offspring costs. Chapter 3 presents a demographic approach to sex ratio evolution that combines

adaptive dynamics with the two-sex matrix model presented in Chapter 2.

The methods described in this chapter allow the incorporation of any population structure,

including multiple sexes and stages, into evolutionary projections. In particular, I have derived key

adaptive dynamics quantities (such as the invasion fitness, selection gradient, and second derivatives

for singular strategy characterization) for the two-sex matrix model.

I also compare how four different interpretations of sex-biased offspring costs affect sex ratio

evolution. The analyses calculate singular strategies that depend on sex and stage differences, and

determine their evolutionary and convergence stability using methods derived in Chapter 4. I find

that demographic differences affect evolutionary outcomes, and that, in some cases, the sex ratios

that result contradict the widely-held conclusions of previous models that neglect demographic

structure.

Chapter 4 – Calculating second derivatives of population growth rates for ecology and

evolution. Chapter 4 derives a suite of matrix calculus formulae for the second derivatives of

population growth rates. This chapter previously appeared in Methods and Ecology and Evolution

(2014, Creative Commons Attribution license).

I focus on three population growth rate measures: the discrete-time growth rate 𝜆, the

continuous-time growth rate 𝑟 = log 𝜆, and the net reproductive rate 𝑅0, which measures

per-generation growth. I present their derivatives with respect to both projection matrix entries

and to lower-level parameters affecting those matrix entries.

These second derivatives have a variety of ecological and evolutionary applications, including

quantifying the response of sensitivity results to perturbations, classifying types of selection, and

calculating sensitivities of the stochastic growth rate. I illustrate several applications with a case

study for the tropical herb Calathea ovandensis. These second derivatives also provide methods to

characterize the stability of evolutionarily singular sex ratio strategies in Chapters 3 and 5.

Chapter 5 – The evolution of facultative sex ratios with two maternal conditions.

Chapter 5 extends the model and calculations described in Chapter 3 to the evolution of sex ratios

that depend on maternal condition.

I specifically consider cases where individuals differ in age or quality, and present several

two-sex demographic models that include two maternal conditions with independent sex ratios.

The overall sex ratio strategy is a vector trait with two simultaneously evolving components. Using
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multidimensional adaptive dynamics, I analyze both the transient and long-term evolution of this

bivariate sex ratio.

I find that the bivariate sex ratio has a wide range of evolutionary behavior, including cases

where it converges to a line of selectively-neutral strategies. The sex ratio may also evolve so

that one maternal condition produces exclusively male or female offspring. In particular, the sexes

preferred by mothers of different qualities depend on the relative reproductive value ratios for each

sex.

Bibliography

[1] Caswell H. 2001. Matrix population models. Sunderland: Sinauer Associates, Inc.

[2] Charnov EL. 1982. The theory of sex allocation. Princeton: Princeton University Press.

[3] Childs DZ, Rees M, Rose KE, Grub PJ, Ellner SP. 2003. Evolution of complex flowering
strategies: an age- and size-structured integral projection model. Proceedings of the Royal

Society B. 270: 1829-1838.

[4] Claessen D, Dieckmann U. 2002. Ontogenetic niche shifts and evolutionary branching in
size-structured populations. Evolutionary Ecology Research. 4: 189-217.

[5] Clout, MM, Elliot GP, Robertson BC. 2002. Effect of supplementary feeding on the offspring
sex ratio of kakapo: a dilemma for the conservation of a polygynous parrot. Biological

Conservation. 107, 13-18.

[6] Dyck VA, Hendricks J, Robinson AS, eds. 2005. Sterile insect technique: Principles and

practice in area-wide integrated pest management. Dordrecht, Netherlands: Springer.

[7] Festa-Bianchet M. 2003. Exploitative wildlife management as a selective pressure for
life-history evolution of large mammals. In Animal Behavior and Wildlife Conservation (eds
Festa-Bianchet M, Apollonio M). Washington, D.C.: Island Press. pp. 191-210.

[8] Fisher RA. 1930. The Genetical Theory of Natural Selection. Oxford: Oxford University Press.

[9] Geritz SAH, Kidsi É, Meszéna G, Metz JAJ. 1998. Evolutionarily singular strategies and the
adaptive growth and branching of the evolutionary tree. Evolutionary Ecology. 12: 35-57.

[10] Ginsberg JS, Milner-Gulland EJ. 1994. Sex-based harvesting and population dynamics in
ungulates: implications for conservation and sustainable use. Conservation Biology. 18:
157-166.

[11] Gyllenberg M, Metz JAJ. 2001. On fitness in structured metapopulations. Journal of

Mathematical Biology. 43: 545-560.

[12] Hardy ICW, editor. 2002. Sex ratios: concepts and research methods. Cambridge: Cambridge
University Press.

[13] Kokko H, López-Sepulcre A. 2007. The ecogenetic link between demography and evolution:
can we bridge the gap between theory and data? Ecology Letters. 10:773-782.

16



[14] Metcalf CJE, Pavard S. 2007. Why evolutionary biologists should be demographers. Trends
in Ecology and Evolution. 22: 205-212.

[15] Metcalf CJE, Rose KE, Childs DZ, Sheppard AW, Grubbs PJ, Rees M. 2008. Evolution of
flowering decisions in a stochastic, density-dependent environment. PNAS. 105: 10466-10470.

[16] Metz JAJ, Diekmann O. 1986. The dynamics of physiologically structured populations. Berlin:
Springer-Verlag.

[17] Miller TEX, Inouye BD. 2011. Confronting two-sex demographic models with data. Ecology.
92: 2141-2151.

[18] Milner JM, Nilsen EB, Andreaseen HP. 2007. Demographic side effects of selective hunting in
ungulates and carnivores. Conservation Biology. 21: 36-47.

[19] Otto SP, Day T. 2007. A biologist’s guide to mathematical modeling in ecology and evolution.
Princeton: Princeton University Press.

[20] Parvinen K. 2002. Evolutionary branching of dispersal strategies in structured
metapopulations. Journal of Mathematical Biology. 45: 106-124.

[21] Parvinen K. 2006. Evolution of dispersal in a structured metapopulation model in discrete
time. Bulletin of Mathematical Biology. 68: 655-678.

[22] Rankin DJ, Kokko H. 2007. Do males matter? The role of males in population dynamics.
Oikos. 116: 335-348.

[23] Robinson AS. 1983. Sex-ratio manipulation in relation to insect pest control. Annual Review
of Genetics. 17: 191-214.

[24] Sundelöf A, Åberg P. 2006. Birth functions in stage structured two-sex models. Ecological
Modelling. 193: 787-795.

[25] Trivers RL, Willard DE. 1973. Natural selection of parental ability to vary the sex ratio of
offspring. Science. 179: 90-92.

[26] Van Dooren TJM, Metz JAJ. 1998. Delayed maturation in temporally structured populations
with non-equilibrium dynamics. Journal of Evolutionary Biology. 11: 41-62.

[27] Waxman D, Gavrilets S. 2005. 20 questions on adaptive dynamics. Journal of Evolutionary
Biology. 18: 1139-1154.

[28] Wedekind C. 2002. Manipulation sex ratios for conservation: short-term risks and long-term
benefits. Animal Conservation. 5: 13-20.

[29] Whitman K, Starfield AM, Quadling HS, Packer C. 2004. Sustainable trophy hunting of
African lions. Nature. 428: 175-177.

17



18



Chapter 2

A stage-classified two-sex model

incorporating multiple life cycle

processes

2.1 Abstract

Models of sexually-reproducing populations that consider only a single sex cannot capture the effects

of sex-specific differences and mate availability. Explicitly demographic two-sex models enable a

more rigorous analysis of population dynamics. To this end, we present a new framework for

modeling two-sex populations that incorporates multiple sexes, stages, and life cycle events through

a series of transition rate matrices. We illustrate this framework with a case study for the effects of

sex-biased harvest on populations with various mating systems. Our results emphasize that two-sex

demographic factors play a major part in a population’s ecological dynamics and harvest response.

Keywords: two-sex models, demography, matrix population models, birth matrix-mating rule,

BMMR, sex-biased harvest

2.2 Introduction

Models of sexually-reproducing populations that consider a only single sex (typically females)

implicitly assume that both sexes have identical vital rates and that the availability of the neglected

sex (typically males) does not affect fertility (Pollard 1974, Caswell 2001, Ianelli et. al 2005).

In reality, both these assumptions are frequently violated. Males and females often differ

significantly in terms of fertilities and mortalities (Kuczynski 1932, Pollak 1990, Jenouvrier et

al. 2010), developmental schedules (Caswell 2001), behavioral interactions (Rankin and Kokko

2007), dispersal patterns (Miller et al. 2011), and selective harvest pressures (Ginsberg 1994).

Additionally, ecological, environmental, and evolutionary changes may vary the most limiting sex
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over time (Hardy 2002, Miller and Inouye 2011). One-sex models are insufficient for modeling

populations in all these cases.

In response to growing concerns over discrepancies in male and female reproductive rates (Karmel

1947), early dynamical models with sex structure were introduced in the late 1940s. Pollard (1948)

used coupled Lotka integral equations, considering female births to males and male births to females

in order to reconcile the growth rates of both sexes. Kendall (1949) introduced a system of

ordinary differential equations for males and females (and later, married couples), and was the

first to incorporate nonlinear interactions between the sexes via a mating term. Subsequent models

considered other nonlinear mating functions (Pollard 1973, Yellin and Samuelson 1974) and couple

dissolution through death and divorce (Hadeler et. al 1988).

Extensions to age-structured populations were made by Fredrickson (1971) and Hoppensteadt

(1975), who allowed birth and death rates, as well as couple formation and divorce rates, to depend

on age and sex. Haedler later included the “age” (duration) of married pairs (1988) and maturation

delays (1993). Age-structured mating functions have similarly been proposed (Martcheva and Milner

2001). Many of these models use continuous-time equations that incorporate age structure through

coupled McKendrick-von Foerster partial differential equations (Keyfitz 1972, Fredrickson 1971,

Hoppensteadt 1975, Hadeler 1989, Hadeler 1993), though discrete-time two sex matrix models have

also been developed (Caswell and Weeks 1986).

Another approach to formulating two-sex models with age structure was proposed by Pollak

(1986, 1987, 1990). Pollak’s birth matrix-mating rule (BMMR) focuses on the mating, births, and

life cycle transition processes that repeat every generation, and has three main components:

1. A mating rule function that projects the number of matings 𝑢𝑖𝑗 between males of age 𝑖 and

females of age 𝑗.

2. A birth matrix whose entries 𝑏𝑖𝑗 are the expected number of male and female offspring produced

by each age 𝑖 male and age 𝑗 female mating.

3. Sex-specific mortality schedules, which could be generalized to include other age-specific life

cycle transitions.

BMMR is a useful approach for describing two-sex populations because it can specify age

(and, more generally, stage) structure over all parts of the life cycle. This structure, in turn,

can have significant effects on two-sex population dynamics (e.g., Sundelöf and Aberg 2006,

where the addition of size-specific birth functions affects growth rate and reproductive output)

and recommended management strategies (e.g., Ginsberg 1994, where incorporating age-specific

fecundity changes the outcomes of sex-biased harvest).

Using BMMR as a conceptual basis, we present a more general demographic two-sex modeling

framework with several extensions. Though Pollak primarily considered age-sex structure, we also

incorporate detailed life cycle structure, most notably multiple stages and various types of mated
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pairs or harems. The original BMMR model was also formulated as a series of mappings between

population states in different time periods. Here, we use a series of comprehensive transition rate

matrices to more fully describe various life cycle processes. Given a variety of biologically feasible

functions for the mating rule, our two-sex matrix models converge to a stable stage distribution

with an exponential growth rate. As we demonstrate with a case study for sex-biased harvest, these

long-term population properties depend on the system’s underlying demographic structure.

2.3 Model development

We use two-sex, continuous-time matrix models to incorporate stage structure and life cycle

processes. The mating, births, and other transition processes from the BMMR framework

are described by separate rate matrices. The mating process, in particular, is modeled by

generalized weighted mean mating functions that satisfy biologically relevant criteria. The resulting

BMMR matrix models are nonlinear and have frequency-dependent dynamics that converge to an

exponential growth rate and stable stage distribution (constant distribution of stage frequencies).

2.3.1 Incorporating sex and stage structure

We incorporate sex and stage structure by using a matrix population model, which classifies

individuals into separate stages based on age, developmental state, sex, reproductive status, or any

other variables of interest. Stage densities are projected forward in time by a projection matrix that

contains the demographic rates or probabilities characterizing survival, reproduction, and transitions

between stages (Caswell 2001). The properties of this projection matrix provide information about

the population as a whole, thereby linking demographic life cycle information (i.e., the stage-specific

vital rates in the matrix entries) to population-level properties important for ecology and evolution

(e.g., growth rates or stage distributions).

A population with 𝑠 stages is described by a 𝑠× 1 population vector n(𝑡), the entries of which

are the densities of each stage at time 𝑡. In a two-sex population, n(𝑡) would contain male stages,

female stages, and mated stages (unions) that could include married couples or breeding harems.

The population vector for a two-sex population with mating adults and nonmating juveniles,

for instance, could have the form:

n(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

juvenile males

adult males

juvenile females

adult females

adult unions

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.1)

Additional ages, sizes, union types, or other stages of interest can be added as additional entries in

the population vector.
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The product of the population vector and a 𝑠 × 𝑠 projection matrix A is a system of coupled

differential equations:
𝑑n

𝑑𝑡
= An(𝑡) (2.2)

Because this is a continuous-time model, the entries in A are either transition rates or rates of

offspring production.

2.3.2 Incorporating life cycle processes

Various life cycle processes are incorporated using a series of transition rate matrices. As in the

BMMR framework, we will specifically consider mating, birth, and transition processes. Each

process is described by a separate matrix for the sake of clarity:

1. The mating (union formation) process, where adult males and females organize into

reproductive unions, is described by the matrix U.

2. The birth process, where unions produce new offspring, is described by the matrix B.

3. The transition process, which includes other life cycle events like mortality, maturation, or

divorce, is described by the matrix T.

Other life cycle processes can be included with additional matrices.

In continuous-time, all these processes occur simultaneously. It can be shown (Appendix 2.A)

that the projection matrix A in (2.2) is the average of the transition rate matrices, e.g.:

𝑑n

𝑑𝑡
=

1

3
(T+B+U)n(𝑡)

= An(𝑡) (2.3)

2.3.3 Modeling the mating process

The mating process, as described by the union formation matrix U, can be especially challenging to

model due to its nonlinearity. Mating depends on the relative numbers of males and females in the

population, not all of which may be mature enough or available for breeding (Pollard 1974, Ianelli

et al. 2005). As a result, U depends on the population’s sex and stage composition, making A a

function of the population vector n(𝑡).

The total mating function 𝑀(n) gives the rate of union formation (total number of unions

formed per unit time), similar to the mating rule in the BMMR framework. Here, “unions” refer to

any mated, reproducing units in the population, including both one-to-one male-female pairs and

harems with multiple individuals of the same sex.
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Function 𝑼T 𝒏  (α, β) 1 2 3 4 

female  
dominance 

𝑓 (-, 1)    

male  
dominance 

𝑚 (-, 0)    

minimum min(𝑚, 𝑓) (-∞, -)     

geometric  
mean 

𝑚𝑓 (0-, ½ )     

harmonic  
mean 

2𝑚𝑓
𝑚 + 𝑓 (-1, ½ ) 

    

𝑀 𝒏 = [𝛽𝑓𝛼 + 1 − 𝛽 𝑚𝛼] 1 𝛼⁄  where n = [m  f ]T 

Mating Function Criteria 
 
1. 𝑀 is nonnegative for all 

nonnegative n 
 

2. 𝑀 nondecreasing in n 
 

3. 𝑀 = 0 if m = 0 or f = 0 
 

4. 𝑀 is homogeneous of 
degree 1 in n  

Figure 2-1: Mating functions from the generalized weighted mean family (2.6) and how they satisfy
biologically desirable properties: 1) 𝑀 is nonnegative for all nonnegative n, 2) 𝑀 is nondecreasing
in n, 3) 𝑀 = 0 if either 𝑚 = 0 or 𝑓 = 0, and 4) 𝑀 is homogeneous of degree 1 in n.

We convert the total mating function into the per capita mating rates 𝑈𝑚(n) and 𝑈𝑓 (n) (the

average mating rates per available males 𝑚 or females 𝑓 respectively),

𝑈𝑚(n) =
𝑀(n)

𝑚
(2.4)

𝑈𝑓 (n) =
𝑀(n)

𝑓
(2.5)

so that the total population mating rate is 𝑀 = 𝑈𝑚𝑚 = 𝑈𝑓𝑓 .

Many commonly used mating functions are generalized weighted means (Hölder means) of the

form

𝑀(n) = [𝛽𝑓𝛼 + (1− 𝛽)𝑚𝛼]
1
𝛼 (2.6)

where 𝛽 and 𝛼 are constants and 0 ≤ 𝛽 ≤ 1, 𝛼 < 0 (Haedler 1988; Ianelli et al. 2005, Bessa-Gomes

et al. 2010). Figure 2-1 shows several generalized weighted mean mating functions and biologically

desirable criteria that they satisfy (McFarland 1972, Pollard 1974, Yellin and Samuelson 1974). If

multiple male and female stages interbreed to form different types of unions, stage-specific mating

preferences can also be integrated into this mating function (Martcheva and Milner 2001).

It is difficult to distinguish between mating functions using real data, especially in human

populations where the sex ratio does not vary significantly (Keyfitz 1972). However, recent empirical

studies (Miller and Inouye 2011) support the harmonic mean as a mating function in other species.
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Because the harmonic mean also satisfies a large number of biological criteria and is regarded as

one of the most realistic mating functions (Caswell and Weeks 1986, Ianelli et al. 2005), we will use

a harmonic mean mating function for our analyses.

2.3.4 Frequency-dependent dynamics

The mating process often depends on the relative frequencies, rather than absolute abundances, of

males and females. As a result, many mating functions, including the generalized weighted means

(2.6), are nonlinear, but homogeneous of degree 1 in n. That is:

𝑀(𝑐n) = 𝑐𝑀(n) (2.7)

for any positive constant 𝑐.

The per capita mating functions (2.4) and (2.5) are accordingly homogeneous of degree 0 in n,

so that:

𝑈𝑚(𝑐n) = 𝑈𝑚(n)

𝑈𝑓 (𝑐n) = 𝑈𝑓 (n) (2.8)

If all entries in the projection matrix A (2.3) are also homogeneous of degree 0, as they are in

our models, the system is frequency-dependent. This means that A can be written as a function of

the population frequency vector:

p =
n

‖n‖
(2.9)

where ‖n‖ is the 1-norm of n.

Nonlinear, frequency-dependent models converge asymptotically to an equilibrium population

structure p̂ (the stable stage distribution) where all stage frequencies are constant (e.g., see Yellin

and Samuelson 1974, Hadeler 1988 for continuous-time models; Caswell and Weeks 1986 for a

discrete-time model). The population then grows or decays exponentially at a long-term growth

rate given by the dominant eigenvalue 𝜆 of A(p̂).

To find the equilibrium stage distribution p̂ and population growth rate 𝜆, it is sufficient to

consider the dynamics of p. It can be shown (Appendix 2.B) that:

𝑑p

𝑑𝑡
= (I𝑠 − p1ᵀ)Ap (2.10)

where I𝑠 is a 𝑠× 𝑠 identity matrix and 1ᵀ is a 1× 𝑠 vector of ones. One can integrate (2.10) with

a numerical differential equation solver until population frequencies converge to p̂. Then 𝜆 is the

dominant eigenvalue of A(p̂). Note that the dominant right eigenvector w of A(p̂) also equals the

stable stage distribution; that is, w = p̂.
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Figure 2-2: Life cycle diagram for a 5-stage population with juvenile males 𝑚1 and juvenile females
𝑓1, adult males 𝑚2 and adult females 𝑓2, and reproducing unions 𝑢. The functions and parameters
shown here, as described in Table 2.1, appear in the union formation matrix U (2.13) (red), birth
matrix B (2.14) (green), or transition matrix T (2.15) (blue).

2.4 A 5-stage BMMR matrix model

We now present an example of a BMMR matrix model with five stages: juvenile males 𝑚1 and

juvenile females 𝑓1, adult males 𝑚2 and adult females 𝑓2, and reproducing unions 𝑢 that consist

of one adult male and one adult female. Single adult males and females interact to form unions,

which then produce new juvenile offspring (Figure 2-2). A summary of the variables, parameters,

and matrices in this model is provided in Table 2.1.

Similar to (2.1), we write the population vector as

n(𝑡) =
(︁
𝑚1 𝑚2 𝑓1 𝑓2 𝑢

)︁ᵀ
(2.11)

Assume that only adult males 𝑚2 and adult females 𝑓2 mate, and that the total mating rate is

given by a harmonic mean mating function. The total and per capita mating functions are thus:

𝑀(n) =
2𝑚2𝑓2
𝑚2 + 𝑓2

𝑈𝑚(n) =
2𝑓2

𝑚2 + 𝑓2

𝑈𝑓 (n) =
2𝑚2

𝑚2 + 𝑓2
(2.12)

Again, we consider the life cycle in terms of mating, birth, and transition processes, which are

described by matrices U, B, and T respectively.
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1. The union formation matrix U contains the per capita mating functions from (2.12).

U(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −𝑈𝑚(n) 0 0 0

0 0 0 0 0

0 0 0 −𝑈𝑓 (n) 0

0 1
2𝑈𝑚(n) 0 1

2𝑈𝑓 (n) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 − 𝑀
𝑚2

0 0 0

0 0 0 0 0

0 0 0 −𝑀
𝑓2

0

0 𝑀
2𝑚2

0 𝑀
2𝑓2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.13)

Note that both 𝑈𝑚 and 𝑈𝑓 must halved in the last row of U to avoid double counting the

unions formed from both male and female partners.

2. The birth matrix B contains 𝑘, the average reproductive rate of a union, and the primary sex

ratio 𝑠1, the proportion of offspring that are male.

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 𝑘𝑠1

0 0 0 0 0

0 0 0 0 𝑘(1− 𝑠1)

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.14)

3. The transition matrix T contains the male mortality rates (𝜇𝑚1 for juveniles, 𝜇𝑚2 for adults)

and female mortality rates (𝜇𝑓1 for juveniles, 𝜇𝑓2 for adults), the rates of maturation from

juveniles to adults (𝛼𝑚 for males, 𝛼𝑓 for females), and the divorce rate 𝑑 (rate at which the

male-female pair bond breaks). Note that unions may also dissolve due to partner death, and

that union dissolution through both death and divorce returns surviving males and females

to the single adult stages.

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(𝜇𝑚1 + 𝛼𝑚) 0 0 0 0

𝛼𝑚 −𝜇𝑚2 0 0 𝜇𝑓2 + 𝑑

0 0 −(𝜇𝑓1 + 𝛼𝑓 ) 0 0

0 0 𝛼𝑓 −𝜇𝑓2 𝜇𝑚2 + 𝑑

0 0 0 0 −(𝜇𝑚2 + 𝜇𝑓2 + 𝑑)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.15)

As per (2.3), the average of these three matrices is the continuous-time projection matrix A(n).

The corresponding equation for the proportional structure (2.10) is thus:

𝑑p

𝑑𝑡
= (I𝑠 − p1ᵀ)

1

3
(T+B+U)p (2.16)

As shown in Figure 2-3, the population vector n ultimately grows exponentially, while the

frequency vector p ultimately converges to the constant distribution of stages p̂. To determine the
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Figure 2-3: Dynamics of the 5-stage BMMR model with monogamous unions and no harvest. The
population consists of juvenile males 𝑚1 and juvenile females 𝑓1, adult males 𝑚2 and adult females
𝑓2, and reproducing unions 𝑢. a) Growth of the population density vector n (2.11), where dynamics
are given by (2.3). b) Convergence of the population frequency vector p (2.9), where dynamics are
given by (2.16). Parameters are fixed at 𝜇𝑚1 = 𝜇𝑓1 = 0.5, 𝜇𝑚2 = 𝜇𝑓2 = 0.1, 𝛼𝑚 = 𝛼𝑓 = 0.5, 𝑠1 =
0.5, 𝑘 = 20, 𝑑 = 0.1, ℎ = 1, 𝐸 = 0.

equilibrium stage distribution p̂, we integrated (2.16) with the MATLAB ODE45 differential equation

solver until population frequencies converged (e.g., until vector entries do not change significantly

over consecutive integration intervals). Sample MATLAB code is provided in the Supplemental

Material.

2.5 Case study: sex-biased harvest in various mating systems

The mating system determines how males and females organize for breeding and is thus a

key component of two-sex population structure (Emlen and Oring 1977). Some species form

monogamous, one-to-one pair bonds between males and females (most commonly in birds). Many

other species have polygynous mating systems where one male mates with multiple females (e.g.,

lions, deer, seals), or, more rarely, polyandrous systems where one female mates with multiple males

(e.g., jacanas, pipefish). The resulting unions may be transient and limited to a single breeding

episode (e.g., lek systems); alternatively, unions may be persistent and last over multiple breeding

seasons (e.g., lion harems) or even until partner death (e.g., albatrosses and other species with high

mate fidelity) (Cézilly and Danchin 2008).

The role of males and females in the mating system may influence how different species respond

to sex-biased harvest. In sport or trophy hunting, harvest is often male-biased and significantly

exceeds natural mortality (Festa-Bianchet 2003, Milner 2007). Age or size bias is also common, as

larger or older males with well-developed adult characteristics (e.g. large antlers or horns) are usually
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Matrices and Vectors

A projection matrix
B birth matrix (2.14)
T transition matrix (2.15)
U union matrix (2.13)
n population density vector (2.11)
p population frequency vector (2.9)
p̂ or w equilibrium stage structure

Population Properties

𝜆 long-term population growth rate, dominant eigenvalue of A(p̂)
𝑠1 primary sex ratio (proportion of offspring that are born male)
𝑠2 secondary sex ratio (proportion of adults that are male)
𝑓1, 𝑓2 juvenile, adult female density
𝑚1,𝑚2 juvenile, adult male density
𝑢 union (mated pair) density

Life Cycle Parameters

𝛼𝑚, 𝛼𝑓 male, female maturation rates
𝑑 divorce rate (rate at which a male-female pair bond breaks)
ℎ average harem size
𝑘 union reproductive rate
𝜇𝑓1, 𝜇𝑓2 juvenile, adult female mortality rates
𝜇𝑚1, 𝜇𝑚2 juvenile, adult male mortality rates
𝑀 total mating rate (total unions formed per time)
𝑈𝑚, 𝑈𝑓 per capita mating rates (2.4) and (2.5)

Harvest Parameters

𝐸 total harvest rate in (2.17)
𝑠ℎ harvested sex ratio (proportion of harvest that targets males) in (2.17)

Table 2.1: A summary of the variables, parameters, matrices, and population properties in the
5-stage BMMR matrix model.

the most desirable targets. This “unnatural” selection may alter population structure, reproductive

strategies, body morphology, and developmental timing (e.g. Ashley 2003, Festa-Bianchet 2003,

Allendorf and Hard 2009), with multiple demographic factors, such as age-specific variations in

fecundity (Ginsberg 1994), affecting population responses.

These factors motivate the use of a demographic two-sex model in analyzing harvest effects.

To this end, we will use our BMMR matrix framework to explore how populations with various

mating systems differ in their response to sex-biased harvest. A range of mating systems will be

approximated by varying two model parameters, 𝑑 and ℎ (Table 2.2).

� The divorce rate 𝑑 is a measure of union transience. Unions with higher values of 𝑑 are more

likely to dissolve after a given mating, while unions with lower values of 𝑑 are more likely to

persist over multiple breeding interactions.

� The harem size ℎ is a measure of polygamy. Unions with ℎ = 1 are monogamous and consist

only of one-to-one male-female pair bonds, while unions with ℎ > 1 are polygamous groups of

size ℎ+1. As polyandrous mating systems are relatively rare (Cézilly and Danchin 2008), we

will consider only the polygynous form of polygamy, where one male mates with ℎ females.
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low 𝑑 (persistent unions) high 𝑑 (transient unions)

ℎ = 1 (monogamy)
persistent pair bonds, high mate
fidelity (e.g., albatross)

serial pair bonds (e.g.,
humans, Emperor penguins)

ℎ > 1 (polygyny)
persistent harems (e.g., lion
prides)

leks, scramble competition (e.g.,
grouse, cod, horseshoe crabs)

Table 2.2: Mating systems corresponding to different values of the divorce rate 𝑑 and harem size ℎ.

Harvest strategies are characterized by the total harvest rate 𝐸 and the harvested sex ratio 𝑠ℎ

(proportion of the total harvest rate that targets males). Assuming that only adults are harvested,

the adult mortality rates are modified by harvest as follows:

𝜇𝑚2 → 𝜇𝑚2 + 𝐸𝑠ℎ

𝜇𝑓2 → 𝜇𝑓2 + 𝐸(1− 𝑠ℎ) (2.17)

To determine how various mating systems, as characterized by different values of ℎ and 𝑑,

respond to sex-biased harvest, we will examine harvest effects on the long-term population growth

rate 𝜆 and the secondary sex ratio 𝑠2 (proportion of all adults that are male). We will assume that

males and females have the same baseline vital rates, and that the primary sex ratio (proportion

of males at birth) is 0.5. Thus, the main sex-specific differences we consider are sex-biased harvest

pressures and male versus females roles within the polygynous mating systems.

2.5.1 Monogamy (ℎ = 1)

Consider a monogamous two-sex population with juveniles and adults. The mating process forms

unions that are one-to-one pair bonds of adult males and females. This scenario uses the rate

matrices U, B, and T as given by (2.13), (2.14), and (2.15) respectively, and the mating functions

in (2.12). We vary the divorce rate 𝑑 to explore the effects of transient vs. persistent pair bonds.

As shown in Figure 2-4a, the proportion of adults in the reproductive union stage (mated

adults) decreases as 𝑑 increases. The unharvested population growth rate 𝜆 similarly decreases

(Figure 2-4b), because populations with more transient couples (fewer mated adults) cannot produce

offspring as rapidly as populations with more persistent couples (more mated adults). Because males

and females have the same baseline vital rates, the secondary sex ratio 𝑠2 remains unbiased (𝑠2 = 0.5,

not shown) for all values of 𝑑.

Figure 2-4c shows how increasingly sex-biased harvest strategies affect population growth. Both

biased and unbiased harvest strategies most strongly reduce growth in populations with lower divorce

rates, as adult mortality will also disrupt pair bonds. The greatest decreases in 𝜆 occur when

harvest is strongly sex-biased, i.e. 𝑠ℎ is close to 0 (only females are harvested) or 1 (only males

are harvested). This suggests that monogamous populations with high fidelity pair bonds will be
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Figure 2-4: Population growth rates, structure, and responses to adult harvest in the monogamous
(ℎ = 1) model. a) Proportion of mated adults (adults in stage 𝑢, rather than 𝑚2 or 𝑓2) for an
unharvested population, and the b) corresponding population growth rates 𝜆, as functions of the
divorce rate 𝑑. c) The change in 𝜆 and d) the change in secondary sex ratio 𝑠2, when a proportion
𝑠ℎ of harvest targets males. Without harvest, 𝑠2 = 0.5 for all values of 𝑑. Other parameters are
fixed at 𝜇𝑚1 = 𝜇𝑓1 = 0.5, 𝜇𝑚2 = 𝜇𝑓2 = 0.1, 𝛼𝑚 = 𝛼𝑓 = 0.5, 𝑠1 = 0.5, 𝑘 = 20, 𝐸 = 1.

the most impacted by sex-biased harvest, and that concentrating harvest on a single sex will more

greatly reduce population growth.

Figure 2-4d shows how the same harvest strategies decrease the secondary sex ratio 𝑠2 from

equality. Unsurprisingly, male-biased strategies reduce 𝑠2, female-biased strategies increase 𝑠2, and

unbiased strategies (𝑠ℎ = 0.5) have relatively minimal effect. Populations with greater divorce rates

experience larger reductions in 𝑠2, possibly due to their lower growth rates (Figure 2-4a) being

unable to replenish harvested individuals as rapidly.

2.5.2 Polygyny (ℎ > 1)

Now consider a polygynous population that forms unions consisting of one male with a harem of

females. Because the death or departure of a single female changes the harem’s size and reproductive

rate, we must now account for multiple union (harem) stages.

The stage 𝑢𝑖 represents polygynous unions consisting of one male and a harem of 𝑖 females.

When ℎ is the maximum harem size, the population vector contains ℎ union stages, which range

from a union with a harem of size 1 (𝑢1, equivalent to a monogamous couple) to a union with a

harem of size ℎ (𝑢ℎ, the largest possible union):

n(𝑡) =
(︁
𝑚1 𝑚2 𝑓1 𝑓2 𝑢1 𝑢2 . . . 𝑢ℎ

)︁ᵀ
(2.18)

Assume that when males and females mate, they form the largest possible union 𝑢ℎ. Their union

formation rate is still given by the harmonic mean mating function (2.12), but with the number of
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single females now replaced by the number of prospective harems:

𝑀(n) =
2𝑚2

𝑓2
ℎ

𝑚2 +
𝑓2
ℎ

𝑈𝑚(n) =
2𝑓2

ℎ𝑚2 + 𝑓2

𝑈𝑓 (n) =
2𝑚2

ℎ𝑚2 + 𝑓2
(2.19)

Note that the total union formation rate 𝑀(n) is maximized when the sex ratio of single adults is

𝑚2

𝑚2 + 𝑓2
=

1

1 +
√
ℎ

(2.20)

Thus, as the harem size ℎ increases, a higher proportion of single females is needed to maximize the

mating rate.

If an individual female has a reproductive rate of 𝑘, a harem with 𝑖 females has a total

reproductive rate of 𝑖𝑘; larger harems are thus more productive. Each union 𝑢𝑖, regardless of

harem size, can change in three possible ways (Figure 2-5):

1. The male harem leader dies (with mortality rate 𝜇𝑚2). This returns 𝑖 adult females to the

stage 𝑓2.

2. A female harem member dies (with mortality rate 𝜇𝑓2). This shrinks the union from 𝑢𝑖 to

𝑢𝑖−1. For the union 𝑢1, which has only one female, 𝑢𝑖−1 = 𝑢0 corresponds to the single adult

male stage 𝑚2 (i.e., the death of a wife returns her husband to the pool of unmated singles).

3. A female harem member departs from the union (with divorce rate 𝑑). This returns one female

to 𝑓2 and shrinks the union from 𝑢𝑖 to 𝑢𝑖−1. For the union 𝑢1, divorce dissolves the union and

returns one male to 𝑚2 and one female to 𝑓2.

As a result, a union may shrink (but not grow) in size due to the departure or death of its members

(Figure 2-6). After a union shrinks to the smallest possible size ℎ = 1, or if the male harem leader

dies, the union dissolves and its members return to the stages for unmated adults.

Appendix 2.C shows how to write the rate matrices U, B, T for a polygynous system with

maximum harem size ℎ. The population vector and matrices for the case where ℎ = 3 are as
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3. a female departs 
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2. a female dies 

1. a male dies 

if2 
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d 

Figure 2-5: Reproduction and three possible transitions for 𝑢𝑖, a union with harem size 𝑖.

f1 f2 

m2 m1 
uh uh-1 u1 

... 

Figure 2-6: Stages in a population with maximum harem size ℎ, which include juvenile males 𝑚1

and juvenile females 𝑓1, adult males 𝑚2 and adult females 𝑓2, and reproducing unions 𝑢𝑖 (one male
with a harem of 𝑖 females). Adults form harems of size ℎ when mating, and these harems can shrink
in size, but not grow, over time.
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Figure 2-7: Unharvested population dynamics in the polygynous (ℎ > 1) union model, as functions
of the divorce rate 𝑑 and harem size ℎ. a) Population growth rate 𝜆. b) Secondary sex ratio 𝑠2
(proportion of males in the adult population). Other parameters are the same as in Figure 2-4.

follows:

n(𝑡) =
(︁
𝑚1 𝑚2 𝑓1 𝑓2 𝑢1 𝑢2 𝑢3

)︁ᵀ
(2.21)

U =

⎛⎜⎜⎝
0 0 0 0 0 0 0
0 −𝑈𝑚 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −3𝑈𝑓 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1

2
𝑈𝑚 0 1

2
𝑈𝑓 0 0 0

⎞⎟⎟⎠ (2.22)

B =

⎛⎜⎝
0 0 0 0 𝑘𝑠1 2𝑘𝑠1 3𝑘𝑠1
0 0 0 0 0 0 0
0 0 0 0 𝑘(1−𝑠1) 2𝑘(1−𝑠1) 3𝑘(1−𝑠1)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞⎟⎠ (2.23)

T =

⎛⎜⎜⎜⎜⎝
−(𝜇𝑚1+𝛼𝑚) 0 0 0 0 0 0

𝛼𝑚 −𝜇𝑚2 0 0 𝜇𝑓2+𝑑 0 0

0 0 −(𝜇𝑓1+𝛼𝑓 ) 0 0 0 0
0 0 𝛼𝑓 −𝜇𝑓2 𝜇𝑚2+𝑑 2𝜇𝑚2+𝑑 3𝜇𝑚2+𝑑

0 0 0 0 −(𝜇𝑚2+𝜇𝑓2+𝑑) 𝜇𝑓2+𝑑 0

0 0 0 0 0 −(𝜇𝑚2+𝜇𝑓2+𝑑) 𝜇𝑓2+𝑑

0 0 0 0 0 0 −(𝜇𝑚2+𝜇𝑓2+𝑑)

⎞⎟⎟⎟⎟⎠ (2.24)

Figure 2-7 shows how the unharvested population growth rate and secondary sex ratio vary

across different values of 𝑑 and ℎ. As in the monogamous case, lower divorce rates result in more

mated reproducing adults and, thus, higher population growth. Larger harems also have greater

population growth, possibly because of their higher total reproductive rates. A union with high ℎ

is also more resilient to divorce and female mortality, because it can lose more females before it

reaches ℎ = 1 and dissolves.
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Even without sex-biased harvest, the secondary sex ratio is slightly female-biased (𝑠2 ≈ 0.494),

but varies only a few tenths of a percentage point across a wide range of ℎ and 𝑑. Populations with

high ℎ and low 𝑑 (large, persistent harems) are the most biased.

Figure 2-8 demonstrate how female-biased (𝑠ℎ = 0), unbiased (𝑠ℎ = 0.5), and male-biased

(𝑠ℎ = 1) harvest strategies affect population growth rates and secondary sex ratios.

1. Female-biased harvest (Figure 2-8a) most strongly reduces growth in populations with large

𝑑 and small ℎ, the same populations with the lowest unharvested growth rates (Figure 2-7a).

Smaller harems are less resilient to female-biased harvest for the same reason they are less

resilient to divorce and female mortality - because they cannot lose as many females before

dissolving.

Female-biased harvest may reduce the average harem size, and also makes it difficult for large

harems to form or reform after breaking up. When ℎ is high, a higher proportion of females is

needed to maximize the mating rate, in accordance with (2.20), but these females are depleted

by harvest. Increasing the divorce rate increases the rate at which harems dissolve. This more

drastically reduces growth for larger harems (contours are steeper at large ℎ), because they

need more females to reform.

2. Unbiased harvest (Figure 2-8b) yields similar qualitative trends. Again, populations with

higher divorce rates experience greater reductions in growth, and larger harems are more

affected by divorce. The effect of increasing divorce is not as pronounced as with female-biased

harvest (contours are flatter overall), as less female harvest makes it easier for harems to

reform.

At low ℎ, however, populations with lower 𝑑 are actually more impacted by harvest. Low ℎ

unions have only a few females and are more likely to dissolve from increased mortality. Unions

with high divorce rates are already dissolving quickly, regardless of harvest mortality. Unions

with low divorce rates, in contrast, break up much more frequently once harvest mortality

occurs. As a result, low 𝑑, low ℎ populations experience the largest decreases in growth.

3. Male-biased harvest (Figure 2-8c) reverses the effects of increased divorce rate. Focusing

harvest on males is more likely to dissolve harems by killing their male leaders. Populations

with low 𝑑 experience the largest reductions in growth, because male-biased harvest makes

these unions dissolve more frequently than they normally would (similar to the low 𝑑, low ℎ

case for unbiased harvest).

As in the previous scenarios, the growth of large ℎ populations is less affected by harvest.

Even though male-biased mortality causes unions to break up more frequently, it also returns

(potentially many) females to the 𝑓2 pool. This may be beneficial when ℎ is high, as a higher

proportion of females is needed to maximize the mating rate in accordance with (2.20).
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Figure 2-8: Population responses to harvest that is a) female-biased (𝑠ℎ = 0), b) unbiased (𝑠ℎ = 0.5),
and c) male-biased (𝑠ℎ = 1) in the polygynous (ℎ > 1) model. left) The change in population growth
rate 𝜆. right) The change in secondary sex ratio 𝑠2. Other parameters are the same as in Figure
2-4.
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Figure 2-9: Growth rates 𝜆 as a function of the total harvest rate 𝐸 for populations with various
mating systems. The four types of mating systems shown correspond to different harem sizes ℎ
and divorce rates 𝑑 (Table 2.2); in this example, low ℎ = 2, high ℎ = 10, low 𝑑 = 0, and high
𝑑 = 2. Harvest may be female-biased (𝑠ℎ = 0), unbiased (𝑠ℎ = 0.5), or male-biased (𝑠ℎ = 1). Other
parameters are the same as in Figure 2-4.

As expected, the secondary sex ratio 𝑠2 increases during female-biased harvest, decreases during

male-biased harvest, and undergoes only minimal changes when harvest is unbiased (Figure 2-8,

right). Populations with high 𝑑 and low ℎ experience the largest sex ratio shifts under biased

harvest. This may be because the smaller growth rates of high 𝑑, low ℎ populations are less

effective in offsetting harvest-induced sex ratio biases.

Figure 2-9 shows how the growth rates of the mating systems in Table 2.2 vary with harvest

bias and intensity. Again, we see that high ℎ, low 𝑑 populations (large, persistent harems) have

the largest growth rates of all the mating systems, even under harvest. Low ℎ, high 𝑑 populations

(small, transient harems) have the smallest growth rates.

Increasing the total harvest rate 𝐸 in (2.17) amplifies the differences between female-biased,

unbiased, and male-biased harvest strategies. Female-biased harvest (red) decreases population

growth more severely than male-biased harvest (blue) does, even across populations with different

ℎ and 𝑑. This may be because there is an excess of single males waiting to become harem leaders,

whereas single females are usually in shorter supply (especially when ℎ is large). Additionally, the

death of a male harem leader immediately dissolves his union; this can return many females to

the singles stage, allowing new, full-sized harems to reform with a new male leader. The death

of female harem members, in contrast, does not necessarily cause the union to dissolve, and may

instead generate small, stunted harems with reduced productivity.
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Depending on the mating system, unbiased harvest (black) can decrease growth rates more or

less than female-biased harvest does. In populations with low ℎ (small harems), female-biased

harvest has the most drastic impacts of all the harvest strategies — again, perhaps, because small

harems cannot afford to lose as many females before dissolving. In populations with high ℎ (large

harems), however, unbiased harvest may be just as, if not more, detrimental to population growth.

2.6 Discussion

Because different stages and sexes can significantly influence life cycle processes, demographic

two-sex models are valuable tools for understanding population dynamics. Based on the BMMR

approach, we have developed a more general continuous-time matrix modeling framework that

incorporates multiple sexes, mated states, and life cycle processes.

These models can be used to investigate the effects of stage and sex structure, including

sex-biased vital rates such as differential mortality or maturation. We have developed one such model

to project the long-term dynamics of populations with various mating systems and their potential

responses to sex-biased harvest. Our results suggest that multiple mating factors, including both

harem size and persistence, affect not only unharvested population growth, but also the responses

of growth rate and sex ratio to sex-biased harvest.

In unharvested populations, large divorce rates (more transient unions) tend to reduce

population growth, especially when harem size is small. Sex-biased harvest affects not only

population sex ratios, but also long-term growth rates, with effects depending on sex bias, harem

size, and divorce rate. These complex, and sometimes counterintuitive, nuances would be impossible

to capture without a demographic two-sex model like this, motivating the use of such models in

ecological studies.

Our two-axis depiction of various mating systems is, of course, a simplification. While we have

chosen to focus specifically on the effects of harem size and persistence, there are many factors

that distinguish different breeding and offspring production strategies. Many mating systems, for

example, differ in terms of the parental investment made by males and females; while polygynous

males tend to provide minimal parental care, monogamous males invest on par with their female

partners (Emlen and Oring 1977, Cézilly and Danchin 2008). As a result, harvesting a particular

sex in different mating systems may have very different consequences for offspring survival. Other

species have additional nuances in how they respond to sex-biased harvest – African lions, for

instance, commit infanticide when male harem leaders are killed (Whitman et al. 2014), which

exacerbates the effects of male harvest on population growth.

How populations respond to selective harvest strategies also has important consequences for

evolution. Growing evidence suggests that evolutionary considerations are relevant to sustainable

long-term management (Ashley 2003), and that human-induced selection is especially important

for harvested species. As harvest mortalities are often more severe and selective than natural
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mortalities, they may drive evolution in directions that would not occur under natural conditions.

The evolution of mating strategies or sex ratios, for example, would affect population responses to

continued harvest pressure. Ideally, sex ratios would evolve to favor the sex most depleted by harvest,

allowing populations to compensate for harvest-induced mortalities in the long run. However, there

are many factors, including population structure, the timing of mortality, and sex-biased offspring

costs, that modulate sex ratio evolution (Shyu and Caswell, in preparation).

2.6.1 BMMR matrix models in discrete time

While all our BMMR matrix models thus far have been formulated in continuous time, a

discrete-time approach may be better suited for cases where life cycle processes do not occur

simultaneously, e.g. when there is seasonal separation between breeding, mortality, and other

periodic events.

In a discrete-time matrix model, the product of the population vector n(𝑡) and a projection

matrix A𝑑 produces a series of coupled difference equations that project the population forward

from time 𝑡, e.g.:

n(𝑡+ 1) = A𝑑n(𝑡) (2.25)

The entries in A𝑑 are either transition probabilities, which are bounded between 0 and 1, or the

per capita number of offspring produced by each stage.

Let the matrices U𝑑, B𝑑, and T𝑑 describe stage-specific transition probabilities in consecutive

mating, birth, and transition periods of length Δ𝑡. The total projection matrix A𝑑, which projects

the population over all three periods, is the product of the three periodic matrices (Caswell 2001,

Chapter 13):

n(𝑡+ 3Δ𝑡) = T𝑑B𝑑U𝑑n(𝑡)

= A𝑑n(𝑡) (2.26)

Example matrices for a 5-stage, discrete-time BMMR model are as follows. The mating matrix

U𝑑 can be written as:

U𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1−𝑀𝑚 0 0 0

0 0 1 0 0

0 0 0 1−𝑀𝑓 0

0 1
2𝑀𝑚 0 1

2𝑀𝑓 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.27)

where 𝑀𝑚 and 𝑀𝑓 are per capita male and female mating probabilities.
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The birth matrix B𝑑 can be written as:

B𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 𝐿𝑠1

0 1 0 0 0

0 0 1 0 𝐿(1− 𝑠1)

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.28)

where L is the average litter size (number of offspring produced per couple).

And the transition matrix T𝑑 can be written as:

T𝑑 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑝𝑚1 0 0 0 0

𝑎𝑚 𝑝𝑚2 0 0 𝜎𝑝𝑚2 + (1− 𝜎)(1− 𝑝𝑓2)𝑝𝑚2

0 0 𝑝𝑓1 0 0

0 0 𝑎𝑓 𝑝𝑓2 𝜎𝑝𝑓2 + (1− 𝜎)(1− 𝑝𝑚2)𝑝𝑓2

0 0 0 0 (1− 𝜎)𝑝𝑚2𝑝𝑓2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.29)

where the 𝑝𝑖 are the probabilities that an individual of stage 𝑖 survives over the time interval, 𝑎𝑚
and 𝑎𝑓 are male and female maturation probabilities, and 𝜎 is the probability of divorce.

Our preliminary results for these 5-stage, BMMR-based models suggest that the qualitative

outcomes of the continuous-time and discrete-time approaches are often similar. However, each

approach has advantages and disadvantages that will determine which problems it is best suited for.

In discrete time, for instance, it is possible to have a transition of 100% probability (e.g., all juveniles

becoming adults after a certain period). This is not as straightforward in the continuous-time model,

as it would require either an infinite transition rate or a periodic “pulse” of transitions after some

integration interval.

In the discrete-time model, however, all transition probabilities must be bounded between 0

and 1. This sets constraints on the union formation matrix U𝑑 in (2.27), for example, in that

the probability of a male or female transitioning into the union stage (𝑀𝑚 and 𝑀𝑓 respectively)

cannot be greater than 1. This is problematic when the number of unions is greater than either the

number of males or females, as in promiscuous mating systems where individuals can form multiple

pair bonds. The continuous-time union matrix (2.13) allows unbounded union formation rates that

better accommodate such systems.

In discrete time, all possible transitions from a given stage must also have a total probability of 1,

which complicates the transition matrix T𝑑. Compare, for example, the continuous-time rate matrix

in (2.15) to the corresponding discrete-time probability matrix in (2.29). The discrete-time matrix

is more complex because it must account for all possible union fates, including multiple deaths

and divorce over a given time interval. The continuous-time transition matrix (2.15) is comparably

simpler, as multiple events cannot occur simultaneously on a strictly continuous timescale.
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Alternatively, rate matrices from the continuous-time formulation can be transformed into

discrete time using the matrix exponential, as in (2.31) and (2.32). Another discrete-time projection

matrix can thus be written as the product of three matrix exponentials.

Noting that n(𝑡 + Δ𝑡) = 𝑒A𝑐Δ𝑡n(𝑡), the matrices within the matrix exponentials can also be

multiplied by scaling constants that correspond to the relative lengths of the mating, birth, and

transition periods (𝑎, 𝑏, and 𝑐 respectively):

n(𝑡+ 𝑎+ 𝑏+ 𝑐) =
𝑒𝑎T𝑒𝑏B𝑒𝑐U

𝑎+ 𝑏+ 𝑐
n(𝑡) (2.30)

Although this approach combines useful elements from both the continuous-time and discrete-time

formulations, calculating matrix exponentials is often computationally intensive. Differentiating

the eigenvalues of (2.30) for sensitivity analysis also requires the derivatives of matrix exponentials,

which are more difficult to compute.
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Chapter 2 Appendix

2.A Averaging transition rate matrices

We show that the continuous-time projection matrix A is the average of the individual transition

rate matrices in (2.3) as follows. First note that a continuous-time system can be integrated using

the matrix exponential.
𝑑n

𝑑𝑡
= An(𝑡) → n(𝑡) = 𝑒A𝑡n(0) (2.31)

Thus, the matrix exponential 𝑒Δ𝑡A projects the population over a discrete period of length Δ𝑡:

n(𝑡+Δ𝑡) = 𝑒Δ𝑡An(𝑡) (2.32)

and the population can be projected over multiple life cycle periods of length Δ𝑡 using a periodic

matrix product (Caswell 2001, Chapter 13):

n(𝑡+ 3Δ𝑡) = 𝑒Δ𝑡T𝑒Δ𝑡B𝑒Δ𝑡Un(𝑡) (2.33)

As Δ𝑡 → 0 in the limit of continuity,

n(𝑡+ 3Δ𝑡) ≈ (1 + Δ𝑡T)(1 + Δ𝑡B)(1 + Δ𝑡U)n(𝑡)

≈ [1 + Δ𝑡(T+B+U)]n(𝑡) (2.34)

By the limit definition,

𝑑n

𝑑𝑡
= lim

Δ𝑡→0

n(𝑡+ 3Δ𝑡)− n(𝑡)

3Δ𝑡

=
1

3
(T+B+U)n(𝑡)

= An(𝑡) (2.35)

as in (2.3).
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2.B Derivatives of a frequency vector

Given the population vector of stage frequencies

p =
n

‖n‖
(2.36)

the derivative 𝑑p
𝑑𝑡 is

𝑑p

𝑑𝑡
=

‖n‖𝑑n
𝑑𝑡 − n𝑑‖n‖

𝑑𝑡

‖n‖2

=
1

‖n‖
𝑑n

𝑑𝑡
− n

‖n‖2
𝑑‖n‖
𝑑𝑡

(2.37)

Let 1ᵀ be a 1× 𝑠 vector of ones. Because n is a positive vector,

‖n‖ = 1ᵀn

𝑑‖n‖
𝑑𝑡

= 1ᵀ
𝑑n

𝑑𝑡
(2.38)

Then (2.37) can be rewritten as

𝑑p

𝑑𝑡
=

1

1ᵀn

𝑑n

𝑑𝑡
− n

(1ᵀn)2
1ᵀ

𝑑n

𝑑𝑡

=
1

1ᵀn
(I𝑠 − pIᵀ)

𝑑n

𝑑𝑡

=
1

1ᵀn
(I𝑠 − pIᵀ)An(𝑡) (2.39)

where I𝑠 is a 𝑠× 𝑠 identity matrix.

If the population is initialized with a population vector n = p so that ‖n‖ = 1ᵀn = 1, then

(2.39) can be rewritten as:
𝑑p

𝑑𝑡
= (I𝑠 − p1ᵀ)Ap(𝑡) (2.40)

as in (2.10).

2.C BMMR matrices for a polygynous system

Consider a polygynous system with a maximum harem size of ℎ. When ℎ is large, it is cumbersome

to write the rate matrices U, B, T in full, especially since many of their entries will be zeros.

Instead, we will consider these matrices in terms of their contributions to these nine regions of the
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projection matrix:

A =

⎛⎜⎜⎝
A𝑚→𝑚 A𝑓→𝑚 A𝑢→𝑚

A𝑚→𝑓 A𝑓→𝑓 A𝑢→𝑓

A𝑚→𝑢 A𝑓→𝑢 A𝑢→𝑢

⎞⎟⎟⎠ (2.41)

For the union formation matrix U, the only regions with nonzero contributions are:

U𝑚→𝑚 =

(︃
0 0

0 −𝑈𝑚

)︃
2× 2 (2.42)

U𝑓→𝑓 =

(︃
0 0

0 −ℎ𝑈𝑓

)︃
2× 2 (2.43)

U𝑚→𝑢 =

⎛⎜⎜⎝
0 0

...

0 −1
2𝑈𝑚

⎞⎟⎟⎠ ℎ× 2 (2.44)

U𝑓→𝑢 =

⎛⎜⎜⎝
0 0

...

0 −1
2𝑈𝑓

⎞⎟⎟⎠ ℎ× 2 (2.45)

For the birth matrix B, the only regions with nonzero contributions are:

B𝑢→𝑚 =

(︃
𝑘𝑠1 2𝑘𝑠1 . . . 𝑘ℎ𝑠1

0 0 . . . 0

)︃
2× ℎ (2.46)

B𝑢→𝑓 =

(︃
𝑘(1− 𝑠1) 2𝑘(1− 𝑠1) . . . 𝑘ℎ(1− 𝑠1)

0 0 . . . 0

)︃
2× ℎ (2.47)

For the transition matrix T, the only regions with nonzero contributions are:

T𝑚→𝑚 =

(︃
−(𝜇𝑚1 + 𝛼𝑚) 0

𝛼𝑚 −𝜇𝑚2

)︃
2× 2 (2.48)

T𝑓→𝑓 =

(︃
−(𝜇𝑓1 + 𝛼𝑓 ) 0

𝛼𝑓 −𝜇𝑓2

)︃
2× 2 (2.49)

T𝑢→𝑚 =

(︃
0 0 . . . 0

𝜇𝑓2 + 𝑑 0 . . . 0

)︃
2× ℎ (2.50)

T𝑢→𝑓 =

(︃
0 0 . . . 0

𝜇𝑚2 + 𝑑 2𝜇𝑚2 + 𝑑 . . . ℎ𝜇𝑚2 + 𝑑

)︃
2× ℎ (2.51)

The ℎ × ℎ submatrix T𝑢→𝑢 is also nonzero. It contains entries of −(𝜇𝑚2 + 𝜇𝑓2 + 𝑑) all along its

diagonal, and entries of 𝜇𝑓2 + 𝑑 all along its first superdiagonal.
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As an example, the U, B, T matrices in the case where ℎ = 3 are provided in (2.22), (2.23),

and (2.24) respectively.
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Chapter 3

A demographic model for sex ratio

evolution and the effects of sex-biased

offspring costs

3.1 Abstract

The evolution of the primary sex ratio, the proportion of male births in an individual’s offspring

production strategy, is a frequency-dependent process that selects against the more common sex.

Because reproduction is shaped by the entire life cycle, sex ratio theory would benefit from explicitly

two-sex models that include some form of life cycle structure.

We present a demographic approach to sex ratio evolution that combines adaptive dynamics

with nonlinear matrix population models. We also determine the evolutionary and convergence

stability of singular strategies using matrix calculus. These methods allow the incorporation of any

population structure, including multiple sexes and stages, into evolutionary projections.

Using this framework, we compare how four different interpretations of sex-biased offspring costs

affect sex ratio evolution. We find that demographic differences affect evolutionary outcomes and

that, contrary to prior belief, sex-biased mortality after parental investment can bias the primary

sex ratio (but not the corresponding reproductive value ratio).

Keywords: sex ratio evolution, adaptive dynamics, two-sex models, matrix population models,

evolutionarily singular strategies, offspring costs, reproductive value

3.2 Introduction

Sex ratio evolution is the one of the oldest life history questions and a well-known example of

frequency-dependent selection. Although the primary sex ratio 𝑠1 (proportion of offspring that

are born male) is nearly equal in many mammals, including humans, sex ratio biases have been
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observed in countless other species (Karlin 1986). Explanations for biased sex ratios often focus

on demographic differences (e.g., costs of offspring, mortality of specific life cycle stages); however,

much sex ratio theory is based on purely verbal arguments or models with minimal demographic

structure.

Early explanations of sex ratio evolution, for instance, relied on occasionally confused or vague

verbal reasoning. Darwin (1871) wrote that parents producing more of the rarer sex would have

fewer superfluous offspring and thus be more “productive,” but later admitted the problem was

too intricate for him to reason through (Darwin 1874). Fisher (1930) tackled this challenge with

a famously succinct, and infamously cryptic, verbal argument based on reproductive value (the

present value of an individual’s future offspring). Because every individual has a male and female

parent, Fisher stated that the “total reproductive value” of each sex in a given generation (i.e., their

genetic contributions to all future generations, West 2009) must be equal.

If males and females are equally costly to produce, the sex ratio should evolve to equality, since

any sex produced in excess will have fewer mating opportunities, less reproductive success, and thus

smaller returns on reproductive value; parents who are genetically predisposed to producing the

rarer sex thus have more grandchildren to propagate their genes, making the once rarer sex more

common over time (Hamilton 1967, West 2009). If, however, males and females are differentially

costly (e.g., require different amounts of resources to produce), Fisher claimed the sex ratio will

evolve so that there is equal “expenditure” in, rather than equal numbers of, both sexes.

Trivers (1972) more precisely defined this expenditure as “parental investment” — any investment

a parent makes (time, energy, resources, protection, etc.) to increase an offspring’s survival and

reproductive success, at the cost of investing in other children. If a son, for example, requires less

parental investment than a daughter, a parent can produce more successful sons (and, to a point,

more reproductive value) per unit investment. Selection thus biases the sex ratio towards sons until

there is equal parental investment in sons and daughters. The optimal primary sex ratio 𝑠*1 is given

by the “equal investment principle”:

𝐶𝑚𝑠*1 = 𝐶𝑓 (1− 𝑠*1)

𝑠*1 =
𝐶𝑓

𝐶𝑚 + 𝐶𝑓
(3.1)

where 𝐶𝑚 and 𝐶𝑓 are some form of male and female investment costs (Charnov 1982, Hardy

2002). Others (e.g., Charnov 1982, Bull and Charnov 1988, Frank 1990) have shown that the equal

investment principle (3.1) requires several implicit assumptions, including random mating, fixed

resource allocation, and additive offspring costs with linear returns (e.g., doubling your investment

in sons doubles the grandchildren or genetic returns that your sons produce).

Early mathematical treatments of Darwin and Fisher’s arguments by Düsing (1883, translated

in Edwards 2000) and Shaw and Mohler (1953) are the basis for many other sex ratio analyses.

They consider how an individual’s sex ratio affects their fitness, through their relative number of
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(or genetic contribution to) grandchildren. The fitness 𝑤 of a given parent has the form:

𝑤 =
𝑛

4𝑁

(︂
𝑠1
𝑆1

+
1− 𝑠1
1− 𝑆1

)︂
(3.2)

when that parent produces 𝑛 offspring at a primary sex ratio 𝑠1, and the population at large produces

𝑁 offspring at a primary sex ratio 𝑆1. This formulation does not consider stage structure within

the sexes, nor does it account for offspring production over more than two generations.

The fitness of a given sex ratio phenotype 𝑠1 is frequency-dependent, in that it depends on the

population sex ratio 𝑆1. When the population sex ratio 𝑆1 = 0.5, (3.2) is always 𝑤 = 𝑛
2𝑁 , regardless

of the individual sex ratio 𝑠1 (Shaw and Mohler 1953); this means that all sex ratios, including

the resident and any mutants, will have the same fitness. Thus, when 𝑆1 = 0.5, no individual sex

ratio can have greater fitness than the resident, so no alternatives sex ratios can increase under

selection. The equal sex ratio 𝑆1 = 0.5 is thus an “unbeatable” evolutionarily stable strategy (ESS)

(Maynard Smith and Price 1973). Subsequent studies have identified numerous factors that can bias

the ESS sex ratio from 0.5, including local mate competition (Hamilton 1967), maternal condition

(Trivers and Willard 1973), parent-offspring conflict (Trivers 1974, Trivers and Hare 1976), and

other unusual life history strategies or sex determination systems (Hardy 2002).

The ESS sex ratios can be affected by sex-biased offspring costs, especially in terms of parental

investment and the timing of sex-biased mortality (Hardy 2002, West 2009). Shaw and Mohler

(1953) noted that sex-specific survival probabilities cancel out of (3.2) and are thus irrelevant to

selection, though they did not consider parental investment. Fisher (1930) himself argued that

only sex-biased mortality during the period of parental investment affects the sex ratio, and later

analyses have largely ruled in favor of his conjecture. Similar to Shaw and Mohler, some frame

sex ratio fitness in terms of a genetic contribution to grandchildren (Kolman 1960). Others use a

population genetics approach to track the allele frequencies of different sex ratios (Leigh 1970). The

general consensus is that sex-biased mortality after parental investment cannot bias the ESS sex

ratio, because increased mortality is then compensated for by increased reproductive opportunities

(West 2009).

However, few of these analyses explicitly consider stage structure, even though the effect

of mortality at different life cycle stages is an inherently demographic issue. Many also only

consider offspring production over two generations, rather than over an entire lifetime. Models

that incorporate both age structure and lifetime offspring production are rarer and have produced

more mixed results. In some age-structured models (Charnov 1975), sex-biased survival cancels out

of the fitness expression, while in others (Emlen 1968a, b), mortality at all reproducing ages affects

the sex ratio.

These discrepancies suggest that stage-specific, demographic factors deserve additional

consideration in sex ratio theory. To this end, we use matrix population models to incorporate

multiple sexes, stages, and life cycle events into our evolutionary projections. Furthermore, although
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previous studies of sex ratio evolution (e.g. Charnov 1979a, Charnov 1982, Hardy 2002, Otto and

Day 2007) have focused on finding ESSs, additional methods are needed to determine whether the

population will actually converge to the ESS in the long run. Here, we apply adaptive dynamics to

identify potential evolutionary outcomes and characterize both their evolutionary and convergence

stability.

3.3 Model and methods

There are two main approaches for studying sex ratio evolution (West 2009). One approach uses

population or quantitative genetics to track the dynamics of allele frequencies (e.g. Eshel 1975,

Uyenoyama 1979, Charlesworth 1977, Karlin and Lessard 1986). The other approach, which includes

ESS theory and adaptive dynamics, ignores the often complex underlying genetics and instead

focuses on trait phenotypes (e.g.,Charnov 1982, Hardy 2002, Otto and Day 2007). We will use the

latter approach by considering population-level effects of the sex ratio phenotype.

Following the two-sex modeling framework introduced in Shyu and Caswell (xxa), we construct a

series of continuous-time rate matrices that incorporate multiple sexes, stages, and life cycle events.

Because these models are frequency-dependent, their long-term population growth rates are given

by the dominant eigenvalue of the projection matrix at the equilibrium stage distribution (Pollak

1986, Haedler 1988, Caswell and Weeks 1986, Ianelli et al. 2005). By applying adaptive dynamics

theory, we use these models to identify and characterize long-term evolutionary outcomes for the

primary sex ratio — namely, singular strategies including, but not limited, to ESSs.

3.3.1 The two-sex matrix model

Consider a population with five stages: juvenile males 𝑚1 and juvenile females 𝑓1, adult males 𝑚2

and adult females 𝑓2, and reproducing unions 𝑢 (mated couples with one male and one female each).

Single adults interact to form unions, which then produce new juvenile offspring (Figure 3-1). A

summary of the variables, parameters, and matrices in this model is provided in Table 3.1.

The population vector at time 𝑡 is:

n(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑚1

𝑚2

𝑓1

𝑓2

𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.3)

The total unions (pairs) formed per time is given by the nonlinear harmonic mean mating

function:

𝑀(n) =
2𝑚2𝑓2
𝑚2 + 𝑓2

(3.4)
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Figure 3-1: Life cycle diagram for a 5-stage population with juvenile males 𝑚1 and juvenile females
𝑓1, adult males 𝑚2 and adult females 𝑓2, and reproducing unions 𝑢. The functions and parameters
shown here appear in the union formation matrix U (3.6) (red), birth matrix B (3.7) (green), or
transition matrix T (3.8) (blue). (from Shyu and Caswell xxa)

which has frequency-dependent male and female per capita mating rates:

𝑈𝑚(n) =
𝑀(n)

𝑚2
=

2𝑓2
𝑚2 + 𝑓2

𝑈𝑓 (n) =
𝑀(n)

𝑓2
=

2𝑚2

𝑚2 + 𝑓2
(3.5)

Mating, birth, and life cycle transition processes are divided into three rate matrices (U, B, and

T) as follows.

1. The union formation matrix U contains the per capita mating rates (3.5):

U(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −𝑈𝑚(p) 0 0 0

0 0 0 0 0

0 0 0 −𝑈𝑓 (p) 0

0 1
2𝑈𝑚(p) 0 1

2𝑈𝑓 (p) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.6)

2. The birth matrix B contains the rates of male and female offspring production by unions:

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 𝑅𝑠1
𝐶𝑎

0 0 0 0 0

0 0 0 0 𝑅(1−𝑠1)
𝐶𝑎

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.7)
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where 𝑠1 is the (evolving) primary sex ratio, 𝑅 is the total resource investment rate, 𝐶𝑎 is the

average offspring resource cost per birth. The quantity 𝑅/𝐶𝑎 is the union reproductive rate

(offspring produced per time).

3. The life cycle transition matrix T contains the rates of mortality and transitions between

stages:

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(𝜇𝑚1 + 𝛼𝑚) 0 0 0 0

𝛼𝑚 −𝜇𝑚2 0 0 𝜇𝑓2 + 𝑑

0 0 −(𝜇𝑓1 + 𝛼𝑓 ) 0 0

0 0 𝛼𝑓 −𝜇𝑓2 𝜇𝑚2 + 𝑑

0 0 0 0 −(𝜇𝑚2 + 𝜇𝑓2 + 𝑑)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.8)

where 𝜇𝑚1 and 𝜇𝑚2 are the juvenile and adult male mortality rates, 𝜇𝑓1 and 𝜇𝑓2 are the

juvenile and adult female mortality rates, 𝛼𝑚 and 𝛼𝑓 are the male and female maturation

rates, and 𝑑 is the union divorce rate.

The average of these three rate matrices is the continuous-time projection matrix

A(n) =
1

3
[T+B+U(n)] (3.9)

where
𝑑n

𝑑𝑡
= A(n)n(𝑡) (3.10)

In our model, the nonlinear mating rates (3.5) are homogeneous of degree 0 with respect to

n. This allows all entries 𝑎𝑖𝑗 in A to depend on relative stage frequencies rather than absolute

abundances, i.e.:

𝑎𝑖𝑗(𝑐n) = 𝑎𝑖𝑗(n) (3.11)

for any positive constant 𝑐. As a result, population growth is frequency-dependent, in that it is a

function of the population frequency vector:

p =
n

‖n‖
(3.12)

where ‖n‖ is the 1-norm of n.

Frequency-dependent models like these ultimately converge to an equilibrium stage distribution

p̂. The population then grows or decays exponentially at a rate given by the dominant eigenvalue

𝜆 of A(p̂). For calculating 𝜆, it is sufficient to consider the dynamics of p (Shyu and Caswell xxa):

𝑑p

𝑑𝑡
= (I𝑠 − p1ᵀ)A(p)p (3.13)
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To find p̂, integrate (3.13) with the MATLAB ODE45 differential equation solver until p converges

to p̂ (e.g., until vector entries do not change significantly over consecutive integration intervals).

We then calculate the population’s long-term growth rate 𝜆, the dominant eigenvalue of A(p̂), and

its corresponding right and left eigenvectors w and v. Note that the dominant right eigenvector of

A(p̂) equals the stable stage distribution; that is, w = p̂.

Matrices and Vectors

A projection matrix (3.9)
B birth matrix (3.7)
U union formation matrix (3.6)
T transition matrix (3.8)
n population density vector (3.3)
p population frequency vector (3.12)
p̂ or w equilibrium stage structure
v reproductive value vector

Population Properties

𝜆 long-term population growth rate, dominant eigenvalue of A(p̂)
𝑚1,𝑚2 juvenile, adult male stages
𝑓1, 𝑓2 juvenile, adult female stages
𝑢 union (pair) stage
𝑠1 primary sex ratio (proportion of offspring that are born male)
𝑠*1 singular strategy (SS) value of 𝑠1
𝑠2 secondary sex ratio (proportion of adults that are male)
𝑠*2 resulting 𝑠2 when 𝑠1 = 𝑠*1
𝑣𝑖 reproductive value of stage 𝑖

Life Cycle Parameters

𝛼𝑚, 𝛼𝑓 male, female maturation rates
𝑑 divorce rate (rate at which a male-female pair bond breaks)
𝜇𝑓1, 𝜇𝑓2 juvenile, adult female mortality rates
𝜇𝑚1, 𝜇𝑚2 juvenile, adult male mortality rates
𝑅 resource investment rate
𝑀 mating function (3.4) (total unions formed per time)
𝑈𝑚, 𝑈𝑓 per capita mating rates (3.5)
𝐹𝑚, 𝐹𝑓 per capita fertility rates (3.63)

Offspring Cost Parameters

𝐶𝑚, 𝐶𝑓 male, female offspring resource costs
𝐶𝑎 average offspring resource cost (3.35)
𝑎 age of independence
𝐼 offspring investment rate
𝐷𝑚, 𝐷𝑓 male, female parental mortality costs
𝐸𝑚, 𝐸𝑓 male, female parent costs of reproduction (3.42)
𝜇𝑚2𝑐, 𝜇𝑓2𝑐 mated male, female mortality rates (3.44)

Table 3.1: A summary of the variables, parameters, matrices, and population properties in the
two-sex matrix model. Mutant parameters (not shown) are denoted by an apostrophe; e.g., A′ is
the mutant projection matrix.

3.3.2 Evolutionary analysis with adaptive dynamics

Adaptive dynamics treats evolution as a series of “invasions” by mutant phenotypes. Mutations are

assumed to occur infrequently, so that each mutation is either fixed or lost before the next mutation

arises (Geritz et al. 1998). Because each mutant is initially rare, its effects on the existing resident

population are considered negligible (Metz 2006).
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Consider a stable, monomorphic resident population with phenotype 𝑥, projection matrix A,

and growth rate 𝜆. An invading mutant with phenotype 𝑦, projection matrix A′, and growth rate

𝜆′ (which depends on the environmental conditions set by the resident) has two possible fates. If

𝜆′ < 𝜆, the mutant will ultimately die out. But if 𝜆′ > 𝜆, the mutant can replace the resident and

induce evolutionary change (Metz 1992).

3.3.2.1 The mutant projection matrix

Analogous to the resident projection matrix A in (3.9), the mutant projection matrix A′ is the

average of the mutant rate matrices:

A′(p̂) =
1

3

[︀
T′ +B′ +U′(p̂)

]︀
(3.14)

The only phenotypic difference between mutants and residents is the primary sex ratio they use.

Just as the resident birth matrix B in (3.7) depends on the resident sex ratio 𝑠1, the mutant birth

matrix B′ depends on mutant sex ratio 𝑠′1:

B′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
𝑅𝑠′1
𝐶𝑎

0 0 0 0 0

0 0 0 0
𝑅(1−𝑠′1)

𝐶𝑎

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.15)

Because mutants are so rare, we assume they mate only with residents. As a result, the

equilibrium resident population sets the overall mating rate according to (3.5), and the mutant

mating matrix U′ is the resident mating matrix U in (3.6) evaluated at the resident stable stage

distribution p̂:

U′(p̂) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −𝑈𝑚(p̂) 0 0 0

0 0 0 0 0

0 0 0 −𝑈𝑓 (p̂) 0

0 1
2𝑈𝑚(p̂) 0 1

2𝑈𝑓 (p̂) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.16)

Unless certain transition rates also depend on the primary sex ratio (e.g., parental survival in

Section 3.4.5, which has transition matrix (3.43)), the mutant transition matrix T′ is the same as

the resident transition matrix T in (3.8).

3.3.2.2 Invasion fitness and the selection gradient

We define the invasion fitness 𝑠𝑥(𝑦) as the long-term growth rate of a mutant with phenotype 𝑦,

relative to the growth rate of a resident with phenotype 𝑥, in the equilibrium resident environment
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(as set by the resident’s stable stage distribution p̂). In our two-sex matrix model, the invasion

fitness is the difference in the dominant eigenvalues of the mutant and resident projection matrices

(𝜆 and 𝜆′, respectively), where 𝜆′ is evaluated at the resident’s stable stage distribution p̂.

𝑠𝑥(𝑦) = 𝜆′(p̂)− 𝜆 (3.17)

Only mutants with a positive invasion fitness can displace the resident and cause evolutionary

change.

The first derivative of the invasion fitness (3.17), with respect to the mutant phenotype 𝑦, is

the selection gradient 𝐷(𝑥), which indicates the direction of selection at a given resident phenotype

𝑥. In our model, the selection gradient is the sensitivity of mutant eigenvalue 𝜆′ (Caswell 2010).

In general, the resident and mutant phenotypes can be written as vectors of trait values, 𝜃 and 𝜃′

respectively. The selection gradient is then:

𝐷(𝑥) =
𝜕𝑠𝑥(𝑦)

𝜕𝑦

⃒⃒⃒⃒
𝑦=𝑥

=
𝜕𝜆′

𝜕𝜃′ᵀ

⃒⃒⃒⃒
𝜃′=𝜃

=

(︂
(w′ᵀ ⊗ v′ᵀ)

𝑑vecA′

𝑑𝜃′ᵀ

)︂ ⃒⃒⃒⃒
𝜃′=𝜃

(3.18)

where w′ and v′ are the dominant right and left eigenvectors of the mutant matrix A′(p̂), scaled so

that v′ᵀw′ = 1.

Here, we consider the case where the only evolving trait is the primary sex ratio. Thus, the

trait vectors 𝜃 and 𝜃′ simplify to the scalar resident and mutant sex ratios 𝑠1 and 𝑠′1. The selection

gradient at 𝑠1 is thus:
𝜕𝜆′

𝜕𝑠′1

⃒⃒⃒⃒
𝑠′1=𝑠1

=

(︂
(w′ᵀ ⊗ v′ᵀ)

𝑑vecA′

𝑑𝑠′1

)︂ ⃒⃒⃒⃒
𝑠′1=𝑠1

(3.19)

The selection gradient (3.19) can lend insight into both the transient and equilibrium evolutionary

dynamics of 𝑠1. Though we will focus on equilibrium results here, transient evolutionary dynamics

can also be explored using the canonical equation (as discussed in Shyu and Caswell xxb).

3.3.2.3 Singular strategies

When the selection gradient (3.19) is 0, there is no directional selection on 𝑠1. The corresponding

resident strategy 𝑠*1 is called a singular strategy (SS). MATLAB’s fsolve or fmincon functions can

be used determine the values of 𝑠1 where the selection gradient vanishes, which correspond to 𝑠*1.

Singular strategies are potential long-term evolutionary outcomes that can be characterized by

several criteria (Geritz et al. 1998). One can, instance, determine whether each SS is evolutionarily

stable (an ESS that is resistant to further invasion) or evolutionarily unstable (a branching point that

leads to phenotypic divergence), as well as whether each SS is convergence stable (an evolutionary
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attractor that the population will converge to through small mutations) or convergence unstable

(an evolutionary repeller).

For a one-dimensional phenotype, 2D visualizations of the invasion fitness landscape called

pairwise invasion plots (PIPs) graphically indicate evolutionary and convergence stability. A PIP

shows where invasion fitness is positive or negative, depending on the resident phenotype 𝑥 and the

mutant phenotype 𝑦 (Figure 3-2).

Figure 3-2: A 3D visualization of an invasion fitness landscape and the corresponding 2D pairwise
invasion plot (PIP).

Singular strategies occur at intersections of the boundaries between negative and positive regions.

If mutations are small (do not differ drastically from the resident phenotype), the behavior of the

PIP around a SS indicates several properties (Figure 3-3). If, for example, the vertical line through

the SS is entirely in the negative region (as in Figure 3-2), the SS is evolutionarily stable, i.e., an

ESS resistant to further invasion.

3.3.3 Second derivatives of invasion fitness

Evolutionary and convergence stability can be determined more generally by using the local second

derivatives of the invasion fitness 𝑠𝑥(𝑦) (3.17) to the mutant phenotype 𝑦 and the resident phenotype

𝑥 (Figure 3-3). In our two-sex model, these are the second derivatives of the mutant and resident

eigenvalues, 𝜆′ and 𝜆, with respect to the vectors describing mutant and resident phenotypes, 𝜃′

and 𝜃. Again, we will only consider the primary sex ratio phenotype, so 𝜃 and 𝜃′ simplify to 𝑠1 and

𝑠′1 respectively.

The pure second derivative with respect to the mutant phenotype is:

𝜕2𝑠𝑥(𝑦)

𝜕2𝑦
=

𝜕2(𝜆′ − 𝜆)

𝜕𝜃′𝜕𝜃′ᵀ =
𝜕2𝜆′

𝜕2𝑠′1
(3.20)
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Figure 3-3: Second derivative properties and the corresponding pairwise invasion plots (PIPs) for
the eight types of singular strategies (adapted from Geritz et al. 1998).

because 𝜆 does not depend on the mutant sex ratio 𝑠′1.

The pure second derivative with respect to the resident phenotype is:

𝜕2𝑠𝑥(𝑦)

𝜕2𝑥
=

𝜕2(𝜆′ − 𝜆)

𝜕𝜃𝜕𝜃ᵀ =
𝜕2(𝜆′ − 𝜆)

𝜕2𝑠1
(3.21)

because both 𝜆′ and 𝜆 depend on the resident sex ratio 𝑠1.

The evolutionary stability of a singular strategy 𝑥* depends on (3.20) (Geritz et al. 1996):

𝜕2𝑠𝑥(𝑦)

𝜕2𝑦

⃒⃒⃒⃒
𝑥=𝑦=𝑥*

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0 evolutionarily stable (ESS)

= 0 may be selectively neutral (weak form ESS)

> 0 evolutionarily unstable (branch point)

(3.22)

The convergence stability of a singular strategy 𝑥* depends on both (3.20) and (3.21) (Eshel

1983; Geritz et al. 1996):

(︂
𝜕2𝑠𝑥(𝑦)

𝜕2𝑥
− 𝜕2𝑠𝑥(𝑦)

𝜕2𝑦

)︂ ⃒⃒⃒⃒
𝑥=𝑦=𝑥*

⎧⎨⎩> 0 convergence stable (attracting)

< 0 convergence unstable (repelling)
(3.23)
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In next two sections, we will present matrix calculus equations for the pure second derivatives

(3.20) and (3.21) that determine evolutionary and convergence stability. These expressions will rely

on the equations (3.24) and (3.32) respectively.

3.3.3.1 Second derivatives with respect to the mutant sex ratio (3.20)

Calculating (3.20) requires the second derivatives of the mutant eigenvalue 𝜆′ with respect to the

mutant trait 𝑠′1. The corresponding mutant matrix A′ is a function of the mutant trait 𝑠′1 and

the resident’s stable stage structure p̂(𝑠1) (since mutants are rare, their environment is completely

determined by the resident). Because p̂ is constant, A′(𝑠′1, p̂) is a constant matrix.

As shown in Shyu and Caswell (2014, (38)), the second derivatives of 𝜆′ can be found using

matrix calculus:

𝜕2𝜆′

𝜕2𝑠′1
= (w′ᵀ ⊗ v′ᵀ ⊗ I𝑠)𝐻

[︀
vecA′; 𝑠′1

]︀
+

(︂
𝑑vecA′

𝑑𝑠′1

)︂ᵀ

𝐻
[︀
𝜆′; vecA′]︀ 𝑑vecA′

𝑑𝑠′1
. (3.24)

where ⊗ is the Kronecker product, vec is the vec operator, and I𝑠 is a 𝑠× 𝑠 identity matrix.

This expression depends on the Hessian (matrix of second derivatives) of 𝜆′ with respect to A′:

𝐻
[︀
𝜆′; vecA′]︀ = 1

2
(H1 +Hᵀ

1) (3.25a)

where

H1 = (I𝑛 ⊗ v′)
𝑑w′

𝑑vecᵀA′ + (w′ ⊗ I𝑛)
𝑑v′

𝑑vecᵀA′ (3.25b)

and the first derivatives of w′ and v′ are

𝑑w′

𝑑vecᵀA′ =
(︀
𝜆′I𝑛 −A′ +w′eᵀA′)︀−1

[︁
w′ᵀ ⊗

(︀
I𝑛 −w′eᵀ

)︀]︁
(3.26)

𝑑v′

𝑑vecᵀA′ =
(︀
𝜆′I𝑛 −A′ᵀ + 𝜆′v′w′ᵀ)︀−1

(︂(︀
I𝑛 − v′w′ᵀ)︀⊗ v′ᵀ − 𝜆′(v′ ⊗ v′ᵀ)

𝑑w′

𝑑vecᵀA′

)︂
. (3.27)

where eᵀ is a 1× 𝑠 vector of ones.

The expression (3.24) also depends on the first and second derivatives of A′ with respect to 𝑠′1,

which are given by 𝑑vecA′

𝑑𝑠′1
and 𝐻 [vecA′; 𝑠′1] respectively. Recall from (3.9) that:

A′ =
1

3

(︀
T′ +B′ +U′)︀ (3.28)

The first derivatives of A′ to 𝑠′1 are:

𝑑vecA′

𝑑𝑠′1
=

1

3

(︂
𝑑vecT′

𝑑𝑠′1
+

𝑑vecB′

𝑑𝑠′1
+

𝑑vecU′

𝑑𝑠′1

)︂
(3.29)
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The second derivatives of A′ to 𝑠′1 are:

𝐻
[︀
vecA′; 𝑠′1

]︀
=

1

3

(︀
𝐻
[︀
vecT′; 𝑠′1

]︀
+𝐻

[︀
vecB′; 𝑠′1

]︀
+𝐻

[︀
vecU′; 𝑠′1

]︀)︀
(3.30)

These derivatives can be evaluated by hand or with a symbolic math program. Because not all

of the matrices depend on 𝑠′1 (U′, for example, never does), both (3.29) and (3.30) may simplify

considerably.

3.3.3.2 Second derivatives with respect to the resident sex ratio (3.21)

Calculating (3.21) requires the second derivatives of the mutant eigenvalue 𝜆′ and resident eigenvalue

𝜆 with respect to the resident trait 𝑠1. The resident matrix A is a function of the resident trait

𝑠1 and the resident stable stage distribution p̂(𝑠1) (since mutants are rare, they do not affect

resident dynamics). Because the resident’s dynamics depend on its own stage distribution, A(p̂) is

a nonlinear, frequency-dependent matrix.

Frequency dependence makes the second derivatives of 𝜆 difficult to calculate directly. But once

(3.20) is found using (3.24), (3.21) can be calculated using the relationship:(︂
𝜕2𝜆′

𝜕2𝑠′1
+ 2

𝜕2𝜆′

𝜕𝑠1𝜕𝑠′1
+

𝜕2(𝜆′ − 𝜆)

𝜕2𝑠1

)︂ ⃒⃒⃒⃒
𝑠′1=𝑠1=𝑠*1

= 0 (3.31)

which holds at any singular strategy 𝑠*1 (Appendix 3.A).

The first term in (3.31) is given by (3.20). The second term in (3.31) is the mixed second

derivatives of 𝜆′ to 𝑠′1 and 𝑠1. This is shown in Appendix 3.B to be:

𝜕2𝜆′

𝜕𝑠1𝜕𝑠′1
= (w′ᵀ ⊗ v′ᵀ ⊗ I𝑠)K𝑛2,𝑠

𝑑vecC
𝑑wᵀ

𝑑w

𝑑𝑠1
+Cᵀ

[︂
(I𝑛 ⊗ v′)

𝑑w′

𝑑𝑠1
+ (w′ ⊗ I𝑛)

𝑑v′

𝑑𝑠1

]︂
(3.32)

where

C =
𝑑vecA′

𝑑𝑠′1
(3.33)

Thus, at any singular strategy, (3.21) can be found by substituting the pure second derivative (3.20)

and mixed second derivative (3.32) into the relationship (3.31). The convergence stability condition

(3.23) thus becomes:

𝜕2𝜆′

𝜕2𝑠′1
+

𝜕2𝜆′

𝜕𝑠1𝜕𝑠′1

⃒⃒⃒⃒
𝑥=𝑦=𝑥*

⎧⎨⎩< 0 convergence stable (attracting)

> 0 convergence unstable (repelling)
(3.34)

3.4 Case studies: sex-biased offspring costs

If the sexes are differentially costly, Fisher (1930) predicts that the sex ratio will evolve to favor

the cheaper sex. However, there are many potential interpretations of offspring costs. One sex
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may be costlier because it requires more resources, has greater mortality, or more severely reduces

parental survival or reproduction (Trivers 1985, Charnov 1982). Furthermore, these costs may occur

at different points in an individual’s lifetime (Figure 3-1).

1 

birth death independence maturity 

parental investment after parental investment 

2 3 4 

juvenile adult 

Figure 3-1: A timeline of key points in an individual’s lifetime. The individual is a juvenile from
Point 1 to 3, and an adult from Point 3 to 4. The period during parental investment is between
Point 1 and 2; the period after parental investment is between Point 2 and 4.

We consider four alternative interpretations of offspring costs (summarized in Table 3.1). For

each of these four cases, we will determine how the primary sex ratio 𝑠1 evolves with respect to

singular strategy location, evolutionary stability, and convergence stability.

1. Offspring resource cost. Different amounts or rates of resources are required to birth male

and female offspring (Figure 3-1, Point 1). Fisher’s sex ratio theory implicitly assumes that

parents have a fixed amount of resources for producing offspring (Bull and Charnov 1988).

Here, we will assume that total resource investment is always constrained to a constant rate.

2. Offspring mortality cost (during investment). Male and female offspring mortality rates

differ during the period of parental investment (Figure 3-1, Point 1 to 2); that is, while the

offspring is still consuming parental resources. We assume that offspring death during this

period frees up resources that can be reallocated to other offspring (Charnov 1982).

3. Offspring mortality cost (after investment). Male and female mortality rates differ

after the period of parental investment, once the individual is no longer consuming parental

resources. We will consider sex-biased mortality rates for both juveniles (Figure 3-1, Point 2

to 3) and adults (Figure 3-1, Point 3 to 4).

4. Parent mortality cost. Male and female offspring differentially increase the mortality rates

of their adult parents (Figure 3-1, Point 3 to 4).

In each case, we will consider a two-sex, 5-stage population with the life cycle in Figure 3-1.

We construct projection matrices of the form (3.9), adapting the functions and parameters in rate

matricesU (3.6), B (3.7), and T (3.8) as necessary to reflect the offspring costs under consideration.

The corresponding resident and mutant matrices will be used to calculate the selection gradient

(3.19), from which we can find the SS primary sex ratio 𝑠*1. We will determine the location and

60



C
a
se
s

S
o
n
s
h
a
v
e
..
.

P
r
e
v
io
u
s
p
r
e
d
ic
ti
o
n
s

M
o
d
e
l
r
e
su
lt
s

E
x
a
m
p
le
sp
e
c
ie
s

0
.
id
e
n
ti
c
a
l

se
x
e
s

sa
m
e
co
st
s
a
n
d

v
it
a
l
ra
te
s
a
s

d
a
u
g
h
te
rs

�
𝑠 1

=
0
.5

is
a

se
le
ct
iv
el
y

n
eu
tr
a
l

E
S
S
(F
is
h
er

1
9
3
0
,
U
y
en
oy
a
m
a
a
n
d

B
en
g
ts
so
n
1
9
8
2
,
B
u
ll
a
n
d
C
h
a
rn
ov

1
9
8
8
)

�
𝑠 1

=
0
.5

is
a
se
le
ct
iv
el
y
n
eu
tr
a
l
E
S
S

(F
ig
u
re

3
-2
)

�
ex
p
la
in
s
th
e
p
re
va
le
n
ce

o
f
n
ea
r
1
:1
se
x
ra
ti
o
s
in

m
o
st

sp
ec
ie
s
(H

a
rd
y
2
0
0
2
)

1
.
o
ff
sp
r
in
g

r
e
so
u
r
c
e
c
o
st

g
re
a
te
r
re
so
u
rc
e

co
n
su
m
p
ti
o
n

�
𝑠 1

fa
v
o
rs

th
e
se
x
th
a
t
co
st
s
fe
w
er

re
so
u
rc
es

to
p
ro
d
u
ce

�
𝑠 1

is
g
iv
en

b
y
th
e
eq
u
a
l
in
v
es
tm

en
t

p
ri
n
ci
p
le

(3
.1
)

(F
is
h
er

1
9
3
0
,

C
h
a
rn
ov

1
9
8
2
,
F
ra
n
k
1
9
9
0
,
H
a
rd
y

2
0
0
2
)

�
𝑠 1

fa
v
o
rs

th
e
se
x
th
a
t
co
st
s
fe
w
er

re
so
u
rc
es

to
p
ro
d
u
ce

�
b
u
t
𝑠 1

is
m
o
re

b
ia
se
d
to

th
e
ch
ea
p
er

(m
o
re

co
m
m
o
n
)
se
x
if

co
u
p
le
s
a
re

p
o
o
r
(F
ig
u
re

3
-3
)

�
in

w
a
sp
s,
fe
m
a
le
la
rv
a
e
re
q
u
ir
e
la
rg
er

n
es
t
ce
ll
s

(T
ri
v
er
s
1
9
8
5
)
o
r
la
rg
er

h
o
st
s
(C

h
a
rn
ov

1
9
7
9
a
)

a
n
d
m
o
re

fo
o
d

�
in

re
d
d
ee
r
a
n
d
el
ep
h
a
n
t
se
a
ls
,
m
a
le
s
re
q
u
ir
e

m
o
re

m
il
k
to

w
ea
n
(T
ri
v
er
s
1
9
8
5
,
F
ra
n
k
1
9
9
0
)

2
.
o
ff
sp
r
in
g

m
o
r
ta
li
ty

c
o
st

(d
u
r
in
g

in
v
e
st
m
e
n
t)

g
re
a
te
r
m
o
rt
a
li
ty

a
n
d
re
so
u
rc
e

co
n
su
m
p
ti
o
n

�
𝑠 1

fa
v
o
rs

th
e
h
ig
h
er

m
o
rt
a
li
ty

se
x

(F
is
h
er

1
9
3
0
,
B
o
d
m
er

a
n
d
E
d
w
a
rd
s

1
9
6
0
)

�
𝑠 2

w
il
l
b
e
eq
u
a
l
o
r
fa
v
o
r
th
e
lo
w
er

m
o
rt
a
li
ty

se
x
(B

o
d
m
er

a
n
d
E
d
w
a
rd
s

1
9
6
0
,
M
er
re
ll
1
9
8
1
,
C
h
a
rn
ov

1
9
8
2
,

W
es
t
2
0
0
9
)

�
𝑠 1

fa
v
o
rs

th
e
h
ig
h
er

m
o
rt
a
li
ty

se
x

(F
ig
u
re

3
-5
a
)

�
b
u
t

𝑠 2
a
ls
o

fa
v
o
rs

th
e

h
ig
h
er

m
o
rt
a
li
ty

se
x
(F
ig
u
re

3
-5
b
)

�
in

m
a
n
y
m
a
m
m
a
ls
,
in
cl
u
d
in
g
h
u
m
a
n
s,

m
a
le
s

h
av
e
g
re
a
te
r
m
o
rt
a
li
ty

in
u
te
ro

(T
ri
v
er
s
1
9
8
5
)

�
ro
o
k
b
ir
d
s
h
av
e
h
ig
h
er

m
a
le
n
es
tl
in
g
m
o
rt
a
li
ty

(S
la
g
sv
o
ld

1
9
8
6
)

3
.
o
ff
sp
r
in
g

m
o
r
ta
li
ty

c
o
st

(a
ft
e
r

in
v
e
st
m
e
n
t)

g
re
a
te
r
m
o
rt
a
li
ty

�
𝑠 1

is
u
n
a
ff
ec
te
d
b
y
m
o
rt
a
li
ty

(F
is
h
er

1
9
3
0
,
K
o
lm

a
n

1
9
6
0
,
L
ei
g
h

1
9
7
0
,

C
h
a
rn
ov

1
9
7
5
,
W
es
t
2
0
0
9
)

�
𝑠 1

is
b
ia
se
d

to
w
a
rd
s

th
e

lo
w
er

m
o
rt
a
li
ty

se
x
w
it
h
ju
v
en
il
e
m
o
rt
a
li
ty

(F
ig
u
re

3
-6
a
,
b
)

�
𝑠 1

is
b
ia
se
d

to
w
a
rd
s

th
e

h
ig
h
er

m
o
rt
a
li
ty

se
x
w
it
h
a
d
u
lt

m
o
rt
a
li
ty

(F
ig
u
re

3
-6
c,
d
)

�
a
d
u
lt
su
rv
iv
a
l
is
lo
w
er
fo
r
m
a
le
s
in
b
o
th

h
u
m
a
n
s

(W
is
se
r
2
0
1
4
)
a
n
d
p
en
g
u
in
s
(J
en
o
u
v
ri
er

et
a
l.

2
0
1
0
)

4
.
p
a
r
e
n
t

m
o
r
ta
li
ty

c
o
st

g
re
a
te
r
p
a
re
n
ta
l

m
o
rt
a
li
ty

�
𝑠 1

fa
v
o
rs

th
e

se
x

th
a
t

re
d
u
ce
s

p
a
re
n
ta
l
su
rv
iv
a
l
th
e
le
a
st
(C

h
a
rn
ov

1
9
8
2
)

�
𝑠 1

fa
v
o
rs

th
e

se
x

th
a
t

re
d
u
ce
s

p
a
re
n
ta
l
su
rv
iv
a
l
th
e
le
a
st

(F
ig
u
re

3
-7
)

�
in
a
lb
a
tr
o
ss
,
m
a
le
p
a
re
n
ts
w
it
h
fe
m
a
le
o
ff
sp
ri
n
g

a
n
d

lo
w

q
u
a
li
ty

fe
m
a
le

p
a
re
n
ts

w
it
h

m
a
le

o
ff
sp
ri
n
g

d
ie

m
o
re

fr
eq
u
en
tl
y

(W
ei
m
er
sk
ir
ch

2
0
0
5
)

�
in

h
u
m
a
n
s,

so
n
s
re
d
u
ce

m
a
te
rn
a
l
lo
n
g
ev
it
y

m
o
re

th
a
n
d
a
u
g
h
te
rs

(H
el
le
2
0
0
2
)

T
ab
le
3.
1:

Su
m
m
ar
y
of

fo
ur

ca
se
s
w
he
re

m
al
e
an
d
fe
m
al
e
off
sp
ri
ng

ar
e
di
ffe
re
nt
ia
lly

co
st
ly
.

61



stability properties of 𝑠*1 in each case. We will also examine the secondary sex ratio 𝑠2 (proportion

of adults that are male), focusing specifically on 𝑠*2 as the value of 𝑠2 when the primary sex ratio

ratio 𝑠1 is at its SS value 𝑠*1.

We make the following assumptions for the underlying two-sex model:

� Males and females have identical vital rates, save for the offspring cost of interest.

� Only the union stage can produce new offspring. Unmated males and females mate to form

unions, but do not reproduce independently.

� Males are always the more “disadvantaged” sex, which is often true in mammals and birds

(Table 3.1). In Case 1, males have higher resource costs. In Case 2 and 3, males have

higher mortality. In Case 4, males impose greater parental mortality. An increase in 𝑠1

thus represents greater production of the disadvantaged sex, while a decrease in 𝑠1 represents

increased production of the advantaged sex.

We also make these assumptions for our evolutionary analyses:

� The only evolving trait is the primary sex ratio 𝑠1. Thus, new mutants only differ from

established residents in terms of their sex ratio phenotype.

� Mutations are small and do not differ drastically from the resident. They are also rare enough

not to affect the resident population, and infrequent enough to either die out or reach fixation

before the next mutation arises (Geritz 1996, Metz 2006).

� The mutant phenotype is genetically dominant. Any offspring with a mutant parent also has

the mutant phenotype.

Unless otherwise indicated, model parameters are fixed at the values in Table 3.2. We will

consider example parameter sets for two types of unions, “productive” and “poor,” in particular.

Productive unions are more persistent (low divorce rate 𝑑) and can allocate more resources to

offspring production (high resource investment rate 𝑅). Poor unions, in contrast, are more transient

(high 𝑑) and allocate fewer resources to offspring production (low 𝑅).

Parameter Description Value (Productive) Value (Poor)

𝜇𝑚1, 𝜇𝑓1 male, female juvenile mortality rates 0.1 0.1
𝜇𝑚2, 𝜇𝑓2 male, female adult mortality rates 0.1 0.1
𝛼𝑚, 𝛼𝑓 male, female maturation rates 0.5 0.5
𝑅 total resource investment rate 20 10
𝑑 union divorce rate 0 1

Table 3.2: Two-sex matrix model parameters for productive and poor unions.
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3.4.1 Case 0: identically costly sexes

If the sexes are identically costly, selection should favor equal production of males and females. The

equal sex ratio is thus an “unbeatable” ESS resistant to invasion by alternative sex ratios (Hamilton

1967, Maynard Smith and Price 1973). Consistent with this classic prediction, our model has a

convergent singular strategy at 𝑠*1 = 0.5 (example in Figure 3-2). This result is robust to other

variants of our model, including the various cases of offspring costs, additional stages, different

mating functions, etc.

resident sex ratio s
0 0.2 0.4 0.6 0.8 1
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0.6

0.8
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Figure 3-2: A PIP for sex ratio evolution when males and females are identical. With the parameters
in Table 3.2 (Case 1, productive unions), (3.22) is 0 and (3.34) is -0.92 at 𝑠*1 = 0.5, confirming that
the equal sex ratio is a selectively neutral, convergence stable ESS.

In all cases, the singular strategy intersects with a vertical isocline where mutant and resident

growth rates are equal. This is because any mutant that arises when the resident is at the equal

sex ratio has an invasion fitness (3.17) of 0. When 𝑠*1 = 0.5, resident males and females are

equally abundant at equilibrium. Rare mutants thus have equal mating opportunities with residents

regardless of their sex, so all invading sex ratios equally fit. As a result, the equal sex ratio is called

a “selectively neutral” strategy (Bull and Charnov 1988) or a “weak form ESS” (Uyenoyama and

Bengtsson 1982).

As we shall see in Section 3.4.6, convergence stable, selectively neutral sex ratios like these are

the predominant singular strategies in our model.

3.4.2 Case 1: offspring resource costs

Consider the case where the production of male and female offspring requires different amounts of

resources. These production costs are upfront, immediate investments made per birth or conception,

and are thus unaffected by later offspring mortality. Parents have a fixed total rate 𝑅 at which they
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invest resources (energy, food, etc.) into offspring production, so the primary sex ratio 𝑠1 determines

how resources are allocated between the sexes.

Producing male offspring requires 𝐶𝑚 units of resources per time, while producing female

offspring requires 𝐶𝑓 units of resources per time. The average resource cost per offspring birth

is thus:

𝐶𝑎 = 𝑠1𝐶𝑚 + (1− 𝑠1)𝐶𝑓 (3.35)

This average offspring cost appears in the birth matrix B, as given by (3.7), and determines how

many offspring can be born per time. The union formation matrix U and transition matrix T are

given by (3.6) and (3.8).

If demographic structure is ignored, the equal investment principle implies that the primary sex

ratio will evolve to favor the cheaper sex. Assume, for example, that 𝐶𝑚 + 𝐶𝑓 = 1; that is, there

is some sort of offspring production tradeoff, so that as males become less costly, females become

more costly, and vice versa. Then by (3.1):

𝑠*1 =
𝐶𝑓

𝐶𝑚 + 𝐶𝑓
= 𝐶𝑓 (3.36)

The SS sex ratio 𝑠*1 increases, becoming more male-biased, as the female cost 𝐶𝑓 increases. Similarly,

𝑠*1 decreases, becoming more female-biased, as the male cost 𝐶𝑚 = 1− 𝐶𝑓 increases.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 3-3: Case 1 singular strategy (SS) sex ratios, as a function of the male offspring cost 𝐶𝑚 in
(3.35). In this example, the female offspring cost 𝐶𝑓 = 1 − 𝐶𝑚. a) The primary sex ratio 𝑠*1 for
both productive (blue) and poor unions (red). The values of 𝑠*1 predicted by the equal investment
principle (3.36) are indicated in black. b) The corresponding secondary sex ratio 𝑠*2 (green) in the
poor unions case.

Consistent with the predictions of the equal investment principle (3.36), the evolutionarily

singular sex ratios in our demographic model are biased towards the cheaper sex (Figure 3-3a).
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For poor unions, however, 𝑠*1 deviates from the predictions of the equal investment principle in

even greater favor of the cheaper sex. This is because the optimal sex ratio depends on a tradeoff

between the cost of offspring production (where the cheaper sex is favored because more of it can be

produced) and the benefit of offspring reproductive success (where the rarer sex is favored because

it has more mating opportunities). However, an increase in mating opportunities is not necessarily

proportional to an increase in later births, especially when unions have low reproductive output.

When unions are poor, the mating advantage of the rarer, costlier sex is diminished, allowing the

tradeoff to skew in favor of the more common, cheaper sex.

Recall that 𝑠*2 is the secondary sex ratios when 𝑠1 = 𝑠*1. In this case, males and females have

the same maturation and mortality rates; thus, both 𝑠*2 and 𝑠*1 have the same values (Figure 3-3b).

3.4.3 Case 2: offspring mortality during parental investment

Rather than paying a single upfront production cost per birth, like in Case 1, parents now pour

investments into their offspring over an extended period of time (the period of parental investment

shown in Figure 3-1, Points 1 to 2). An offspring’s cost (how much parental investment they have

consumed) thus accumulates over time, and the cumulative cost of each offspring depends on how

long they receive parental investment.

An offspring stops receiving parental investment only when it has reached the age of

independence or died. As a result, the expected cost per offspring born depends on the juvenile

mortality rates. If more male offspring die before reaching independence, for example, the average

cost per male born will be less than that of a female. The average cost per male reared to

independence, however, will be higher than that of a female (Fisher 1930).

Assume that males and females have different juvenile mortality rates, and will thus have

different expected costs per birth. Again, parents invest in offspring at a fixed resource rate 𝑅.

If male offspring have higher mortality rates, the average male born will consume fewer parental

resources (and have a lower expected cost) than the average female born.

First, we will determine the expected offspring costs, per male or female born, as a function of

the male and female juvenile mortality rates. As in Slagsvold (1986), let 𝐼(𝑥) be the instantaneous

parental investment rate in an offspring at age 𝑥. A parent’s cumulative investment 𝐽(𝑥) in that

offspring up to age 𝑥 is:

𝐽(𝑥) =

∫︁ 𝑥

0
𝐼(𝑧)𝑑𝑧 (3.37)

Let 𝑎 be the age of independence, after which parental investment ceases. If the investment rate

is constant so that 𝐼(𝑥) = 𝐼, (3.37) becomes:

𝐽(𝑥) =

⎧⎨⎩𝐼𝑥, if 𝑥 < 𝑎

𝐼𝑎, if 𝑥 ≥ 𝑎
(3.38)
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Define 𝑓(𝑥) as the probability that an offspring dies at age 𝑥. If 𝜇(𝑥) is the mortality rate at

age 𝑥, it can be shown that (Caswell 2001, Chapter 2):

𝑓(𝑥) = 𝜇(𝑥)𝑒−
∫︀ 𝑥
0 𝜇(𝑧)𝑑𝑧

= 𝜇𝑒−𝜇𝑥 if 𝜇 is constant for all 𝑥 (3.39)

The expected cumulative investment in an offspring, accounting for its mortality rate during the

investment period, is:

𝐸 [𝐽(𝑥)] =

∫︁ ∞

0
𝐽(𝑥)𝑓(𝑥)𝑑𝑥

=

∫︁ ∞

0
𝐽(𝑥)𝜇𝑒−𝜇𝑥𝑑𝑥

=

∫︁ 𝑎

0
𝐽(𝑥)𝜇𝑒−𝜇𝑥𝑑𝑥+

∫︁ ∞

𝑎
𝐽(𝑥)𝜇𝑒−𝜇𝑥𝑑𝑥

=

∫︁ 𝑎

0
𝐼𝑥𝜇𝑒−𝜇𝑥𝑑𝑥+

∫︁ ∞

𝑎
𝐼𝑎𝜇𝑒−𝜇𝑥𝑑𝑥

=
𝐼

𝜇

(︀
1− 𝑒−𝜇𝑎

)︀
(3.40)

Equation (3.40) is the expected cost per offspring birth with an offspring mortality rate of 𝜇.

Male offspring will have a mortality rate 𝜇𝑚1, while female offspring have a mortality rate 𝜇𝑓1.

If males and females receive parental investment at the same constant rate 𝐼, and have ages of

independence 𝑎𝑚 = 1/𝛼𝑚 and 𝑎𝑓 = 1/𝛼𝑓 respectively, the expected male and female offspring costs

per birth are thus:

𝐶𝑚 =
𝐼

𝜇𝑚1

(︁
1− 𝑒−

𝜇𝑚1
𝛼𝑚

)︁
𝐶𝑓 =

𝐼

𝜇𝑓1

(︂
1− 𝑒

−
𝜇𝑓1
𝛼𝑓

)︂
(3.41)

Substitute (3.41) into (3.35) to obtain 𝐶𝑎, the average offspring cost per birth. Again, the union

formation matrix U, birth matrix B, and transition matrix T are given by (3.6), (3.7), (3.8)

respectively.

Figure 3-4 shows that the resource cost for a given sex declines as its mortality rate increases,

since more and more offspring die before significant parental investment is made. Consider, for

example, the case where sons experience greater juvenile mortality than daughters. The average

resource cost (3.41) of each son born is less than that of a daughter, because sons are more likely

to die before consuming the full amount of resources needed to reach independence (Bodmer and

Edwards 1960, West 2009, Kahn et al 2015). Based on the equal investment principle (3.1), we

would expect the primary sex ratio to evolve in favor of the higher mortality (lower cost) sex.
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Figure 3-4: The offspring resource cost (3.41) as a function of the juvenile mortality rate 𝜇 (𝐼 = 1,
𝛼 = 0.5).
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Figure 3-5: Case 2 singular strategy (SS) sex ratios, as a function of the juvenile male mortality rate
𝜇𝑚1 in (3.41). We will set the juvenile female mortality rate 𝜇𝑓1 = 1−𝜇𝑚1, so that increasing male
mortality decreases female mortality and vice versa. a) The primary sex ratio 𝑠*1 for both productive
(blue) and poor unions (red). The values of 𝑠*1 predicted by the equal investment principle (3.1) are
indicated in black. b) The corresponding secondary sex ratio 𝑠*2 (green) in the poor unions case.
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In our model, 𝑠*1 is indeed biased towards the higher mortality (lower cost) males. As in Case

1, deviations from the equal investment principle increase when unions are poor (Figure 3-5a) —

again, because the mating advantage of the rarer, costlier sex is seemingly insufficient to compensate

for its greater cost. The corresponding secondary sex ratio 𝑠*2 is less biased than the primary sex

ratio, because the cheaper, higher mortality males produced in excess at birth are more likely to die

before reaching maturity (Figure 3-5b). These results are consistent with the predictions of Fisher

(1930), which state that, when the average expenditure is less for each boy born, boys will be more

numerous at birth, but less numerous by the end of parental expenditure.

Although 𝑠*2 is less biased than 𝑠*1, however, both sex ratios are still biased towards the higher

mortality sex. This contradicts previous arguments that the sex ratio should equalize to 0.5 by

the age of independence (Bodmer and Edwards 1960) or reproduction (Merrell 1981), or that the

sex ratio should favor the lower mortality daughters by the end of parental investment (Charnov

1982). Though the higher mortality sex does become less numerous by maturity (as Fisher originally

stated), whether the sex ratio bias equalizes or even reverses is not absolute and likely depends on

other factors (e.g., Kahn 2015).

3.4.4 Case 3: offspring mortality after parental investment

Suppose that male and female mortality rates differ after the period of parental investment (Figure

3-1, Points 2 to 4). Because sex-biased risks for disease, competition, selective harvest pressure, etc.

can act at any point in the life cycle, we will consider both sex-biased juvenile mortality (𝜇𝑚1 ̸= 𝜇𝑓1)

and sex-biased adult mortality (𝜇𝑚2 ̸= 𝜇𝑓2).

In Case 3, male and female offspring have the same resource costs 𝐶𝑚 = 𝐶𝑓 , which we shall

normalize to 1. Then the average offspring cost 𝐶𝑎 in (3.35) is also always 1, and the union

reproductive rate 𝑅/𝐶𝑎 depends only on the (constant) resource investment rate 𝑅. Since offspring

mortality does not affect the offspring resource costs, all mortality must occur after the period of

investment. Thus, any juvenile mortality in Case 3 occurs in the period between independence and

sexual maturity (Figure 3-1, Points 2 to 3).

Again, the union formation matrix U, birth matrix B, and transition matrix T given by (3.6),

(3.7), and (3.8) respectively. We will fix the stage-specific mortality rates in T at different levels

and analyze the sex ratios that evolve.

3.4.4.1 Juvenile mortality

Consider the case of sex-biased juvenile mortality after parental investment. When unions are

productive (Figure 3-6a, blue), 𝑠*1 varies slightly as a function of juvenile mortality. This contradicts

the predictions of Fisher and many others, who maintain that sex-biased mortality after parental

investment does not affect sex ratio.

However, when unions are poor (Figure 3-6a, red), 𝑠*1 favors the lower mortality sex. This bias

occurs for reasons similar to those in Cases 1 and 2. When unions are less productive, the increased
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Figure 3-6: Case 3 singular strategy (SS) sex ratios, as a function of the juvenile male mortality
rate 𝜇𝑚1 or adult male mortality rate 𝜇𝑚2 in (3.8). In the juvenile mortality case, the juvenile
female mortality rate 𝜇𝑓1 = 1 − 𝜇𝑚1. In the adult mortality case, the adult female mortality rate
𝜇𝑓2 = 1 − 𝜇𝑚2. a) The primary sex ratio 𝑠*1 for both productive (blue) and poor unions (red) in
the juvenile mortality case. The values of 𝑠*1 predicted by the equal investment principle (3.36) are
indicated in black. b) The corresponding secondary sex ratio 𝑠*2 (green) in the poor unions, juvenile
mortality case. c) Primary sex ratios for the adult mortality case. d) Secondary sex ratios for the
poor unions, adult mortality case.
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mortality of a given sex is not compensated for by its increased mating rates, causing the sex ratio

to favor the lower mortality sex.

The secondary sex ratio 𝑠*2 is even more biased towards the lower mortality sex than the primary

sex ratio (Figure 3-6b). This is the opposite of Case 2 (mortality occurs during parental investment),

where the secondary sex ratio was less biased, but both sex ratios still favored the higher mortality

sex. This difference can be explained as follows.

When mortality occurs during parental investment (Case 2), the primary sex ratio favors the

higher mortality sex. But although more of the higher mortality sex is produced at birth, that sex

is also more likely to die before reaching maturity. As a result, both the primary and secondary

sex ratios may favor the higher mortality sex, but the secondary sex ratio somewhat less so. When

mortality occurs after parental investment (Case 3, juvenile mortality), the primary sex ratio favors

the lower mortality sex. Not only is the lower mortality sex more likely to be produced at birth,

but it also has less mortality later on. Thus, both the primary and secondary sex ratios favor the

lower mortality sex, the secondary sex ratio somewhat more so.

3.4.4.2 Adult mortality

Unlike juvenile mortality, adult mortality expedites union dissolution through the death of mating

partners. The return of widows and widowers to the available singles pool subsequently increases

mating opportunities for the rarer sex. As a result, 𝑠*1 actually favors the rarer, higher mortality

sex (Figure 3-6c), the opposite of the bias in the juvenile mortality case (Figure 3-6a).

Once again, these results contradict the Fisherian notion that mortality after parental investment

cannot bias the primary sex ratio. As in the case of juvenile mortality, the magnitude of the sex

ratio bias is modulated by union productivity. Productive unions have less sex ratio bias, possibly

because their larger resource investment rate 𝑅 compensates for unions dissolving due to adult

mortality. However, increasing the divorce rate 𝑑 may also reduce sex ratio bias, as the mating

advantage of the higher mortality sex is reduced when unions dissolve more easily.

Although the primary sex ratio now favors the higher mortality sex, adult mortality is high

enough to skew the secondary sex ratio 𝑠*2 towards the lower mortality sex (Figure 3-6d).

3.4.5 Case 4: parental mortality

Consider the case where male and female offspring impose different costs on the survival of their

parents. As in Case 3, we will assume equal male and female offspring resource costs, so that

𝐶𝑚 = 𝐶𝑓 = 𝐶𝑎 = 1. In Case 4, however, males and females have the same mortality rates, and

differ instead in the extra mortality costs, 𝐷𝑚 and 𝐷𝑓 , that they impose on their parents.

We assume there is a tradeoff between reproduction and survival, so that parents with a greater

total cost of reproduction have greater mortality rates. Reproduction costs depend on the per capita

mating function 𝑈𝑚 from (3.5), the resource investment rate 𝑅, the primary sex ratio 𝑠1, and the

male and female parental mortality costs 𝐷𝑚 and 𝐷𝑓 .
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Let 𝐸𝑚 and 𝐸𝑓 be the expected cost of reproduction per male parent and per female parent

respectively. Then:

𝐸𝑚 = 𝑈𝑚𝑅 [𝑠1𝐷𝑚 + (1− 𝑠1)𝐷𝑓 ]

𝐸𝑓 = 𝑈𝑓𝑅 [𝑠1𝐷𝑚 + (1− 𝑠1)𝐷𝑓 ] (3.42)

Note the parental mortality cost imposed per offspring is fixed at birth as 𝐷𝑚 or 𝐷𝑓 , regardless of

later offspring mortality. Alternatively, parents could continue incurring mortality costs until their

offspring have either died or fully matured.

Because only adults in the union stage 𝑢 produce offspring, adults in the single unmated stages

𝑚2 and 𝑓2 do not experience this extra offspring-induced mortality. The transition matrix T (3.8)

must now distinguish between unmated adult mortality rates (𝜇𝑚2 and 𝜇𝑓2) and mated adult

mortality rates (𝜇𝑚2𝑐 and 𝜇𝑓2𝑐).

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(𝜇𝑚1 + 𝛼𝑚) 0 0 0 0

𝛼𝑚 −𝜇𝑚2 0 0 𝜇𝑓2𝑐 + 𝑑

0 0 −(𝜇𝑓1 + 𝛼𝑓 ) 0 0

0 0 𝛼𝑓 −𝜇𝑓2 𝜇𝑚2𝑐 + 𝑑

0 0 0 0 −(𝜇𝑚2𝑐 + 𝜇𝑓2𝑐 + 𝑑)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.43)

Only the mated adult mortality rates 𝜇𝑚2𝑐 and 𝜇𝑓2𝑐 are increased by the costs of reproduction. Let

this increase be linearly proportional to the reproductive costs 𝐸𝑚 and 𝐸𝑓 , so that the mortality

rates of mated adults are:

𝜇𝑚2𝑐 = 𝜇𝑚2 + 𝑐𝐸𝑚

𝜇𝑓2𝑐 = 𝜇𝑓2 + 𝑐𝐸𝑓 (3.44)

where 𝑐 is a nonnegative constant. We will assume that the baseline male and female mortality

rates are equal — that is, 𝜇𝑚1 = 𝜇𝑓1 and 𝜇𝑚2 = 𝜇𝑓2 — so the sexes only differ in how they affect

parental survival through 𝐷𝑚 and 𝐷𝑓 .

Charnov (1982, Chapter 6) considers a case where mothers experience higher annual mortality

rates when having sons instead of daughters. He states that the sex ratio will be biased towards

sons so that:
𝑠1

1− 𝑠1
=

maternal mortality for rearing a daughter
maternal mortality for rearing a son

(3.45)

This is equivalent to (3.1), when offspring costs are framed in terms of a parental mortality expense.

In qualitative agreement with Charvnov’s predictions, 𝑠*1 in our model favors the sex that induces

less parental mortality (Figure 3-7a). This implies that evolution may favor the preservation of

already breeding adults, rather than having them die producing new offspring. Favoring the sex

that induces less parental mortality also reduces union dissolution due to partner death.
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Figure 3-7: Case 4 singular strategy (SS) sex ratios, as a function of male cost on parental survival
𝐷𝑚 in (3.42), with 𝑐 = 0.1. Wet set the female cost 𝐷𝑓 = 1 −𝐷𝑚 (if male offspring impose more
parental mortality, female offspring impose less parental mortality, and vice versa). a) The primary
sex ratio 𝑠*1 for productive unions (blue), poor unions (red), and poor unions with strong juveniles
(black). Strong juveniles have lower mortality rates (𝜇𝑚1 = 𝜇𝑓1 = 0.01) and faster maturation rates
(𝛼𝑚 = 𝛼𝑓 = 5). b) The corresponding secondary sex ratio 𝑠*2 (green) in the poor unions case.

In contrast to Cases 1–3, productive unions (Figure 3-7a, blue) have more sex ratio bias than

poor unions — likely because adults with greater reproductive output also have greater parental

mortality. However, “strong juveniles” with lower juvenile mortality and higher maturation rates

(Figure 3-7a, black) reduce the sex ratio bias. In this case, newborn juveniles are faster, more viable

replacements for their parents, thereby alleviating the costs of parental death.

Because parental mortality only affects adults, it occurs after the period of parental investment.

Thus, as in Case 3, the secondary sex ratio is even more biased towards the cheaper sex than the

primary sex ratio is (Figure 3-7b).

3.4.6 Evolutionary and convergence stability of the SS sex ratio

The evolutionary and convergence stability properties of the SS sex ratio 𝑠*1 are identical in Cases

1–4. In all four cases, the second derivative expression (3.22) is approximately zero and (3.34)

is negative (examples in Figure 3-8). Thus, all the singular strategies we have observed are

convergence stable “weak form” ESSs, as we previously encountered when male and female offspring

were identically costly (Case 0, Section 3.4.1).

As a result, 𝑠*1 is an evolutionary attractor to which that populations will ultimately converge

through a series of small mutations. Once the resident population is at 𝑠*1, any mutant sex ratio will

have the same fitness as the resident. However, since the invasion fitness (3.17) is zero rather than

positive, it will not displace the resident through natural selection. Though there is no selection for
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Figure 3-8: Values of the evolutionary stability condition (3.22) and convergence stability condition
(3.34) over a range of offspring costs. a) Case 1, productive unions. b) Case 3 (adult mortality),
poor unions.

a new phenotype at a neutral ESS, different rare sex ratios could potentially arise via neutral drift

(which may be a mechanism for generating genetic diversity), and even small deviations might shift

selective pressures (Bull and Charnov 1988).

The selective neutrality of certain sex ratios has also been noted in models without demographic

structure. In Shaw-Mohler fitness formulation (3.2), for instance, all individual sex ratios have

the same fitness when the population sex ratio is 0.5. Our results suggest that selectively neutral,

convergence stable SS sex ratios may be integral features of two-sex systems in general, as they are

maintained even in models with more complex population structure, and consistently appear over

a wide range of offspring cost interpretations and values.

3.4.7 Primary reproductive value ratios

Instead of considering the relative abundances of each sex, as given by the sex ratio, one can also

consider their relative reproductive values.

Fisher (1930) originally stated that the total reproductive value of each sex in a given generation

must be equal. This notion of reproductive value has been invoked in various ways in studies

of sex ratio. Some (e.g., Bodmer and Edwards 1960) specifically consider genetic contributions

to grandchildren, so that an individual’s reproductive value is inversely proportional to the total

surviving individuals of their sex. Others (e.g., Grafen 2014) define an individual’s reproductive

value as the probability that a random future gene can be traced back to that individual.

We will consider the lifetime reproductive value for each population stage as follows. In

a matrix model, the dominant left eigenvector v of the projection matrix A is a vector of

stage-specific reproductive values (shown in age-structured models by Goodman 1968; extended

to stage-structured models by Taylor 1990).
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Recall that the selection gradient (3.19) depends on v′ as follows:

𝑑𝜆′

𝑑𝑠′1
=
(︀
w′ᵀ ⊗ v′ᵀ)︀ 𝑑vecA′

𝑑𝑠′1
(3.46)

For a 𝑠× 1 population vector, the Kronecker product in (3.46) is the 1× 𝑠2 vector:

w′ᵀ ⊗ v′ᵀ =
(︁

𝑤1𝑣1 𝑤1𝑣2 . . . 𝑤1𝑣𝑠 . . . 𝑤𝑠𝑣1 𝑤𝑠𝑣2 . . . 𝑤𝑠𝑣𝑠

)︁
(3.47)

where 𝑤𝑖 is the ith entry of w′ (stable stage frequency of stage 𝑖), and 𝑣𝑖 is the ith entry of v′

(reproductive value of stage 𝑖).

At any singular strategy sex ratio 𝑠*1, the selection gradient (3.46) is equal to 0. Substituting

(3.47) into (3.46) and evaluating at 𝑠*1, we obtain:(︁
𝑤1𝑣1 𝑤1𝑣2 . . . 𝑤1𝑣𝑠 . . . 𝑤𝑠𝑣1 𝑤𝑠𝑣2 . . . 𝑤𝑠𝑣𝑠

)︁(︂𝑑vecA′

𝑑𝑠′1

)︂ ⃒⃒⃒⃒
𝑠′1=𝑠1=𝑠*1

= 0 (3.48)

where
𝑑vecA′

𝑑𝑠′1
=

1

3

(︂
𝑑vecT′

𝑑𝑠′1
+

𝑑vecB′

𝑑𝑠′1
+

𝑑vecU′

𝑑𝑠′1

)︂
(3.49)

3.4.7.1 Case 1 and 2

In Case 1 (offspring resource cost, Section 3.4.2), B′ is a function of 𝑠′1, but U′ and T′ are not.

Thus, (3.49) simplifies to:
𝑑vecA′

𝑑𝑠′1
=

1

3

𝑑vecB′

𝑑𝑠′1
(3.50)

The matrix B is given by (3.7) so that:

vecB′ =
(︁
0 . . .

𝑅𝑠′1
𝐶𝑎

0
𝑅(1−𝑠′1)

𝐶′
𝑎

0 0
)︁ᵀ

𝑑vecB′

𝑑𝑠′1
=
(︁
0 . . .

𝑅𝐶𝑓

𝐶2
𝑎

0 −𝑅𝐶𝑚
𝐶′2

𝑎
0 0

)︁ᵀ
(3.51)

where 𝐶𝑎 is given by (3.35).

Substituting (3.51) into (3.50), then into (3.48), we obtain:

𝐶𝑓𝑅

𝐶2
𝑎

𝑤𝑠𝑣1 −
𝐶𝑚𝑅

𝐶2
𝑎

𝑤𝑠𝑣3 = 0 (3.52)

Canceling out terms and rearranging, we obtain the simple expression:

𝐶𝑓𝑣1 = 𝐶𝑚𝑣3 (3.53)
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Again, 𝑣𝑖 corresponds to the reproductive value of stage 𝑖. In our population vector (3.3), stage 1

is 𝑚1 (juvenile males), and stage 3 is 𝑓1 (juvenile females). Thus, (3.53) becomes:

𝑣𝑚1

𝑣𝑓1
=

𝐶𝑚

𝐶𝑓
(3.54)

The expression (3.54) shows that, at 𝑠*1, the primary reproductive value ratio 𝑣𝑚1
𝑣𝑓1

(ratio of juvenile

male to juvenile female reproductive values) equals the ratio of the sex-specific resource costs. This

expression is analogous to the inverse of the equal investment principle (3.1), but is written in terms

of the reproductive value ratio rather than the sex ratio.

The same result (3.54) holds for Case 2 (offspring mortality during parental investment, Section

3.4.3), if 𝐶𝑚 and 𝐶𝑓 are given by (3.41).

3.4.7.2 Case 3

In Case 3 (offspring mortality after parental investment, Section 3.4.4), (3.49) once again simplifies

to (3.50). The matrix B is given by (3.7) so that:

vecB′ =
(︁
0 . . . 𝑅𝑠′1 0 𝑅(1− 𝑠′1) 0 0

)︁ᵀ
𝑑vecB′

𝑑𝑠′1
=
(︁
0 . . . 𝑅 0 −𝑅 0 0

)︁ᵀ
(3.55)

Substituting (3.55) into (3.50), then into (3.48), we obtain:

𝑅𝑤𝑠𝑣1 −𝑅𝑤𝑠𝑣3 = 0 (3.56)

which reduces to

𝑣𝑚1 = 𝑣𝑓1 (3.57)

In other words, the reproductive values of juvenile males 𝑣𝑚1 and juvenile females 𝑣𝑓1 are equal at

𝑠*1. The corresponding primary reproductive value ratio 𝑣𝑚1
𝑣𝑓1

is thus 0.5 regardless of sex-specific

mortality.

3.4.7.3 Case 4

In Case 4 (parental mortality cost, Section 3.4.5), both B′ (3.15) and T′ (3.43) are functions of 𝑠′1,

so (3.49) becomes:
𝑑vecA′

𝑑𝑠′1
=

1

3

(︂
𝑑vecB′

𝑑𝑠′1
+

𝑑vecT′

𝑑𝑠′1

)︂
(3.58)

After differentiating and performing several algebraic manipulations, (3.48) yields the expression:

𝑣𝑚1 = 𝑣𝑓1 + 𝑐 [(𝐷𝑓 −𝐷𝑚)(𝑈𝑓𝑣𝑚2 + 𝑈𝑚𝑣𝑓2 − (𝑈𝑓 + 𝑈𝑚)𝑣𝑢)] (3.59)
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In this case, the relationship between reproductive values is more complex. The amount by which

𝑣𝑚1 deviates from 𝑣𝑓1 is determined by the mortality effect 𝑐. In the limit as 𝑐 → 0, 𝑣𝑚1 → 𝑣𝑓1, as

in Case 3.

3.5 Discussion

Because reproduction is shaped by the entire life cycle, and stage-specific offspring costs are often

speculated to affect sex ratios, demographic population models lend additional insight into sex ratio

theory. We have shown how to formulate flexible demographic two-sex models, and how to perform

evolutionary analyses of these models using adaptive dynamics. Our analyses include calculations

and characterizations of singular strategies that depend on sex and stage differences, demonstrating

how demographic considerations affect evolution.

Using this approach, we found that four alternative interpretations of sex-biased offspring costs

may modify the primary sex ratio (Table 3.1). In some cases, our results contradict the widely-held

conclusions of models that neglect demographic population structure, most notably the classic belief

that mortality after the period of parental investment cannot affect the primary sex ratio.

3.5.1 The importance of union formation

Our contradictory results may arise from our incorporation of a union stage. Two-sex models that

do not include unions allow adults to reproduce directly, and thus do not distinguish between the

“mating advantage” and “offspring production advantage” of the rarer (e.g., higher-mortality) sex.

Figure 3-1 compares the general structure of models with and without unions. A “mating

advantage” increases the rate at which singles form unions (highlighted red arrow), while a “offspring

production advantage” increases the rate at which singles ultimately produce offspring.

In models without unions, single males and females produce offspring directly. In these models,

the birth rate is often proportional to the mating function (e.g., Caswell and Weeks 1986, Hardy

2002), so the rarer (higher-mortality) sex will have greater fertility and produce more offspring.

The directly increased “offspring production advantage” of this higher-mortality sex appears to

counterbalance its mortality and maintain 𝑠*1 at equality.

In models with unions, singles must first enter the union stage to produce offspring. Single

adults enter unions at rates given by the mating functions, and may return to the singles stages due

to union dissolution from divorce or partner mortality. In this case, the rare, higher-mortality sex

will have greater mating rates, which may increase its offspring production indirectly. However, this

“mating advantage” of the rarer sex is not always proportional to its ultimate “offspring production

advantage.” If unions are poor, due to low resource investment rate 𝑅 or high divorce 𝑑, they

ultimately may not produce many offspring. The “offspring production advantage” of the rarer

(higher-mortality) sex may thus be reduced, causing 𝑠*1 to favor the more common (lower-mortality)

sex.
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Figure 3-1: A comparison of two-sex models with unions (top, red arrows) and without unions
(bottom, blue arrow). Parameters used as indicators of union productivity (the divorce rate 𝑑
and resource investment rate 𝑅) are highlighted in yellow. The highlighted arrows indicate the
transitions increased by the “mating advantage” (red highlighted arrow) and “offspring production
advantage” (blue highlighted arrow) of the rarer sex.

As an illustrative example of a model without unions, consider a 4-stage model that allows all

adults to produce offspring directly. This population contains non-breeding (juvenile) males 𝑚1 and

females 𝑓1 that mature into breeding (adult) males 𝑚2 and females 𝑓2, which then produce new

offspring (Figure 3-2).

The 4-stage population vector is:

n(𝑡) =

⎛⎜⎜⎜⎜⎝
𝑚1

𝑚2

𝑓1

𝑓2

⎞⎟⎟⎟⎟⎠ (3.60)

We now use birth rates rather than mating rates. Assume, as in Case 3, that all offspring

resource costs are normalized to 1 (𝐶𝑚 = 𝐶𝑓 = 𝐶𝑎 = 1). The total birth rate 𝐵(n) is the product

of the resource investment rate 𝑅 and the total mating function 𝑀(n) from (3.4):

𝐵(n) = 𝑅𝑀(n) (3.61)

The corresponding per capita male and female fertility rates are:

𝐹𝑚(n) =
𝐵(n)

2𝑚
(3.62)

𝐹𝑓 (n) =
𝐵(n)

2𝑓
(3.63)
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Figure 3-2: Life cycle diagram for a 4-stage population with juvenile males 𝑚1 and juvenile females
𝑓1, and adult males 𝑚2 and adult females 𝑓2. The functions and parameters shown here appear in
the birth matrix B (3.64) (green), or transition matrix T (3.65) (blue).

where the factor of 1
2 prevents double-counting offspring from both males and females.

Because we have eliminated the mating process, the mating matrix U is simply a matrix of

zeros. The birth and transition rate matrices are now:

B(n) =

⎛⎜⎜⎜⎜⎝
0 𝑠1𝐹𝑚 0 𝑠1𝐹𝑓

0 0 0 0

0 (1− 𝑠1)𝐹𝑚 0 (1− 𝑠1)𝐹𝑓

0 0 0 0

⎞⎟⎟⎟⎟⎠ (3.64)

T =

⎛⎜⎜⎜⎜⎝
−(𝜇𝑚1 + 𝛼𝑚) 0 0 0

𝛼𝑚 −𝜇𝑚2 0 0

0 0 −(𝜇𝑓1 + 𝛼𝑓 ) 0

0 0 𝛼𝑓 −𝜇𝑓2

⎞⎟⎟⎟⎟⎠ (3.65)

As in Case 3, we will consider sex-biased mortality after parental investment. As shown in

Figure 3-3, the equal sex ratio 𝑠*1 = 0.5 is now preserved for both juvenile and adult mortality. In

the 4-stage model without unions, higher mortality in one sex appears to be fully compensated for

by its higher fertility.

3.5.2 The role of reproductive value

We have found that several well-known predictions about the primary sex ratio are actually more

applicable to the primary reproductive value ratio. This includes the equal investment principle

(3.1), and the claim that mortality after parental investment cannot bias the sex ratio. Although

we found deviations from the sex ratios predicted by the equal investment principle in Case 1

(Section 3.4.2) and Case 2 (Section 3.4.3), (3.54) shows that an analogous principle still holds for

the reproductive value ratio instead (Figure 3-4a, b). We also found that mortality after parental
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Figure 3-3: Singular strategy (SS) sex ratios for the 4-stage (no unions) model, as a function of the
a) juvenile male mortality rate 𝜇𝑚1, with juvenile female mortality 𝜇𝑓1 = 1− 𝜇𝑚1, or the b) adult
male mortality rate 𝜇𝑚2, with adult female mortality 𝜇𝑓2 = 1− 𝜇𝑚2.

investment can bias the SS sex ratio (Case 3, Section 3.4.4), but it cannot bias the corresponding

reproductive value ratio by (3.57) (Figure 3-4c, d).

Consequently, we would only expect the primary sex ratio to follow an equal investment principle

and be unaffected by mortality after investment if it were equal to the primary reproductive value

ratio — that is, if the lifetime contribution of each sex to future generations was directly proportional

to its relative abundance at birth.

However, the primary sex ratio and reproductive value ratios appear to deviate in our 5-stage

model, especially when unions are poor. If unions are unproductive, sex-specific reproductive values

may be differentially reduced, with the rarer sex having much less of a reproductive advantage. The

rarer sex must thus become even rarer to raise its reproductive value to the same level as the more

common sex, biasing the primary sex ratio in favor of the more common sex.

3.5.3 Extensions and caveats

We have focused on four common interpretations of sex-biased offspring costs, but there are

many additional sex-specific differences that can affect the sex ratio, which could studied by the

appropriate addition of population stages or rate matrices to our demographic model. For example,

male and female offspring may differ not only in how they affect parental survival, but also in how

they affect future parental reproduction. Female red deer, for instance, settle closer to their parents

than males do, increasing mate competition (Trivers 1985).

Offspring may also benefit their parents through sex-specific cooperation. In some cooperatively

breeding birds, for instance, young males stay with their parents for several years to help rear new
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Figure 3-4: A comparison of the primary sex ratios (blue) and reproductive value ratios (red) with
the equal investment principle ratio (3.1) (black). In a) Case 1 (Section 3.4.2) and b) Case 2
(Section 3.4.3), the primary reproductive value ratio is given by the inverse of (3.54). In c) Case
3, juvenile mortality (Section 3.4.4.1) and d) Case 3, adult mortality (Section 3.4.4.2), the primary
reproductive value ratio is always 0.5 by (3.57). Parameters for poor unions (Table 3.2) were used
in all cases.
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broods. This may cause the sex ratio to favor the more “helpful” sex, as evidenced by male-biased

fledgling ratios in woodpeckers (Frank 1990).

We also note that there is often not a single, fixed limiting resource for offspring production

(Frank 1990), as we have assumed in Cases 1 and 2. The offspring costs or gains per unit of

parental investment are not always fixed as well, and may vary according to a nonlinear returns

model (Charnov 1979b). These factors may cause additional sex ratio biases that were not noted

here. The evolutionary effects of these other considerations, or multiple costs acting simultaneously,

could likely be modeled using a similar approach.
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Chapter 3 Appendix

3.A Relationship between second derivatives at singular strategies

Following Geritz et al. (1998), we note that 𝑠𝑥(𝑦) = 0 at any singular strategy 𝑦 = 𝑥 = 𝑥* —

i.e., if the mutant and resident phenotypes are identical, the invasion fitness is 0. The directional

derivative of 𝑠𝑥(𝑦) along 𝑦 = 𝑥, 𝐷𝑦=𝑥 [𝑠𝑥(𝑦)], is thus also 0:

𝐷𝑦=𝑥 [𝑠𝑥(𝑦)] =
𝜕𝑠𝑥(𝑦)

𝑑𝑥
+

𝜕𝑠𝑥(𝑦)

𝑑𝑦

= 0 when 𝑦 = 𝑥 = 𝑥* (3.66)

Similarly, the second-order directional derivative of 𝑠𝑥(𝑦) along 𝑦 = 𝑥 must also be 0:

𝐷𝑦=𝑥

(︁
𝐷𝑦=𝑥[𝑠𝑥(𝑦)]

)︁ ⃒⃒⃒⃒
𝑦=𝑥=𝑥*

=
𝜕

𝜕𝑥

(︂
𝜕𝑠𝑥(𝑦)

𝑑𝑥
+

𝜕𝑠𝑥(𝑦)

𝑑𝑦

)︂
+

𝜕

𝜕𝑦

(︂
𝜕𝑠𝑥(𝑦)

𝑑𝑥
+

𝜕𝑠𝑥(𝑦)

𝑑𝑦

)︂
=

𝜕2𝑠𝑥(𝑦)

𝜕𝑦2
+ 2

𝜕2𝑠𝑥(𝑦)

𝜕𝑥𝜕𝑦
+

𝜕2𝑠𝑥(𝑦)

𝜕2𝑥

= 0 when 𝑦 = 𝑥 = 𝑥* (3.67)

Assuming that 𝑠𝑥(𝑦) is twice continuously differentiable, the following relationship holds at any

singular strategy 𝑥*: (︂
𝜕2𝑠𝑥(𝑦)

𝜕𝑦2
+ 2

𝜕2𝑠𝑥(𝑦)

𝜕𝑥𝜕𝑦
+

𝜕2𝑠𝑥(𝑦)

𝜕2𝑥

)︂ ⃒⃒⃒⃒
𝑦=𝑥=𝑥*

= 0 (3.68)

In the two-sex matrix model, (3.68) becomes (3.31).

3.B Calculating mixed second derivatives

As in Shyu and Caswell (2014), the pure second derivatives of 𝜆′ with respect to 𝜃′ are:

𝜕2𝜆′

𝜕𝜃′𝜕𝜃′ᵀ =
𝑑

𝑑𝜃′ᵀvec

[︃(︃
𝑑�̃�

𝑑𝜃′ᵀ

)︃ᵀ]︃
(3.69)
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The mixed second derivatives of 𝜆′ with respect to 𝜃′ and 𝜃 are similarly:

𝜕2𝜆′

𝜕𝜃𝜕𝜃′ᵀ =
𝑑

𝑑𝜃ᵀvec

[︃(︃
𝑑�̃�

𝑑𝜃′ᵀ

)︃ᵀ]︃
(3.70)

It can be shown (Caswell 2010) that:

𝑑�̃�

𝑑𝜃′ᵀ = (w′ ⊗ v′)ᵀ
𝑑vecA′

𝑑𝜃′ᵀ (3.71)

Substituting (3.71) into (3.70), we obtain:

𝜕2𝜆′

𝜕𝜃𝜕𝜃′ᵀ =
𝑑

𝑑𝜃ᵀvec
[︂(︂

𝑑vecA′

𝑑𝜃′ᵀ

)︂ᵀ

(w′ ⊗ v′)

]︂
(3.72)

To evaluate (3.72), we will use the following rule (Magnus 2010) for derivatives of matrix products.

Given matrices Y (𝑛 × 𝑣) and X (𝑚 × 𝑛), the derivative of their product with respect to a third

matrix Z (𝑝× 𝑞) is

𝑑vec(XY)

𝑑(vecZ)ᵀ
= (Yᵀ ⊗ I𝑚)

𝑑vecX
𝑑(vecZ)ᵀ

+ (I𝑣 ⊗X)
𝑑vecY

𝑑(vecZ)ᵀ
. (3.73)

Using (3.73), we can rewrite (3.72) as:

𝜕2𝜆′

𝜕𝜃𝜕𝜃′ᵀ = (w′ᵀ ⊗ v′ᵀ ⊗ I𝑠)
𝑑

𝑑𝜃ᵀvec
[︂(︂

𝑑vecA′

𝑑𝜃′ᵀ

)︂ᵀ]︂
+

(︂
𝑑vecA′

𝑑𝜃′ᵀ

)︂ᵀ 𝑑vec(w′ ⊗ v′)

𝑑𝜃ᵀ

= (w′ᵀ ⊗ v′ᵀ ⊗ I𝑠)
𝑑vec(Cᵀ)

𝑑𝜃ᵀ +Cᵀ𝑑vec(w
′ ⊗ v′)

𝑑𝜃ᵀ (3.74)

where

C =
𝑑vecA′

𝑑𝜃′ᵀ (3.75)

To evaluate the derivative in the first term of (3.74), recall A′ is a matrix function of w(𝜃).

Thus, to find the matrix derivative of C with respect to 𝜃, apply the commutation matrix and chain

rule for matrix derivatives:

𝑑vec(Cᵀ)

𝑑𝜃ᵀ = K𝑛2,𝑠
𝑑vec(C)

𝑑𝜃ᵀ

= K𝑛2,𝑠
𝑑vec(C[w(𝜃)])

𝑑𝜃ᵀ

= K𝑛2,𝑠
𝑑vecC
𝑑wᵀ

𝑑w

𝑑𝜃ᵀ (3.76)

where it can be shown (Caswell 2008) that

𝑑w

𝑑𝜃ᵀ =

[︂
𝜆I𝑠 −A+weᵀA− [wᵀ ⊗ (I𝑠 −weᵀ)]

𝑑vecA
𝑑wᵀ

]︂−1

[wᵀ ⊗ (I𝑠 −weᵀ)]
𝑑vecA
𝑑𝜃ᵀ (3.77)
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To evaluate the derivative in the second term of (3.74), we will use the following rule (Magnus

and Neudecker 1999, p. 227) for the derivatives of Kronecker products. Given matrices Y (𝑢 × 𝑣)

and X (𝑚× 𝑛), the derivative of their Kronecker product with respect to a third matrix Z (𝑝× 𝑞)

is

𝑑vec(X⊗Y)

𝑑(vecZ)ᵀ
= (I𝑛 ⊗K𝑣𝑚 ⊗ I𝑢)

[︂
(I𝑚𝑛 ⊗ vecY)

𝑑vecX
𝑑(vecZ)ᵀ

+ (vecX⊗ I𝑢𝑣)
𝑑vecY

𝑑(vecZ)ᵀ

]︂
(3.78)

Using (3.78), the derivative in the second term of (3.74) becomes:

𝑑vec(w′ ⊗ v′)

𝑑𝜃ᵀ = (I𝑛 ⊗ v′)
𝑑w′

𝑑𝜃ᵀ + (w′ ⊗ I𝑛)
𝑑v′

𝑑𝜃ᵀ (3.79)

By chain rule,
𝑑w′

𝑑𝜃ᵀ =
𝑑w′

𝑑vecA′ᵀ
𝑑vecA′

𝑑wᵀ

𝑑w

𝑑𝜃ᵀ (3.80)

where 𝑑w′

𝑑vecA′ᵀ is given by (3.26). Similarly,

𝑑v′

𝑑𝜃ᵀ =
𝑑v′

𝑑vecA′ᵀ
𝑑vecA′

𝑑wᵀ

𝑑w

𝑑𝜃ᵀ (3.81)

where 𝑑v′

𝑑vecA′ᵀ is given by (3.27).

Substituting (3.76) and (3.79) into (3.74), we obtain:

𝜕2𝜆′

𝜕𝜃𝜕𝜃′ᵀ = (w′ᵀ ⊗ v′ᵀ ⊗ I𝑠)K𝑛2,𝑠
𝑑vecC
𝑑wᵀ

𝑑w

𝑑𝜃ᵀ +Cᵀ
[︂
(I𝑛 ⊗ v′)

𝑑w′

𝑑𝜃ᵀ + (w′ ⊗ I𝑛)
𝑑v′

𝑑𝜃ᵀ

]︂
(3.82)

This expression is equivalent to (3.32) when the only evolving trait is the primary sex ratio, so that

𝜃 = 𝑠1.
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Chapter 4

Calculating second derivatives of

population growth rates for ecology and

evolution1

4.1 Abstract

1. Second derivatives of the population growth rate measure the curvature of its response to

demographic, physiological, or environmental parameters. The second derivatives quantify the

response of sensitivity results to perturbations, provide a classification of types of selection,

and provide one way to calculate sensitivities of the stochastic growth rate.

2. Using matrix calculus, we derive the second derivatives of three population growth rate

measures: the discrete-time growth rate 𝜆, the continuous-time growth rate 𝑟 = log 𝜆, and

the net reproductive rate 𝑅0, which measures per-generation growth.

3. We present a suite of formulae for the second derivatives of each growth rate, and show

how to compute these derivatives with respect to projection matrix entries and to lower-level

parameters affecting those matrix entries.

4. We also illustrate several ecological and evolutionary applications for these second derivative

calculations with a case study for the tropical herb Calathea ovandensis.

Keywords: matrix population models, sensitivity analysis, eigenvalues, invasion exponent, net

reproductive rate, Hessian matrix

1Originally published as “Shyu E, Caswell H. 2014. Calculating second derivatives of population growth rates for
ecology and evolution. Methods in Ecology and Evolution. 5: 473–482.” Reproduced here under the terms of the
Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
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Second derivative Sign Interpretations

𝜕2𝜆

𝜕𝜃2

= 0
∙ sensitivity of 𝜆 to 𝜃 is independent of 𝜃
∙ linear selection on trait 𝜃

> 0
∙ sensitivity of 𝜆 to 𝜃 increases with 𝜃
∙ convex selection on trait 𝜃
∙ evolutionarily-unstable singular strategy

< 0
∙ sensitivity of 𝜆 to 𝜃 decreases with increases in 𝜃
∙ concave selection on trait 𝜃
∙ evolutionarily-stable singular strategy

𝜕2𝜆

𝜕𝜃𝑗𝜕𝜃𝑖

> 0
∙ sensitivity of 𝜆 to 𝜃𝑖 increases with 𝜃𝑗
∙ selection to increase correlation between traits 𝜃𝑗 and 𝜃𝑖

< 0
∙ sensitivity of 𝜆 to 𝜃𝑖 decreases with increases in 𝜃𝑗
∙ selection to decrease correlation between traits 𝜃𝑗 and 𝜃𝑖

𝐻
[︀
𝜆; vecĀ

]︀
N/A ∙ used to calculate sensitivity of the stochastic growth rate 𝜆𝑠 (4.5)

Table 4.1: . Potential applications for the pure and mixed second derivatives of 𝜆. Analogous
interpretations apply to 𝑟 or 𝑅0 as alternative measures of growth or fitness.

4.2 Introduction

Using matrix population models, ecological indices can be calculated as functions of vital rates like

survival or fertility. Measures of population growth rate, including the discrete-time growth rate

𝜆, the continuous-time growth rate 𝑟 = log 𝜆, and the net reproductive rate 𝑅0 are of particular

interest. The discrete-time population growth rate 𝜆 is given by the dominant eigenvalue of the

population projection matrix in linear or frequency-dependent population models. Sensitivities

(first partial derivatives) of 𝜆 with respect to relevant parameters quantify how population growth

responds to vital rate perturbations. These first derivatives are used to project the effects of vital rate

changes due to environmental or management perturbations, uncertainty in parameter estimates,

and phenotypic evolution (i.e., with 𝜆 as a fitness measure, the sensitivity of 𝜆 with respect to a

parameter is the selection gradient on that parameter) (Caswell 2001).

The second derivatives of growth rates also have applications in both ecology (e.g., assessing and

improving recommendations from sensitivity analysis, approximating the sensitivities of stochastic

growth rates) and evolution (e.g., characterizing nonlinear selection gradients and evolutionary

equilibria). Several of these applications are summarized in Table 4.1 and described in the following

section.
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4.2.1 Applications of second derivatives of growth rates

4.2.1.1 Second-order sensitivity analysis and growth rate estimation

The sensitivity of growth rate provides insight into the population response to parameter

perturbations. However, such perturbations also affect the sensitivity itself, i.e. sensitivity is

“situational” (Stearns 1992). These effects are quantified by the sensitivity, with respect to a

parameter 𝜃𝑗 , of the sensitivity of 𝜆 to another parameter 𝜃𝑖, i.e. by the second derivatives 𝜕2𝜆
𝜕𝜃𝑗𝜕𝜃𝑖

.

The sensitivity of the elasticity of growth rate to parameters similarly depends on second derivatives

(Caswell 1996, 2001).

Second derivatives can be applied to population projections previously based on first-order

sensitivity analysis. While managers often focus on the vital rates to which population growth

is particularly sensitive or elastic, these first-order results may change depending on parameter

perturbations. First derivatives also provide a linear, first-order approximation to the response of

the growth rate to changes in parameters. The linear approximation is guaranteed to be accurate

for sufficiently small perturbations, and often does very well for quite large perturbations. If the

response of 𝜆 to 𝜃 is nonlinear, it is tempting to use a second-order approximation for Δ𝜆:

Δ𝜆 ≈
∑︁
𝑖

𝜕𝜆

𝜕𝜃𝑖
Δ𝜃𝑖 +

∑︁
𝑖

1

2

𝜕2𝜆

𝜕𝜃2𝑖
(Δ𝜃𝑖)

2 +
∑︁
𝑖 ̸=𝑗

𝜕2𝜆

𝜕𝜃𝑖𝜕𝜃𝑗
(Δ𝜃𝑖)(Δ𝜃𝑗) (4.1)

Although this may, in some cases, provide a more accurate calculation, this is not guaranteed; as

shown in Figure 1 of Carslake et al. (2008), adding the second-order terms may actually reduce the

accuracy of the approximation.

4.2.1.2 Characterizing nonlinear selection processes

Nonlinear relationships between fitness and trait values have consequences for selection. When

fitness is a linear function of a trait, selection affects only the trait’s mean value. When fitness is a

nonlinear function of the trait, however, selection changes the trait’s variance or higher moments. A

concave fitness function produces concave selection, which reduces trait variance. A convex fitness

function produces convex selection, which increases trait variance (Lande and Arnold 1983, Phillips

and Arnold 1989, Brodie et al. 1995).

One can classify a selection process as linear, concave, or convex using quadratic selection

gradients, the local second derivatives of fitness with respect to trait value (Phillips and Arnold

1989). If fitness is measured as 𝜆, these quadratic selection gradients are equivalent to 𝜕2𝜆/𝜕𝜃2,

the pure second derivatives of 𝜆 with respect to trait 𝜃 (e.g., the second derivatives with respect

to stage-specific survival in C. ovandensis, as shown in Figure 4-3a). Concave, linear, and convex

selection correspond to negative, zero, and positive second derivatives, respectively.

If 𝜕2𝜆/𝜕𝜃2 = 0, the selection process is linear and can only shift the mean of trait 𝜃. If

𝜕2𝜆/𝜕𝜃2 > 0, selection is convex and can increase trait variance. If 𝜕2𝜆/𝜕𝜃2 < 0, selection is concave
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and can reduce trait variance. When the pure second derivatives of two different traits, 𝜃𝑖 and 𝜃𝑗 ,

are both nonzero, their mixed second derivative 𝜕2𝜆/𝜕𝜃𝑗𝜕𝜃𝑖 indicates the effect of correlational

selection. Mixed second derivatives 𝜕2𝜆/𝜕𝜎1𝜕𝜎𝑖 and 𝜕2𝜆/𝜕𝜎2𝜕𝜎𝑖 for C. ovandensis, for example,

are shown in Figures 4-3b and 4-3c. If 𝜕2𝜆/𝜕𝜃𝑗𝜕𝜃𝑖 < 0, there is selection to decrease the phenotypic

correlation between the two traits; if 𝜕2𝜆/𝜕𝜃𝑗𝜕𝜃𝑖 > 0, there is selection to increase their correlation.

4.2.1.3 Stability of evolutionary singular strategies

Evolutionary singular strategies (SSs) are phenotypes for which the selection gradient is locally zero

(e.g., Geritz et al. 1998). SSs are classified as stable, attracting, or repelling, and by whether they

can invade or coexist with other nearby phenotypes (Geritz et al. 1998, Diekmann 2004, Waxman

and Gavrilets 2005, Doebeli 2011).

These classifications depend on the local second derivatives of invasion fitness. Invasion fitness

is the growth rate of a rare mutant in an equilibrium resident environment. For example, the

second derivative of the mutant growth rate 𝜆 to the mutant trait 𝑦 determines whether a SS is

evolutionarily-stable (𝜕2𝜆/𝜕𝑦2 < 0) or evolutionarily-unstable (𝜕2𝜆/𝜕𝑦2 > 0). Evolutionarily-stable

strategies, once established, are unbeatable phenotypes against which no nearby mutants can

increase under selection, and are thus long-term evolutionary endpoints. Evolutionarily-unstable

strategies, on the other hand, are branching points open to phenotypic divergence and may

ultimately become sources of sympatric speciation (Geritz et al. 1998).

4.2.1.4 Sensitivity of the stochastic growth rate

In a stochastic environment, population growth is measured by the stochastic growth rate

log𝜆𝑠 = lim
𝑡→∞

1

𝑡
log𝑁(𝑡) (4.2)

where 𝑁(𝑡) is the population size at time 𝑡.

Tuljapurkar (1982) derived an approximation for the stochastic growth rate when variability

around the mean vital rates is small and temporally independent. As shown by Caswell (2001,

Section 14.3.6), this approximation can be written in terms of the first derivatives of 𝜆, the dominant

eigenvalue of the mean projection matrix Ā. Letting D = 𝐷
[︀
𝜆; vecĀ

]︀
be the Jacobian matrix of

first derivatives,

log𝜆𝑠 ≈ log𝜆− DCDᵀ

2𝜆2
(4.3)

where C is the covariance matrix of the entries of the population projection matrix

C = 𝐸
[︁ (︀
vecA𝑡 − vecĀ

)︀ (︀
vecA𝑡 − vecĀ

)︀ᵀ]︁
. (4.4)

A measure of the sensitivity of the stochastic growth rate can be obtained by differentiating

(4.3) with respect to the entries of Ā. The sensitivity of the stochastic growth rate to Ā, leaving
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the variances and covariances fixed, depends on the second derivatives of 𝜆 as

𝑑log𝜆𝑠

𝑑vecᵀĀ
=

D

𝜆

(︂
1− CH

𝜆
+

DCDᵀ

𝜆2

)︂
(4.5)

whereH = 𝐻
[︀
𝜆; vecĀ

]︀
is the Hessian matrix of second derivatives. A derivation of (4.5) is provided

in Appendix 4.D.

4.2.2 Calculating second derivatives of growth rates

The second derivatives of 𝜆 with respect to matrix elements were introduced by Caswell (1996;

see also Caswell 2001, Section 9.7). However, the calculations in Caswell (1996) are awkward and

error-prone, because they involve all the eigenvalues and eigenvectors of the projection matrix.

McCarthy et al. (2008) introduced an alternative approach for calculating the second derivatives

of eigenvalues (they call them “second-order sensitivities”) based on transfer functions, partially to

avoid the calculation of all the eigenvectors. However, they consider only rank-one perturbations of

a subset of the matrix elements, excluding fertilities.

Here, we reformulate the second derivative calculations using matrix calculus, providing easily

computable results. We extend previous results by including not only second derivatives with

respect to matrix elements, but also those with respect to any lower-level parameters that may

affect the matrix elements. We also present not only second derivatives of 𝜆, but also those of the

continuous-time invasion exponent 𝑟 and the net reproductive rate 𝑅0.

The key to our approach is that the calculation of first derivatives using matrix calculus yields

a particular expression, the differentiation of which leads directly to the second derivatives. Second

derivatives are easily computed by this method in any matrix-oriented language, such as MATLAB

or R. Although we consider only the second derivatives of population growth rates, our approach

extends naturally to other scalar dependent variables.

We will illustrate the ecological and evolutionary applications of these second derivative

calculations with a case study for the tropical herb Calathea ovandensis.

4.2.3 Notation

Matrices are denoted by uppercase boldface letters (e.g., A) and vectors by lowercase boldface

letters (e.g., w); unless otherwise indicated, all vectors are column vectors. Transposes of matrices

and vectors are indicated by the superscript ᵀ. The matrix I𝑛 is the 𝑛 × 𝑛 identity matrix, the

vector e is a vector of ones, and e1 is a vector with 1 as its first entry and zeros elsewhere. The

matrix K𝑚,𝑛 is a 𝑚𝑛×𝑚𝑛 commutation matrix (vec-permutation matrix) (Magnus and Neudecker

1979, Henderson and Searle 1981), which can be calculated using the MATLAB function provided

in Appendix 4.E. The expression diag(x) indicates the square matrix with x on the diagonal and

zeros elsewhere.
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The Kronecker product is denoted by X⊗Y and the Hadamard (element-by-element) product

by X ∘Y. The vec operator (e.g., vecA) stacks the columns of a matrix into a single vector. For

convenience, we will write (vecA)T = vec TA. We will make frequent use of Roth’s theorem (Roth

1934), which states that for any matrices X, Y, and Z:

vec (XYZ) = (Zᵀ ⊗X)vecY . (4.6)

4.3 Matrix calculus

4.3.1 Matrix calculus notation

Matrix calculus is a system for manipulating vectors and matrices in multivariable calculus, and

simplifies partial derivative calculations by allowing the differentiation of scalar, vector, or matrix

functions with respect to scalar, vector, or matrix arguments. While there are multiple matrix

calculus notations, we will use the system of Magnus and Neudecker (1999). For a more detailed

introduction to these methods in an ecological context, see Appendix 1 of Caswell (2007).

The first derivative of a 𝑚 × 1 vector y with respect to a 𝑛 × 1 vector x is defined to be the

𝑚× 𝑛 Jacobian matrix
𝑑y

𝑑xT
=

(︂
𝑑𝑦𝑖
𝑑𝑥𝑗

)︂
; (4.7)

that is, a matrix whose (𝑖, 𝑗) entry is the derivative of 𝑦𝑖 with respect to 𝑥𝑗 . We will also write this

as an operator 𝐷[y;x]; the first argument of 𝐷 is the vector-valued function y to be differentiated,

and the second argument is the vector-valued variable x with respect to which differentation is

carried out. Thus,

𝐷[y;x] =
𝑑y

𝑑xT
. (4.8)

As in the scalar case, second derivatives are obtained by differentiating first derivatives. If

we consider a scalar-valued function 𝑦(x) of a vector-valued argument x, the matrix of second

derivatives (the Hessian matrix) is given by the operator

𝐻[𝑦;x] =
𝑑2𝑦

𝑑x𝑑xT
(4.9)

=

(︂
𝑑2𝑦

𝑑𝑥𝑖𝑑𝑥𝑗

)︂
(4.10)

=
𝑑

𝑑xᵀ

[︂(︂
𝑑𝑦

𝑑xᵀ

)︂ᵀ]︂
. (4.11)
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The matrix of second derivatives of a vector-valued function y(x), where y has dimensions𝑚×1,

is obtained by stacking the Hessian matrices for each of the elements of y; that is,

𝐻 [y;x] =

⎛⎜⎜⎜⎜⎜⎝
𝐻 [𝑦1;x]

𝐻 [𝑦2;x]
...

𝐻 [𝑦𝑚;x]

⎞⎟⎟⎟⎟⎟⎠ (4.12)

=
𝑑

𝑑xᵀvec
[︂(︂

𝑑y

𝑑xᵀ

)︂ᵀ]︂
. (4.13)

These first and second derivative definitions are written in terms of vector-valued functions and

arguments. When matrices appear, they are transformed into vectors using the vec operator, which

stacks the columns of the matrix into a column vector. Thus, the first and second derivatives of

𝜆 with respect to the entries of the matrix A would be written, respectively, as 𝐷[𝜆; vecA] and

𝐻[𝜆; vecA].

4.3.2 The identification theorems

Magnus and Neudecker (1985, 1999) showed how to obtain first and second derivatives from the

differentials of functions. Their “first identification theorem” showed that

𝑑y = Q𝑑x =⇒ 𝐷[y;x] = Q . (4.14)

That is, if an expression of the form 𝑑y = Q𝑑x can be obtained, then the Jacobian matrix of first

derivatives is given by Q.

The “second identification theorem” does the same for the Hessian matrix of second derivatives,

showing that

𝑑2𝑦 = 𝑑xT B𝑑x =⇒ 𝐻[𝑦;x] =
1

2
(B+BT) . (4.15)

Thus, our goal will be to find expressions of the form 𝑑2𝑦 = 𝑑xTB𝑑x, where 𝑦 is a measure of

population growth rate and x represents either matrix entries or lower-level parameters; the matrix

B will then provide the Hessian matrix using (4.15). The key to our approach is to begin with

the expression (4.14) for the first differential, differentiate it to obtain the second differential, and

manipulate the results to obtain a matrix B in the form of (4.15).

4.4 Second derivatives of growth rates

We now apply the identification theorems to three measures of population growth rate, the

discrete-time growth rate 𝜆, the continuous-time growth rate 𝑟 = log 𝜆, and the net reproductive

rate 𝑅0.
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4.4.1 Second derivatives of the discrete-time growth rate 𝜆

4.4.1.1 Second derivatives of 𝜆 with respect to matrix entries: 𝐻 [𝜆;vecA]

We assume a population projection matrix A of dimension 𝑛× 𝑛. The discrete-time growth rate 𝜆

is the dominant eigenvalue of A. To derive 𝐻 [𝜆; vecA], we begin with an expression of the form

(4.14) for the first differential of 𝜆. As shown in Caswell (2010),

𝑑𝜆 = (wᵀ ⊗ vᵀ)𝑑vecA (4.16)

where w and v are the right and left eigenvectors of A corresponding to 𝜆, scaled so that

vᵀw = 1 (4.17)

eᵀw = 1 (4.18)

where e is a 𝑛× 1 vector of ones (see Appendix 4.A).

Differentiate (4.16) to obtain the second differential

𝑑2𝜆 = 𝑑(wᵀ ⊗ vᵀ)𝑑vecA+ (wᵀ ⊗ vᵀ)𝑑2vecA . (4.19)

Because we are calculating second derivatives with respect to A, the second term will drop out

because 𝑑2vecA = 0 (Magnus 2007). Apply the vec operator to obtain

𝑑2𝜆 = 𝑑(vecᵀA)𝑑vec(wᵀ ⊗ vᵀ) . (4.20)

The differential of vec (wᵀ ⊗ vᵀ) is

𝑑vec(wᵀ ⊗ vᵀ) = (I𝑛 ⊗ v)𝑑w + (w ⊗ I𝑛)𝑑v (4.21)

(Magnus and Neudecker 1999). Substituting (4.21) into (4.20) gives

𝑑2𝜆 = 𝑑(vecᵀA)
[︁
(I𝑛 ⊗ v)𝑑w + (w ⊗ I𝑛) 𝑑v

]︁
. (4.22)

By the chain rule,

𝑑w =
𝑑w

𝑑vecᵀA
𝑑vecA (4.23)

𝑑v =
𝑑v

𝑑vecᵀA
𝑑vecA . (4.24)

The first derivatives of w and v, subject to (4.17) and (4.18), are given in Caswell (2008) and

Caswell and Vindenes (in prep), respectively, as:
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𝑑w

𝑑vecᵀA
= (𝜆I𝑛 −A+weᵀA)−1

[︁
wᵀ ⊗ (I𝑛 −weᵀ)

]︁
(4.25)

𝑑v

𝑑vecᵀA
= (𝜆I𝑛 −Aᵀ + 𝜆vwᵀ)−1

(︂[︁
(I𝑛 − vwᵀ)⊗ vᵀ

]︁
− 𝜆(v ⊗ vᵀ)

𝑑w

𝑑vecᵀA

)︂
. (4.26)

Derivations of (4.25) and (4.26) are provided in Appendix 4.A.

Rewrite (4.22) as

𝑑2𝜆 = 𝑑vecᵀA
[︂
(I𝑛 ⊗ v)

𝑑w

𝑑vecᵀA
+ (w ⊗ I𝑛)

𝑑v

𝑑vecᵀA

]︂
𝑑vecA . (4.27)

This is of the form

𝑑2𝜆 = (𝑑vecᵀA)B(𝑑vecA) (4.28)

and hence

𝐻 [𝜆; vecA] =
1

2
(B+Bᵀ) (4.29a)

where

B = (I𝑛 ⊗ v)
𝑑w

𝑑vecᵀA
+ (w ⊗ I𝑛)

𝑑v

𝑑vecᵀA
(4.29b)

and the first derivatives of w and v are given by (4.25) and (4.26).

4.4.1.2 Second derivatives of 𝜆 with respect to lower-level parameters: 𝐻 [𝜆;𝜃]

Because many life history traits and environmental factors affect multiple life cycle transitions, the

entries of A are usually functions of lower-level parameters. To calculate the second derivatives of

𝜆 with respect to a 𝑠× 1 parameter vector 𝜃, we must develop a Hessian chain rule.

Again, we begin with the first differential of 𝜆 in (4.16), and differentiate to obtain the second

differential (4.19). Because we are calculating second derivatives with respect to 𝜃 rather than A,

𝑑2vecA is no longer zero. By the chain rule,

𝑑vecA =
𝑑vecA
𝑑𝜃ᵀ 𝑑𝜃 . (4.30)

Differentiate (4.30) to obtain

𝑑2vecA = 𝑑

(︂
𝑑vecA
𝑑𝜃ᵀ

)︂
𝑑𝜃 +

𝑑vecA
𝑑𝜃ᵀ 𝑑2𝜃 . (4.31)

Because 𝑑2𝜃 = 0, the second term drops out.

97



Substituting (4.30) and (4.31) into the expression for the second differential in (4.19) yields

𝑑2𝜆 = 𝑑(wᵀ ⊗ vᵀ)
𝑑vecA
𝑑𝜃ᵀ 𝑑𝜃 + (wᵀ ⊗ vᵀ)𝑑

(︂
𝑑vecA
𝑑𝜃ᵀ

)︂
𝑑𝜃 . (4.32)

To simplify this expression, define

S =
𝑑vecA
𝑑𝜃ᵀ (4.33)

T =
𝑑𝜆

𝑑vecᵀA
= wᵀ ⊗ vᵀ (4.34)

in terms of which (4.32) can be rewritten as

𝑑2𝜆 =
[︁
(𝑑T)S+T(𝑑S)

]︁
𝑑𝜃 . (4.35)

Then apply the vec operator and Roth’s theorem (4.6) to obtain

𝑑2𝜆 = 𝑑𝜃ᵀvec
[︁
T(𝑑S) + (𝑑T)S

]︁
= 𝑑𝜃ᵀ

[︁
(I𝑠 ⊗T)𝑑vecS+ Sᵀ𝑑vecT

]︁
= 𝑑𝜃ᵀ

[︂
(I𝑠 ⊗T)

𝑑vecS
𝑑𝜃ᵀ + Sᵀ𝑑vecT

𝑑𝜃ᵀ

]︂
𝑑𝜃 (4.36)

where, as shown by (4.86) and (4.89) in Appendix 4.B,

(I𝑠 ⊗T)
𝑑vecS
𝑑𝜃ᵀ = (T⊗ I𝑠)𝐻 [vecA;𝜃] (4.37)

𝑑vecT
𝑑𝜃ᵀ = 𝐻 [𝜆; vecA]S . (4.38)

The expression (4.36) is of the form

𝑑2𝜆 = 𝑑𝜃ᵀB𝑑𝜃 (4.39)

and hence by the second identification theorem (4.15),

𝐻 [𝜆;𝜃] =
1

2
(B+Bᵀ) (4.40a)

where
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B = (T⊗ I𝑠)𝐻 [vecA;𝜃] + (Sᵀ)𝐻 [𝜆; vecA]S

= (wᵀ ⊗ vᵀ ⊗ I𝑠)𝐻 [vecA;𝜃] +

(︂
𝑑vecA
𝑑𝜃ᵀ

)︂ᵀ

𝐻 [𝜆; vecA]
𝑑vecA
𝑑𝜃ᵀ . (4.40b)

The first and second derivatives of A with respect to 𝜃, which appear in 𝑑vecA
𝑑𝜃ᵀ and 𝐻 [vecA;𝜃]

respectively, can be evaluated by hand or by using a symbolic math program. This result is in

agreement with the Hessian chain rule derived in a different way by Magnus and Neudecker (1999,

p. 125).

4.4.2 Second derivatives of the invasion exponent 𝑟: 𝐻 [𝑟;vecA] and 𝐻 [𝑟;𝜃]

The population growth rate in continuous time is the invasion exponent 𝑟 = log 𝜆. By the definition

of the Hessian in (4.11), the Hessian of 𝑟 with respect to A is

𝐻 [𝑟; vecA] =
𝑑

𝑑vecᵀA
vec
[︂(︂

𝑑log𝜆
𝑑vecᵀA

)︂ᵀ]︂
. (4.41)

We calculate the first derivative of log 𝜆,

𝐻 [𝑟; vecA] =
𝑑

𝑑vecᵀA

[︂
1

𝜆
vec
(︂

𝑑𝜆

𝑑vecᵀA

)︂ᵀ]︂
(4.42)

and then apply the product rule to obtain

𝐻 [𝑟; vecA] =

(︂
𝑑𝜆

𝑑vecᵀA

)︂ᵀ 𝑑

𝑑vecᵀA
1

𝜆
+

1

𝜆

𝑑

𝑑vecᵀA
vec
[︂(︂

𝑑𝜆

𝜕vecᵀA

)︂ᵀ]︂
(4.43)

which simplifies to

𝐻 [𝑟; vecA] = − 1

𝜆2

(︂
𝑑𝜆

𝜕vecᵀA

)︂ᵀ 𝑑𝜆

𝜕vecᵀA
+

1

𝜆
𝐻 [𝜆; vecA] (4.44)

= − 1

𝜆2
(wwᵀ ⊗ vvᵀ) +

1

𝜆
𝐻 [𝜆; vecA] (4.45)

where 𝐻 [𝜆; vecA] is given by (4.29).

Replacing vecA in (4.44) with a parameter vector 𝜃 gives the Hessian
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𝐻 [𝑟;𝜃] = − 1

𝜆2

(︂
𝑑𝜆

𝑑𝜃ᵀ

)︂ᵀ 𝑑𝜆

𝑑𝜃ᵀ +
1

𝜆
𝐻 [𝜆;𝜃]

= − 1

𝜆2

(︂
𝑑vecA
𝑑𝜃ᵀ

)︂ᵀ

(wwᵀ ⊗ vvᵀ)
𝑑vecA
𝑑𝜃ᵀ +

1

𝜆
𝐻 [𝜆;𝜃] (4.46)

where 𝑑vecA
𝜕𝜃ᵀ can be calculated by hand or with a symbolic math program, and 𝐻 [𝜆;𝜃] can be

obtained from (4.40).

4.4.3 Second derivatives of the net reproductive rate 𝑅0

The net reproductive rate 𝑅0 measures the population growth rate per generation and is used as

an alternative fitness measure to 𝑟 under some special conditions (Pásztor et al. 1996, Brommer

2000). If A is decomposed into transition and fertility matrices, A = U + F, then 𝑅0 is the

dominant eigenvalue of the next generation matrix R = FN (Cushing and Zhou 1994), where N is

the fundamental matrix:

N = (I𝑛 −U)−1 . (4.47)

The (𝑖, 𝑗) entry of N gives the expected number of visits to stage 𝑖 for an individual starting in stage

𝑗. The (𝑖, 𝑗) entry of R gives the expected lifetime production of stage 𝑖 offspring by an individual

starting in stage 𝑗.

Because 𝑅0 is an eigenvalue, our results for 𝐻[𝜆; vecA] and 𝐻[𝜆;𝜃] can be applied to find its

second derivatives, but with R taking the place of matrix A. The resulting expressions are more

complicated than the corresponding expressions for 𝜆, because parameters can affect 𝑅0 through

U, F, or both. In the important special case where only a single type of offspring is produced

(suppose it is numbered as stage 1), then R is a diagonal matrix and 𝑅0 is its (1, 1) entry; in this

case, eigenvalue calculations are not necessary.

We defer the fully general calculation of 𝐻 [𝑅0;𝜃] to Appendix C, and show results here for the

useful special cases 𝐻 [𝑅0; vecU] and 𝐻 [𝑅0; vecF], for single and multiple types of offspring.

If we apply equations (4.40) to the case of 𝑅0, we obtain

𝐻 [𝑅0;𝜃] =
1

2
(B+Bᵀ) (4.48a)

where

B = (wᵀ
𝑅 ⊗ vᵀ

𝑅 ⊗ I𝑠)𝐻 [vecR;𝜃] +

(︂
𝑑vecR
𝑑𝜃ᵀ

)︂ᵀ

𝐻 [𝑅0; vecR]
𝑑vecR
𝑑𝜃ᵀ (4.48b)

and w𝑅 and v𝑅 are the right and left eigenvectors of R.

To evaluate (4.48), we must calculate the second derivatives of 𝑅0 with respect to R, and the

first and second derivatives of R with respect to 𝜃. For the former, the Hessian 𝐻 [𝑅0; vecR] is

given by (4.29), using the dominant eigenvalues and eigenvectors of R rather than those of A. For
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the latter, we will consider the derivatives of R with respect to U and F in turn. The derivatives

of R with respect to general parameters 𝜃 are shown in Appendix 4.C.

4.4.3.1 Second derivatives of 𝑅0 to the transition matrix: 𝐻 [𝑅0;vecU]

The second derivatives of 𝑅0 with respect to the entries of the transition matrix U require the first

and second derivatives of R with respect to U. The first derivatives are obtained by differentiating

R = FN, applying the vec operator, and noting that 𝑑vecN = (NT ⊗N) 𝑑vecU (Caswell 2006,

2009), to obtain
𝑑vecR
𝑑vec TU

= (NT ⊗R) . (4.49)

The second derivatives of R are obtained from the definition of the Hessian matrix (4.13):

𝐻 [vecR; vecU] =
𝑑

𝑑vecᵀU
vec
[︂(︂

𝑑vecR
𝑑vecᵀU

)︂ᵀ]︂
=

𝑑

𝑑vecᵀU
vec [N⊗Rᵀ] . (4.50)

The derivative of vec (N⊗RT) is given by a result of Magnus and Neudecker (1985, Theorem

11; 1999, p. 209); for a 𝑚× 𝑛 matrix X and a 𝑝× 𝑞 matrix Y,

𝑑vec(X⊗Y) = (I𝑛 ⊗K𝑞𝑚 ⊗ I𝑝)
[︁
(I𝑚𝑛 ⊗ vecY)𝑑vecX+ (vecX⊗ I𝑝𝑞) 𝑑vecY

]︁
. (4.51)

Thus, (4.50) can be rewritten as

𝐻 [vecR; vecU] = (I𝑛 ⊗K𝑛,𝑛 ⊗ I𝑛)

[︂(︁
I𝑛2 ⊗ vec[Rᵀ]

)︁ 𝑑vecN

𝑑vec ᵀU
+ (vecN⊗ I𝑛2)

𝑑vecRᵀ

𝑑vec ᵀU

]︂
(4.52)

= (I𝑛 ⊗K𝑛,𝑛 ⊗ I𝑛)

[︂(︁
I𝑛2 ⊗ vec[Rᵀ]

)︁
(Nᵀ ⊗N) + (vecN⊗ I𝑛2)K𝑛,𝑛 (Nᵀ ⊗R)] . (4.53)

As a result,

𝐻 [𝑅0; vecU] =
1

2
(B+Bᵀ) (4.54a)

where

B = (wᵀ
𝑅 ⊗ vᵀ

𝑅 ⊗ I𝑛2)𝐻 [vecR; vecU] +

(︂
𝑑vecR
vecᵀU

)︂ᵀ

𝐻 [𝑅0; vecR]
𝑑vecR
vecᵀU

(4.54b)

where
𝑑vecR
𝑑vec TU

is given by (4.49) and 𝐻 [vecR; vecU] is given by (4.53).
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4.4.3.2 Second derivatives of 𝑅0 to the fertility matrix: 𝐻 [𝑅0;vecF]

Now consider the second derivatives of 𝑅0 with respect to the entries of the fertility matrix F.

Differentiating R = FN with respect to F yields the first derivatives of R with respect to F,

𝑑vecR
𝑑vec TF

= (NT ⊗ I𝑛) . (4.55)

The second derivatives of R are given by the Hessian matrix

𝐻 [vecR; vecF] =
𝑑

𝑑vecᵀF
vec [N⊗ I𝑛] . (4.56)

However, because N depends only on U, and not on F, this is a zero matrix.

Substituting these results into (4.48) gives

𝐻 [𝑅0; vecF] =
1

2
(B+Bᵀ) (4.57a)

where

B = (N⊗ I𝑛)𝐻 [𝑅0; vecR] (Nᵀ ⊗ I𝑛). (4.57b)

4.4.3.3 Single type of offspring

In the common case where there is only one type of offspring (Appendix 4.C.1), 𝐻 [𝑅0;𝜃] simplifies

to

𝐻 [𝑅0;𝜃] = (eᵀ1 ⊗ eᵀ1 ⊗ I𝑠)𝐻 [vecR;𝜃] (4.58)

where e1 is the 𝑛× 1 vector with 1 as its first entry and zeros elsewhere.

4.5 Case study: Calathea ovandensis

4.5.1 Study species

Calathea ovandensis is a neotropical perennial herb that inhabits forest understories. Horvitz and

Schemske (1995) developed a stage-structured matrix model for C. ovandensis that contains eight

stages distinguished by size and reproductive ability: seeds, nonreproductive stages (seedlings,

juveniles, pre-reproductive), and reproductive stages (small, medium, large, and extra large). Plants

may grow larger, remain in the same size class, or shrink at each time step; larger adults are typically

more fecund.

Horvitz and Schemske summarized four years of population dynamics from four plots of C.

ovandensis with an 8 × 8 summary projection matrix, the average plot-year matrix weighted by

the observed stage abundances and transition frequencies in different years and plots (Horvitz and
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Figure 4-1: . (a) The Hessian matrix 𝐻 [𝜆; vecA] for C. ovandensis. Entries corresponding to fixed
zeros (unobserved transitions) in the matrix (4.59) are omitted. (b) The entries of the Hessian matrix
in 4-1a, sorted in ascending order. The derivatives 𝜕2𝜆/𝜕𝑎23,1 = −217.53 and 𝜕2𝜆/𝜕𝑎3,1𝜕𝑎4,2 =
−75.64 are omitted due to their magnitude.

Schemske 1995, Table 8):

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4983 0 0.5935 7.139 14.2715 24.6953 34.9027 40.5437

0.0973 0.0110 0.0191 0 0 0 0 0

0.0041 0.0442 0.3378 0.0698 0.0251 0.0065 0.0085 0

0 0.0014 0.1355 0.4286 0.1736 0.0968 0.0427 0.0435

0 0 0.0363 0.3841 0.6025 0.4258 0.2991 0.2174

0 0 0.0019 0.0254 0.113 0.2387 0.1709 0.2826

0 0 0 0.0095 0.0272 0.1548 0.3248 0.1957

0 0 0 0.0032 0.0063 0.0452 0.1282 0.2391

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.59)

The dominant eigenvalue of this matrix is 0.9923, indicating a near-steady state population.

4.5.2 Second derivatives of 𝜆

The Hessian 𝐻 [𝜆; vecA], which is calculated using (4.29), gives the second derivatives of 𝜆 to the

entries of A. It is a symmetric 64×64 matrix (Figure 4-1). In this example, and in others with large

projection matrices, 𝐻 [𝜆; vecA] contains many entries and may be difficult to interpret, even when

entries that are fixed at 0 are omitted. Most of the second derivatives here are small in magnitude

(Figure 4-1b) with the exception of a few entries, including the highly-negative 𝜕2𝜆/𝜕𝑎23,1 = −217.53

and 𝜕2𝜆/𝜕𝑎3,1𝜕𝑎4,2 = −75.64, where 𝑎3,1 is the transition probability from seed to juvenile, whereas

𝑎4,2 is the transition probability from seedling to pre-reproductives.
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Using (4.40), one can also calculate the Hessian 𝐻 [𝜆;𝜃] for a set of lower-level parameters 𝜃.

For example, the stage-specific survival probabilities are lower-level parameters that affect multiple

matrix entries. To analyze these using (4.40), write the survival probabilities in a vector 𝜎, which

is given by the column sums of U, so that

U = G diag (𝜎) (4.60)

where G describes stage transitions conditional on survival (Caswell 2011).

The Hessian of 𝜆 with respect to 𝜎 is given by (4.40), with the parameter vector 𝜃 replaced by

𝜎. Calculating this Hessian requires the first and second derivatives of A with respect to 𝜎. These

are obtained as follows. Assuming that F does not depend on 𝜎 (i.e., prebreeding census), the first

differential of A is

𝑑A = 𝑑U = Gdiag(𝑑𝜎) . (4.61)

Applying the vec operator to both sides gives

𝑑vecA
𝑑𝜎T

= (I𝑛 ⊗G) diag (vec I𝑛) (e⊗ I𝑛) (4.62)

(see Caswell and Salguero-Gómez 2013, Appendix A).

The Hessian 𝐻 [vecA;𝜎] is the derivative of (4.62) with respect to 𝜃. However, none of the

terms in (4.62) depend on 𝜎, so the second derivatives of A with respect to 𝜎 are all zero, and

𝐻 [vecA;𝜎] is a zero matrix. Thus, the matrix B in (4.40) reduces to

B =

(︂
𝑑vecA
𝑑𝜎ᵀ

)︂ᵀ

𝐻 [𝜆; vecA]
𝑑vecA
𝑑𝜎ᵀ (4.63)

where 𝑑vecA
𝑑𝜎ᵀ is given by (4.62) and 𝐻 [𝜆; vecA] is given by (4.29).

The resulting Hessian matrix 𝐻 [𝜆;𝜎] is shown in Figure 4-2. These second derivatives are

generally of smaller magnitude than those of𝐻 [𝜆; vecA] (Figure 4-1). The largest second derivatives

in 𝐻 [𝜆;𝜎] appear in rows 1 and 2 (equivalently, columns 1 and 2). Figure 4-3 highlights the mixed

second derivatives 𝜕2𝜆/𝜕𝜎1𝜕𝜎𝑖 and 𝜕2𝜆/𝜕𝜎2𝜕𝜎𝑖, along with the pure second derivatives 𝜕2𝜆/𝜕𝜎2
𝑖 .

4.5.3 Applications of the second derivatives

C. ovandensis has several large second derivatives of the form 𝜕2𝜆/𝜕𝜎1𝜕𝜎𝑖 and 𝜕2𝜆/𝜕𝜎2𝜕𝜎𝑖 (the

first two rows or columns of Figure 4-2, which are shown separately in Figures 4-3b and 4-3c). As

discussed in Section 4.2.1.1, this indicates that the sensitivity of 𝜆 to stage 1 (seed) and stage 2

(seedling) survival will be especially responsive to changes in later survival. Similarly, the sensitivity

of 𝜆 to later survival is especially responsive to changes in seed and seedling survival.

Recall from Section 4.2.1.2 that if 𝜕2𝜆/𝜕𝜃2 = 0, the corresponding selection process is linear and

can only shift the mean of trait 𝜃. In C. ovandensis, selection on survival in stage 8 is almost linear,
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Figure 4-2: . (a) The Hessian 𝐻 [𝜆;𝜎] for C. ovandensis. (b) The Hessian entries in 4-2a, sorted in
ascending order.

Figure 4-3: . Three sets of second derivatives from 𝐻 [𝜆;𝜎] (Figure 4-2). (a) The pure second
derivatives 𝜕2𝜆/𝜕𝜎2

𝑖 . (b) The mixed second derivatives 𝜕2𝜆/𝜕𝜎1𝜕𝜎𝑖. (c) The mixed second
derivatives 𝜕2𝜆/𝜕𝜎2𝜕𝜎𝑖.
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since 𝜕2𝜆/𝜕𝜎2
8 is near zero. If 𝜕

2𝜆/𝜕𝜃2 > 0, selection is convex and can increase trait variance (e.g.,

survival in stages 1, 3, 4, 5). If 𝜕2𝜆/𝜕𝜃2 < 0, selection is concave and can reduce trait variance

(e.g., survival in stage 2). Survival in stage 1 (seeds) or 2 (seedlings) has negative mixed derivatives

with survival in stages 4-8 (adults), but largely positive mixed derivatives with survival in stages

1-3 (pre-adults). This indicates that seed and seedling survival are being selected to decrease their

correlation with adult survival, but to increase their correlation with pre-adult survival.

4.6 Discussion

Although the first derivatives of population growth rates are commonly used in ecology and

demography, tools for calculating the second derivatives are not nearly as well-established, even

though second derivatives also have a variety of potential applications. To this end, we have

derived new, more easily computable formulae for the second derivatives of three population growth

rate measures — the discrete-time growth rate 𝜆, the continuous-time growth rate 𝑟, and the

per-generation growth rate 𝑅0 — both with respect to projection matrix entries and to lower-level

parameters. Table 4.1 provides an overview of the results, with directions to the equations defining

the Hessian matrix, containing all second-order partial derivatives, for each type of growth rate and

each type of independent variable.

The matrix calculus approach is comprehensive, and even though the formulae may appear

complicated, they are easy to apply with any matrix-oriented software. Other methods for finding

second derivatives are either more limited or require more difficult and error-prone calculations.

Cohen (1978), for instance, derives the second pure derivatives of 𝜆 with respect to the diagonal

elements of the projection matrix (𝜕2𝜆/𝜕𝑎2𝑖𝑖) only. The approaches of Deutsch and Neumann (1984)

and Kirkland and Neumann (1994) rely on the calculation of group inverses, while those of Caswell

(1996) require all the eigenvalues and eigenvectors of the projection matrix. McCarthy et al.’s

method (2008) uses transfer functions rather than eigenvectors, and is more complicated when

handling lower-level parameters.

The methods described in this paper focus on calculating partial second derivatives. The total

(integrated) second derivative depends on both pure and mixed second partials, as well as the

derivatives of the other parameters to the parameter of interest:

𝑑2𝜆

𝑑𝜃2𝑖
=
∑︁
𝑗

𝜕2𝜆

𝜕𝜃2𝑗

(︃
𝑑𝜃2𝑗
𝑑𝜃𝑖

)︃2

+
∑︁
𝑗

𝜕𝜆

𝜕𝜃𝑗

(︂
𝑑2𝜃𝑗
𝑑𝜃2𝑖

)︂
+ 2

∑︁
𝑗

𝜕2𝜆

𝜕𝜃𝑖𝜕𝜃𝑗

𝑑𝜃𝑗
𝑑𝜃𝑖

(4.64)

This total derivative may be of particular interest when there are significant covariances between

parameters, as in the case of strong life cycle trade-offs (e.g., van Tienderen 1995).
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Chapter 4 Appendix

In these appendices, we provide derivations of the sensitivity results. For clarity, we provide some

derivations that were originally obtained in other publications.

4.A First differentials of 𝜆, w, and v

Here, we present derivations for the first differentials of the dominant eigenvalue 𝜆 and its right

and left eigenvectors w and v. Eigenvectors are written as 𝑛× 1 column vectors and scaled so that

vᵀw = 1 and eᵀw = 1, where e is a 𝑛× 1 vector of ones.

4.A.1 First differential of the dominant eigenvalue: 𝑑𝜆

Caswell (2010) derived the matrix calculus version of the sensitivity of 𝜆 with respect to the entries

of A. For a matrix A with eigenvalue 𝜆 and corresponding right eigenvector w:

Aw = 𝜆w . (4.65)

Differentiate once, then multiply each term by the transpose of the left eigenvector vᵀ:

vᵀ(𝑑A)w + vᵀA(𝑑w) = (𝑑𝜆)vᵀw + 𝜆vᵀ(𝑑w) . (4.66)

By the definition of the left eigenvector, vᵀA = 𝜆vᵀ. After canceling terms and rearranging the

resulting expression, we find:

𝑑𝜆 =
vᵀ(𝑑A)w

vᵀw
. (4.67)

Scaling vᵀw = 1 and applying Roth’s theorem (4.6):

𝑑𝜆 = vᵀ(𝑑A)w (4.68)

= (wᵀ ⊗ vᵀ)𝑑vecA . (4.69)
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4.A.2 First differential of the right eigenvector: 𝑑w

As shown in Caswell (2008), when the right eigenvector is scaled so that eᵀw = 1, w can be written

as:

w =
Aw

eᵀAw
. (4.70)

Differentiate using the quotient rule,

w =
1

(eᵀAw)2

[︁
eᵀAw𝑑(Aw)−Aw𝑑(eᵀAw)

]︁
(4.71)

then substitute Aw = 𝜆w and eᵀAw = 𝜆 to obtain

𝜆𝑑w = (I𝑛 −weᵀ)𝑑(Aw)

= (I𝑛 −weᵀ)(𝑑A)w + (A−weᵀA)𝑑w . (4.72)

Apply the vec operator and rearrange terms,

(𝜆I𝑛 −A+weᵀA)𝑑w =
[︁
wᵀ ⊗ (I𝑛 −weᵀ)

]︁
𝑑vecA (4.73)

then solve for 𝑑w to obtain

𝑑w = (𝜆I𝑛 −A+weᵀA)−1
[︁
wᵀ ⊗ (I𝑛 −weᵀ)

]︁
𝑑vecA . (4.74)

4.A.3 First differential of the left eigenvector: 𝑑v

By scaling wᵀv = vᵀw = 1, the left eigenvector v can be written as:

vᵀ =
vᵀA

vᵀAw
(4.75)

(Caswell and Vindenes, in prep.). Differentiate using the quotient rule and note that Aw = 𝜆w

and 𝑣ᵀA = 𝜆vᵀ:

𝑑vᵀ =
(vᵀAw)𝑑(vᵀA)− 𝑑(vᵀAw)(vᵀA)

(vᵀAw)2

=
1

(𝜆vᵀw)2

[︂
𝜆vᵀw

[︁
(𝑑vᵀ)A+ vᵀ (𝑑A)

]︁
−
[︁
(𝑑vᵀ)𝜆w + vᵀ(𝑑A)w + 𝜆vᵀ(𝑑w)

]︁
(𝜆vᵀ)

]︂
.

(4.76)

Multiplying both sides by 𝜆 and setting vᵀw = 1:

𝜆𝑑vᵀ = (𝑑vᵀ)A+ vᵀ(𝑑A)− 𝜆(𝑑vᵀ)wvᵀ − vᵀ(𝑑A)wvᵀ − 𝜆vᵀ(𝑑w)vᵀ . (4.77)
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Take the vec of both sides and apply Roth’s theorem (4.6),

𝜆𝑑v = (Aᵀ ⊗ I1)𝑑v + (I𝑛 ⊗ vᵀ)𝑑vecA− 𝜆(vwᵀ ⊗ I1)𝑑v − (vwᵀ ⊗ vᵀ)𝑑vecA− 𝜆(v ⊗ vᵀ)𝑑w

= Aᵀ𝑑v + (I𝑛 ⊗ vᵀ)𝑑vecA− 𝜆vwᵀ𝑑v − (vwᵀ ⊗ vᵀ)𝑑vecA− 𝜆(v ⊗ vᵀ)𝑑w (4.78)

then solve for 𝑑v to obtain

𝑑v = (𝜆I𝑛 −Aᵀ + 𝜆vwᵀ)−1

[︂(︁
[I𝑛 − vwᵀ]⊗ vᵀ

)︁
𝑑vecA− 𝜆(v ⊗ vᵀ)𝑑w

]︂
. (4.79)

4.B First derivatives of S = 𝑑vecA
𝑑𝜃ᵀ and T = 𝑑𝜆

𝑑vecᵀA

In (4.34), we defined

S =
𝑑vecA
𝑑𝜃ᵀ and T =

𝑑𝜆

𝑑vecᵀA
= wᵀ ⊗ vᵀ . (4.80)

To evaluate (4.36), we require the first derivatives of S and T. For the first derivative of S:

𝑑vecS
𝑑𝜃ᵀ =

𝑑

𝑑𝜃ᵀvec
[︂
𝑑vecA
𝑑𝜃ᵀ

]︂
. (4.81)

Apply the commutation matrix (vec-permutation matrix) K𝑚,𝑛, a constant matrix of 0’s and 1’s

that can be calculated using the MATLAB function provided in Appendix 4.E. For any 𝑚 × 𝑛

matrix A, there is a unique 𝑚𝑛×𝑚𝑛 matrix K𝑚,𝑛 such that:

K𝑚,𝑛vecA = vec(Aᵀ) . (4.82)

Using both the commutation matrix and the definition of the Hessian matrix in (4.13):

𝑑vecS
𝑑𝜃ᵀ =

𝑑

𝑑𝜃ᵀvec
[︂
𝑑vecA
𝑑𝜃ᵀ

]︂
=

𝑑

𝑑𝜃ᵀK𝑠,𝑛2vec
[︂(︂

𝑑vecA
𝑑𝜃ᵀ

)︂ᵀ]︂
= K𝑠,𝑛2𝐻 [vecA;𝜃] . (4.83)

Note that for a 𝑚× 𝑛 matrix X and a 𝑝× 𝑞 matrix Y,

K𝑝,𝑚(X⊗Y) = (Y ⊗X)K𝑞,𝑛 (4.84)

and

K𝑛,1 = K1,𝑛 = I𝑛 (4.85)
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so (4.37) becomes

(I𝑠 ⊗T)
𝑑vecS
𝑑𝜃ᵀ = (I𝑠 ⊗T)K𝑠,𝑛2𝐻 [vecA;𝜃]

= (T⊗ I𝑠)𝐻 [vecA;𝜃] . (4.86)

To find (4.38), differentiate the expression for T

𝑑vecT
𝑑𝜃ᵀ =

𝑑

𝑑𝜃ᵀvec
[︂

𝑑𝜆

𝑑vecAᵀ

]︂
(4.87)

and use the chain rule to rewrite it in terms of the derivative with respect to A

𝑑vecT
𝑑𝜃ᵀ =

𝑑

𝑑vecAᵀvec
[︂

𝑑𝜆

𝑑vecAᵀ

]︂
𝑑vecA
𝑑𝜃ᵀ . (4.88)

The first part of (4.88) is equivalent to the Hessian expression (4.13), so:

𝑑vecT
𝑑𝜃ᵀ = 𝐻 [𝜆; vecA]S . (4.89)

4.C Second derivatives of 𝑅0 to lower-level parameters: 𝐻 [𝑅0;𝜃]

In Section 4.4.3, we calculated the second derivatives of the net reproductive rate 𝑅0 with respect

to U and F. Here, we present the fully general second derivatives of 𝑅0 with respect to a parameter

vector 𝜃.

As written in (4.48), the general expression for the Hessian of 𝑅0 with respect to 𝜃 is

𝐻 [𝑅0;𝜃] =
1

2
(B+Bᵀ) (4.90a)

where

B = (wᵀ
𝑅 ⊗ vᵀ

𝑅 ⊗ I𝑠)𝐻 [vecR;𝜃] +

(︂
𝑑vecR
𝑑𝜃ᵀ

)︂ᵀ

𝐻 [𝑅0; vecR]
𝑑vecR
𝑑𝜃ᵀ (4.90b)

and w𝑅 and v𝑅 are the right and left eigenvectors of R. As noted in the main text, evaluating B

requires the second derivatives of 𝑅0 with respect to R (the Hessian 𝐻 [𝑅0; vecR], which is given

by (4.29) using the dominant eigenvalues and eigenvectors of R rather than those of A), and the

first and second derivatives of R with respect to 𝜃. We will now calculate these derivatives of R

with respect to 𝜃.

The first derivatives of R with respect to 𝜃 are

𝑑vecR
𝑑𝜃ᵀ = (Nᵀ ⊗ I𝑛)

𝑑vecF
𝑑𝜃ᵀ + (Nᵀ ⊗R)

𝑑vecU
𝑑𝜃ᵀ . (4.91)
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The second derivatives of R with respect to 𝜃 are given by the definition of the Hessian matrix

(4.13):

𝐻 [vecR;𝜃] =
𝑑

𝑑𝜃ᵀvec
[︂(︂

𝑑vecR
𝑑𝜃ᵀ

)︂ᵀ]︂
=

𝑑

𝑑𝜃ᵀvec
[︂(︂

𝑑vecF
𝑑𝜃ᵀ

)︂ᵀ

(N⊗ I𝑛) +

(︂
𝑑vecU
𝑑𝜃ᵀ

)︂ᵀ

(N⊗Rᵀ)

]︂
. (4.92)

To evaluate this expression, we will use the following rule (Magnus 2010) for derivatives of matrix

products: given matrices Y (𝑛× 𝑣) and X (𝑚× 𝑛), the derivative of their product with respect to

a third matrix Z (𝑝× 𝑞) is

𝑑vec(XY)

𝑑(vecZ)ᵀ
= (Yᵀ ⊗ I𝑚)

𝑑vecX
𝑑(vecZ)ᵀ

+ (I𝑣 ⊗X)
𝑑vecY

𝑑(vecZ)ᵀ
. (4.93)

Applying this product rule for matrix derivatives to (4.92) gives

𝐻 [vecR;𝜃] =
[︁
(N⊗ I𝑛)

ᵀ ⊗ I𝑠

]︁ 𝑑

𝑑𝜃ᵀvec
[︂(︂

𝑑vecF
𝑑𝜃ᵀ

)︂ᵀ]︂
+

[︂
I𝑛2 ⊗

(︂
𝑑vecF
𝑑𝜃ᵀ

)︂ᵀ]︂ 𝑑

𝑑𝜃ᵀvec (N⊗ I𝑛)

+
[︁
(N⊗Rᵀ)ᵀ ⊗ I𝑠

]︁ 𝑑

𝑑𝜃ᵀvec
[︂(︂

𝑑vecU
𝑑𝜃ᵀ

)︂ᵀ]︂
+

[︂
I𝑛2 ⊗

(︂
𝑑vecU
𝑑𝜃ᵀ

)︂ᵀ]︂ 𝑑

𝑑𝜃ᵀvec (N⊗Rᵀ)

(4.94)

and recognizing Hessian matrices of the form (4.13), we obtain

𝐻 [vecR;𝜃] = (Nᵀ ⊗ I𝑛𝑠)𝐻 [vecF;𝜃] +
[︂
I𝑛2 ⊗

(︂
𝑑vecF
𝑑𝜃ᵀ

)︂ᵀ]︂ 𝑑

𝑑𝜃ᵀvec (N⊗ I𝑛)

+ (Nᵀ ⊗R⊗ I𝑠)𝐻 [vecU;𝜃] +

[︂
I𝑛2 ⊗

(︂
𝑑vecU
𝑑𝜃ᵀ

)︂ᵀ]︂ 𝑑

𝑑𝜃ᵀvec (N⊗Rᵀ) . (4.95)

Applying (4.51), the derivatives of Kronecker products appearing (4.95) are

𝑑

𝑑𝜃ᵀvec (N⊗ I𝑛) = (I𝑛 ⊗K𝑛,𝑛 ⊗ I𝑛)
(︁
I𝑛2 ⊗ vec [I𝑛]

)︁ 𝑑vecN
𝑑𝜃ᵀ (4.96)

𝑑

𝑑𝜃ᵀvec (N⊗Rᵀ) = (I𝑛 ⊗K𝑛,𝑛 ⊗ I𝑛)

[︂(︁
I𝑛2 ⊗ vec [Rᵀ]

)︁ 𝑑vecN
𝑑𝜃ᵀ + (vecN⊗ I𝑛2)

𝑑vecRᵀ

𝑑𝜃ᵀ

]︂
(4.97)

and note that
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𝑑vecN
𝑑𝜃ᵀ = (Nᵀ ⊗N)

𝑑vecU
𝑑𝜃ᵀ (4.98)

𝑑vecRᵀ

𝑑𝜃ᵀ = K𝑛,𝑛
𝑑vecR
𝑑𝜃ᵀ (4.99)

where 𝑑vecR
𝑑𝜃ᵀ is given by (4.91). Substitute (4.98) and (4.99) into (4.96) and (4.97), then back

into (4.95) to obtain 𝐻 [vecR;𝜃].

While the expression for𝐻 [vecR;𝜃]may appear complicated, note that it simplifies considerably

if only one of U or F is a function of 𝜃, so that either 𝑑vecF
𝑑𝜃ᵀ or 𝑑vecU

𝑑𝜃ᵀ is a matrix of zeros (i.e., the

parameters of interest affect only fertility or transitions, but not both).

If only U depends on 𝜃:

𝐻 [vecR;𝜃] = (Nᵀ ⊗R⊗ I𝑠)𝐻 [vecU;𝜃] +

[︂
I𝑛2 ⊗

(︂
𝑑vecU
𝑑𝜃ᵀ

)︂ᵀ]︂ 𝑑

𝑑𝜃ᵀvec (N⊗Rᵀ) . (4.100)

If only F depends on 𝜃:

𝐻 [vecR;𝜃] = (Nᵀ ⊗ I𝑛𝑠)𝐻 [vecF;𝜃] . (4.101)

Ultimately, substitute 𝐻 [vecR;𝜃] as given by (4.95) (or 4.100 and 4.101 if appropriate), and
𝑑vecR
𝑑𝜃ᵀ as given by (4.91), back into (4.90) to obtain 𝐻 [𝑅0;𝜃].

4.C.1 Life cycles with only one type of offspring

In the common case where there is only one type of offspring (stage 1), the expression for 𝐻 [𝑅0;𝜃]

simplifies considerably. In this case, the fertility matrix F has nonzero entries only in its first row,

and R = FN is an upper triangular matrix. Then 𝑅0, the dominant eigenvalue of R, is the (1,1)

entry of R:

𝑅0 = eᵀ1(R)e1 (4.102)

where e1 is the 𝑛× 1 vector with 1 as its first entry and zeros elsewhere (Caswell 2009).

The first differential of 𝑅0 is then

𝑑𝑅0 = eᵀ1(𝑑R)e1

= (eᵀ1 ⊗ eᵀ1) 𝑑vecR . (4.103)

By the first identification theorem (4.14),

𝑑𝑅0

𝑑𝜃ᵀ = (eᵀ1 ⊗ eᵀ1)
𝑑vecR
𝑑𝜃ᵀ (4.104)
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and by the definition of the Hessian matrix (4.13):

𝐻 [𝑅0;𝜃] =
𝑑

𝑑𝜃ᵀvec
[︂(︂

𝑑𝑅0

𝑑𝜃ᵀ

)︂ᵀ]︂
=

𝑑

𝑑𝜃ᵀvec
[︂(︂

𝑑vecR
𝑑𝜃ᵀ

)︂ᵀ

(e1 ⊗ e1)

]︂
. (4.105)

Applying the product rule for matrix derivatives in (4.93) to (4.105),

𝐻 [𝑅0;𝜃] = (eᵀ1 ⊗ eᵀ1 ⊗ I𝑠)
𝑑

𝑑𝜃ᵀvec
[︂(︂

𝑑vecR
𝑑𝜃ᵀ

)︂ᵀ]︂
= (eᵀ1 ⊗ eᵀ1 ⊗ I𝑠)𝐻 [vecR;𝜃] (4.106)

where 𝐻 [vecR;𝜃] as given by (4.95) (or 4.100 and 4.101 if appropriate).

4.D Sensitivity of the stochastic growth rate

As shown in Caswell (2001), Tuljapurkar’s (1982) approximation for the stochastic growth rate can

be written as

log𝜆𝑠 ≈ log𝜆− DCDᵀ

2𝜆2
(4.107)

where C is the symmetric covariance matrix for the population projection matrix and D is the

Jacobian matrix (in this case, a row vector) for the dominant eigenvalue 𝜆 of the mean population

matrix Ā:

D = 𝐷
[︀
𝜆; vecĀ

]︀
=

𝜕𝜆

𝜕vecᵀĀ
. (4.108)

To find the sensitivity of the stochastic growth rate to Ā, differentiate (4.107) with respect to

vecᵀĀ:

𝜕log𝜆𝑠

𝜕vecᵀĀ
=

D

𝜆
+

D

𝜆3
(DCDᵀ)− 1

2𝜆2

𝜕 (DCDᵀ)

𝜕vecᵀĀ

=
D

𝜆

(︂
1 +

DCDᵀ

𝜆2

)︂
− 1

2𝜆2

𝜕 (DCDᵀ)

𝜕vecᵀĀ
. (4.109)

To evaluate the derivative of DCDᵀ with respect to Ā in the second term, we will apply the

product rule for vector derivatives (Magnus 2010). Given vectors y (𝑛 × 1) and x (1 × 𝑛), the
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derivative of their product with respect to a third vector z is

𝑑vec(xy)
𝑑vecᵀz

= yᵀ 𝑑vecx
𝑑vecᵀz

+ x
𝑑vecy
𝑑vecᵀz

. (4.110)

Because DCDᵀ is a scalar, vec (DCDᵀ) = DCDᵀ. Thus

𝜕 (DCDᵀ)

𝜕vecᵀĀ
= DCᵀ 𝜕vecD

𝜕vecᵀĀ
+DC

𝜕vec(Dᵀ)

𝜕vecᵀĀ
. (4.111)

Note that the Hessian of 𝜆 with respect to Ā is

𝐻
[︀
𝜆; vecĀ

]︀
=

𝑑

𝑑vecᵀĀ
vec
[︂(︂

𝑑𝜆

𝑑vecᵀĀ

)︂ᵀ]︂

=
𝜕vec(Dᵀ)

𝜕vecᵀĀ
=

𝜕vec(D)

𝜕vecᵀĀ
. (4.112)

Letting H = 𝐻
[︀
𝜆; vecĀ

]︀
and noting that C is a symmetric matrix, (4.111) simplifies to

𝜕 (DCDᵀ)

𝜕vecᵀĀ
= DCᵀH+DCH

= 2DCH . (4.113)

Substituting (4.113) into (4.109), we see that the sensitivity of the stochastic growth rate with

respect to Ā is

𝜕log𝜆𝑠

𝜕vecᵀĀ
=

D

𝜆

(︂
1 +

DCDᵀ

𝜆2

)︂
− DCH

𝜆2

=
D

𝜆

(︂
1− CH

𝜆
+

DCDᵀ

𝜆2

)︂
. (4.114)

4.E Commutation matrix code

The following MATLAB code calculates the commutation matrix K𝑚,𝑛:

1 % Calculates the commutation matrix K_(m,n) such that:

2 % K_(m,n)*vec(A) = vec(A') where A is dimension m by n

3 %

4 % Based on http://m.feng.li/r−tips/r−commutation−matrix
5 function K = Kmn(m,n)

6

7 K = zeros(m*n, m*n);
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8 m0 = 1:(m*n);

9

10 N = reshape(m0, m,n)';

11 n0 = N(:);

12

13 for i = 1:(m*n)

14 K(m0(i), n0(i)) = 1;

15 end
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Chapter 5

The evolution of facultative sex ratios

with two maternal conditions

5.1 Abstract

When the primary sex ratio (proportion of male offspring that a parent produces) varies with

individual or environmental conditions, multiple sex ratios may coexist in the same population.

Complex population structure may also result from having parents with different conditions. As

a result, modeling the evolution of facultative (condition-dependent) sex ratios requires explicitly

two-sex models with stage structure, and sex ratio strategies with multiple components.

We combine continuous-time matrix population models and multidimensional adaptive dynamics

to analyze the evolution of sex ratios that are determined by one of two possible maternal conditions.

We identify evolutionarily singular strategies for sex ratios that depend on maternal age or quality,

and find many cases where one maternal condition produces exclusively male or female offspring.

In particular, the sexes preferred by mothers of different qualities depend on relative reproductive

value ratios for each sex.

Keywords: sex ratio evolution, facultative sex ratios, maternal condition, Trivers-Willard

hypothesis, matrix population models, adaptive dynamics

5.2 Introduction

When the primary sex ratio (proportion of male births in an individual’s offspring production

strategy) is homogenous across the population, it evolves to equalize parental investment in both

sexes (Fisher 1930). If males and females are equally costly, the sex ratio evolves to equality

(Hamilton 1967). If males and females are differentially costly, the sex ratio skews in response to

sex-specific offspring costs, such as differential offspring resource requirements, offspring mortality,

or offspring-induced parental mortality (Shyu and Caswell xxb).
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However, many species have facultative (condition-dependent) sex ratio strategies, where a

parent adjusts the primary sex ratio of its offspring depending on some environmental or individual

condition (Leimar 1996, West 2009). The evolution of facultative sex ratio strategies is more

complicated, because multiple sex ratios can coexist within the same population.

For example, different parents may use different sex ratios in response to spatial or temporal

environmental variation. Parasitic wasps, which lay their eggs on a variety of hosts, vary their sex

ratios based on host size (Charnov 1981); because female larvae benefit more greatly from larger

food sources, wasp sex ratios are female-biased on large hosts and male-biased on small ones. Other

species use different sex ratios in different seasons, in response to the timing of sex-specific life cycle

events (Werren and Charnov 1978). Kestrels, for instance, shift their sex ratios over the breeding

season to account for differences in male and female maturation (Pen et al. 1999).

Sex ratios may also vary with some parental (usually maternal) condition. In many mammals,

where males have higher infant mortality rates (Trivers 1985), sex ratios become increasingly

female-biased with maternal age. This may be because older mothers are more prone to death or

sterility, and cannot replace lost sons as easily (Charlesworth 1977). Older fathers can also promote

female-biased sex ratios; Drosophila melanogaster females with older mates tend to produce more

female offspring, possibly because deleterious mutations in older fathers are more detrimental to

sons (Long and Pischedda 2005). When older parents are more beneficial, sex ratio biases reverse.

In Iberian red deer, for example, older females are larger, obtain more food, and expend more energy

on reproduction. Sex ratios thus become increasingly male-biased with maternal age, because older

mothers can afford the higher costs of sons (Landete-Castillejos 2004).

The effects of parental age are linked to the more general notion of parental quality. Higher

quality parents may be larger, healthier, higher ranking, or have more resources for reproduction

(Hewison and Caillard 1999). The Trivers-Willard hypothesis (Trivers and Willard 1973) predicts

that a parent’s quality affects the sex ratios of their offspring. If offspring quality is correlated

with parental quality, low quality parents should preferentially produce offspring of the sex with

higher reproductive success (e.g., number of offspring) at low quality, and vice versa for high quality

parents.

Suppose that reproductive success of male offspring varies more steeply with quality than that

of female offspring. Then low quality female offspring will have higher success than low quality

male offspring, but this ranking will be reversed for high quality offspring (Figure 5-1). Thus

low quality parents, doomed to produce low quality offspring, should favor females. High quality

parents, anticipating the production of high quality offspring, should favor males. The influence of

quality on reproductive success is usually described in terms of greater (males, in our example) or

lesser (females) “variance in in reproductive success,” and the Trivers-Willard hypothesis is usually

phrased as a prediction that high quality mothers will invest more in the sex with greater variance

in reproductive output.
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Figure 5-1: Reproductive success as a function of quality in the Trivers-Willard hypothesis. In this
example, low quality females are more successful than low quality males, but high quality males
and more successful than high quality females.

The example with males and females we used here is often applied to polygynous species,

where high quality males monopolize most breeding opportunities. As a result, a high quality

son outreproduces a high quality daughter, but a low quality daughter outreproduces a low quality

son. Because males are the sex with the greater variance in reproductive success, high quality

females adjust their sex ratios to invest in sons, while low-quality females invest in daughters.

Empirical support for the Trivers-Willard hypothesis has been found in many animals, most

notably ungulates with strong sexual dimorphism and polygynous mating (e.g., Clutton-Brock et

al 1984, 1986; Hewison and Gaillard 1999). However, results are sometimes mixed, possibly due

to differences in data collection methods, quality measures, and difficulties in calculating lifetime

reproductive success (Hewison and Gaillard 1999, Sheldon and West 2004). The effects of maternal

quality on sex ratio have also been studied in birds (e.g., Kilner 1998, Clout et al. 2002), humans

(e.g., Gaulin and Robbins 1991, Cameron and Dalerum 2009), and many other taxa (West 2009,

Ch. 6)

Condition-dependent sex ratio shifts can confound conservation attempts, as when

supplementary feeding of endangered kakapo parrots induced overly male-biased sex ratios (Clout

et al. 2002). Alternatively, sex ratio shifts can be leveraged to promote the growth of small or

vulnerable populations (Wedekind 2002). In every case, the complex population structures that arise

from multiple maternal conditions may be challenging to incorporate into evolutionary projections.

To address this issue, we have developed a two-sex modeling framework that has multiple

maternal states with different sex ratios. Our general model is introduced in Section 5.3.1, and

further expanded upon in Sections 5.5.1 and 5.6.1.
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In our model, the facultative sex ratio strategy is described by the bivariate trait vector s:

s =

(︃
𝑠1

𝑠2

)︃
(5.1)

where 𝑠1 is the sex ratio used by mothers in one condition (e.g., low quality) and 𝑠2 is the sex

ratio used by mothers in the other condition (e.g., high quality). Using multidimensional adaptive

dynamics methods, as described in Section 5.3.3, we determine how s evolves over time and find its

evolutionarily singular strategies s*, which are potential long-term evolutionary outcomes.

We then consider two specific cases where the sex ratio depends on maternal condition. In the

first case (Section 5.5), young and old mothers can evolve different sex ratios. In the second case

(Section 5.6), high and low quality mothers can evolve different sex ratios, as in the Trivers-Willard

hypothesis.

5.3 Model and methods

Here, we present a two-sex population model that uses a series of matrices to describe various stages

and life cycle processes (as in Shyu and Caswell xxa, xxb). Our model distinguishes between two

individual conditions (e.g., age or quality) for both males and females. We accordingly incorporate

four types of unions (male-female mated pairings), and different preferences for mating with partners

in different conditions.

Each maternal condition produces offspring with a different sex ratio. We analyze the transient

dynamics of bivariate sex ratio evolution using the canonical equation of adaptive dynamics, and

the equilibrium dynamics by characterizing evolutionarily singular strategies (SSs) of the sex ratios.

5.3.1 A two-sex matrix model with multiple maternal conditions

Consider, as an example, a two-sex population consisting of Condition 1 and Condition 2 individuals

(e.g., young and old individuals, low and high quality individuals, etc.). Males and females mate to

form unions (here, monogamous couples) that produce new offspring.

Unions where the male partner is in Condition 𝑖 and the female partner is in Condition 𝑗 will be

written as 𝑢𝑖𝑗 . As we shall see in Sections 5.5.1 and 5.6.1, the 𝑢𝑖𝑗 may differ in available resources,

fertilities, and other properties. We will specifically assume that any union with a Condition 𝑗

female has sex ratio 𝑠𝑗 . This means that the primary sex ratio is a facultative trait that depends

solely on maternal condition.
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Figure 5-1: Stages of unmated individuals and mated unions in a two-sex population. Both males
and females have two possible conditions.

The population consists of Condition 1 and 2 males (𝑚1,𝑚2), Condition 1 and 2 females (𝑓1, 𝑓2),

and four types of unions (Figure 5-1). The densities of each stage are given by the population vector:

n(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑚1

𝑚2

𝑓1

𝑓2

𝑢11

𝑢21

𝑢12

𝑢22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Condition 1 males

Condition 2 males

Condition 1 females

Condition 2 females

Condition 1 male + Condition 1 female

Condition 2 male + Condition 1 female

Condition 1 male + Condition 2 female

Condition 2 male + Condition 2 female

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.2)

Additional male, female, or union types can be added as new entries in the population vector.

We divide mating, birth, and life cycle transition processes into three rate matrices: U, B,

and T respectively. As shown in Shyu and Caswell (xxa), the average of these matrices is the

continuous-time projection matrix:

A(n) =
1

3
[T+B+U] (5.3)

where
𝑑n

𝑑𝑡
= A(n)n(𝑡) (5.4)

Specific examples of both the population vector and rate matrices are given in Sections 5.5.1 and

5.6.1. As we shall see, each of the three rate matrices in (5.3) may depend on the population vector

(5.2) or the sex ratio vector (5.1).
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In many two-sex models, including ours, the matrices in (5.3) depend on the relative frequencies,

rather than absolute abundances, of males and females. These matrices are thus functions of the

stage frequency vector:

p =
n

‖n‖
(5.5)

where ‖n‖ is the 1-norm of n. As a result, (5.4) is a frequency-dependent model that converges to

an equilibrium stage distribution p̂ and a growth rate 𝜆 that is the dominant eigenvalue of A(p̂).

To calculate 𝜆 and p̂, it is sufficient to consider the dynamics of p (Shyu and Caswell xxa):

𝑑p

𝑑𝑡
= (I𝑠 − p1ᵀ)A(p)p (5.6)

To find p̂, we integrate (5.6) with the MATLAB ODE45 differential equation solver until p converges

to p̂ (e.g., until vector entries do not change significantly over consecutive integration intervals).

The population’s long-term growth rate 𝜆 is then the dominant eigenvalue of A(p̂), which has

corresponding right and left eigenvectors w and v. Note that the right eigenvector is also the stable

stage distribution; that is, w = p̂.

5.3.2 Mating preferences

The mating process, where adult males and females pair into reproducing unions, is described by

the union formation matrix U. Mating functions in U give the rates of union formation as functions

of the relative frequencies of males and females available to mate, and are thus functions of the stage

frequency vector p̂ (5.5).

Mating preferences in the mating functions describe the probabilities of favoring partners of

certain conditions. The female preference distribution 𝑔𝑗(𝑖) gives the proportion of Condition 𝑗

females that mate with Condition 𝑖 males. Similarly, the male preference distribution ℎ𝑖(𝑗) gives the

proportion of Condition 𝑖 males that mate with Condition 𝑗 females. Summing these distributions

over all male and female conditions respectively yields a total probability of 1:∑︁
𝑖

𝑔𝑗(𝑖) = 1 ∀ 𝑗 (5.7)∑︁
𝑗

ℎ𝑖(𝑗) = 1 ∀ 𝑖 (5.8)

Examples of mating preference distributions include:

1. Fully assortative mating, where individuals only mate with partners in the same condition:

𝑔𝑗(𝑖) = 1 if 𝑖 = 𝑗, 0 else

ℎ𝑖(𝑗) = 1 if 𝑖 = 𝑗, 0 else (5.9)
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2. Random mating, where individuals pick partners based on their relative abundances in the

population:

𝑔𝑗(𝑖) =
𝑚𝑖∑︀
𝑖𝑚𝑖

ℎ𝑖(𝑗) =
𝑓𝑗∑︀
𝑗 𝑓𝑗

(5.10)

3. Biased mating, where individuals prefer partners of certain conditions. An attractiveness or

competitiveness factor 𝑐𝑖 weighs the abundance of each partner condition, e.g.:

𝑔𝑗(𝑖) =
𝑐𝑖𝑚𝑖∑︀
𝑖 𝑐𝑖𝑚𝑖

ℎ𝑖(𝑗) =
𝑐𝑗𝑓𝑗∑︀
𝑗 𝑐𝑗𝑓𝑗

(5.11)

Partners with larger 𝑐𝑖 are more preferable mates. If all 𝑐𝑖 are equal, (5.11) reduces to the

random mating case (5.10). If 𝑐𝑖 = 0, individuals of stage 𝑖 do not mate.

The total mating function 𝑀𝑖𝑗(n) gives the total unions 𝑢𝑖𝑗 (Condition 𝑖 males mated with

Condition 𝑗 females) formed per time. Mating functions from the generalized weighted mean (Hölder

mean) family, in particular, have the form:

𝑀𝑖𝑗(n) = (𝑏[𝑓𝑗𝑔𝑗(𝑖)]
𝑎 + (1− 𝑏)[𝑚𝑖ℎ𝑖(𝑗)]

𝑎)
1
𝑎 (5.12)

where 0 ≤ 𝑏 ≤ 1 and 𝑎 < 0 (Hadeler 1989, Martcheva and Milner 2001). Note that 𝑀𝑖𝑗(n) is

calculated only over individuals that are available to mate (i.e., adult single male stages 𝑚𝑖 and

adult single female stages 𝑓𝑗). As a result, the mating function does not depend on the males and

females in non-mating stages, such as immature juveniles or adults already in unions.

As in Shyu and Caswell (xxa, xxb), we will use a harmonic mean mating function where 𝑎 =

−1, 𝑏 = 1/2, so that:

𝑀𝑖𝑗(n) =
2𝑚𝑖ℎ𝑖(𝑗)𝑓𝑗𝑔𝑗(𝑖)

𝑚𝑖ℎ𝑖(𝑗) + 𝑓𝑗𝑔𝑗(𝑖)
(5.13)

The corresponding male and female per capita mating functions are:

𝑈𝑚,𝑖𝑗(n) =
𝑀𝑖𝑗(n)

𝑚𝑖

𝑈𝑓,𝑖𝑗(n) =
𝑀𝑖𝑗(n)

𝑓𝑗
(5.14)

As we shall see, these per capita mating functions appear in the union matrix U in (5.4).
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5.3.3 Multidimensional adaptive dynamics

Adaptive dynamics is a phenotype-based framework for modeling evolution. We have previously

used univariate (one-dimensional) adaptive dynamics to determine evolutionarily singular strategies

for a single, scalar sex ratio (Shyu and Caswell xxb). Here, we use multidimensional adaptive

dynamics to analyze the evolution of the bivariate sex ratio s in (5.1).

Similar to the approach in Shyu and Caswell (xxb), we consider a stable, monomorphic resident

population with sex ratio phenotype s, projection matrix A as in (5.3), and a long-term exponential

growth rate 𝜆 that is the dominant eigenvalue of A(p̂). This resident population is invaded by new,

rare mutants, which differ from residents only in terms of their sex ratio phenotype. Such mutations

are small, rare, and infrequent. As a result, mutants do not affect resident dynamics, and will either

die out or reach fixation before the next mutation arises (Geritz 1996, Metz 2006).

A given mutant has phenotype s′, projection matrix A′, and corresponding growth rate 𝜆′; both

A′ and 𝜆′ depend on the environmental conditions (e.g., mating rates) set by the resident. The

mutant projection matrix A′ is structurally identical to the resident matrix A; however, A′ uses the

mutant sex ratio s′ and is evaluated at the resident equilibrium stage distribution p̂. An example

of how to construct A′ is shown in Shyu and Caswell (xxb, Section 3.2.1).

The invasion fitness Λs(s
′) is the relative growth rate of a mutant with sex ratio strategy s′, in

an environment where the resident uses the strategy s:

Λs(s
′) = 𝜆′(p̂)− 𝜆 (5.15)

Only mutants with a positive invasion fitness have a positive probability of displacing the resident.

The selection gradient is the first derivative of the invasion fitness (5.15) with respect to the

mutant phenotype s′, and indicates the direction of selection at a resident phenotype s. Note

that the resident growth rate 𝜆 does not depend on s′. Thus, the selection gradient is simply the

sensitivity of mutant growth rate 𝜆′ (Caswell 2010):

D(s) =
𝜕𝜆′

𝜕s′ᵀ

⃒⃒⃒⃒
s′=s

=

(︂
(w′ᵀ ⊗ v′ᵀ)

𝑑vecA′

𝑑s′ᵀ

)︂ ⃒⃒⃒⃒
s′=s

(5.16)

where w′ and v′ are the dominant right and left eigenvectors of the mutant matrix A′(p̂), scaled so

that v′ᵀw′ = 1.

Although the invasion fitness (5.15) is a scalar, the selection gradient (5.16) is a row vector with

two components — the partial derivatives of 𝜆′ to each entry of s (5.1):

D(s) =
𝜕𝜆′

𝜕s′ᵀ

⃒⃒⃒⃒
s′=s

=
(︁
𝜕𝜆′

𝜕𝑠′1

⃒⃒
s′=s

𝜕𝜆′

𝜕𝑠′2

⃒⃒
s′=s

)︁
(5.17)
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As shown in the next two sections, the selection gradient (5.17) lends insight into both the transient

and equilibrium evolutionary dynamics of s.

5.3.3.1 Transient evolutionary dynamics

The transient dynamics of s depend on the evolutionary trajectories generated by repeated mutant

invasions. When mutations are small (do not differ drastically from the resident phenotype), these

trajectories can be approximated by the canonical equation of adaptive dynamics.

As shown by Dieckmann and Law (1996) and Durinx et al. (2005, 2008), the canonical equation

is a differential equation that describes 𝑑s/𝑑𝑡, the change in the resident trait over time, using

a first-order Taylor approximation. In both unstructured and structured populations, it can be

written as the product of the selection gradient D(s) and a mutational variance-covariance matrix

V(s) that encompasses mutation probabilities, frequencies, and effects (Doebeli 2011):

𝑑s

𝑑𝑡
= V(s)D(s) (5.18)

The multivariate breeder’s equation from quantitative genetics (Lande 1979) has a form similar to

(5.18), but is based on standing genetic variation rather than the active mutational process (Doebeli

2011).

Though population size affects the mutation rate (Dieckmann and Law 1996), we will focus

on the shape and direction of the evolutionary trajectories, rather than their speed, so that the

population’s (exponentially growing) size is irrelevant. We will also assume that effects of mutations

on different components of s are uncorrelated (i.e., no pleiotropy), so that V(s) is a diagonal matrix.

The evolution of s is biologically constrained, in that neither 𝑠1 nor 𝑠2 can be less than 0 or

greater than 1 (or both 0 and 1 simultaneously) in a realistic, viable population. These constraints

can be written as:

0 ≤ 𝑠1 ≤ 1

0 ≤ 𝑠2 ≤ 1

(𝑠1, 𝑠2) ̸= (0, 0)

(𝑠1, 𝑠2) ̸= (1, 1) (5.19)

One can incorporate evolutionary constraints by adjusting the variance-covariance functions to

restrict evolution in unfeasible directions (Dieckmann 2006). To this end, we use a mutational

matrix of the form:

V(s) =

(︃
𝑠1(1− 𝑠1) 0

0 𝑠2(1− 𝑠2)

)︃
(5.20)
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This choice of V causes the mutational variances to decrease as 𝑠1 and 𝑠2 near 0 or 1. If either 𝑠1
or 𝑠2 goes to 0 or 1, their corresponding component of the canonical equation (5.18) will vanish,

preventing that sex ratio from evolving out of the biologically constrained region (5.19).

With mutational matrix (5.20) and selection gradient (5.17), the canonical equation (5.18)

becomes:

𝑑s

𝑑𝑡
= V(s)Dᵀ(s)

=

(︃
𝑠1(1− 𝑠1) 0

0 𝑠2(1− 𝑠2)

)︃⎛⎝ 𝜕𝜆′

𝜕𝑠1

⃒⃒
s′=s

𝜕𝜆′

𝜕𝑠2

⃒⃒
s′=s

⎞⎠ (5.21)

We will use (5.21) to track the evolutionary trajectories of s through 2D trait space.

5.3.3.2 Equilibrium evolutionary dynamics

Potential evolutionary endpoints occur at stationary points of the canonical equation (5.21). The

corresponding resident strategies s* are called singular strategies (SSs), where:

𝑑s

𝑑𝑡

⃒⃒⃒⃒
s′=s=s*

= V(s)D(s)

⃒⃒⃒⃒
s′=s=s*

= 0 (5.22)

As summarized in Figure 5-2, there are five possible types of singular strategies. The most

obvious type of singular strategy (Type 1, interior SS) occurs when both entries of the selection

gradient D(s) (5.17) are simultaneously 0, indicating no directional selection on either component

of s (Doebeli 2011). If there are no points in the biologically constrained region (5.19) where both

entries of D(s) are 0, there is no interior SS.

The remaining types of singular strategies (Types 2–5, boundary SSs) lie on each of the four

boundaries of the constrained region, where 𝑠1 or 𝑠2 are either 0 or 1 (Leimar 1996, Schwanz 2006).

In these cases, both components of D(s) do not simultaneously equal 0. Instead, the selection

gradient for the non-boundary sex ratio is 0, and the selection gradient for the boundary sex ratio

points away from the boundary (Figure 5-2). Note that (5.22) can still be satisfied depending on

the value of V(s).

In most cases, as shown in Schwanz (2006), there is a single SS s*, which falls into one of these

five cases (but see Section 5.5.3 for an example where this is not true). To find s*, we use the

following steps:

1. Determine if there is any point in the constrained region (5.19) where both components of the

selection gradient (5.17) are simultaneously 0. This can be done using MATLAB’s fsolve or

fmincon functions. If a solution is found, this is an interior (Type 1) SS. Else, we must check

for a boundary SSs of Types 2–5.
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s1 

s2 1 

0 1 

4 (0, s2) (1, s2) 

(s1, 1) 

(s1, 0) 

(s1, s2) 

5 1 

2 

3 
ds1 = 0 
ds2 > 0 

ds1 = 0 
ds2 < 0 

ds1 > 0 
ds2 = 0 

ds1 < 0 
ds2 = 0 

ds1 = 0 
ds2 = 0 

Type Location 𝑠*1 𝑠*2
𝑑𝜆′

𝑑𝑠′1

𝑑𝜆′

𝑑𝑠′2

1 Interior 0 < 𝑠1 < 1 0 < 𝑠2 < 1 0 0
2 Boundary 0 < 𝑠1 < 1 0 0 < 0
3 Boundary 0 < 𝑠1 < 1 1 0 > 0
4 Boundary 0 0 < 𝑠2 < 1 < 0 0
5 Boundary 1 0 < 𝑠2 < 1 > 0 0

Figure 5-2: The five types of singular strategies s* = (𝑠*1, 𝑠
*
2) and their corresponding selection

gradients (5.17). Though it is also possible for s* = (0, 1) or (1, 0), these are marginal cases that
we have not observed in our model.
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2. To check for a Type 2 SS, set 𝑠2 = 0 and use MATLAB’s fsolve function to find the

corresponding value of 𝑠1 where 𝑑𝜆
𝑑𝑠′1

= 0. If 𝑑𝜆
𝑑𝑠′2

< 0 at this point, it is s*.

3. To check for a Type 3 SS, set 𝑠2 = 1 and find 𝑠1 where 𝑑𝜆
𝑑𝑠′1

= 0. If 𝑑𝜆
𝑑𝑠′2

> 0, that point is s*.

4. To check for a Type 4 SS, set 𝑠1 = 0 and find 𝑠2 where 𝑑𝜆
𝑑𝑠′2

= 0. If 𝑑𝜆
𝑑𝑠′1

< 0, that point is s*.

5. To check for a Type 5 SS, set 𝑠1 = 1 and find 𝑠2 where 𝑑𝜆
𝑑𝑠′2

= 0. If 𝑑𝜆
𝑑𝑠′1

> 0, that point is s*.

These singular strategies s* are potential evolutionary endpoints for s. Characterizing their

evolutionary and convergence stability can be challenging because s is a vector-valued trait (but

see Appendix 5.B). Generating the evolutionary trajectories of s using (5.21), however, may lend

insight into general stability patterns.

5.4 Case studies

We will examine two cases where the primary sex ratio depends on maternal condition. Again, the

evolving sex ratio phenotype is the vector s = (𝑠1, 𝑠2), the components of which are the sex ratios

used by mothers in each condition.

The maternal conditions of interest are:

� Case 1: Maternal age. Young mothers have sex ratio 𝑠1, old mothers have sex ratio 𝑠2.

� Case 2: Maternal quality. Low quality mothers have sex ratio 𝑠1, high quality mothers

have sex ratio 𝑠2.

In both cases, there are two possible conditions for an individual (young and old in Case 1;

low and high quality in Case 2). Though individuals of different conditions may interbreed (e.g., a

high quality male may mate with a low quality female), a couple’s sex ratio is determined by the

condition of the female partner (e.g., a couple with a low quality female would have sex ratio 𝑠1

regardless of the male partner’s quality).

In each case, we examine the evolutionary trajectories generated by the variance-constrained,

bivariate canonical equation (5.21), and the types of evolutionarily singular strategies s* (Figure

5-2) that result.

Unless otherwise indicated, model parameters are as in Table 5.1. Our model also makes the

following assumptions:

� A union 𝑢𝑖𝑗 (Condition 𝑖 male mated with Condition 𝑗 female) has divorce rate 𝑑𝑖𝑗 ,

reproductive rate 𝑘𝑗 , and primary sex ratio 𝑠𝑗 . Note that the reproductive rate and primary

sex ratio are maternally determined.

� Only unions can produce new offspring. Unmated males and females do not reproduce

independently.
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� Any offspring with a mutant parent also has the mutant phenotype; e.g., the mutant genotype

is genetically dominant.

Results for all cases are summarized in Table 5.2.

Parameter Description Value

Both Cases

𝐶𝑚, 𝐶𝑓
offspring resource costs (resources used per offspring
born)

constants (Case 2) or given by (5.27)
(Case 1b)

𝑘𝑗
reproductive rate (offspring born per time) of
Condition 𝑗 mothers

constants (Case 1a) or given by (5.26)
(Case 1b, Case 2)

𝑅𝑗
resource investment rate (resources put into offspring
per time) of Condition 𝑗 mothers

10

𝑑𝑖𝑗 divorce rate of union 𝑢𝑖𝑗 0.1
𝑠𝑗 primary sex ratio of Condition 𝑗 mothers component of s (5.1)
𝜇𝑚𝑖 male adult mortality rate in Condition 𝑖 0.1
𝜇𝑓𝑗 female adult mortality rate in Condition 𝑗 0.1
𝑈𝑚,𝑖𝑗 per capita mating rate of a male in union 𝑢𝑖𝑗 given by (5.14)
𝑈𝑓,𝑖𝑗 per capita mating rate of a female in union 𝑢𝑖𝑗 given by (5.14)

Case 1 (maternal age) only

𝛼𝑚1, 𝛼𝑓1 juvenile to young adult maturation rates 0.5
𝛼𝑚2, 𝛼𝑓2 young adult to old adult maturation rates 0.5
𝜇𝑚0, 𝜇𝑓0 juvenile mortality rates 0.1
𝛽 parental mortality intensity factor in (5.32) 0.2
𝐼 baseline investment rate in (5.27) 1

Case 2 (maternal quality) only

𝛼𝑚1, 𝛼𝑓1 low quality juvenile to adult maturation rates 1
𝛼𝑚2, 𝛼𝑓2 high quality juvenile to adult maturation rates 1
𝜇𝑚,01, 𝜇𝑓,01 low quality juvenile mortality rates 0.1
𝜇𝑚,02, 𝜇𝑓,02 high quality juvenile mortality rates 0.1
𝑐𝑖 male competitiveness factor for Condition 𝑖 (5.40) 𝑐1 = 0.1, 𝑐2 = 0.9

𝑞𝑖𝑗
probability that a Condition 𝑗 female produces
Condition 𝑖 offspring, subject to (5.38)

𝑞 = 𝑞11 = 𝑞22 = 0.65, 𝑞21 = 𝑞12 = 1− 𝑞

Table 5.1: Two-sex model parameters. A subscript of 𝑚 indicates male, and a subscript of 𝑓
indicates female. In Case 1, Condition 1 individuals are young and Condition 2 individuals are old.
In Case 2, Condition 1 individuals are low quality and Condition 2 individuals are high quality.

5.5 Case 1: Maternal age

Previous studies suggest that sex ratios differ with parental age when male and female offspring are

differentially costly. However, different types of offspring costs may result in different bivariate sex

ratio patterns.

Differential offspring costs can occur when offspring of one sex induce more parental mortality

(Shyu and Caswell xxb, Case 4). Human sons, for instance, reduce maternal longevity more than

daughters (Helle 2002). Younger mothers should thus favor daughters (the less mortality-inducing

sex), while older mothers favor sons (the more mortality-inducing sex). Charnov (1982) suggested

this was a potential example of senescence through antagonistic pleiotropy (Williams 1957), in that

factors promoting a lower mortality reproductive strategy would be favored earlier in life, while a

higher mortality strategy would be favored later in life.
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Case Offspring cost Previous predictions Model results

Maternal age

Case 1a
parental mortality
(Case 4†)

young mothers favor sex inducing less
mortality, old mothers favor sex inducing
more mortality (Charnov 1982)

results depend on relative reproductive
rates of young and old mothers (Figure
5-3)

Case 1b
offspring mortality
during parental
investment (Case 2†)

young mothers favor higher mortality
sex, old mothers favor lower mortality
sex (Charlesworth 1977)

infinitely many selectively neutral sex
ratio combinations (Figure 5-4)

Maternal quality

Case 2
offspring resource cost
(Case 1†)

high quality mothers favor the sex with
greater variance in reproductive success
or value (Trivers and Willard 1973,
Leimar 1996)

high quality mothers favor the sex with
greater variance in reproductive value at
boundary SS (Table 5.1)

Table 5.2: Evolutionarily singular strategies s* for primary sex ratios that depend on maternal
condition (age or quality). †Corresponding single sex ratio case in Shyu and Caswell (xxb).

Alternatively, differential offspring costs can occur when offspring of a particular sex are more

likely to die before maturity (Shyu and Caswell xxb, Case 2). In many mammals, also including

humans, male offspring have higher in utero mortality rates (Trivers 1985, Vatten 2004; though see

also Orzack et al. 2015). Because older mothers are more likely to die or become sterile before they

are able to replace lost sons, younger mothers should favor sons (the more mortality-prone sex),

while older mothers favor daughters (the less mortality-prone sex) (Charlesworth 1977).

These two examples predict opposite trends for human sex ratios with maternal age. Empirical

studies have alternatingly found sex ratios to increase (Takahashi 1954), decrease (Pollard 1969,

James and Roston 1985), or be uncorrelated with maternal age (Almagor et al. 1998, Jacobsen et

al. 1999). These mixed results may suggest that the effects of various offspring costs vary or even

counterbalance in different populations, or that there are additional factors at play.

We will examine how the sex ratios of younger and older mothers are affected by sex-biased

offspring costs. We consider both parental mortality and offspring mortality costs, in turn, through

the following two subcases:

� Case 1a. Male and female offspring are differentially costly through their effects on parental

mortality, similar to Charnov (1982). We previously described a similar single sex ratio model

in Shyu and Caswell (xxb, Case 4).

� Case 1b. Male and female offspring have different mortality rates before maturity (during

the period of parental investment), similar to Charlesworth (1977). We previously described

a similar single sex ratio model in Shyu and Caswell (xxb, Case 2).

5.5.1 Model

We partition males and females into immature juveniles (𝑚0, 𝑓0), young adults (𝑚1, 𝑓1), and old

adults (𝑚2, 𝑓2). Only young and old adults can mate to form reproducing unions, and the four
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possible union types are:

𝑢11 = union of 𝑚1 and 𝑓1

𝑢21 = union of 𝑚2 and 𝑓1

𝑢12 = union of 𝑚1 and 𝑓2

𝑢22 = union of 𝑚2 and 𝑓2 (5.23)

The population vector (5.2) has 10 stages total:

n(𝑡) =
(︁
𝑚0 𝑚1 𝑚2 𝑓0 𝑓1 𝑓2 𝑢11 𝑢21 𝑢12 𝑢22

)︁ᵀ
(5.24)

We will write a model of the form (5.4), and the next three sections give the matrices B, U,

and T in turn.

5.5.1.1 Births (B)

Unions with young adult and old adult females use the sex ratios 𝑠1 and 𝑠2 respectively, and have

characteristic reproductive rates 𝑘1 and 𝑘2 respectively. The birth matrix B is thus:

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 𝑠1𝑘1 𝑠1𝑘1 𝑠2𝑘2 𝑠2𝑘2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 (1− 𝑠1)𝑘1 (1− 𝑠1)𝑘1 (1− 𝑠2)𝑘2 (1− 𝑠2)𝑘2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.25)

In Case 1a, where male and female offspring have different effects on parental mortality, the 𝑘𝑗

are fixed rates. In Case 1b, where male and female offspring have different mortality rates during

the period of parental investment, 𝑘𝑗 becomes:

𝑘𝑗 =
𝑅𝑗

𝑠𝑗𝐶𝑚 + (1− 𝑠𝑗)𝐶𝑓
(5.26)

where 𝑅𝑗 is the mother’s rate of resource investment (total resources put into offspring per time),

and 𝐶𝑚 and 𝐶𝑓 are the average male and female offspring resource costs (resources consumed per
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offspring born). In Shyu and Caswell (xxb, Case 2), these costs are shown to be:

𝐶𝑚 =
𝐼

𝜇𝑚0

(︂
1− 𝑒

−𝜇𝑚0
𝛼𝑚1

)︂
𝐶𝑓 =

𝐼

𝜇𝑓0

(︂
1− 𝑒

−𝜇𝑓0
𝛼𝑓1

)︂
(5.27)

where 𝐼 is a constant baseline investment rate, 𝛼𝑚1 and 𝛼𝑓1 are the male and female juvenile to

adult maturation rates, and 𝜇𝑚0 and 𝜇𝑓0 are the male and female juvenile mortality rates.

5.5.1.2 Union formation (U)

The union formation matrix U contains per capita mating rates of each union type. Using a

harmonic mean mating function as in (5.13), the per capita mating functions (5.14) are:

𝑈𝑚11 = 𝑈𝑚21 =
2𝑓1

𝑚+ 𝑓

𝑈𝑚12 = 𝑈𝑚22 =
2𝑓2

𝑚+ 𝑓

𝑈𝑓11 = 𝑈𝑓12 =
2𝑚1

𝑚+ 𝑓

𝑈𝑓21 = 𝑈𝑓22 =
2𝑚2

𝑚+ 𝑓
(5.28)

where 𝑚 = 𝑚1 +𝑚2 and 𝑓 = 𝑓1 + 𝑓2.

The matrix U is then:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0

0 −(𝑈𝑚11 + 𝑈𝑚12) 0 0 0 0 0 0 0 0

0 0 −(𝑈𝑚21 + 𝑈𝑚22) 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 −(𝑈𝑓11 + 𝑈𝑓21) 0 0 0 0 0

0 0 0 0 0 −(𝑈𝑓12 + 𝑈𝑓22) 0 0 0 0

0 1
2
𝑈𝑚11 0 0 1

2
𝑈𝑓11 0 0 0 0 0

0 0 1
2
𝑈𝑚21 0 1

2
𝑈𝑓21 0 0 0 0 0

0 1
2
𝑈𝑚12 0 0 0 1

2
𝑈𝑓12 0 0 0 0

0 0 1
2
𝑈𝑚22 0 0 1

2
𝑈𝑓22 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.29)

5.5.1.3 Transitions (T)

Each stage has a characteristic mortality rate:

𝜇𝑥𝑠 where 𝑥 ∈ {𝑚, 𝑓} and 𝑠 ∈ {0, 1, 2} (5.30)

If offspring impose parental mortality (Case 1a), the mortality rates of individuals in reproducing

unions is greater than that of unmated individuals. Let 𝜇𝑥𝑠 (5.30) be the mortality rate of an

unmated individual, and 𝜇𝑖𝑗
𝑥𝑠 be the mortality rate of a mated individual in union 𝑢𝑖𝑗 . Similar to
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Shyu and Caswell (xxb, Case 4), 𝜇𝑖𝑗
𝑥𝑠 is increased from 𝜇𝑥𝑠 by an amount 𝛾𝑗 :

𝜇𝑖𝑗
𝑥𝑠 = 𝜇𝑥𝑠 + 𝛾𝑗 (5.31)

Let 𝛽 be a nonnegative constant that modulates the intensity of offspring-induced mortality. In

Case 1a, 𝛽 is a positive constant. In Case 1b, offspring do not affect parental mortality, so 𝛽 is 0.

Then 𝛾𝑗 can be written as:

𝛾1 = 𝛽𝑘1 [𝑠1𝐶𝑚 + (1− 𝑠1)𝐶𝑓 ]

𝛾2 = 𝛽𝑘2 [𝑠2𝐶𝑚 + (1− 𝑠2)𝐶𝑓 ] (5.32)

Again, the average offspring costs 𝐶𝑚 and 𝐶𝑓 are given by (5.27).

Juveniles mature into young adults at a rate 𝛼𝑚1 for males and 𝛼𝑓1 for females, young adults

mature into old adults at a rate 𝛼𝑚2 for males and 𝛼𝑓2 for females, and old adults cannot transition

into any other prior stage. It is possible for a couple of one type to transition into another if a

partner matures (e.g., a 𝑢11 union will become a 𝑢12 union if the young female partner matures

into an old female). Unions may also divorce at a rate 𝑑𝑖𝑗 or dissolve due to partner death, with

mortality rates given by (5.31). The full transition matrix is T = [T1|T2] where:

T1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(𝜇𝑚0 + 𝛼𝑚1) 0 0 0 0 0

𝛼𝑚1 −(𝜇𝑚1 + 𝛼𝑚2) 0 0 0 0

0 𝛼𝑚2 −𝜇𝑚2 0 0 0

0 0 0 −(𝜇𝑓0 + 𝛼𝑓1) 0 0

0 0 0 𝛼𝑓1 −(𝜇𝑓1 + 𝛼𝑓2) 0

0 0 0 0 𝛼𝑓2 −𝜇𝑓2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

(𝜇𝑓1 + 𝛾11 + 𝑑11) 0 (𝜇𝑓2 + 𝛾12 + 𝑑12) 0

0 (𝜇𝑓1 + 𝛾21 + 𝑑21) 0 (𝜇𝑓2 + 𝛾22 + 𝑑22)

0 0 0 0

(𝜇𝑚1 + 𝛾11 + 𝑑11) (𝜇𝑚2 + 𝛾21 + 𝑑21) 0 0

0 0 (𝜇𝑚1 + 𝛾12 + 𝑑12) (𝜇𝑚2 + 𝛾22 + 𝑑22)
−(𝜇𝑚1+𝜇𝑓1+2𝛾11+

𝑑11+𝛼𝑚2+𝛼𝑓2)
0 0 0

𝛼𝑚2
−(𝜇𝑚2+𝜇𝑓1+2𝛾21+

𝑑21+𝛼𝑓2)
0 0

𝛼𝑓2 0
−(𝜇𝑚1+𝜇𝑓2+2𝛾12+

𝑑12+𝛼𝑚2)
0

0 𝛼𝑓2 𝛼𝑚2
−(𝜇𝑚2+𝜇𝑓2+2𝛾22+

𝑑22)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.33)

5.5.2 Results (Case 1a: Parental mortality cost)

Suppose that male and female offspring have different costs on parental mortality. As an example,

let female offspring be somewhat more costly (𝐶𝑓 = 0.6, 𝐶𝑚 = 0.4 in (5.32)). As a baseline case,

consider the scenario where young and old mothers have the same reproductive rate 𝑘1 = 𝑘2. In this
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case, all mothers have the same vital rates and reproductive abilities, regardless of their age. Figure

5-1a shows the direction and relative magnitudes of the selection gradients (blue), as functions of

the age-specific sex ratios 𝑠1 and 𝑠2.

Note that the evolutionary trajectories of s (red) converge not to one singular strategy, but

instead to a whole line of strategies. Changing the offspring costs 𝐶𝑚 and 𝐶𝑓 yields qualitatively

similar behavior (results not shown). Along this line of strategies, both components of the selection

gradient are 0, indicating the absence of selective pressure. Thus, if s is initialized at different values

of 𝑠1 and 𝑠2, its corresponding evolutionary endpoints may differ significantly. However, the same

average primary sex ratio:

𝑠 =
𝑠1(𝑢11 + 𝑢21) + 𝑠2(𝑢12 + 𝑢22)∑︀

𝑢𝑖𝑗
(5.34)

is shared by all the trajectory endpoints, where 𝑠 ≈ 0.6 (Figure 5-1b). This is the same value

expected from the equal investment principle in the single sex ratio case (Shyu and Caswell xxb),

where the optimal single sex ratio 𝑠* evolves to:

𝑠* =
𝐶𝑓

𝐶𝑚 + 𝐶𝑓
(5.35)

Ultimately, it appears that any combination of 𝑠1 and 𝑠2 that leads to 𝑠 ≈ 0.6 is a selectively

neutral point on a line of singular strategies. Presumably because young and old females have

similar reproductive rates, male and female offspring production can be partitioned between them

in an infinite number of ways.

Now consider the case where the reproductive rate 𝑘𝑗 changes with age. When younger and

older mothers are sufficiently different, the line of selectively neutral strategies disappears, and s

converges to a single endpoint s* regardless of its initial condition (Figure 5-2). The methods in

Section 5.3.3.2 identify these endpoints as boundary SSs. If the reproductive rate increases with age

(𝑘1 < 𝑘2, Figure 5-2a), 𝑠1 evolves to 0 (Type 4 SS), meaning that younger mothers are producing

only the more costly females. If the reproductive rate decreases with age (𝑘1 > 𝑘2, Figure 5-2b), 𝑠1
evolves to 1 (Type 5 SS), so that younger mothers are producing only the less costly males.

Figure 5-3 shows s* for a range of offspring costs on parental mortality. If the reproductive rate

increases with age (Figure 5-3a), older fertile females avoid the costly sex, while younger, less fertile

females compensate by producing only the costly sex. When 𝐶𝑚 < 𝐶𝑓 , for example, young mothers

produce only the more costly females (𝑠1 = 0); when 𝐶𝑚 > 𝐶𝑓 , they switch to producing only the

more costly males (𝑠1 = 1). The older sex ratio 𝑠2 favors the less mortality-inducing sex but, unlike

𝑠1, never evolves to exclusively producing a single sex. When costs become increasingly unequal

(𝐶𝑚 >> 𝐶𝑓 or 𝐶𝑚 << 𝐶𝑓 ), 𝑠2 diverges more from 𝑠1.

If the reproductive rate decreases with age (Figure 5-3b), the directions of the sex ratio biases

reverse. Younger, more fertile females produce only the cheaper sex (𝑠1 = 0 or 𝑠1 = 1), forcing older,

less fertile females to produce the costlier sex. When costs become increasingly unequal (𝐶𝑚 → 0

or 𝐶𝑚 → 1), we see that 𝑠2 diverges less from 𝑠1. Older mothers can produce more of the costlier
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Figure 5-1: Evolutionary trajectories for Case 1a when all mothers have the same vital and
reproductive rates (𝑘1 = 𝑘2 = 10). Offspring costs 𝐶𝑚 = 0.4, 𝐶𝑓 = 0.6; other model parameters
are as in Table 5.1. a) Selection gradients as functions of the age-specific sex ratios 𝑠1 (younger
females) and 𝑠2 (older females). Blue arrows indicate the directions and relative magnitudes of
the selection gradient (5.16). Red arrows indicate the evolutionary trajectories of s given by the
canonical equation (5.21). b) The young, old, and average primary sex ratios 𝑠1, 𝑠2, and 𝑠 (5.34)
at the trajectory endpoints in Figure 5-1a.
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Figure 5-2: Evolutionary trajectories for Case 1a when young and old mothers have different
reproductive rates. Offspring costs 𝐶𝑚 = 0.4, 𝐶𝑓 = 0.6; other model parameters are as in Table
5.1. a) Trajectories when older mothers are more fertile (𝑘1 = 5, 𝑘2 = 15). b) Trajectories when
younger mothers are more fertile (𝑘1 = 15, 𝑘2 = 5).
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sex when the sex-specific costs are similar (𝐶𝑚 ≈ 𝐶𝑓 ), but avoid it when cost differences are high

(𝐶𝑚 >> 𝐶𝑓 or 𝐶𝑚 << 𝐶𝑓 ). This contrasts with how younger females produce only the costlier sex

in Figure 5-3a.
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a)  older mothers more fertile b)  younger mothers more fertile

s*

Cm  (increasing male cost       ) 

s1*

s2* s1*

s2*

Figure 5-3: Sex ratio singular strategies s* (𝑠*1 for younger females, 𝑠*2 for older females) as a function
of the male offspring cost 𝐶𝑚, which affects parental mortality via (5.32). The female offspring cost
𝐶𝑓 = 1−𝐶𝑚 (more costly males mean less costly females); other model parameters are as given in
Table 5.1. a) Values of s* when older mothers are more fertile (𝑘1 = 5, 𝑘2 = 15). b) Values of s*

when younger mothers are more fertile (𝑘1 = 15, 𝑘2 = 5).

5.5.3 Results (Case 1b: Parental resource cost)

Suppose that male and female offspring do not affect parental mortality, but experience different

mortality rates during the period of parental investment. As in Case 1a with identical mothers

(Figure 5-1), s ultimately converges to a selectively neutral line of singular strategies (Figure 5-4).

Unlike Case 1a, this line persists even when young and old females differ in reproductive rates 𝑘𝑗 or

baseline mortality rates 𝜇𝑓𝑗 . Once again, all combinations of 𝑠1 and 𝑠2 on the line share a similar

average primary sex ratio s̄ (Figure 5-4, right column).

As a result, the population may converge to any one of an infinite number of sex ratio

combinations, which are selectively neutral and have same average primary sex ratio. The sex

ratios observed in the long-term may accordingly vary with the initial state of s.

5.6 Case 2: Maternal quality

As described in Section 5.2, the Trivers-Willard hypothesis (Trivers and Willard 1973) predicts that

the primary sex ratio produced by a mother should depend on maternal quality. Specifically, high

quality females will preferentially invest in the sex whose reproductive success varies most with

quality. This hypothesis has three main assumptions:
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Figure 5-4: Example evolutionary trajectories and the sex ratios (𝑠1 for younger females, 𝑠2 for older
females) at their endpoints for Case 1b. a) Trajectories for 𝐶𝑚 = 0.2, 𝐶𝑓 = 0.8, 𝜇𝑓1 = 0.1, 𝜇𝑓2 =
0.5, 𝑘1 = 15, 𝑘2 = 5. b) Trajectories for 𝐶𝑚 = 0.8, 𝐶𝑓 = 0.2, 𝜇𝑓1 = 0.5, 𝜇𝑓2 = 0.1, 𝑘1 = 5, 𝑘2 = 15.
Other model parameters are as given in Table 5.1.

139



1. An offspring’s quality carries into adulthood. In comparison to their low quality counterparts,

high quality offspring will be larger, stronger, or have higher social ranks throughout

their lifetimes. These advantages ultimately confer greater reproductive success or higher

reproductive value (Leimar 1996).

We will specifically consider two main advantages that high quality adults have over low

quality adults. These advantages concern the male competitive factor 𝑐𝑖 and female resource

investment rate 𝑅𝑗 described in Sections 5.6.1.2 and 5.6.1.1 respectively. We will assume that

one or both of the following advantages is present.

� High quality males obtain a greater proportion of total matings, and thus have a greater

competiveness factor (𝑐2 > 𝑐1).

� High quality females invest more resources into offspring production, and thus have a

greater resource investment rate (𝑅2 > 𝑅1).

2. The quality of an offspring is correlated with the quality of its parent (usually the mother).

As shown in Section 5.6.1.1, we incorporate maternal quality transmission via a quality

inheritance probability 𝑞𝑖𝑗 . High quality females will be more likely to produce high quality

offspring, while low quality females will be more likely to produce low quality offspring.

Maternal transmission of quality occurs in many species, especially those with small broods

(Trivers and Willard 1973); high ranking red deer mothers, for instance, produce larger and

more dominant offspring (Clutton-Block et al. 1986). Quality transmission also affects the

value of female offspring; when offspring quality depends mostly on maternal quality, high

quality females are more productive in the long run (Leimar 1996).

3. One sex (usually males) has a greater variance in reproductive success with quality. Though

the reproductive potential of both males and females may vary with quality, one sex varies

more than the other, depending on the relative advantages of high quality males and females.

Although reproductive success is often framed in terms of number of offspring, Leimar (1996)

showed that reproductive values are more relevant for sex ratio evolution. As described in

Section 5.6.2, we express the notion of “variance in reproductive success” in terms of male and

female reproductive value ratios.

In polygynous ungulates, for example, males have the greater reproductive variance. Dominant

high quality males monopolize breeding opportunities and have many more offspring than low

quality males, while high quality females have only moderately more offspring than low quality

females (Trivers and Willard 1973). In other species, females have the greater reproductive

variance. Female baboons and macaques, for example, are more strongly affected by maternal

quality due to their inheritance of maternal rank. As a result, the sex ratios of high-ranking

mothers are biased towards female offspring (Silk 1983).
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5.6.1 Model

Trivers and Willard based their analysis on a verbal argument that implicitly relies on the principle

of equal investment. Here, we explore similar questions in a structured model that includes multiple

stages, qualities, and pair formation.

The population in our model consists of male and female low quality juveniles (𝑚01, 𝑓01), high

quality juveniles (𝑚02, 𝑓02), low quality adults (𝑚1, 𝑓1), and high quality adults (𝑚2, 𝑓2). Low and

high quality adults interbreed to form four types of unions, as in (5.23).

The population vector (5.2) has 12 stages total:

n(𝑡) =
(︁
𝑚01 𝑚02 𝑚1 𝑚2 𝑓01 𝑓02 𝑓1 𝑓2 𝑢11 𝑢21 𝑢12 𝑢22

)︁ᵀ
(5.36)

Again, we will write a model of the form (5.4), and the next three sections give the matrices B,

U, and T in turn.

5.6.1.1 Births (B)

Unlike Case 1, offspring do not have different mortality rates or impose parental mortality. However,

the production of male and female offspring requires different amounts of resources, as in Shyu and

Caswell (xxb , Case 1). Producing a male offspring costs 𝐶𝑚 units of resources per time, while a

female offspring costs 𝐶𝑓 units of resources per time. Each union’s total rate of resource investment

in offspring production is determined by maternal quality, where:

𝑅1 = rate of resource investment by low quality females

𝑅2 = rate of resource investment by high quality females (5.37)

Because high quality females have more resources for producing offspring, 𝑅2 > 𝑅1. The

corresponding low and high quality female reproductive rates, 𝑘1[𝑅1] and 𝑘2[𝑅2], are given by

(5.26).

Let 𝑞𝑖𝑗 be the probability that a female of quality 𝑗 produces quality 𝑖 offspring. We assume

inheritance of quality, in that mothers are equally or more likely to produce offspring of the same

quality. Thus, the 𝑞𝑖𝑗 must satisfy the following conditions:

𝑞11 + 𝑞21 = 1

𝑞12 + 𝑞22 = 1

𝑞22 > 𝑞12 → 𝑞22 ≥ 0.5

𝑞11 > 𝑞21 → 𝑞11 ≥ 0.5 (5.38)
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The complete birth matrix B is:

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 𝑠1𝑘1[𝑅1]𝑞11 𝑠1𝑘1[𝑅1]𝑞11 𝑠2𝑘2[𝑅2]𝑞12 𝑠2𝑘2[𝑅2]𝑞12

0 0 0 0 0 0 0 0 𝑠1𝑘1[𝑅1]𝑞21 𝑠1𝑘1[𝑅1]𝑞21 𝑠2𝑘2[𝑅2]𝑞22 𝑠2𝑘2[𝑅2]𝑞22

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 (1− 𝑠1)𝑘1[𝑅1]𝑞11 (1− 𝑠1)𝑘1[𝑅1]𝑞11 (1− 𝑠2)𝑘2[𝑅2]𝑞12 (1− 𝑠2)𝑘2[𝑅2]𝑞12

0 0 0 0 0 0 0 0 (1− 𝑠1)𝑘1[𝑅1]𝑞21 (1− 𝑠1)𝑘1[𝑅1]𝑞21 (1− 𝑠2)𝑘2[𝑅2]𝑞22 (1− 𝑠2)𝑘2[𝑅2]𝑞22

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.39)

5.6.1.2 Union formation (U)

Each union type 𝑢𝑖𝑗 is formed at a mating rate 𝑈𝑖𝑗 determined by the mating preference functions

described in Section 5.3.2. Assume that males are not picky in their choice of females, so that the

male preference distribution is given by the random mating preference (5.10). However, as per our

first assumption, females may prefer to mate with high quality males. Thus, the female preference

distribution will be given by the biased mating preference (5.11).

Low and high quality males have competitiveness factors 𝑐1 and 𝑐2 respectively. Since high

quality males are more likely to obtain mates than their low quality counterparts, 𝑐2 > 𝑐1. Because

𝑐1 + 𝑐2 = 1 in accordance with (5.8):

𝑐2 > 𝑐1 → 𝑐1 < 0.5 (5.40)

Using the harmonic mean mating function (5.13), the per capita mating functions (5.14) become:

𝑈𝑚11 =
2𝑐1𝑓1

𝑐1(𝑓 +𝑚1) + 𝑐2𝑚2
𝑈𝑓11 =

2𝑐1𝑚1

𝑐1(𝑓 +𝑚1) + 𝑐2𝑚2

𝑈𝑚21 =
2𝑐2𝑓1

𝑐1𝑚1 + 𝑐2(𝑓 +𝑚2)
𝑈𝑓21 =

2𝑐2𝑚2

𝑐1𝑚1 + 𝑐2(𝑓 +𝑚2)

𝑈𝑚12 =
2𝑐1𝑓2

𝑐1(𝑓 +𝑚1) + 𝑐2𝑚2
𝑈𝑓12 =

2𝑐1𝑚1

𝑐1(𝑓 +𝑚1) + 𝑐2𝑚2

𝑈𝑚22 =
2𝑐2𝑓2

𝑐1𝑚1 + 𝑐2(𝑓 +𝑚2)
𝑈𝑓22 =

2𝑐2𝑚2

𝑐1𝑚1 + 𝑐2(𝑓 +𝑚2)
(5.41)

where 𝑚 = 𝑚1 +𝑚2 and 𝑓 = 𝑓1 + 𝑓2.
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The union matrix U is:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 −(𝑈𝑚11 + 𝑈𝑚12) 0 0 0 0 0 0 0 0 0

0 0 0 −(𝑈𝑚21 + 𝑈𝑚22) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −(𝑈𝑓11 + 𝑈𝑓21) 0 0 0 0 0

0 0 0 0 0 0 0 −(𝑈𝑓12 + 𝑈𝑓22) 0 0 0 0

0 0 1
2
𝑈𝑚11 0 0 0 1

2
𝑈𝑓11 0 0 0 0 0

0 0 0 1
2
𝑈𝑚21 0 0 1

2
𝑈𝑓21 0 0 0 0 0

0 0 1
2
𝑈𝑚12 0 0 0 0 1

2
𝑈𝑓12 0 0 0 0

0 0 0 1
2
𝑈𝑚22 0 0 0 1

2
𝑈𝑓22 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.42)

5.6.1.3 Transitions (T)

Mortality rates are the same for individuals of the same sex and quality, regardless of whether they

are in unions. Again, unions dissolve due to divorce rates 𝑑𝑖𝑗 or partner deaths (with mortality

rates 𝜇𝑚1, 𝜇𝑓1, 𝜇𝑚2, and 𝜇𝑓2).

Low quality juveniles mature into low quality adults at a rate 𝛼𝑚1 for males and 𝛼𝑓1 for females.

High quality juveniles mature into high quality adults at a rate 𝛼𝑚2 for males and 𝛼𝑓2 for females.

Individuals cannot transition between different qualities.

The transition matrix is T = [T1|T2] where:

T1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(𝜇𝑚,01 + 𝛼𝑚1) 0 0 0 0 0 0 0

0 −(𝜇𝑚,02 + 𝛼𝑚2) 0 0 0 0 0 0

𝛼𝑚1 0 −𝜇𝑚1 0 0 0 0 0

0 𝛼𝑚2 0 −𝜇𝑚2 0 0 0 0

0 0 0 0 −(𝜇𝑓,01 + 𝛼𝑓1) 0 0 0

0 0 0 0 0 −(𝜇𝑓,02 + 𝛼𝑓2) 0 0

0 0 0 0 𝛼𝑓1 0 −𝜇𝑓1 0

0 0 0 0 0 𝛼𝑓2 0 −𝜇𝑓2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

(𝜇𝑓1 + 𝑑11) 0 (𝜇𝑓2 + 𝑑12) 0

0 (𝜇𝑓1 + 𝑑21) 0 (𝜇𝑓2 + 𝑑22)

0 0 0 0

0 0 0 0

(𝜇𝑚1 + 𝑑11) (𝜇𝑚2 + 𝑑21) 0 0

0 0 (𝜇𝑚1 + 𝑑12) (𝜇𝑚2 + 𝑑22)

−(𝜇𝑚1 + 𝜇𝑓1 + 𝑑11) 0 0 0

0 −(𝜇𝑚2 + 𝜇𝑓1 + 𝑑21) 0 0

0 0 −(𝜇𝑚1 + 𝜇𝑓2 + 𝑑12) 0

0 0 0 −(𝜇𝑚2 + 𝜇𝑓2 + 𝑑22)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.43)
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5.6.2 Calculating variance in reproductive success

Recall that the Trivers-Willard hypothesis requires individuals of different qualities (here, high and

low quality), a correlation between parent and offspring quality (𝑞 ≥ 0.5), and that one sex has a

greater variance (larger differential) in reproductive success with quality.

The hypothesis predicts that high quality females preferentially invest in the sex with the greater

variance in reproductive success (Trivers and Willard 1973). Testing this hypothesis requires two

quantities: a measure of reproductive success for each sex, and a measure of the “variance” in

reproductive success (i.e., how much reproductive success varies between high and low quality

individuals of a given sex).

5.6.2.1 Reproductive success

Though reproductive success is sometimes measured as number of offspring (Clutton-Brock et al.

1984, 1986), Leimar (1996) showed that reproductive value (the present value of all future offspring)

was a more relevant index of reproductive success. This is especially true when the probability of

maternal quality transmission is high; if females are more likely than males to pass their quality to

offspring, a high quality female may still have high reproductive success, in that her reproductive

value is large even if her number of offspring is not (West 2009).

Here, we use the demographic definition of reproductive value, which depends on the matrix

model. Specifically, the dominant left eigenvector v of the projection matrix A(p̂) is a vector of

stage-specific reproductive values (shown in age-structured models by Goodman 1968; extended to

stage-structured models by Caswell and Werner 1978 and others). Entry 𝑖 of v corresponds to the

reproductive value 𝑣𝑖 of stage 𝑖.

Although different stages of a given sex will have different reproductive values, the juvenile

(newborn) reproductive values should be the most relevant indices of reproductive success for each

sex (Appendix 5.A).

5.6.2.2 Variance in reproductive success

The “variance” in reproductive success can be written as the juvenile male and female reproductive

value ratios (RVRs) at equilibrium (Leimar 1996). Note that reproductive values are defined only

up to a multiplicative constant, so taking the ratios of reproductive values removes this constant

factor.

Define the male reproductive value ratio 𝑀𝑅𝑉𝑅 as:

𝑀𝑅𝑉𝑅 =
𝑣𝑚,02

𝑣𝑚,01
(5.44)

where 𝑣𝑚,02 and 𝑣𝑚,01 are the reproductive values of high and low quality juvenile males respectively.
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Similarly, the female reproductive value ratio 𝐹𝑅𝑉 𝑅 is:

𝐹𝑅𝑉 𝑅 =
𝑣𝑓,02
𝑣𝑓,01

(5.45)

where 𝑣𝑚,02 and 𝑣𝑚,01 are the reproductive values of high and low quality juvenile females

respectively.

We will use 𝑀𝑅𝑉𝑅 and 𝐹𝑅𝑉 𝑅 to represent the variance in reproductive success (between high

and low quality individuals) for males and females respectively.

5.6.2.3 Predictions of the Trivers-Willard hypothesis

When 𝑀𝑅𝑉𝑅 > 𝐹𝑅𝑉 𝑅 (males have greater variance in reproductive success than females), high

quality mothers should be more likely than low quality mothers to produce sons. As a result, we

would expect that 𝑠2 > 𝑠1. Given the biological constraints (5.19), one of the following two cases

should thus occur (Leimar 1996).

𝑠1 = 0, 0 < 𝑠2 < 1

0 < 𝑠1 < 1, 𝑠2 = 1 (5.46)

When 𝐹𝑅𝑉 𝑅 > 𝑀𝑅𝑉 𝑅 (females have greater variance in reproductive success than males), high

quality mothers should be more likely than low quality mothers to produce daughters. As a result,

we would expect that 𝑠2 < 𝑠1, and that one of the following two cases should occur (Leimar 1996).

𝑠1 = 1, 0 < 𝑠2 < 1

0 < 𝑠1 < 1, 𝑠2 = 0 (5.47)

5.6.3 Results

As described at the beginning of Section 5.6, we consider two advantages that high quality

individuals may have over low quality individuals. High quality males may be more attractive

and competitive mates than low quality males (𝑐2 > 𝑐1), which affects the male variance in

reproductive success. Alternatively, high quality females may be more productive and have a greater

resource investment rate than low quality females (𝑅2 > 𝑅1), which affects the female variance in

reproductive success. We will determine how s* evolves in both cases.

5.6.3.1 Male variance in reproductive success

Male variance in reproductive success depends on the difference between the low quality male

competitiveness factor 𝑐1 from (5.40), and the high quality male competitiveness factor 𝑐2 = 1− 𝑐1.

Because high quality males obtain more matings, 𝑐2 > 𝑐1. As 𝑐1 increases (𝑐2 decreases), the
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proportion of females mating with a low quality male (not mating with a high quality male) also

increases.

Figure 5-1a shows how 𝑀𝑅𝑉𝑅,𝐹𝑅𝑉 𝑅, and s* vary with 𝑐1. On the left side of the x-axis,

males have high variance in competitive ability (𝑐1 = 0.01, 𝑐2 = 0.99); on the right side of the

x-axis, males have no variance in competitive ability (𝑐1 = 𝑐2 = 0.5). As a result, the variance in

male reproductive success, as given by 𝑀𝑅𝑉𝑅, is highest on the left and converges to 1 on the

right.

We have assumed that high and low quality females are equally productive (𝑅2 = 𝑅1), so that

there is almost no variance in female reproductive success (𝐹𝑅𝑉 𝑅 ≈ 1). As a result, 𝑀𝑅𝑉𝑅 ≥
𝐹𝑅𝑉 𝑅 at all s*. However, note that, at low 𝑐1, 𝐹𝑅𝑉 𝑅 is slightly greater than 1, indicating that

high quality females are somewhat more successful than low quality females (because they are more

likely to produce high quality offspring).

As predicted by the Trivers-Willard hypothesis, low quality mothers produce relatively more of

the sex with lower variance in reproductive success, while high quality mothers produce more of

the higher variance sex. In this case, the sex ratio of high quality mothers favors exclusively males

(𝑠*2 = 1), while the sex ratio of low quality mothers is female-biased (𝑠*1 < 0.5). When 𝑐1 = 𝑐2 = 0.5,

𝑀𝑅𝑉𝑅 = 𝐹𝑅𝑉 𝑅 = 1 and equal sex ratios for both 𝑠*1 and 𝑠*2 can occur.

5.6.3.2 Female variance in reproductive success

Female variance in reproductive success is affected by the difference between the low and high quality

female resource investment rates, 𝑅1 and 𝑅2 from (5.37). Again, high quality females should have

more resources for offspring production (𝑅2 > 𝑅1).

Figure 5-1b shows how 𝑀𝑅𝑉𝑅,𝐹𝑅𝑉 𝑅, and s* vary with 𝑅1. We set 𝑅2 = 30−𝑅1, so that the

left side of the x-axis corresponds to a high variance in female resource investment (𝑅1 = 0.25, 𝑅2 =

29.75), and the right side corresponds to no variance in female resource investment (𝑅1 = 𝑅2 = 15).

Thus, 𝐹𝑅𝑉 𝑅, is highest on the left and converges to 1 on the right. We assume that high and low

quality males do not differ (𝑐2 = 𝑐1), so that 𝑀𝑅𝑉𝑅 = 1 always. In this case, 𝐹𝑅𝑉 𝑅 ≥ 𝑀𝑅𝑉𝑅

at all s*; that is, females always have the greater variance in reproductive success.

Again, consistent with the Trivers-Willard effect, high quality mothers favor the higher variance

sex (females). While high quality mothers produce relatively more high variance female offspring

(𝑠*2 < 0.5), low quality mothers produce all low variance male offspring (𝑠*1 = 1). Although low

quality females are relatively unproductive, all males are equally likely to mate with high quality

females and produce high quality grandchildren. As a result, it appears that low quality mothers

evolve to maximize their sons.

5.6.3.3 The effect of quality inheritance

Lastly, we consider how s* is affected by the quality inheritance probability 𝑞𝑖𝑗 in (5.38). We assume

that quality depends only on mothers, which produce offspring of the same quality with a probability
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Figure 5-1: Singular strategies s* (𝑠*1 for low quality females, 𝑠*2 for high quality females) and
reproductive value ratios 𝑀𝑅𝑉𝑅, 𝐹𝑅𝑉 𝑅 as functions of a) the low quality male competitiveness
factor 𝑐1, where the high quality male competitiveness factor is 𝑐2 = 1 − 𝑐1 (with 𝑅1 = 𝑅2 = 15),
and b) the low quality female investment rate 𝑅1, where the high quality female resource investment
rate 𝑅2 = 30−𝑅1 (with 𝑐1 = 𝑐2 = 0.5). Other model parameters are as given in Table 5.1.

𝑞 = 𝑞𝑗𝑗 > 0.5. An increase in 𝑞 increases the value of high quality mothers, because they are more

likely to generate high quality offspring. When 𝑞 is high, high quality females can become very

valuable, leading high quality mothers to prefer daughters over sons (Leimar 1996).

We also include both the male advantage and female advantages of high quality individuals;

that is high quality males are more competitive (𝑐2 > 𝑐1) and high quality females are more fertile

(𝑅2 > 𝑅1) Which sex has the larger reproductive variance now varies with 𝑞.

As shown in Figure 5-2, at low 𝑞, the variance in reproductive success of males exceeds that of

females (𝑀𝑅𝑉𝑅 > 𝐹𝑅𝑉 𝑅). High quality mothers thus have male-biased sex ratios; low quality

mothers, in contrast, produce exclusively daughters. At intermediate 𝑞, there is an interval where

𝑀𝑅𝑉𝑅 = 𝐹𝑅𝑉 𝑅 corresponding to interior SSs of s*. At higher 𝑞, females become the sex with

higher variance in reproductive success (𝐹𝑅𝑉 𝑅 > 𝑀𝑅𝑉 𝑅). High quality mothers ultimately

converge to the equal sex ratio 𝑠2 = 0.5, while low quality mothers produce only sons.

These results are consistent with the predictions of the Trivers-Willard hypothesis, in that high

quality mothers always produce more the sex with greater variance in reproductive value than lower

quality mothers do. At intermediate values of 𝑞, however, there is a region where 𝑀𝑅𝑉𝑅 = 𝐹𝑅𝑉 𝑅;

this corresponds to interior (Type 1) SSs where both 𝑠1 and 𝑠2 are between 0 and 1 (see Section

5.6.3.4). Because males and females have the same reproductive value ratios at interior SSs, it is

not obvious from the Trivers-Willard hypothesis which sex the high quality parents will favor.

147



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0

2

4

6

8

1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

qlow quality
inheritance

high quality
inheritance

0

0.2

0.4

0.6

0.8

1

s*
R

V
R

s1*

s2*

FRVR

MRVR

Figure 5-2: Singular strategies s* (𝑠*1 for low quality females, 𝑠*2 for high quality females) and
reproductive value ratios 𝑀𝑅𝑉𝑅, 𝐹𝑅𝑉 𝑅 as functions of the same quality inheritance probability
𝑞 = 𝑞𝑗𝑗 . Both the male advantage (𝑐2 > 𝑐1) and female advantage (𝑅2 > 𝑅1) are present, with
𝑐1 = 0.1, 𝑐2 = 0.9 and 𝑅1 = 10, 𝑅2 = 20. Other model parameters are as given in Table 5.1.

5.6.3.4 Reproductive value ratios and the nature of s*

In this section, we determine the reproductive value ratios at equilibrium for each type of SS s*, and

their implications for the Trivers-Willard hypothesis. Recall that there are five types of s* in this

model (an interior point and four boundary equilibria), each of which implies different conditions

for the selection gradients (derivatives of invasion fitness) at equilibrium (summarized in Figure

5-2). These selection gradients, in turn, depend on the reproductive values at equilibrium (the

left eigenvector v′) through (5.16). This permits us to invert the calculations presented thus far,

which focus on finding s* in various scenarios. We now determine the relationship between male

and female reproductive value ratios, given each possible type of s*.

In Appendix 5.A, we find the relationship between the male and female reproductive value

ratios 𝑀𝑅𝑉𝑅 (5.44) and 𝐹𝑅𝑉 𝑅 (5.45) at each type of s*. These relationships are summarized

in Table 5.1. Because the 𝑅𝑉 𝑅𝑠 are measures of the variance in reproductive success for each sex

(Section 5.6.2.2), each type of SS therefore also implies a certain relationship between male and

female reproductive success. A Type 2 SS, for example, requires that 𝑀𝑅𝑉𝑅 < 𝐹𝑉 𝑅𝑉 — that is,

the variance in reproductive success of females must exceed that of males.

Each of the five types of s* also has a certain biological interpretation (Table 5.2). At Type

3 and 4 SSs, high quality mothers will produce relatively more sons than low quality mothers do;

at Type 2 and 5 SSs, high quality mothers will produce more daughters. This allows us to link
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Type of SS
Low quality
sex ratio (𝑠1)

High quality
sex ratio (𝑠2)

Reproduction
value ratios

Offspring cost
ratios

Examples

1 (interior) 0 < 𝑠1 < 1 0 < 𝑠2 < 1 𝑀𝑅𝑉 𝑅 = 𝐹𝑅𝑉 𝑅
𝐶𝑚
𝐶𝑓

= 𝑣𝑚01
𝑣𝑓,01

= 𝑣𝑚02
𝑣𝑓,02

Figure 5-2 (mid 𝑞)

2 (boundary) 0 < 𝑠1 < 1 0 (all females) 𝑀𝑅𝑉 𝑅 < 𝐹𝑅𝑉 𝑅
𝐶𝑚
𝐶𝑓

< 𝑣𝑚01
𝑣𝑓,01

, > 𝑣𝑚02
𝑣𝑓,02

Not observed

3 (boundary) 0 < 𝑠1 < 1 1 (all males) 𝑀𝑅𝑉 𝑅 > 𝐹𝑅𝑉 𝑅
𝐶𝑚
𝐶𝑓

> 𝑣𝑚01
𝑣𝑓,01

, < 𝑣𝑚02
𝑣𝑓,02

Figure 5-1a (all 𝑐1)

4 (boundary) 0 (all females) 0 < 𝑠2 < 1 𝑀𝑅𝑉 𝑅 > 𝐹𝑅𝑉 𝑅
𝐶𝑚
𝐶𝑓

> 𝑣𝑚01
𝑣𝑓,01

, < 𝑣𝑚02
𝑣𝑓,02

Figure 5-2 (low 𝑞)

5 (boundary) 1 (all males) 0 < 𝑠2 < 1 𝑀𝑅𝑉 𝑅 < 𝐹𝑅𝑉 𝑅
𝐶𝑚
𝐶𝑓

< 𝑣𝑚01
𝑣𝑓,01

, > 𝑣𝑚02
𝑣𝑓,02

Figure 5-1b (all 𝑅1)
Figure 5-2 (high 𝑞)

Table 5.1: Relationships between the male and female reproductive value ratios MRVR and FRVR
at each of the five possible singular strategies s* (in Figure 5-2.

High quality

mothers

have more:

Sex ratios Type of SS Greater RVR

sons 𝑠1 = 0, 0 < 𝑠2 < 1 4
𝑀𝑅𝑉𝑅

0 < 𝑠1 < 1, 𝑠2 = 1 3
daughters 𝑠1 = 1, 0 < 𝑠2 < 1 5

𝐹𝑅𝑉 𝑅
0 < 𝑠1 < 1, 𝑠2 = 0 2

either 0 < 𝑠1 < 1, 0 < 𝑠2 < 1 1 𝑀𝑅𝑉𝑅 = 𝐹𝑅𝑉 𝑅

Table 5.2: How the sex preferred by high quality mothers corresponds to different sex ratios, types
of SS (Figure 5-2), and reproductive value ratio relationships. The first two cases correspond to the
conditions (5.46) and the second two cases correspond to conditions (5.47).

variance in reproductive success, as given by 𝑀𝑅𝑉𝑅 and 𝐹𝑅𝑉 𝑅, to the sex favored by high quality

mothers, as invoked by the Trivers-Willard hypothesis.

As shown in Appendix 5.A, we find that high quality mothers consistently favor sons when

𝑀𝑅𝑉𝑅 > 𝐹𝑅𝑉 𝑅 (Type 3 or 4 SS), and daughters when 𝐹𝑅𝑉 𝑅 > 𝑀𝑅𝑉 𝑅 (Type 2 or 5 SS).

These results confirm a Trivers-Willard effect in our model, and are similar to those of Leimar’s

simpler model (1996), which does not consider juvenile or union stages. We also find that when

high quality mothers produce exclusively one sex (Types 2 and 3 SSs), they always favor the sex

with the greater reproductive value ratio. However, when low quality mothers produce exclusively

one sex (Type 4 and 5 SSs), they always favor the sex with the lower reproductive value ratio.

Our results demonstrate the presence of a “specialization principle” — unless 𝑀𝑅𝑉𝑅 = 𝐹𝑅𝑉 𝑅

at equilibrium, one maternal quality will produce all sons or all daughters (i.e., have a Type 2–5

boundary SS). The RVRs are only equal at Type 1 (interior) SSs, where high quality mothers may

favor either sex. Interior SSs are unique in that they do not experience selective pressure in any

direction, because the selection gradients are zero for both sex ratios. This suggests that selective

pressure only ceases completely when both male and female reproductive value ratios are equal

(𝑀𝑅𝑉𝑅 = 𝐹𝑅𝑉 𝑅). Interestingly, we do not find the infinite equilibria predicted by Leimar (1996)

when 𝑀𝑅𝑉𝑅 = 𝐹𝑅𝑉 𝑅.

149



Interior s* are also the only type of SS where the ratio of juvenile male to juvenile female

reproductive values equals the ratio of the sex-specific resource costs. Specifically, by (5.53):

𝐶𝑚

𝐶𝑓
=

𝑣𝑚,01

𝑣𝑓,01
=

𝑣𝑚,02

𝑣𝑓,02
(5.48)

This result holds true for both low quality juveniles (𝑣𝑚,01/𝑣𝑓,01) and high quality juveniles

(𝑣𝑚,02/𝑣𝑓,02). A similar result for the SS of a single sex ratio was found in Shyu and Caswell

(xxb, Case 1). As in the single sex ratio case, this suggests that the sex ratios evolve towards

an “equal investment principle,” where the ratio of male to female reproductive values equals to

the ratio of the sex-specific resource costs. If, however, such a point does not exist within the

biologically-constrained region, s* becomes a boundary SS and equal investment no longer holds

(Table 5.1, “Offspring costs” column).

5.7 Discussion

When a trait like the primary sex ratio varies with an individual’s condition, the evolution of that

trait may be difficult to anticipate. Because multiple conditions create population structure, and the

reproductive advantages of both sexes depends on demographic factors like survival, fecundity, and

lifespan (Leimar 1996, Schwanz 2006), an explicitly demographic model is valuable for understanding

facultative sex ratio evolution.

We have presented several two-sex demographic models that include two maternal conditions

with different sex ratios. The overall sex ratio strategy s is thus a vector trait with two

simultaneously evolving components. Using multidimensional adaptive dynamics, we analyzed both

the transient and long-term evolution of s in cases where individuals differed in age or quality.

In our models, s displays a wide range of evolutionary behavior. The sex ratio strategy may

evolve to an interior SS where both 𝑠1 and 𝑠2 are between 0 and 1, or a boundary SS where either

𝑠1 or 𝑠2 is 0 or 1 (i.e., mothers of a particular condition produce exclusively one sex). Previous

models of facultative sex ratios have similarly found cases where at least one maternal condition

only produces offspring of a single sex (e.g., Leimar 1996, Schwanz 2006).

We have also found cases where s converges to a line of selectively neutral strategies. This

potential for infinitely many sex ratio combinations may lend insight into why empirical studies

have observed many different, and occasionally contradictory, relationships between sex ratios and

maternal conditions (e.g., Jacobsen et al. 1999 in humans, Sheldon and West 2004 in ungulates).

Ultimately, our model lends insight into the demographic factors that cause different types of

evolutionary singular strategies, and, in the case of multiple qualities, their relationships with the

reproductive values that underlie the Trivers-Willard hypothesis.

Although we considered only two conditions at a time (i.e., young and old, high and low

quality), in reality, individuals will vary across a spectrum of conditions. Our matrix model could

150



be expanded to accommodate more stages for additional conditions, though continuously-varying

traits and conditions may require an alternative approach. Our model also assumes that mating

preferences are proportional to the relative abundances (or weighted abundances) of adult stages,

through functions like (5.10) and (5.11). Ranking systems where mating preferences depend on the

overall composition of the population (e.g. females prefer the largest males currently available) are

not explicitly covered by our formulation.

Several aspects of our model could be modified to study other scenarios. We assumed, for

example, that the effects of mutations on the sex ratios of younger and older (or low and high

quality) individuals were uncorrelated. However, a mutation in one gene may affect multiple traits

through pleiotropic effects. Antagonistic pleiotropy, whereby selection promotes genes that are

beneficial earlier in life, but detrimental later in life, may be an important factor in the development

of senescence (Williams 1957). Charnov (1982) hypothesized that this may influence how sex

ratios shift with maternal age - that is, factors reducing mortality from early reproduction might

increase mortality due to later reproduction. While we found changes in age-specific sex ratios, even

without accounting for these kinds of pleiotropic effects, one could explicitly incorporate mutational

correlations by modifying the mutational variance matrix V(s) (5.20).

Although we have considered only the effects of maternal condition, paternal condition may also

influence the primary sex ratio. Paternal attractiveness is of particular interest, in that females

mated to attractive males may produce more sons to inherit their father’s attractiveness. Resulting

sex ratios depend on the nature of the female mating preference and costs and benefits of attractive

male traits (Pen and Weissing 2000, Fawcett 2007, West 2009). Paternal age may also affect

offspring sex ratios. Several large-scale studies on human populations, for instance, have found

more significant correlations between sex ratios and paternal ages than sex ratios and maternal ages

(reviewed in Jacobsen et al. 1999). We previously assumed that any union 𝑢𝑖𝑗 with a Condition

𝑗 female has sex ratio 𝑠𝑗 ; that is, the primary sex ratio depends only on the maternal condition.

However, our model could easily be modified to have sex ratios depend on the paternal condition

as well.

Lastly, we do not consider any costs or mechanisms for switching between the facultative sex

ratios 𝑠1 and 𝑠2. Costly sex ratio manipulation, e.g., via selective abortion, may significantly affect

sex ratio evolution (Pen and Weissing 2002), and cases where one parental condition uses a very

different sex ratio from the other may be less feasible if there are high costs for switching sex ratios.

There may also be biological limits to how much the sex ratio can be adjusted. Though actual

mechanisms for sex-ratio adjustment are still largely unknown, glucose levels in utero may be an

important factor (Cameron 2004).
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Chapter 5 Appendix

5.A Reproductive value ratios at singular strategies

In this section, we calculate the relation between 𝑀𝑅𝑉𝑅 and 𝐹𝑅𝑉 𝑅 at each of the five types of

singular strategies s* in Figure 5-2. All SSs occur when one or both components of the selection

gradient (5.17) is 0. As shown in (5.16), the selection gradient depends on the mutant reproductive

value vector v′.

Given a 𝑠× 1 population vector, the first term in (5.16) is the 1× 𝑠2 vector:

w′ᵀ ⊗ v′ᵀ =
(︁

𝑤1𝑣1 𝑤1𝑣2 . . . 𝑤1𝑣𝑠 . . . 𝑤𝑠𝑣1 𝑤𝑠𝑣2 . . . 𝑤𝑠𝑣𝑠

)︁
(5.49)

where 𝑤𝑖 is the ith entry of w′ (stable stage frequency of stage 𝑖), and 𝑣𝑖 is the ith entry of v′

(reproductive value of stage 𝑖).

The second term in (5.16) is the 𝑠2 × 2 vector:

𝑑vecA′

𝑑s′
=

1

3

(︂
𝑑vecT′

𝑑s′
+

𝑑vecB′

𝑑s′
+

𝑑vecU′

𝑑s′

)︂
(5.50)

We will use (5.42), (5.39), and (5.43)for the rate matrices U, B, and T respectively.

After substituting (5.49) and (5.50) into (5.16) and simplifying the results, we obtain the

following expressions for the components of the selection gradient:

𝑑𝜆′

𝑑s′

ᵀ

=

⎛⎝ 𝜕𝜆′

𝜕𝑠′1

⃒⃒
s′=s

𝜕𝜆′

𝜕𝑠′2

⃒⃒
s′=s

⎞⎠
=

(︃
𝐶1 0

0 𝐶2

)︃(︃
−𝐶𝑚 [𝑞𝑣𝑓,01 + (1− 𝑞)𝑣𝑓,02] + 𝐶𝑓 [𝑞𝑣𝑚,01 + (1− 𝑞)𝑣𝑚,02]

−𝐶𝑚 [(1− 𝑞)𝑣𝑓,01 + 𝑞𝑣𝑓,02] + 𝐶𝑓 [(1− 𝑞)𝑣𝑚,01 + 𝑞𝑣𝑚,02]

)︃
(5.51)

where 𝐶1 and 𝐶2 are positive quantities that do not affect the signs or zeroes of the selection

gradients.

At each type of SS, one or both components of the selection gradient (5.51) will be 0. We will

examine each of the five type of SS from Figure 5-2 to determine their corresponding reproductive

value ratios.
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5.A.1 Interior SS (Type 1)

For an interior SS, both components of the selection gradient (5.51) are simultaneously 0. Thus,

when evaluated at the SS:

0 = −𝐶𝑚 [𝑞𝑣𝑓,01 + (1− 𝑞)𝑣𝑓,02] + 𝐶𝑓 [𝑞𝑣𝑚,01 + (1− 𝑞)𝑣𝑚,02]

0 = −𝐶𝑚 [(1− 𝑞)𝑣𝑓,01 + 𝑞𝑣𝑓,02] + 𝐶𝑓 [(1− 𝑞)𝑣𝑚,01 + 𝑞𝑣𝑚,02] (5.52)

Solving for the reproductive values in (5.52), we obtain the following equalities:

𝐶𝑚

𝐶𝑓
=

𝑣𝑚,01

𝑣𝑓,01
=

𝑣𝑚,02

𝑣𝑓,02
(5.53)

From (5.53), we also see that:

𝑣𝑚,02

𝑣𝑚,01
=

𝑣𝑓,02
𝑣𝑓,01

𝑀𝑅𝑉𝑅 = 𝐹𝑅𝑉 𝑅 (5.54)

That is, the male and female reproductive value ratios are equal at any interior SS.

5.A.2 Boundary SS (Type 2–5)

For an boundary SS, only one component of the selection gradient (5.51) is 0. The other component

is either positive or negative depending on the specific type of boundary SS (Figure 5-2).

� For a Type 2 SS, 𝑑𝜆′

𝑑𝑠′1
= 0. From (5.51), we see that:

𝐶𝑚 [𝑞𝑣𝑓,01 + (1− 𝑞)𝑣𝑓,02] = 𝐶𝑓 [𝑞𝑣𝑚,01 + (1− 𝑞)𝑣𝑚,02] (5.55)

Also for a Type 2 SS, 𝑑𝜆′

𝑑𝑠′2
< 0. Solving (5.55) for 𝑣𝑚,01 or 𝑣𝑚,02 and substituting the result

into the expression for 𝑑𝜆′

𝑑𝑠′2
in (5.51), we obtain:

𝑑𝜆′

𝑑𝑠′2
=

2𝑞 − 1

𝑞
(𝐶𝑓𝑣𝑚,02 − 𝐶𝑚𝑣𝑓,02)

=
2𝑞 − 1

𝑞 − 1
(𝐶𝑓𝑣𝑚,01 − 𝐶𝑚𝑣𝑓,01)

< 0 (5.56)
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Because 0.5 ≤ 𝑞 ≤ 1, the conditions in (5.56) become:

𝑣𝑚,02

𝑣𝑓,02
<

𝐶𝑚

𝐶𝑓

𝑣𝑚,01

𝑣𝑓,01
>

𝐶𝑚

𝐶𝑓
(5.57)

Combining the two inequalities in (5.57) and noting that all the quantities are positive, we

obtain:

𝑣𝑚,02

𝑣𝑚,01
<

𝑣𝑓,02
𝑣𝑓,01

𝑀𝑅𝑉𝑅 < 𝐹𝑅𝑉 𝑅 (5.58)

� For a Type 3 SS, 𝑑𝜆′

𝑑𝑠′1
= 0 as well, but 𝑑𝜆′

𝑑𝑠′2
> 0. We accordingly apply (5.57) with the

inequalities flipped to obtain:

𝑣𝑚,02

𝑣𝑚,01
>

𝑣𝑓,02
𝑣𝑓,01

𝑀𝑅𝑉𝑅 > 𝐹𝑅𝑉 𝑅 (5.59)

� For a Type 4 SS, 𝑑𝜆′

𝑑𝑠′2
= 0. From (5.51), we see that:

𝐶𝑚 [(1− 𝑞)𝑣𝑓,01 + 𝑞𝑣𝑓,02] = 𝐶𝑓 [(1− 𝑞)𝑣𝑚,01 + 𝑞𝑣𝑚,02] (5.60)

Also for a Type 4 SS, 𝑑𝜆′

𝑑𝑠′1
< 0. Using methods analogous to those above, it can be shown that:

𝑣𝑚,02

𝑣𝑚,01
>

𝑣𝑓,02
𝑣𝑓,01

𝑀𝑅𝑉𝑅 > 𝐹𝑅𝑉 𝑅 (5.61)

� For a Type 5 SS, 𝑑𝜆′

𝑑𝑠′2
= 0 and 𝑑𝜆′

𝑑𝑠′1
> 0, which yields:

𝑣𝑚,02

𝑣𝑚,01
<

𝑣𝑓,02
𝑣𝑓,01

𝑀𝑅𝑉𝑅 < 𝐹𝑅𝑉 𝑅 (5.62)

All these results are summarized in Table 5.1.
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5.B Stability of 2D singular strategies

The evolutionary and convergence stability of a singular strategy is characterized using the local

second derivatives of the invasion fitness (5.15). We have previously showed second derivatives

calculations for a single evolving sex ratio in Shyu and Caswell (xxb). Though analogous calculations

can be performed for vector-valued traits, the SS stability conditions are more stringent (Table

5.B.1).

Type of stability
Sufficient condition for

stability

Sufficient condition for

instability

Evolutionary stability H is negative definite H is positive definite

Convergence stability
VJ has only eigenvalues with
negative real parts

VJ has at least one eigenvalue
with a positive real parts

Strong convergence stability J is negative definite J is positive definite

Table 5.B.1: Conditions for the evolutionary and convergence stability of a vector-valued singular
strategy. These conditions depend on the Hessian H of the invasion fitness (5.63), the Jacobian J
of the selection gradient (5.64), and the mutational variance-covariance matrix V in the canonical
equation (5.18) (Apaloo and Butler 2009, Leimar 2009).

5.B.1 Evolutionary stability

Evolutionary stability indicates that the SS cannot be invaded by any nearby mutants. It depends

on H, the Hessian matrix of the invasion fitness:

H =
𝜕2𝜆′

𝜕s′𝜕s′ᵀ
(5.63)

This expression can be calculated using the matrix calculus methods detailed in Shyu and Caswell

(xxb, Section 3.3.1).

A SS s* is evolutionarily stable if H is negative definite at s* (Apaloo and Butler 2009). Many

of the H matrices in our model are negative semidefinite or indefinite because of zero eigenvalues,

leading to inconclusive stability results. Figure 5.B.1 shows several examples of the corresponding

invasion fitness landscapes. In these cases, and many others in our model, s* lies on a line of

points with zero invasion fitness. This means that there are an infinite number of mutant sex ratio

combinations that have the same fitness as s*.

This is similar to our results for a single evolving sex ratio (Shyu and Caswell xxb), where 𝑠* lies

on a zero isocline for which any mutant sex ratios have equal fitness. This type of SS is known as

a selectively neutral or weak form ESS (Bull and Charnov 1988, Uyenoyama and Bengtsson 1982).

Once the population reaches a weak form ESS, there is no selective pressure to evolve further,

because no mutants have positive invasion fitness. However, since all mutants have the same fitness

as the resident, they may potentially coexist at low levels.
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Figure 5.B.1: The invasion fitness (5.15) as a function of the mutant sex ratios 𝑠′1 (low quality
females) and 𝑠′2 (high quality females). The resident population is at its SS sex ratio strategy s*.
Red dots indicate the location of s*, while black lines indicate isoclines of zero invasion fitness (where
the mutant and resident are equally fit). Plots are for the Case 2 (maternal quality) model with
different values of 𝑞 (same as Figure 5-2). 𝐶𝑚 = 𝐶𝑓 = 0.5, 𝑐1 = 0.1, 𝑐2 = 0.9, 𝑅1 = 10, 𝑅2 = 20;
other parameters are as given in Table 5.1. a) Example of an interior SS (Type 1) for 𝑞 = 0.65.
The eigenvalues of H are −1.6× 10−6 and 2.9× 10−7. b) Example of a boundary SS (Type 5) for
𝑞 = 0.8. The eigenvalues of H are −8.5× 10−4 and 2× 10−7.

5.B.2 Convergence stability

Convergence stability indicates that the SS is an evolutionary attractor that the trait will converge

to through small mutations. It depends on J, the Jacobian matrix of the selection gradient (Leimar

2009):

J = H+
𝜕2(𝜆′ − 𝜆)

𝜕s′𝜕sᵀ
(5.64)

Again, this expression can be calculated using the matrix calculus methods detailed in Shyu and

Caswell (xxb, Section 3.3.2).

A SS s* is convergence stable if VJ, the product of the mutational matrix from (5.18) and the

Jacobian (5.64), has eigenvalues with negative real parts at s*. The SS is strongly convergence

stable (stable for any smooth, symmetric, positive definite V) if J is negative definite at s* (Leimar

2009). Again, many of the VJ and J matrices in our model are negative semidefinite or indefinite

because of zero eigenvalues, leading to inconclusive stability results. Stability can be especially

difficult to characterize for boundary SSs, which have limited directions for evolution.

Example eigenvalues of VJ are shown in Figure 5.B.2. Note that for boundary SSs, at least

one diagonal entry of V, as given by (5.20), will be 0, resulting in zero eigenvalues of VJ. Zero
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eigenvalues appear to correspond to eigenvectors pointing towards the boundaries, while negative

eigenvalues correspond to eigenvectors pointing along the boundaries.
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Chapter 6

Concluding Remarks

6.1 Summary

Sex and other types of population structure may have significant ecological and evolutionary effects,

with ensuing implications for the management of resource, protected, and pest species alike. As

a result, my overarching goal for this thesis was to develop a general modeling framework that

could be used not only to explore the dynamics of two-sex, stage-structured populations, but also

to analyze the evolution of traits in this explicitly demographic context.

In this thesis, I have shown how to formulate stage-classified, two-sex models using transition

rate matrices (Chapter 2). These models have frequency-dependent dynamics that converge to an

equilibrium stage structure with exponential population growth. The long-term growth rates that

emerge determine the fitness of a given phenotype, and thus play an important role in evolutionary

processes.

I then extended the evolutionary methods of adaptive dynamics to my demographic modeling

framework. Using matrix calculus, I defined and derived key evolutionary quantities in my models,

including the invasion fitness, selection gradient, and the second derivatives of growth rates. These

second derivatives, in particular, have a broad range of ecological and evolutionary applications that

I have also briefly explored (Chapter 4).

For the remainder of my thesis, I combined the two-sex modeling framework with matrix-based

adaptive dynamics, to analyze sex ratio evolution in an explicitly demographic context. I used a

series of two-sex population models to characterize potential evolutionary outcomes for sex ratio ––

both in the case of a single sex ratio (Chapter 3), and of a facultative sex ratio with two possible

states (Chapter 5). In each case, I found and classified multiple evolutionary outcomes, including a

prevalence of selectively neutral singular strategies.

Together, these results highlight the potential importance of sex and other population structure

in both ecology and evolution. The two-sex model has lent some insight into the demographic

factors that can cause different types of behavior. For sex ratio in particular, the outcomes that

emerge often depend on properties that are sex- or stage-specific.
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In Chapter 2, for instance, population growth and equilibrium structure are modulated by

multiple factors, including the extent to which mortality is male- or female-biased. Furthermore,

populations may be more or less resilient to sex-biased harvest pressure depending on the properties

of mated unions or harems. Factors like harem size and persistence affect not only unharvested

population growth, but also population responses to sex-biased harvest. Models that do not

distinguish between multiple sexes or union stages could not capture the nuances of these responses.

In some cases, the addition of demographic structure leads to results that are unexpected, or

that even contradict those of models lacking such structure. Chapter 3 shows that the incorporation

of a union stage enables sex-specific mortality to skew sex ratios in ways that were unanticipated

by previous, non-demographic sex ratio theory. These results challenge the classic and widely-held

belief that mortality after the period of parental investment cannot affect the primary sex ratio,

especially when union productivity is poor.

The use of adaptive dynamics in a demographic context can also reveal interesting results about

transient evolutionary dynamics. In Chapter 5, for example, the evolutionary trajectories given

by the multidimensional canonical equation show that there are cases where sex ratios converge

to a selectively neutral line of singular strategies. This potential for infinitely many sex ratio

combinations may help explain the mixed results of empirical sex ratio studies.

6.2 Extensions

The modeling framework that I have developed can accommodate arbitrarily many stages and life

cycles processes to represent complex life histories. The adaptive dynamics methods I presented can

also be readily adapted to study the evolution of other traits. Because my models can incorporate

any relevant structure (including multiple sexes, stages, and mated unions) into evolutionary

projections, they can model population and evolutionary dynamics in a variety of populations.

One could, for instance, apply similar analyses to other examples of sex allocation, such

as hermaphroditism (e.g., Charnov 1982) or environmental sex determination (e.g., Frank and

Swingland 1988). My framework would also be well suited for modeling other cases of

frequency-dependent selection in structured populations.

6.2.1 Alternative mating strategies

One such case is that of alternative mating strategies. In a “typical” mating system, one sex

(usually males) competes by fighting for partners and other resources. Some males, however, avoid

direct confrontation by surreptitiously mating with partners of the more dominant males. These

alternative mating strategies have been observed in a wide variety of taxa, including insects, fish,

amphibians, and mammals (e.g., Krebs and Davies 1993).

In Pacific salmon (Oncorhynchus species), for example, there are two alternative phenotypes for

males (Gross 1985). Hooknose males are slower to mature, but larger and specialized for fighting
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competitors. Jack males, in contrast, are smaller, mature more quickly, and obtain mates by

sneaking fertilizations during spawning. These phenotypes appear to be genetically predetermined,

possibly through the Y-chromosome (Heath et al. 2002). Both are maintained within populations

through negative frequency-dependent selection (Gross 1985), as an overabundance of either strategy

would increase competition and reduce fitness.

Modeling alternative mating strategies may benefit from the two-sex, explicitly demographic

framework, for this phenomenon contains clear examples of both stage structure (here, alternative

male phenotypes) and sex structure (males, females, and mating interactions that vary between

phenotypes). Recall that sex ratio evolution is also determined by negative frequency-dependent

selection, as an overabundance of either sex similarly increases competition and reduces fitness. As

a result, the evolution of alternative mating strategies parallels the evolution of sex ratio strategies,

and could accordingly be analyzed using methods analogous to the ones shown here.

6.2.2 Evolution under harvest

The view that evolutionary change is slow and undetectable over conservation-relevant timescales

has caused many managers to consider demographic traits as static, even in the face of shifting

selective pressures. Population viability analyses (PVAs) and climate range shift models, for

instance, frequently extrapolate population dynamics based on current trait values, without

considering potential adaptations. Growing evidence, however, suggests that evolutionary

considerations are relevant to sustainable long-term management. For example, rapid evolution

on the scale of months to years has been observed in a variety of taxa (Ashley 2003), mostly in

response to recent anthropogenic pressures.

Human-induced selection is especially important for harvested species. As harvest mortalities

are often more severe and selective than natural mortalities, they may drive evolution in directions

that would not occur under natural conditions —- as well as directions unfavorable to harvesters.

Lower fishery yields, for instance, have been attributed to selective exploitation of larger and older

fish, which has induced decreases in body weight, length, and the age and size at maturity (e.g.,

Law 2000, Kuparinen 2007).

In the case of sex-biased harvest, hunters often target the phenotypes most favored for mating or

fecundity (e.g., bigger body size, larger horns or tusks, etc.). The “unnatural” selection induced by

such harvest may significantly alter population structure, reproductive strategies, body morphology,

and developmental timing (e.g., Ashley 2003, Festa-Bianchet 2003, Allendorf and Hard 2009).

Determining how sex-biased harvest will affect traits like sex ratio, and ultimately impact

population growth, may help inform harvest regulations and management programs. As alluded

to at the end of Chapter 2, my two-sex modeling framework can be used to study evolutionary

responses to changing environmental conditions or human activities, including sex-biased harvest.

Harvest effects could, for instance, be framed in terms of sex-specific mortality, as I explored in
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Case 2 (mortality during parent investment) and Case 3 (mortality after parental investment) of

Chapter 3.

As an additional example, consider the application of evolutionary singular strategy calculations

for single sex ratios (analogous to those described in Chapter 3, Case 3 for differential adult

mortality) to the “polygynous harems” model with sex-biased harvest (described in Chapter 2).

As in Chapter 2, assume that only adults (both in and out of unions) are harvested, and that a

proportion 𝑠ℎ of harvest effort is focused on males. Figure 6-1 compares how the primary sex ratio

evolves both before and after harvest.

Figure 6-1a shows the evolutionarily singular sex ratios 𝑠* that result when the population is

unharvested. In this case, sex ratio evolution depends only on population properties – namely, the

harem size ℎ and divorce rate 𝑑. Persistent (𝑑 = 0) and monogamous (ℎ = 1) unions do not deviate

much from the equal sex ratio 𝑠* = 0.5. However, populations with large harems (large ℎ) appear

to evolve male-biased sex ratios (𝑠* > 0.5). This result is somewhat counterintuitive, as populations

with large harems would seemingly benefit from more females than males.

Figures 6-1b–d show how 𝑠* changes from Figure 6-1a under sex-biased harvest. Female-biased

harvest causes 𝑠* to decrease (become more female-biased), and affects low 𝑑, low ℎ populations the

most. In contrast, male-based harvest causes 𝑠* to increase (become more male-biased), and affects

low 𝑑, high ℎ populations the most. The sex ratio shifts induced by unbiased harvest have smaller

magnitudes, but varied directions; unbiased harvest would, for instance, increase 𝑠* in high 𝑑, low

ℎ populations, but decrease it in low 𝑑, high ℎ populations.

Evolutionary changes in sex ratio also affect population growth rates. Figure 6-2 shows the

change in the population growth rate 𝜆 due to evolution of the primary sex ratio (from the equal

sex ratio 𝑠 = 0.5 to the evolutionarily singular sex ratio 𝑠 = 𝑠*). In most cases, 𝜆 decreases as

𝑠 evolves to 𝑠*, regardless of whether the population is being harvested or not. In some cases,

however, 𝜆 actually increases in the presence of sex ratio evolution – in small 𝑑 populations under

male-biased harvest, for example.

Overall, these results indicate that sex ratio evolution can affect population growth in different

ways, depending on factors like mating system parameters (𝑑, ℎ) or harvest bias. Evolution over

management-relevant timescales may accordingly influence population responses to harvest.

Bibliography

[1] Allendorf FW, Hard JJ. 2009. Human-induced evolution caused by unnatural selection through
harvest of wild animals. Proceedings of the National Academy of Sciences. 106: 9987-9994.

[2] Ashley MV, Willson MF, Pergams ORW, O’Dowd DJ, Gende SM, Brown JS. 2003.
Evolutionarily-enlightened management. Biological Conservation. 111: 115-123.

[3] Charnov EL. 1982. The theory of sex allocation. Princeton: Princeton University Press.

166



harem size h
10 12 14

di
vo

rc
e 

ra
te

 d

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

4 6 82

harem size h
10 12 14

di
vo

rc
e 

ra
te

 d

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
4 6 82

s*

Δs*

Δs*

Δs*

a) no harvest b) unbiased harvest (sh = 0.5)

c) female-biased harvest (sh = 0) d) male-biased harvest (sh = 1)

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

harem size h
10 12 14

di
vo

rc
e 

ra
te

 d

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
4 6 82

harem size h
10 12 14

di
vo

rc
e 

ra
te

 d

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
4 6 82

Figure 6-1: Evolutionarily singular strategies of the primary sex ratio 𝑠* in the polygnous harems
model (Chapter 2), as functions of the population divorce rate 𝑑 and harem size ℎ. a) SS sex ratios
in an unharvested population; change in the sex ratio from Figure 6-1a due to b) unbiased harvest
(𝑠ℎ = 0.5), c) female-biased harvest (𝑠ℎ = 0), or d) male-biased harvest (𝑠ℎ = 1). Negative changes
indicate that 𝑠* is decreasing (becoming more female-biased), while positive changes indicate that 𝑠*

is increasing (becoming more male-biased). Other parameters are fixed at 𝜇𝑚1 = 𝜇𝑓1 = 0.5, 𝜇𝑚2 =
𝜇𝑓2 = 0.1, 𝛼𝑚 = 𝛼𝑓 = 0.5, 𝑠1 = 0.5, 𝑘 = 20, 𝐸 = 1.
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Figure 6-2: Change in the population growth rate 𝜆, due to evolution from 𝑠 = 0.5 to 𝑠 = 𝑠*, when
there is a) no harvest (𝐸 = 0), b) unbiased harvest (𝐸 = 0.5, 𝑠ℎ = 0.5), c) female-biased harvest
(𝐸 = 0.5, 𝑠ℎ = 0), or d) male-biased harvest (𝐸 = 0.5, 𝑠ℎ = 1). The model and resulting 𝑠* values
are the same as in Figure 6-1.
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