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ABSTRACT
The barnacle Chthamalus fragilis is found along the US Atlantic seaboard historically
from the Chesapeake Bay southward, and in the Gulf of Mexico. It appeared in New
England circa 1900 coincident with warming temperatures, and is now a conspicuous
member of rocky intertidal communities extending through the northern shore
of Cape Cod, Massachusetts. The origin of northern C. fragilis is debated. It may
have spread to New England from the northern end of its historic range through
larval transport by ocean currents, possibly mediated by the construction of piers,
marinas, and other anthropogenic structures that provided new hard substrate
habitat. Alternatively, it may have been introduced by fouling on ships originating
farther south in its historic distribution. Here we examine mitochondrial cytochrome
c oxidase I sequence diversity and the distribution of mitochondrial haplotypes
of C. fragilis from 11 localities ranging from Cape Cod, to Tampa Bay, Florida. We
found significant genetic structure between northern and southern populations.
Phylogenetic analysis revealed three well-supported reciprocally monophyletic
haplogroups, including one haplogroup that is restricted to New England and
Virginia populations. While the distances between clades do not suggest cryptic
speciation, selection and dispersal barriers may be driving the observed structure.
Our data are consistent with an expansion of C. fragilis from the northern end of its
mid-19th century range into Massachusetts.

Subjects Biodiversity, Biogeography, Marine Biology
Keywords Chthamalus, Range expansion, Barnacle, Phylogeography

INTRODUCTION
Evaluation of population genetic discontinuities and range boundaries in coastal marine

species is essential for understanding the consequences of anthropogenic stressors like

climate change which may be driving range shifts, particularly poleward range expansions

(e.g., Barry et al., 1995; Zacherl, Gaines & Lonhart, 2003; Dawson et al., 2010; Harley,

2011). Along the Atlantic coast of the US, Cape Hatteras and Cape Cod are especially

important boundary regions (Pappalardo et al., 2014). However, because these boundaries

are permeable (e.g., many species traverse the boundaries; Pappalardo et al., 2014), as
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are other coastal boundary regions for nearshore species (e.g., Valentine, 1966), it is

necessary to evaluate each species individually. The intertidal barnacle Chthamalus fragilis

is currently found along the eastern United States, extending from the Gulf of Mexico to the

Atlantic coast northward up to Massachusetts (Wells, 1966; Zullo, 1963; Carlton, Newman

& Pitombo, 2011), and is thought to be experiencing a northward range expansion linked to

warmer temperatures (Wethey, 1984; Carlton, Newman & Pitombo, 2011). Prior to the late

19th century, C. fragilis was observed from the Chesapeake Bay area and southward. It was

first observed in New England (Woods Hole, Massachusetts) in 1898, and subsequently

was observed in other locations south of Cape Cod, in Buzzards Bay and Vineyard Sound

(Carlton, Newman & Pitombo, 2011). More recently, it is found along the north shore of

Cape Cod, from the outer Cape (Provincetown) to Sandwich at the northern end of the

Cape Cod Canal (Zullo, 1963; Carlton, 2002; Wethey, 2002; Jones, Southward & Wethey,

2012). C. fragilis is a conspicuous species occupying the easily accessible upper intertidal,

so it is unlikely that an earlier northern presence was overlooked, particularly as the Woods

Hole region has a long history of faunal surveys.

The source of the northern C. fragilis populations is controversial. It is unknown if the

barnacles dispersed via natural (e.g., ocean currents) or anthropogenic vectors (e.g., ship

hull fouling), or both. C. fragilis possesses a typical biphasic life cycle, with the potential

for long distance dispersal. Adults are hermaphroditic with internal fertilization and

are capable of self-fertilization (Barnes & Barnes, 1958). Thus, clusters of adults are not

required for reproduction as in many barnacles (Crisp, 1950). Larvae are released into the

water, typically in the summer (Lang & Ackenhusen-Johns, 1981), where they pass through

6 naupliar stages and a non-feeding cyprid stage. In chthamalids, the planktonic period

may last up to three weeks or more (Miller et al., 1989), allowing ample time for larval

transport by ocean currents. Cyprids settle on hard intertidal substrata and metamorphose

into the adult form.

C fragilis settles on artificial surfaces, and thus has a high potential for dispersal by

anthropogenic transport. Sumner (1909) suggested that the relatively sudden appearance

of C. fragilis in Woods Hole, MA was due to human introduction. In support of this

hypothesis, Carlton, Newman & Pitombo (2011) points out that Woods Hole was home

to the Pacific Guano Company between 1863 and 1889, which received potentially fouled

ships from South Carolina, the type locality for C. fragilis, and elsewhere. The construction

of structures such as docks, pilings, and seawalls may have provided suitable habitats

along the mostly sandy shoreline south of Connecticut, also facilitating range expansion

(e.g., Jones, Southward & Wethey, 2012).

The New England region has experienced warmer temperatures since the 1850s

(Carlton, 2002), and warmer temperatures may have facilitated the successful dispersal

and establishment of C. fragilis by releasing it from competition with the less heat-tolerant

barnacle Semibalanus balanoides in the upper intertidal (Wethey, 2002). In these intertidal

areas, C. fragilis is found higher, where S. balanoides, the better competitor, cannot survive

(Wethey, 2002).
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Table 1 Summary statistics calculated in DnaSP. None of the Tajima’s D values were significant.

Collection site n H Hd Pi Tajima’s D Fu’s Fs

SAND 11 11 1 0.01640 −0.95411 −4.172

TR 9 9 1 0.01749 −0.30109 −2.642

WH 12 11 0.985 0.01750 −0.56516 −2.648

RWU 11 8 0.945 0.01222 −0.01230 −0.431

VA 11 10 0.982 0.01886 −0.27640 −1.849

SC 12 11 0.985 0.01508 −0.31326 −3.116

SI 7 7 1 0.01725 −0.23160 −1.463

SA 7 7 1 0.01041 −1.43806 −2.449

SK 7 7 1 0.01717 −0.63213 −1.471

KL 14 14 1 0.01750 −0.64068 −6.227

TF 7 6 0.952 0.00792 −0.46339 −1.188

Total 108 93 0.996 0.01789 −1.70904 −109.686

Notes.
N, number of individuals; H, number of haplotypes; Hd, haplotype diversity; Pi, nucleotide diversity; SAND, Sandwich,
Massachusetts; TR, Truro, Massachusetts; WH, Woods Hole, Massachusetts; RWU, Bristol, Rhode Island; VA, Gloucester
Point, Virginia; SC, Charleston, South Carolina; SI, Sapelo Island, Georgia; SA, Savannah, Georgia; SK, Summerland
Key, Florida; KL, Key Largo, Florida; TF, Tampa, Florida.

The goals of this study were to investigate the phylogeographic structure of C. fragilis

and gain insight into the origin of northern C. fragilis populations by comparing mito-

chondrial cytochrome c oxidase (COI) haplotypes from several locations in Massachusetts

and Rhode Island with those obtained from locations farther south, in Virginia, South

Carolina, Georgia, and Florida. Thus, sampling covered a ∼2,000 km range (minimum

linear separation). While confirming the source of populations that are cryptogenic (i.e., of

unknown origin) can be difficult, the existence of private haplotypes shared between the

northern populations and a subset of southern populations may indicate the colonization

pathway (Geller, Darling & Carlton, 2010). For example, private haplotypes shared between

northern and South Carolina barnacles may support the idea that barnacles arrived

through transport associated with the Woods Hole guano industry (Carlton, Newman

& Pitombo, 2011). Alternatively, private haplotypes shared only between northern and

Chesapeake Bay—area barnacles (at the northern end of their historic range) may suggest

a range expansion. We compare genetic diversity and the distribution of mitochondrial

haplotypes from barnacles ranging from Massachusetts to Florida, and demonstrate

significant genetic structuring between northern and southern populations. We discuss

the implications of these patterns for a genetic break near Cape Hatteras and the origin of

northern C. fragilis.

MATERIALS & METHODS
We collected 108 Chthamalus fragilis individuals from 11 sites along the Atlantic and Gulf

coasts of North America (Table 1). We extracted genomic DNA using DNEasy Blood and

Tissue and Puregene kits (Qiagen) and amplified the mitochondrial cytochrome c oxidase

I (COI) gene using standard primers (Folmer et al., 1994) and protocols. We ran 25 µl

PCR reactions containing 1 µl of genomic DNA in a PCR program consisting of an initial
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denaturation at 95◦for 3 min; 35 cycles of 95◦ for 30 s, 48◦ for 30 s, and 72◦ for 1 min; and a

final extension at 72◦ for 5 min. We visualized PCR products on a 1.5% agarose gel stained

with GelRed (Biotium). PCR products were purified using Qiaquick PCR Purification kits

(Qiagen, Hilden, Germany) and quantified using a Nanodrop 2000 spectrophotometer

(Nanodrop Technologies, Wilmington, Delaware, USA). Purified products were sent to

MWG Eurofins Operon for sequencing in both directions.

We assembled chromatograms and confirmed sequence quality using Geneious

v. 7.1.7 (Biomatters, San Francisco, California, USA). Sequences were aligned using

ClustalW (Larkin et al., 2007) with default parameters using the Geneious platform. The

alignment was confirmed by eye and translated into amino acid sequences to verify that no

pseudogenes were present. Sequences were deposited in GenBank (KP898760–KP898867)

Nucleotide diversity, haplotype diversity, Tajima’s D and Fu’s Fs were calculated using

DnaSP (Librado & Rozas, 2009). An Analysis of Molecular Variance (AMOVA) was

performed using Arlequin (Excoffier & Lischer, 2010). To examine relationships between

haplotypes, we conducted a Bayesian analysis using Mr.Bayes, accessed through Geneious.

The best-fit model for the Bayesian analysis was selected using the corrected Akaike

Information Criterion (AICc) with jModeltest 2.1.6 (Guindon & Gascuel, 2003; Darriba

et al., 2012), based on 3 substitution schemes for compatibility with Geneious. The settings

in Mr. Bayes were Nst = 6, rates= invgamma, ngammacat = 4,1,100,000 generations, sam-

pling frequency = 1,000, number of chains = 4; temperature = 0.2, and burn-in = 100.

We examined the geographic distribution of the major well-supported haplogroups

recovered in the Bayesian analysis. A Mantel test was conducted using the Isolation By

Distance Web Service v. 3.23 (Jensen, Bohonak & Kelley, 2005) to test for isolation by

distance. Pairwise geographic distances were calculated using Google Earth following the

coast with the segments connecting two shoreline points ≤20 km, reflecting plausible

larval transport routes and dispersal distances. We also compared intraspecific divergences

between sequences from the major haplogroups with C. proteus, a cryptic sibling species of

C. fragilis (Genbank accession numbers FJ858021–FJ858040, Wares, 2001).

RESULTS
After trimming the ends and removing 6 positions with ambiguous base calls, our align-

ment was 613 base pairs, with 93 unique sequences (haplotypes), and 110 polymorphic

sites, of which 58 were parsimony informative. In the amino acid alignment (which

included the 6 positions excluded in the nucleotide alignment), there were three amino

acid substitutions: a valine for an alanine in position 6 in a Charleston, South Carolina se-

quence; a valine for an isoleucine in position 55 for a Woods Hole, Massachusetts sequence,

and an alanine for a threonine in position 157 for a Summerland Key, Florida sequence.

For all sites, haplotype diversity was high and Tajima’s D and Fu’s Fs were negative

(Table 1), which may indicate population expansion or purifying selection. However, there

were no trends with latitude and none of the Tajima’s D values were significant. FST and

AMOVA results showed significant genetic structure particularly between distant sites

(Table 2), with ∼14% of the variation among populations and ∼86% of the variation
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Table 2 Population paiwise FST values. Distance method: pairwise distance. Negative values converted
to 0. Significant values (p < 0.05) in bold.

WH RI SC TF SI VA TR SN KL SK

WH

RI 0

SC 0.153 0.299

TF 0.349 0.497 0.118

SI 0.154 0.310 0 0.055

VA 0.085 0.186 0.003 0.109 0

TR 0.031 0.053 0.078 0.240 0.062 0

SAND 0 0 0.202 0.381 0.205 0.103 0

KL 0.100 0.241 0 0.120 0 0.018 0.080 0.154

SK 0.158 0.306 0 0.044 0 0 0.074 0.203 0

SA 0.390 0.537 0.103 0.112 0.023 0.137 0.267 0.430 0.143 0.065

Table 3 Analysis of Molecular Variance (AMOVA) results.

Source of
variation

d.f. Sum of
squares

Variance
components

Percentage of
variation

Among populations 10 121.666 0.75549 Va 13.61

Within populations 97 464.982 4.79363 Vb 86.39

Total 107 586.648 5.54912

Fixation index FST: 0.13615

within populations (Table 3). The best-fit model selected using the AICc was HKY + I + G.

A Bayesian analysis conducted with this model revealed three distinct, well-supported

haplogroups (i.e., clades) (Fig. 1). A neighbor-joining tree based on HKY distances also

uncovered these three haplogroups (Fig. 1), and was used to assess the distinctiveness

of the haplogroups with the Species Delimitation Plugin in Geneious (Rosenberg,

2007; Masters, Fan & Ross, 2011). Within each of the three haplogroups, intraclade

distances were significantly smaller than interclade distances (Table 4). Rosenberg’s PAB

was 6.5E-18, 6.5E-18, 8.0E-34, for clades 1, 2, and 3, respectively (Table 4), strongly

supporting reciprocal monophyly of the three haplogroups. All three haplogroups are

clearly differentiated from the sister taxon Chthamalus proteus (Fig. 2).

Haplogroups differed in their geographic distribution (Table 5; Fig. 3). Haplogroup 1

was present in all New England sites and most southern sites, except Savannah and Tampa.

Haplogroup 2 was well-represented in the Massachusetts and Rhode Island sites, and also

present in Virginia, but not in any of the more southern sites. Haplogroup 3 was present

in the Sandwich, Truro, and Woods Hole, Massachusetts sites, but not in Rhode Island. It

was the most abundant haplogroup in all of the southern sites. In Savannah and Tampa, it

was the only haplogroup found. The Mantel test indicated significant isolation by distance

(p < 0.001).
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Figure 1 Neighbor-joining topology generated using HKY distances. The three major haplogroups are highlighted and the posterior probabilities
obtained in the Bayesian analysis for the nodes defining these clades are given. SAND, Sandwich, Massachusetts; TR, Truro, Massachusetts;
WH, Woods Hole, Massachusetts; RWU, Bristol, Rhode Island; VA, Gloucester Point, Virginia; SC, Charleston, South Carolina; SI, Sapelo Island,
Georgia; SA, Savannah, Georgia; SK, Summerland Key, Florida; KL, Key Largo, Florida; TF, Tampa, Florida.
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Figure 2 Comparison with Chthamalus proteus. Midpoint-rooted neighbor-joining topology generated
using HKY distances.

Table 4 Species delimitation results. Clade support is posterior probability from the Bayesian analysis
for the node defining the clade (Fig. 1).

Clade 1 Clade 2 Clade 3

Closest clade 2 1 2

Intra Dist 0.008 0.009 0.010

Inter Dist—closest 0.020 0.020 0.024

Intra/Inter 0.39 0.44 0.40

P ID (Strict) 0.87 (0.82, 0.93) 0.86 (0.81, 0.91) 0.87 (0.82, 0.92)

P ID (Liberal) 0.96 (0.94, 0.99) 0.96 (0.93, 0.99) 0.96 (0.94, 0.99)

Av(MRCA-tips) 0.0057 0.0050 0.0086

P(randomly distinct) 1.00 0.51 1.00

Clade support 0.94 0.98 1

Rosenberg’s P(AB) 6.5E-18 6.5E-18 8.0E-34

DISCUSSION
Lineage diversity
Our results indicate significant genetic structure, with a break occurring between Virginia

and South Carolina. We recovered 3 well-supported, reciprocally monophyletic COI

haplogroups. One lineage was found in all locations, one in most locations (except

Tampa and Savannah), and one in Virginia and northward locations only. Additionally, we

observed significant genetic structure between northern and southern populations. This

pattern—a cline between divergent clades—is similar to that observed for other barnacles,
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Figure 3 Geographic distribution of the three major haplogroups.

including Balanus glandula along the California coast (Sotka et al., 2004), Notochthamalus

scabrosus along the Chilean coast (Zakas et al., 2009) and Chthamalus moro in southeastern

Asia (Wu et al., 2014).

A deep phylogeographic break for species like barnacles with high planktonic dispersal

potential may be due to several non mutually exclusive factors, including selection, cryptic

speciation, and the presence of dispersal barriers (Zakas et al., 2009). It is possible that C.

fragilis belonging to haplotype group 2 have characteristics that are less suited to southern

locations. Additional research on the physiology and ecology of C. fragilis are necessary to

elucidate possible adaptive differences between northern and southern populations.

The pattern of reciprocal monophyly and large between-clade relative to within-clade

divergences can sometimes be used to infer the existence of cryptic species (Govindarajan,

Halanych & Cunningham, 2005). Mitochondrial COI is used as a marker in many

population-level studies, and as a genetic barcode to discriminate species (Bucklin, Steinke

& Blanco-Bercial, 2011). While evolutionary rates differ between lineages, sequences

originating from different individuals within a species show less divergence (often less than
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Table 5 Distribution of individuals in haplogroups. Number of individuals falling in haplogroups 1, 2,
and 3 for each sampling location.

Sampling location Clade 1 Clade 2 Clade 3

SAND 4 6 1

TR 1 5 3

WH 6 4 2

RWU 4 7 0

VA 2 3 6

SC 4 0 8

SI 2 0 5

SA 0 0 7

SK 2 0 5

KL 6 0 8

TF 0 0 7

Notes.
SAND, Sandwich, Massachusetts; TR, Truro, Massachusetts; WH, Woods Hole, Massachusetts; RWU, Bristol, Rhode
Island; VA, Gloucester Point, Virginia; SC, Charleston, South Carolina; SI, Sapelo Island, Georgia; SA, Savannah,
Georgia; SK, Summerland Key, Florida; KL, Key Largo, Florida; TF, Tampa, Florida..

3%, Bucklin, Steinke & Blanco-Bercial, 2011) than sequences originating from individuals

belonging to different species (often >10%, Bucklin, Steinke & Blanco-Bercial, 2011).

Cryptic speciation may be common among chthamalid barnacles. Dando & Southward

(1980) identified Chthamalus proteus as a cryptic species distinguishable only through

molecular techniques from C. fragilis using enzyme electrophoresis, and these results were

supported by Wares (2001) and Wares et al. (2009) using DNA sequences. In the Asian

Chthamalus moro, Wu et al. (2014) observed interpopulation COI variation 3.9–8.3%,

and inferred a cryptic speciation noting that population comparisons at the upper end

of that range were comparable to interspecific divergence in the chthamalids Euraphia

rhizophorae and E. eastropacensis (∼9%; Wares, 2001), which were separated by the rise

of the Panamanian isthmus. However, the relatively short distances between our three C.

fragilis clades relative to C. proteus do not support separate species status for the clades.

Our observed phylogeographic transition between Virginia and South Carolina spans

Cape Hatteras, a region thought to be an important biogeographic boundary. Pappalardo

et al. (2014) found that Cape Hatteras is a northern boundary for many species, but less

so a southern boundary. In our dataset, this region is apparently a southern boundary

for haplogroup 2. However, additional fine scale sampling between Virginia and South

Carolina, especially around Cape Hatteras, is necessary to demarcate the location and

nature of the break (e.g., Jennings et al., 2009).

Though a statistically significant pattern of isolation by distance (IBD) is detected

in our data, we are cautious about interpretation. The strict interpretation of IBD is an

equilibrium pattern between genetic drift and gene flow when migration is limiting, and

so allele frequencies become divergent over spatial distance. However, similar statistical

patterns emerge by non-trivial disjunct distributions of divergent lineages (Wares &
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Cunningham, 2005; Moyle, 2006), and may be driven by mechanisms of vicariance and

selection on these divergent lineages. Given the high potential for larval dispersal in

C. fragilis, we simply note that this statistical signal indicates a limit to gene flow, which

may or may not be distinct from patterns of larval dispersal.

Northern expansion
Anthropogenic factors influence species distributions and population structure, which

may facilitate the northward expansion of C. fragilis (Carlton, Newman & Pitombo, 2011).

For barnacles, larvae can be transported long distances in ballast water and adults on

ship hulls (Godwin, 2003; Zardus & Hadfield, 2005; Carlton, Newman & Pitombo, 2011).

Coastal development is creating more and novel habitats for barnacles as well as other

hard substrate organisms in regions dominated by sandy and muddy habitats where

suitable substrate may have been previously limiting (Landschoff et al., 2013). Furthermore,

warmer temperatures associated with climate change are thought to facilite poleward range

expansions for many species (Barry et al., 1995; Zacherl, Gaines & Lonhart, 2003; Perry et

al., 2005; Sunday, Bates & Dulvy, 2012), including barnacles (Southward, 1991; Dawson et

al., 2010; De Rivera et al., 2011).

Here, we sought to gain insight into the origin of the northern expansion of C. fragilis.

Carlton, Newman & Pitombo (2011) speculated that C. fragilis may have colonized

Massachusetts by traveling on ships bound for Woods Hole from South Carolina.

Alternatively, non-transport related anthropogenic factors may have facilitated expansion

from the historical northern boundary in the mid-Atlantic. Warmer temperatures may

have shifted ecological interactions to favor C. fragilis (Wethey, 2002; Carlton, Newman

& Pitombo, 2011). Additionally, coastal development could have facilitated stepwise

northward dispersal. Construction of marinas, docks, jetties, seawalls, and other structures

provided hard substrate habitat that was not previously available in the typically sandy

coastline between Chesapeake Bay and New England.

The absence of clade 2 south of Virginia suggests that northern C. fragilis likely originate

from the northern part of its mid-19th century range. While our sample sizes are relatively

small and we analyze a single marker, the complete absence of any haplogroup 2 sequences

south of Virginia supports this hypothesis. Additional sampling in the mid-Atlantic region

and analysis of multiple genetic markers will be crucial for both providing additional

testing of this hypothesis, and for understanding the nature of the putative Cape Hatteras

biogeographic break for C. fragilis.

As temperatures continue to increase, C. fragilis will likely continue to expand

northward. Like C. fragilis, S. balanoides appears to be shifting its range poleward; however

the mechanism driving the shift in S. balanoides is a range contraction in the southern

part of its range (Jones, Southward & Wethey, 2012). Likely the range contraction is due

to thermal stress in this boreo-arctic species, rather than interaction with encroaching C.

fragilis. Further research is needed to understanding the potential impacts of range shifts

on community dynamics (Sorte, Williams & Carlton, 2010). Our genetic analysis of C.

fragilis, while limited, suggests that shifts in geographic distribution may be accompanied
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by shifts in genetic composition (e.g., expansion of haplogroup 2). Understanding how the

population genetic composition is shifting, and how these changes may impact the overall

community structure, is critical for understanding the consequence of climate change on

coastal communities.
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• Jesús Pineda conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or

tables, reviewed drafts of the paper.

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

Sequences were deposited in GenBank. Accession numbers KP898760–KP898867.

Govindarajan et al. (2015), PeerJ, DOI 10.7717/peerj.926 11/14

https://peerj.com
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898760
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898760
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898760
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898760
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898760
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898760
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898760
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898760
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898867
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898867
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898867
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898867
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898867
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898867
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898867
https://www.ncbi.nlm.nih.gov/nucleotide?term=KP898867
http://dx.doi.org/10.7717/peerj.926


REFERENCES
Barnes H, Barnes M. 1958. Further observations on self-fertilization in Chthamalus sp. Ecology

39(3):550 DOI 10.2307/1931773.

Barry JP, Baxter CH, Sagarin RD, Gilman SE. 1995. Climate-related, long-term faunal changes in
a California rocky intertidal community. Science 267:672–675
DOI 10.1126/science.267.5198.672.

Bucklin A, Steinke D, Blanco-Bercial L. 2011. DNA barcoding of marine metazoan. Annual
Review of Marine Science 3(1):471–508 DOI 10.1146/annurev-marine-120308-080950.

Carlton JT. 2002. Bioinvasion ecology: assessing invasion impact and scale. In: Leppăkoski
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