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Abstract Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen,
chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station
ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of
average amplitude of 0.6μmolkg�1. A theoretical diel curve was fit to daily observations to infer an average
mixed layer gross primary productivity (GPP) of 1.8mmol O2m

�3 d�1. Cumulative net community production
(NCP) over 110days was 500mmol O2m

�2 for themixed layer, which averaged 57m in depth. Both GPPandNCP
estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation
confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where
biological signals are small, our diel GPP approach holds promise for remote characterization of productivity
across the spectrum of marine environments.

1. Introduction

In the surface waters of oligotrophic gyres, net ecosystem metabolism is the result of a tightly coupled
balance between photosynthesis and respiration [Westberry et al., 2012; Ducklow and Doney, 2013]. In terms
of carbon and oxygen, this balance is the sum of gross primary production (GPP), and community respiration
(CR) with CR accounting for the sum of respiration by autotrophs (RA) and heterotrophs (RH). The residual
between GPP and CR, termed net community production (NCP), is of much smaller magnitude (by 10–20 times)
than either GPP or CR. NCP is a critical term in the global carbon cycle as it represents the material that can
eventually be exported via the biological pump and hence is a net biological sink for CO2. NCP and the
biological pump provide the fuel that supports low-energy mesopelagic ecosystems below the euphotic
zone. Scenarios of climate change over the 21st century predict increased stratification, warming, and
reduced nutrients in oligotrophic gyres [Bopp et al., 2013; Boyd et al., 2015]. The amalgam of changes to each
metabolic process (GPP, RA, and RH) will dictate how NCP will change in the future. Metabolic rates increase
with temperature, but respiration does more so than photosynthesis, which could shift metabolic balance
toward heterotrophy [Brown et al., 2004; López-Urrutia et al., 2006]. Given the already low rates of biological
activity in oligotrophic gyres, quantifying NCP is a considerable challenge. If NCP is estimated by differencing
GPP and CR, a small, systematic error in methodology for quantifying either GPP or CR can result in a significant
bias in inferred NCP [Williams et al., 2004; Quay et al., 2010]. Bottle effects inherent to incubation-based
approaches are one potential source of such bias. Uncertainties and discrepancies in quantifying these rates
in the ocean have led to ongoing disagreement regarding the overall metabolic state of the subtropical ocean
[Duarte et al., 2013;Ducklow and Doney, 2013;Williams et al., 2013]. Oxygen is a commonly utilized tracer of ocean
metabolism, as it is produced during photosynthesis and consumed during respiration. Variations in biological
oxygen cycling over the diel period can be interpreted to infer GPP and CR based on assumptions of photosyn-
thetic oxygen production during daytime and respiratory consumption at night. In the ocean, this approach has
been applied using O2/Ar, which partially corrects for physically driven O2 variability. Large-amplitude diel O2/Ar
signals have been observed in the high-latitude Southern Ocean [Hamme et al., 2012; Tortell et al., 2014]; and
more recently, GPP and CR have been quantified in the subtropical North Pacific using O2/Ar [Ferrón et al.,
2015]. While O2/Ar helps to isolate the biological signal from physical variability in dissolved O2, it is also
possible to quantify diel periodicity in dissolved oxygen directly. Through laborious Winkler titration, a diel oxy-
gen cycle of ~1μmol kg�1 was observed over a day at five stations in the subtropical Atlantic [Tijssen, 1979].
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Fortunately, improvements in sensor and autonomous platform technology enable a considerable expansion
of the temporal and spatial scope of such observations. For example, Johnson [2010] quantified primary
productivity in Monterey Bay using moored oxygen, nitrate, and pCO2 sensors. Community respiration
was estimated from an oxygen sensor on a wave glider for a section through the Pacific [Wilson et al., 2014].

Here we apply observations from an autonomous underwater glider [Eriksen et al., 2001] to explore the
diurnal dynamics of oxygen in the mixed layer near the time series site, Station ALOHA [Karl and Lukas,
1996], during the 2012 Hawaii Ocean Experiment Dynamics of Light and Nutrients (HOE-DYLAN) experiment.
We quantify depth-resolved GPP and CR from upper ocean glider profiles spanning 22 May to 8 September
2012. In addition to oxygen, we explore diurnal cyclicity in chlorophyll fluorescence and temperature and
investigate the diel rhythm of air-sea O2 flux and active mixing within the surface ocean boundary layer.

2. Observations

2.1. Glider

During 2012, two C-MORE Seagliders [Eriksen et al., 2001] (sg146 and sg148) were deployed to monitor the
area near Station ALOHA. Each glider sampled a “bowtie” shaped pattern inscribed within a nominal 50 by
50 km square. Station ALOHA (22.75°N, 158.00°W) is located near the southwest corner of the sample region.
Each glider repeatedly profiled in a sawtooth manner to a depth of 600–700m. The shallower inflection near
600m, rather than the 1000m depth that has been more typical for glider deployments in the region
[Nicholson et al., 2008], was designed to improve temporal and spatial resolution within the euphotic zone.
All sensors sampled at 1/6 Hz in the upper 200mwith reduced sampling frequency for the optical puck below
200m resulting in <1m vertical resolution through the euphotic zone. With a 600m inflection depth, the
glider obtained approximately seven dives and seven ascents (14 profiles) per day, sufficient to characterize
oscillations in the diurnal band. The gliders were equipped with Aanderaa optode dissolved oxygen sensors
(AADI 3830), Seabird Electronics Clark polarographic membrane-type oxygen sensors (SBE-43), optical triplet
pucks for chlorophyll fluorescence, backscatter, and Colored Dissolved Organic Matter (CDOM) (WET Labs
ECO). For the purpose of observing diel cycles, the lower noise of the Aanderaa optodes proved superior
to the SBE-43 sensors, which were unable to reliably resolve diel cycles. Oxygen saturation anomaly (ΔO2)
was calculated from dissolved oxygen and temperature and salinity dependent saturation state [Garcia
and Gordon, 1992]. A single constant oxygen offset was applied for each glider to minimize saturation
anomaly differences between factory calibration and mixed layer oxygen Winkler titrations from HOT and
HOE-DYLAN cruises using all Winkler observations within 5 km and 2 days of a glider profile. Offsets were
15.9 ± 1.3μmol kg�1 (n= 7) for sg146 and 7.5 ± 1.5μmol kg�1 (n= 26) for sg148. Error estimates are based
on 1 standard deviation of the difference between calibrated sensor O2 and matched Winkler O2. No
statistically significant trend in calibration offset was observed over the duration of either deployment.
The calibration procedure has no effect on the calculated magnitude of diurnal oxygen cycles but is important
for NCP calculations.

2.2. Mooring

We augment Seaglider observations with data from the nearby Woods Hole Oceanographic Institution
Hawaii Ocean Time-series Site (WHOTS) mooring located at 22.7678°N, 157.9882°W (www.soest.hawaii.edu/
whots/). WHOTS mooring instrumentation used includes upward looking acoustic Doppler current profilers
(ADCPs) at 47.5m and 125m (Rockland Scientific Workhorse 600 kHz and 300 kHz, respectively) as well as
meteorological measurements of wind speed and sea level pressure from WHOT deployment #8 (7 July 2011
to 16 June 2012) and #9 (14 June 2012 to 14 June 2013).

3. Results and Discussion

Throughout the study period, oxygen was slightly supersaturated within the mixed layer (101–102%). Mixed
layer depth defined using a 0.125 kgm�3 density offset threshold relative to a 10m reference depth
(hΔσ = 0.125) varied from around 40–80m (average was 57m). As is typical of the subtropical ocean, oxygen
saturation increased directly below the mixed layer, within the sunlit upper thermocline, here reaching
saturation levels of about 106% due to combined effects of photosynthesis and heating [Shulenberger and
Reid, 1981; Spitzer and Jenkins, 1989; Emerson et al., 1995]. At Station ALOHA, submixed layer production
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has been estimated to account for about 25% of total euphotic zone NCP [Emerson et al., 2008; Nicholson
et al., 2008; Riser and Johnson, 2008], consistent with incubation-based estimates of the fraction of primary
production occurring at depth [Quay et al., 2010]. On the diel time scale, oscillations in mixed layer O2

saturation on the order of ±0.3% (0.6 μmol kg�1) were evident (Figure 1).

We investigated the vertical structure and timing of diel cycles using superposed epoch analysis to composite
Seaglider observations over the 24 h period along depth horizons through the mixed layer. To calculate
composites, we performed the following steps: (1) each glider profile was linearly interpolated in depth
to 1m horizons; (2) for each horizon, daily mean values were subtracted from each data point, and (3) resultant
daily anomalies were binned and averaged for each hourly interval through the day (Figure 2). As expected,
oxygen reached a minimum near sunrise, and maximum near sunset. Temperature exhibited a similar cycle,
due to diurnal heating and stratification. Chlorophyll fluorescence was minimum near noon, and highest at
night, presumably due to fluorescence quenching as has previously been observed from a Seaglider [Perry

Figure 1. Oxygen saturation anomaly (%) is shown averaged over the upper 40m (above) and through the upper 100m
(below) for the month of July 2012. Yellow bars (above) show daylight hours. Below, mixed layer depth using a density
threshold (Δσθ) of 0.03 kgm

�3 and 0.125 kgm�3 is plotted in white and black, respectively.

Figure 2. Composite daily anomalies over the upper 50m and 110 day study period are shown for (left column) temperature
(T), chlorophyll (chl), and oxygen (O2). (right column) Squared Brunt Väisälä frequency (N2), shear squared (du/dz)2 from
WHOTS ADCPs, and Richardson number (Ri), derived fromN2 and (du/dz)2. The black line indicates average hourly mixed layer
depth using a 0.03 kgm�3 Δσθ threshold, and grey and gold bars represent nighttime and daylight hours for July 1.
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et al., 2008]. The magnitudes of both temperature and chlorophyll cycles were surface intensified, while
oxygen was relatively uniform through the upper 40m. For temperature, trough to peak amplitude of diel
oscillations decreased from 0.17°C at 5m to 0.02°C at 40m. For chlorophyll fluorescence, amplitude
decreased from 0.03mgm�3 at 5m to 0.01mgm�3 at 40m for chlorophyll. For oxygen, amplitude increased
slightly with depth from 0.5μmol kg�1 at 5m to 0.8μmol kg�1 at 40m.

3.1. Diel Mixing and Stratification

Mixed layer depth (MLD), most commonly defined by a density criterion [de Boyer Montégut et al., 2004],
does not necessarily represent the depth of active mixing layer (XLD) within the minimally stratified
surface ocean boundary layer [Sutherland et al., 2014]. MLD at Station ALOHA traditionally has been
defined by a density offset threshold of 0.125 kgm�3 [Karl and Lukas, 1996]. From Seaglider profiles, we
also apply a more stringent threshold of Δσθ= 0.03 kgm�3 (hΔσ = 0.03) [de Boyer Montégut et al., 2004].
Diurnal heating, cooling, and wind forcing result in daytime stratification, such that XLD is shallower than
the bulk mixed layer, MLD [Price et al., 1986]. The Richardson (Ri) number is a useful metric to evaluate if
stratification and shear conditions are conducive to shear instability driven mixing and is defined as

Ri ¼ N2

du=dzð Þ2 (1)

where N is the Brunt-Väisälä frequency and (du/dz) is the vertical current shear [Large et al., 1994]. A Richardson
number below a critical value (Ricrit = 0.25) describe conditions under which shear is sufficient to overcome
stratification. We calculated N from the density structure from Seaglider observations and shear from WHOTS
ADCPs. Seaglider and WHOTS data were linearly interpolated and combined to calculate Richardson number
(Figure 2). Stratification tended to have a minimum near dawn and increased through daytime hours, while
there was a maximum in near-surface shear in the afternoon/evening confined to the region shallower than
hΔσ = 0.03. Richardson number below Ricrit was observed to extend on average to a depth of 20m near
sunset and to a depth of 33m near dawn. We find that at Station ALOHA hΔσ = 0.03 is a suitable choice to
approximate XLD.

3.2. Air-Sea Exchange and Net Community Production

Mixed layer NCP can be estimated by quantifying the net air-sea flux of oxygen from themixed layer [Emerson
et al., 2008]. We calculated air-sea flux using hourly meteorological forcing (wind speed and atmospheric
pressure) from the WHOTS buoy in combination with oxygen, temperature, and salinity measurements from
Seagliders. We calculated mixed layer biological O2 flux following Emerson et al. [2008] using a recent
parameterization that includes explicit bubble flux terms [Liang et al., 2013]. Bubble mediated air-sea flux
maintains a physically driven supersaturation of oxygen at steady state [Keeling, 1993; Schudlich and
Emerson, 1996]. Without explicit consideration of bubble-mediated supersaturation, NCP can be significantly
overestimated. Over the 110 day total deployment period for sg146 and sg148 (22 May to 8 September),
cumulative NCP was 500 ± 400mmol O2m

�2. The uncertainty estimate was based on assuming a 20%
uncertainty in gas transfer coefficient [Wanninkhof, 2014], a 100% uncertainty in the air-sea bubble flux
and a 0.5 μmol kg�1 uncertainty in sensor offset (based on standard error of the mean for sg146, which
was higher than for sg148). For the near-equilibrium conditions we observed, sensor offset was the largest
source of uncertainty (±340mmol O2m

�2) followed by bubble flux (±220mmol O2m
�2) and gas transfer

coefficient (±140mmol O2m
�2). Extrapolating to an annual rate yields 1700mmolm�2 yr�1 which likely is

an overestimate given typically lower wintertime productivity. Even so, this NCP value is on the low end of
previously reported mixed layer NCP for Station ALOHA, such as an annual rate of 5100mmol
O2m

�2 yr�1in 2006–2008 [Quay et al., 2010], 4800mmol O2m
�2 yr�1 in 2005 [Emerson et al., 2008],

1600mmol O2m
�2 yr�1 in 2000 and 2001 [Hamme and Emerson, 2006], and 2100mmol O2m

�2 yr�1,
3900mmol O2m

�2 yr�1, and 3900mmol O2m
�2 yr�1 in 1990, 1992, and 1995, respectively [Emerson

et al., 1997]. Given that we quantified productivity at Station ALOHA during summer when productivity
is historically highest, we conclude that the summer of 2012 had an anomalously low rate of NCP.

Because air-sea flux is a function of surface oxygen saturation, diel variations in oxygen result in a diel cycle in
air-sea gas flux. Sea to air flux is maximal when ΔO2 is maximal, shortly before sunset. The effect of this flux on
the time rate of change of mixed layer oxygen ((dO2/dt)

ge) is further amplified because the timing of shallowest
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hΔσ = 0.03 is coincident with the maximum in
ΔO2 (Figure 3; see also Appendix C in Keeling
et al. [1998]). Air-sea flux results in a dO2/dt
less than 0.2mmol O2m

�3 d�1
, which is

considerably smaller than rates of GPP. We
correct for this term in our GPP calculation.

3.3. GPP From Diel Oxygen

The expected shape of an idealized diel cycle in
dissolved oxygen depends upon time-varying
photosynthesis (P) and irradiance (E) such that

P ¼ Pm 1� e�E=Ek
� �

where Ek ¼ Pm=α (2)

where Pm is themaximum rate of photosynthesis,
Ek is the saturating irradiance, and α is the
initial slope [Jassby and Platt, 1976]. Irradiance
through the day was approximated based on
solar altitude

E tð Þ ¼ E0 cos θ tð Þð Þ (3)

where E0 is mean mixed layer integrated
irradiance if the Sun was directly overhead, θs
is the solar elevation angle, and t is time.
Using equations (2) and (3) and representative
values for Ek (150 μmol quanta m�2 s�1)
and E0 (150 μmol quanta m�2 s�1) for the
subtropical North Pacific [Ondrusek et al.,
2001; Li et al., 2011], we calculated a diel
photosynthesis curve with a daily-integrated
GPP of 1mmol O2m

�3 d�1 (Figure 3). The
magnitudes of diel curves are very insensitive
to the choice of Ek (150μmol quanta m�2 s�1)
and E0. Assuming CR of constant magnitude
and daily-integrated value equaling GPP
[Kosten et al., 2014], we determined that the

resulting theoretical diel oxygen curve had a trough to peak magnitude of 0.50mmol O2m
�3 (Figure 3).

For an autotrophic system (GPP>CR), the theoretical diel curve would result in a net increase of O2, and
vice versa for a heterotrophic system (Figure 3b), although excess oxygen can leave the system via air-sea
gas exchange. A composite curve was created from Seaglider observations by calculating the gradient
between consecutive observations along a depth horizon and binning into hourly median estimates of
dO2/dt (Figure 3). Compared to the theoretical curve, observed O2 production at 10m peaks earlier in the
day, while at 40m, photosynthesis through the day appears to better fit the theoretical curve. An
asymmetric morning peak in diel rates of photosynthesis has long been recognized [e.g., Marra, 1978]
which may explain the early timing of the peak observed in Figure 3. During night, O2 consumption is
reduced in predawn hours. It is unclear if the observed deviations from the theoretical curve are primarily
biological, or if diel physical processes contribute. For example, h is deepest during predawn hours and
may entrain supersaturated waters from below, which would have a similar effect as reduced respiration
rates in predawn hours.

Physically driven variability in O2, such as submesoscale fronts or entrainment events, potentially could
be misattributed to diel productivity. To minimize such misattribution, we required observations to fit the
theoretical shape and timing of diel photosynthesis and respiration. Before fitting to the theoretical curve,
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Figure 3. (a) The sum of photosynthesis and respiration (GPP
+ CR) through the diel period as derived from equations (2) and
(3) is shown for 15 July (above) with shaded region highlighting
when the system is net autotrophic and heterotrophic. Colored
lines show composite of Seaglider observations for 10–40 m (red),
10–15m (blue), and 35–40 m (green), illustrating the slightly
earlier timing of the diel cycle in near-surface waters. Purple line
shows the volumetric oxygen flux due to gas exchange ((dO2/dt)

ge).
(b) The integral of the above curve is the calculated diel O2 cycle
for GPP= 1.0mmol O2m

�3 d�1 (below) and has an amplitude of
±0.25mmol O2m

�3. The integral of the observed 10–40m curve is
shown below in thick red, while thin red lines show the O2 cycles
from each day withmean removed. Gray lines are the result when CR
is increased (heterotrophic conditions) or decreased (autotrophic
conditions) by 10%.
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we accounted for air-sea exchange by adding O2

efflux ((dO2/dt)
ge) back to the observed mixed

layer diel cycle after which data from each day
were detrended. These steps had only minor
impact on calculated GPP (e.g., detrending only
changed average GPP by< 3%) but may be more
important in regions where GPP and CR are not
so tightly coupled. Observed changes in mixed
layer dissolved oxygen for each day were fitted
to our calculated diel curve allowing for two
parameters to be optimized for each day, one for
amplitude (A) and one for phase (φ), by minimizing
the cost function:

min
A;φ

1
N

XN
i¼1

oi � Af ti þ φð Þð Þ2
 !

subject to A ≥ 0 and φj j ≤ 4 hr
(4)

where N is the number of observations in a day, oi is
observed O2, ti is the time of observations, and f(t) is
the diel O2 curve calculated from equations (2) and
(3). A phase requirement of ±4h ensured that
within a day, minimum O2 preceded maximum
O2 at close to predicted timing. Since f(t) was
calculated using daily GPP of 1mmol O2m

�3d�1,
the A derived for each day is equal to the GPP
for that day. The resulting daily fits were evaluated
for statistical significance using a t test with N - 2
degrees of freedom (p< 0.05). Because minor
hysteresis effects can cause offset between data
from dives and ascents [Nicholson et al., 2008], dive
and ascent data were fit separately to obtain two
independent estimates of diel amplitude per glider,
per day. A similar fitting procedure was applied for
other glider variables, with a sine curve used for
fitting, rather than the diel curve.

Of the 110 dailymeasurements conducted by sg146
and sg148, 73days showed a statistically significant
fit to the theoretical diel O2 photosynthesis curve
(p< 0.05). As evident in Figure 3, phase for these
days averaged about an hour earlier than expected
(ϕ =1.0±1.6 h). In addition to oxygen, temperature
and chlorophyll fluorescence also exhibited diel
variability. No diel signal was evident in other
sensor data, including backscatter, CDOM, and
salinity. Meanmixed layer GPP over the observation
period was 1.8±0.7mmol O2m

�3 d�1. GPP showed
no significant trend over the study period
but did show occasional “high productivity”

days with inferred GPP sometimes exceeding 4mmol O2m
�3 d�1 (Figure 4). HOE-DYLAN included

incubation-based 14C primary productivity for 43 days spanning late June through mid-September,
which averaged 0.58 ± 0.08mmol Cm�3 d�1. For these days, the resulting average GPPO2:PPC was 3.2,

Figure 4. The amplitude of diel cycles fit from each glider is
shown for (a) temperature at 10m, (b) chlorophyll fluorescence
at 10m, and (c) GPP averaged from 0 to 40m. Black lines show
a 9 day running median window. Shaded regions encompass
25th–75th percentiles of the 9 day running median. Upward
pointing arrows are calculated from Seaglider ascents, and
downward arrows from dives.
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which is consistent with estimates based on oxygen isotope tracers at Station ALOHA [Quay et al., 2010;
Nicholson et al., 2012].

4. Conclusions

Diel variations in surface ocean dissolved oxygen bear the imprint of photosynthesis and respiration. The
combination of a profiling glider and optode oxygen sensor was sufficient to robustly identify diel cycles
as small as ±0.2μmol kg�1. Surface-intensified diel cycles in temperature and chlorophyll fluorescence also
were observed. Based on the diel O2 signal, we quantified GPP and CR in the oligotrophic subtropical gyre,
which averaged 1.8mmol O2m

�2 d�1. GPP averaged 3.2 times incubation-based PP(14C) during the same
period. NCP during the same period was unusually low, amounting to less than 5% of GPP.

Such methods must be applied with care in order to limit uncertainty as they are quite sensitive to sensor
performance. For estimating GPP, a precise and low-noise O2 sensor is critical, as is consideration of physically
driven variability. For NCP, absolute accuracy via calibration and long-term stability of the O2 sensor are
paramount. Rates of primary productivity are severely undersampled in the ocean, and careful application
of autonomous in situ approaches such as presented here opens new avenues to quantifying GPP, CR, and
NCP in a wide range of ocean environments.
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