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INTRODUCTION 1 

 2 

Nitrogen (N) is an essential nutrient, but reactive N has well-known deleterious effects in high 3 

concentrations. Agriculture and industry have strongly altered the N cycle in ways that impact the 4 

environment from local to global scales by contributing to increasing greenhouse gas emissions, acidic 5 

deposition, and impairing the functioning of ecosystems through the eutrophication of soils and waters. 6 

The N cycle is thus intrinsically coupled with various environmental processes and factors including the 7 

transformation of land-use, energy and food production and consumption, climate change, exploitation of 8 

natural resources, air, soil and water pollution, human health, ecosystem services, and other natural and 9 

anthropogenic drivers (Galloway et al. 2004). Future sustainable management and stewardship of both 10 

less disturbed and highly managed ecosystems require a more integrated approach to the assessment of 11 

linkages between these systems and their interaction with the human society (Collins et al. 2011). 12 

Long-term monitoring of N biogeochemistry is a powerful research approach to understanding the 13 

dynamic features of ecosystem behavior influenced by natural and anthropogenic drivers, locally, 14 

regionally and globally. The Long-Term Ecological Research (LTER) program was first established in 15 

early 1980s in the USA. Since then, the LTER has been expanded to many other countries as an 16 

integrated ecological research network that enables long-term site-based research, field experiments, and 17 

database development. The US-LTER has produced important findings on the N dynamics in a broad 18 

geographical range of watersheds and landscapes, including the long-term impact of atmospheric N 19 

deposition on forest ecosystems, the impact of logging on stream N chemistry, the climate impacts on N 20 

cycles in ecosystems, effects on biodiversity, etc. (e.g., Likens et al. 1996; Clark and Tilman 2008; 21 

Fernandez et al. 2010; Groffman et al. 2012; Driscoll et al. 2012). Some European countries have also 22 

conducted long-term environmental monitoring, for example Sweden (e.g., Löfgren, et al. 2011), the UK 23 

(Curtis et al., 2014) and Finland (Rask et al. 2014). In addition to the LTER sites, long-term N 24 
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experiments have been also been conducted at other sites in the USA and Europe. Examples of European 25 

studies include the NITREX (Gundersen et al. 1998) and climate experiments linked with N dynamics 26 

(e.g., CLIMEX (Wright et al. 1998), CLIMOOR (Beier et al. 2004), and VULCAN (Peñuelas et al. 27 

2007)). Lake manipulation experiments have been undertaken in Canada, Norway, the USA and Finland 28 

(e.g., Carpenter et al 2001; Harris et al. 2014). There have also been a number of snow manipulation 29 

experiments in the USA, Norway and Germany (e.g., Kaste et al. 2008; Wipf and Rixen 2010). While 30 

contributing to our current understanding of N cycling in ecosystems, they also reveal significant gaps in 31 

knowledge which will require a continued commitment to long-term research and a broadening of 32 

international perspectives to address. The LTER program has expanded internationally since the early 33 

1990s and the International LTER (ILTER) was created in 1993. This currently comprises over 600 sites 34 

within 40 member networks, providing great potential for understanding altered N biogeochemistry and 35 

its impact in different environment and socio-ecological settings at an international scale. However, 36 

effective integration of this international effort has been impeded by the absence of a mechanism to bring 37 

the international research community together and the relative paucity of robust and directly comparable 38 

data that could be employed in meta-analyses at global and regional scales. Recent syntheses of nitrogen 39 

issues in the USA and Europe (e.g. Sutton et al. 2011; Suddick and Davidson 2012) bring to the fore the 40 

need to review the contributions that long term environmental research has made to the scientific 41 

understanding of the changing N cycle and consider how it might address the current major gaps in 42 

knowledge. Here we review current understanding of the impact of anthropogenic N on various 43 

ecosystems and environments to elucidate the consequences of globally increased N cycles for coupled 44 

social-ecological systems under a changing climate (Fig. 1). Particular attention is paid to the most recent 45 

trends in anthropogenic reactive N emissions, including: nitrous oxide (N2O); the complex interaction of 46 

N with carbon (C), phosphorus (P) and other elements; impacts of N on biodiversity; seasonal and 47 

long-term trends in N biogeochemistry associated with climate variability; the N cascade process from 48 
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terrestrial to aquatic ecosystem; and finally, societal challenges from ecosystem services to human health. 49 

Emerging uncertainties and further research questions are also discussed. 50 

 51 

INCREASED ANTHROPOGENIC NITROGEN EMISSIONS 52 

 53 

    Humans create more reactive N (Nr) than natural ecosystems do (Galloway et al. 2003), principally 54 

nitrogen oxides (NOx-N, i.e., sum of N2O, NO, and NO2) and ammonia (NH3), mostly through food and 55 

energy production and consumption and their various byproducts. Reactive N emissions into the 56 

atmosphere contribute to increasing greenhouse gases, acidic deposition, as well as excess inputs of N 57 

nutrients to receiving environments. One of the Nr forms, N2O, is an important greenhouse gas with an 58 

exceptionally long atmospheric half-life that is emitted through agricultural activities as well as natural 59 

processes such as denitrification within wetlands. Here we review the long-term trends of Nr and N2O 60 

emissions and their current knowledge gaps. 61 

 62 

Global long-term trends in anthropogenic emissions of reactive nitrogen 63 

 64 

Reactive N emissions associated with human-induced burning of biomass and animal husbandry 65 

have been entering the atmosphere for over 10,000 years. Emissions have increased sharply since the 66 

onset of the industrial revolution due to fossil fuel combustion, while the use of synthetic N-fertilizers 67 

became especially important in the 20
th

 century. The global cumulative anthropogenic release of Nr to the 68 

atmosphere over the last 10,000 years has been estimated at ~17.4 Pg N, 28% of which was emitted 69 

during 1850–2000 and 42% during 1–1850 AD (Kopáček and Posch, 2011). Recent global emissions of 70 

NOx from anthropogenic and natural sources have been estimated to range from 44 to 50 Tg N yr
–1

, while 71 

the contribution from NH3 has been estimated at 54 Tg N yr
–1

 (Kopáček and Posch, 2011). About 70% of 72 
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global NH3 emissions are closely related to food production and agricultural systems, predominantly 73 

livestock production and the use of synthetic N-fertilizers (Kopáček and Posch, 2011). Global Nr 74 

emissions have increased sharply since the 1950s (Fig. 2). Overall, Europe is the only continent where Nr 75 

emissions have begun to decrease in recent years (i.e. since the late 1980s) (Fig. 2). This decrease is 76 

attributed to NOx emission controls on energy production, lower NH3 emissions due to reductions in 77 

cattle production, and reduced use of synthetic N-fertilizer (Kopáček and Posch, 2011).  78 

 79 

Greenhouse gas emissions 80 

 81 

Nitrous oxide is a potent greenhouse gas with a global warming potential that is ~300 times greater 82 

than CO2 on a per molecule basis. The production of N2O occurs during both denitrification and 83 

nitrification. N2O in the atmosphere is estimated to have increased by 18% from its pre-industrial level 84 

(IPCC 2007). The rise is attributed primarily to human activities, particularly from agriculture and land 85 

use change.  86 

Information on the processes influencing N2O emissions from soils is sparse, particularly that on the 87 

roles of temperature, moisture, redox potential, pH, and substrate availability (Wallenstein et al. 2006). 88 

While agricultural soils are considered a major source of N2O, the effect of N fertilizer on soil N2O 89 

emissions remains highly uncertain (Davidson 2009; Zaehle et al. 2011). Emission factors (N2O 90 

emissions per unit N addition) have been reported to vary between 0.1–7% of the N applied (Skiba and 91 

Smith 2000). Since multiple processes and drivers are involved, N2O emissions are highly variable and 92 

often associated with “hotspots” (high emissions from small areas) and “hot moments” (high emissions 93 

for brief periods), making measuring, modeling, and up-scaling challenging (Groffman et al. 2009; Reay 94 

et al. 2012).   95 
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High variability in the response of N2O to N inputs indicates nonlinearity of the response function 96 

(Hoben et al. 2011). However, there is also large global variation in levels of N-inputs to agricultural 97 

systems, ranging from 588 kg N ha
-1

 yr
-1

 in a wheat-maize double cropping system in North China to 7 kg 98 

N ha
-1

 yr
-1

 in maize systems in western Kenya, resulting in very large uncertainty over global N2O 99 

emissions (Vitousek et al. 2009). Assessing a decade of measurements from an ILTER site in Michigan, 100 

USA, Robertson et al. (2000) reported that N2O fluxes were similar among different cropping systems, 101 

suggesting that N2O fluxes were driven by soil N availability, rather than by additional N inputs. In 102 

contrast, Van Groenigen et al. (2010) found that N inputs stimulated a dramatic increase in N2O 103 

emissions when fertilizer rates reached 301 kg N ha
-1

 yr
-1

, while N2O emissions were small when 104 

fertilizer rates were ~180–190 kg N ha
-1

 yr
-1

 or lower. Given the paucity of data for areas with low rates 105 

of fertilization such as Africa, there is currently insufficient information for establishing the response 106 

function of N2O fluxes following addition of N inputs in these systems (Van Groenigen et al. 2010).  107 

Clearly, there is a need for considerable clarification of the factors determining N2O emissions from 108 

N inputs at representative sites around the globe. For example, assessments are urgently required to 109 

determine the global impact of the African Green Revolution, called for by the former United Nation 110 

secretary general Kofi Annan. Agricultural productivity across Sub-Saharan Africa is expected to increase 111 

substantially by major increases in fertilizer use (up to 100 kg ha
-1

 yr
-1

, Sanchez et al. 2007). To assess the 112 

unintended N2O emissions and N leaching to the local environments, more research is urgently needed to 113 

understand the N fluxes in response to inputs.  114 

 115 

ALTERED NITROGEN BIOGEOCHEMISTRY IN ECOSYSTEMS 116 

 117 

Increasing anthropogenic Nr emissions are a significant source of atmospheric N deposition to land and 118 

sea (Galloway et al. 2004) and also enhance global warming through N2O emissions (IPCC 2007), 119 
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disturbing N pools, cycling and transport in and among ecosystems. In this section, we review the current 120 

understanding of the impact of increased N deposition on N biogeochemistry over a period of changing 121 

climate in various ecosystems, with special attention to ILTER’s findings.  122 

 123 

Long-term effects of N deposition in watershed N cycles and leaching 124 

 125 

Excess atmospheric N deposition beyond the N requirement of the biota often causes N saturation, 126 

which has been observed in many forest ecosystems of Europe and the USA (Dise and Wright 1995; Aber 127 

et al. 1998). Elevated concentrations of NO3
-
 in surface waters derived from non-point or point sources of 128 

N pollution usually indicate that there has been sufficient anthropogenic deposition of N for catchment 129 

soils to have reached a degree of N saturation (Stoddard 1994). 130 

In recent years, attempts in the USA and Europe to reduce atmospheric emissions of acidic 131 

precursors and other pollutants have resulted in widespread reductions in sulfur (S) deposition, with 132 

corresponding substantial reductions in sulfate concentrations in run-off. However, in Western Europe, 133 

there have been less linear changes of atmospheric deposition with respect to N. While reductions in 134 

emissions of N have led to broadly comparable reductions in ammonium (NH4
+
) deposition, reductions in 135 

NO3
-
 deposition have been much lower (Fowler et al. 2007). The combination of uncertainties associated 136 

with these non-linearities between reduction of NH4
+
 and NO3

-
 and the various responses of N leaching to 137 

variation in winter climate make the future prediction of NO3
-
 leaching to surface waters and the extent to 138 

recovery from acidification very difficult. 139 

In contrast, further increases in N emissions in the East Asia region during the next few decades 140 

have been predicted as a consequence of rapid industrialization, urbanization and economic growth (e.g. 141 

Galloway et al. 2003, 2004; Fang et al. 2011). Fang et al. (2011) indicated that N deposition in China 142 

ranged 2.6 to 48 kg N ha
-1

 yr
-1

, while the threshold of N deposition to N saturation in Chinese forest 143 
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differs from that in the USA and Europe (i.e., the relatively high N leaching in some Chinese forests 144 

receiving low N input). Niu et al. (2010) reported that an experimental addition of N deposition (100 kg N 145 

ha
-1

 yr
-1

) for four years enhanced the ecosystem productivity by 27% in a temperate steppe ecosystem in 146 

China. Several comparative studies (Park et al. 2003; Fang et al. 2011; Mitchell 2011) suggest that 147 

regional climate, geology and hydrology result in different patterns and responses to elevated N 148 

deposition in forest ecosystems, when compared to previous findings of similar studies in the USA and 149 

Europe (Ohte et al. 2001), indicating that more comparative research is needed to generalize the impact of 150 

increased N deposition on ecosystems. Long-term studies of watershed N biogeochemistry are clearly 151 

limited outside the USA and Europe, especially in East Asia, South America and Africa, where 152 

anthropogenic N deposition will increase in future.  153 

 154 

Complex interactions of N with other elements 155 

 156 

The N cycle is intimately coupled to the C cycle. Soils with large pools of organic C and high C:N 157 

ratios are generally associated with N accumulation and tend to export less NO3
–
 than soils with low C:N 158 

ratios (e.g., Aber et al. 1998; Gundersen et al. 1998). When Nr availability is elevated in an N-limited 159 

system (e.g. through atmospheric N deposition), soil inorganic N is readily utilized by plants, resulting in 160 

increased C uptake (Gruber and Galloway 2008) and reduced below-ground allocation of C (Deegan et al. 161 

2012). Elevated Nr in soil can also change the soil microbial community by, for example, a reduction of 162 

fungal:bacterial biomass ratios (Högberg et al. 2007; Boberg et al. 2010). These studies emphasize the 163 

importance of taking N-C interactions into account when considering the possible impact of climate 164 

change on ecosystems, carbon sequestration, and in the development of earth system models (Thornton et 165 

al. 2009). Various mechanisms have been proposed to explain the changes in N-C interactions following 166 

increased N availability: biomass increase with allocation changes in plants (i.e., reduction of 167 
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below-ground C allocation due to the N increase) (Högberg et al. 2010); enhanced soil respiration 168 

reflecting an increase in soil microbial activity with an increase in N availability (Gärdenäs et al. 2011); 169 

inhibition of litter decomposition through a change in litter quality with elevated N (Knorr et al. 2005; 170 

Pregitzer et al. 2008); a change in plant uptake of organic N as a nutrient source in N-limited 171 

environments (Gärdenäs et al. 2011); altered interaction with dissolved organic carbon (e.g., enhanced 172 

mineralization of DOC due to increased abundance of electron acceptors in the form of NO3
−
 in anoxic 173 

soil micro-sites (Kopáček et al. 2013c)); and changes in abiotic N-C interactions in soil (e.g., abiotic 174 

reaction of nitrite with dissolved organic matter through nitration and nitrosation of aromatic ring 175 

structures) (Davidson et al. 2003).  176 

Phosphorus (P) is also an essential nutrient for biota. N-C-P interactions in soil vary among biomes. 177 

Where P limits primary production, such as in some tropical ecosystems or acid alpine grasslands, 178 

increases in N deposition may have little impact on productivity (Matson et al. 1999), a finding that has 179 

recently been documented by field experiments at ILTER sites (Cusack et al. 2011; Bowman et al. 2008). 180 

In both N- and P- limited tundra ecosystems, C fluxes were found to respond positively to additions of 181 

both elements, although responses to P tended to be stronger than to N (Shaver et al. 1998). Bergström 182 

and Jansson (2006) have shown that increased N deposition may have changed lakes from N-limitation to 183 

P-limitation in remote and small lakes across the northern hemisphere, an observation supported by 184 

nutrient addition experiments in UK upland streams (Maberly et al., 2002). On the other hand, an 185 

assessment of long-term data from a Spanish ILTER lake site by Camarero and Catalan (2012) suggested 186 

that atmospheric P deposition may cause lakes to revert from P-limitation to N-limitation. There are clear 187 

needs for research into long-term C-N-P interactions for a much wider range of biomes.  188 

Nitrogen deposition can serve as an acidifying as well as eutrophying agent (Oulehle et al. 2008). 189 

Bowman et al. (2008) reported that long-term acid deposition in the Western Tatra Mountains of Slovakia, 190 

central Europe has altered soil systems in alpine grasslands to an extreme level of acidification usually 191 
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associated with soils exposed to acid mine drainage. They showed that increases in N deposition had 192 

resulted in a depletion of base cations, increases in aluminium (Al) and extractable iron (Fe) in soil, and a 193 

reduction in the biomass of vascular plants associated with a decrease in shoot calcium and magnesium 194 

concentrations. They suggested that acidifying soils in central Europe have reached an unprecedented 195 

level of toxicity in which Al release into soil water has been superseded by Fe release (Bowman et al. 196 

2008).  197 

 198 

N leaching in dormant season 199 

 200 

Seasonal changes in nitrogen behavior of ecosystems are mostly driven by seasonal fluctuations of 201 

physical drivers (i.e. weather conditions) and biological factors (i.e., phenology in plant and microbial 202 

activity). The seasonality of plant growth in many biomes results in a seasonal N demand, while (with the 203 

exception of heavily N-saturated soils and catchments with little soil cover) most NO3
-
 leached into 204 

surface and ground waters is increasingly being found to have undergone soil microbial processing 205 

(Stoddard 1994; Piatek et al. 2005; Curtis et al. 2012). Consequently, the dependence of biological 206 

systems on soil microclimate can lead to strong seasonal variation in N fluxes and concentrations in soils 207 

and drainage waters.  208 

Time series analyses from boreal to temperate forested, moorland and alpine systems emphasize the 209 

importance of winter temperatures and snow cover in determining the export of NO3
-
 in soil, ground and 210 

surface waters. Although winter has sometimes been considered to be the “dormant season,” due to cold 211 

temperatures, vegetation dormancy and a persistent snow cover, microbial processes can persist and exert 212 

a critical impact on N cycling (Campbell et al. 2005; Makoto et al. 2013). Snow also allows solutes to 213 

accumulate in the soil (Kurian et al. 2012) leading to pronounced fluxes when the snow melts. 214 

Watersheds throughout the Northeast USA export more than 85% of the annual NO3
-
 loss during winter 215 
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(Mitchell et al. 1996), with most of this export occurring during spring snowmelt (Campbell et al. 2005), 216 

but mid-winter melt events and rain-on-snow events can also influence winter NO3
-
 loads to streams 217 

(Casson et al. 2010). Individual rain-on-snow events can contribute as much as 40% of annual NO3
-
 218 

export from forested watersheds in southeast Canada, and the contribution of rain-on-snow events to 219 

annual and winter NO3
-
 loads has generally increased in recent decades (Eimers et al. 2007).    220 

The insulating properties of snow can maintain soil temperatures sufficiently high to allow root 221 

growth, microbial respiration and other biotic activities to continue (Groffman et al. 2009). Soils devoid 222 

of a snowpack are more vulnerable to freezing and hence to physical and chemical changes, including the 223 

death of fine roots, cell lysis and the alteration of soil microbial processes (Tierney et al. 2001; 224 

Christopher et al. 2008; Shibata et al. 2013). Experimental snow removal in alpine Europe lowered soil 225 

temperatures and increased NO3
-
 release (Freppaz et al. 2008). In mountainous and northern regions, soil 226 

temperatures and ecosystem respiration rates tend to be higher in winters with high amounts of snowfall 227 

than in winters with less or no snow (Monson et al. 2006). On the other hand, experimental snow 228 

manipulation at a mountain site in Norway indicated that no increase of inorganic N fluxes was associated 229 

with snow removal (Kaste et al. 2008), suggesting that the effects of decreased snow on the N cycle 230 

varies among locations. Coherent patterns of variation in NO3
-
 leaching are sometimes evident over large 231 

spatial scales and across catchments covering wide altitudinal gradients and land-use classes (e.g. Evans 232 

et al. 2010; Rogora et al. 2008). In the UK, winters when NO3
-
 leaching to remote surface waters have 233 

been strongly associated with negative excursions in the winter North Atlantic Oscillation (NAO) Index, 234 

most likely due to low winter temperatures, lower than average rainfall and larger contributions from 235 

more polluted air masses originating from the European continent (Monteith et al. 2000; George et al. 236 

2004a). However, as soil temperature is a dominant driver, opposing inter-annual patterns in NO3
-
 237 

leaching may be observed in regions normally blanketed by snow in winter when they lack snow cover, 238 

since snow cover insulates the uppermost soil layer from the atmosphere (Groffman et al. 2009; Makoto 239 
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et al. 2013). Consequently, relationships between NO3
-
 leaching and the NAO index in the UK and in 240 

northern Europe may vary regionally (George et al. 2004b; Blenckner et al. 2007; de Wit et al. 2008).  241 

Over the last decade, trends in NO3
-
 concentrations in waters across the UK Upland Waters 242 

Monitoring Network have lost coherence and begun to diverge (Monteith et al., 2014). Inter-annual 243 

variation in NO3
-
 concentrations in some northern sites remains tightly linked to the winter NAO Index, 244 

and shows a long term (>20 years) increase consistent with the long term decline in the NAO over the 245 

same period (Fig. 3). At other sites further south, however, NO3
-
 concentrations, while still showing 246 

evidence of influence of the NAO on short term variability, are trending downwards (Fig. 3), possibly in 247 

response to more marked reductions in N deposition in this region. The divergence provides evidence for 248 

regional differences in the relative importance of N deposition and climate variability on NO3
- 
leaching to 249 

surface waters, with the latter exerting greater influence in areas where N deposition has been more 250 

stable.  251 

 252 

Cascading influences from terrestrial watersheds to estuaries 253 

 254 

Nitrogen losses from agricultural land are often several times higher than those from natural 255 

systems. In typical agrarian systems, exported N represents 10–40% (~25% on average) of net 256 

anthropogenic nitrogen inputs (Howarth et al. 2011), depending on the amounts of leachable NO3
–
 in the 257 

soil and surplus water to transport the solutes out of the watershed. Kopáček et al. (2013a, b) indicated 258 

that, in Slapy Reservoir, an ILTER site in central Europe, the reservoir of leachable NO3
–
 in agricultural 259 

and forested watersheds originates from both external (fertilization and atmospheric deposition) and 260 

internal (mineralization of soil organic N) sources, with relative contributions dependent on topography 261 

and land use practices such as drainage and tillage. Fluctuations in the export of N from Slapy Reservoir 262 

(Vltava river) from 1920–2010 were strongly related to the change in the mineralization of soil organic N 263 
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enhanced by more drainage of farmlands (up to 43%) rather than to the external N sources (Kopáček et al. 264 

(2013a, b). Boyer and Howarth (2002) evaluated the anthropogenic N source in large watersheds based on 265 

intensive monitoring of N cycles, indicating that fertilizer N inputs, N fixation in crop land and animal 266 

feed N imports were the dominant sources of Nr from agricultural land to the riverine N exports in sixteen 267 

large catchments of northeastern USA.  268 

At watershed, landscape and regional scales, cascades and interactions are key to understanding N 269 

dynamics. Riparian zones function as the interface (“buffer zone”) between terrestrial and aquatic 270 

ecosystems, and may act as either net sources or sinks of N depending on timescales, hydrological 271 

conditions and the history of N inputs. Anaerobic conditions in shallow groundwater in the riparian zone 272 

stimulate denitrification (microbial transformation of NO3
-
 to reduced gaseous forms such as N2O and N2), 273 

thus reducing the potential flux of NO3
-
 leaching to stream water (Chestnut and McDowell 2000). 274 

Hyporheic exchange, mixing saturated ground water (relatively anaerobic) with stream water (mostly 275 

aerobic), may provide “hot spots” for dynamic microbial N transformation near riparian boundaries and at 276 

the surfaces of channel beds (Shibata et al. 2004).  277 

A substantial proportion of Nr can be buried in accumulating sediments of lakes and swamps (Noe 278 

and Hupp 2005). However, sediment anoxia may lead to the reduction of NO3
-
 and nitrite (NO2

-
) to N2 (or 279 

N2O) by denitrification (Rissanen et al. 2011). Recently, “anaerobic ammonium oxidation” (anammox) 280 

has been identified as another process of N2 release under anoxic conditions (Jetten et al. 2005).  281 

In contrast to many freshwater systems, coastal systems may be N-limited as a consequence of 282 

eutrophication associated with high P inputs (Howarth and Marino 2006). Substantial denitrification rates 283 

have even been found in N-rich downstream riverine systems, whereas no comparable P-removal process 284 

occurs (Vermaat et al. 2012; Billen et al. 2009). Consequently, this may lead to N-limitation that 285 

enhances the dominance of diazotrophic cyanobacteria in periods when the high energy demand for 286 

N-fixation can be satisfied (Stal and Zehr 2008). This can even lead to temporal N limitation (Schubert et 287 
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al. 2010), whereby P-concentration increases during summer in response to the constant supply of P by 288 

runoff and release from the sediment (Figure 4; Schubert and Wasmund 2005). Further investigations of 289 

denitrification rates and their driving factors including regional comparisons of diverse riverine systems 290 

and their connections to marine systems would reduce the uncertainty of N budgets of coastal systems fed 291 

by terrestrial N inputs.  292 

 293 

IMPACT ON BIODIVERSITY AND HUMAN SOCIETY 294 

 295 

    As described above, increases of anthropogenic Nr emission and deposition substantially alter N 296 

pools, cycles and transport among ecosystems. The altered N behavior also influences structures and 297 

characteristics of organisms in natural ecosystems and anthropogenically dominated systems. Here we 298 

review how increased Nr affects (i) biological structures in the context of biodiversity and also (ii) human 299 

society in the context of human health and ecosystem services.  300 

 301 

Terrestrial biodiversity impacts 302 

 303 

Numerous studies have reported a decline in species diversity (vascular plants, lichens, mosses, 304 

phytoplankton microbes, etc.) associated with both N fertilization and N gradients across a range of 305 

different ecosystem types in forest and semi-natural areas (Clark and Tilman 2008; Bobbink et al. 2010). 306 

Clark and Tilman (2008) demonstrated that chronic low-level nitrogen addition (10 kg N ha
-1

 yr
-1

 above 307 

ambient atmospheric N deposition) reduced plant species numbers by 17% relative to controls receiving 308 

ambient N deposition based on the multi-decadal experiment of N fertilization in the grassland ecosystem 309 

of Cedar Creek LTER. Recent studies suggested that even low-level N deposition could influence the 310 

changes in ground vegetation (Johansson et al. 2012; Hedwall et al. 2013). Nitrogen pollution stimulates 311 



 

14 

 

competitive interactions that lead to compositional change, making conditions unfavorable for some 312 

species (Bobbink et al. 2010; Bobbink and Hettelingh, 2011). Deprivation of light and nutrients resulting 313 

from the increased cover of aggressive dominant species can outweigh the potential benefits of N 314 

fertilization for subordinate species. These changes in biodiversity can have cascading impacts on 315 

primary production, soil C storage, microbial activity, rates of decomposition, N mineralization and 316 

immobilization, tissue chemistry, trophic interactions (herbivory), and can ultimately disrupt ecosystem 317 

functions and services (Ochoa-Hueso et al. 2011; Dias et al. 2011). 318 

The sensitivity of terrestrial biodiversity to the deposition of oxidized and reduced N provides the 319 

basis for setting critical loads for N deposition both in Europe and North America (Cape et al. 2009; 320 

Pinho et al. 2011, 2012; Bobbink and Hettelingh, 2011). Independently-derived critical levels for lichens 321 

and moss diversity have been found to be similar for northern and southern Europe, thus emphasizing the 322 

universal applicability of these plant groups as ecological indicators of N deposition. Pardo et al. (2011) 323 

showed that, in the USA, empirical critical loads for N tend to increase according to the following 324 

sequence: lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, and trees. In several 325 

studies in the USA, lichens invariably showed the lowest NH3 critical levels (1 µg m
-3

) and N critical 326 

loads (1 kg N ha
-1

 yr
-1

) of all biological indicators (Jovan et al. 2012). 327 

Currently, there is no coordinated global observation system capable of providing real-time tracking 328 

of biodiversity change around the globe (Pereira et al. 2013). The scientific understanding of how 329 

biodiversity is reacting to increasing N inputs, and how this is affecting ecosystem resilience and 330 

ecosystem services remains limited. However, biodiversity seems to be a relatively sensitive metric for 331 

measuring the effects of N at the ecosystem level, i.e., loss of particular species from an ecosystem (Cape 332 

et al. 2009). Changes in biodiversity can also be used to help identify those species most sensitive to 333 

increased N. We expect that various assessments of biodiversity will exhibit differences in scalability, 334 

temporal sensitivity, feasibility, and relevance. 335 
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 336 

Human health 337 

 338 

Human-induced changes in response to changes in the N cycle also have both negative and positive 339 

implications for human health. The most obvious health benefit of increased use of Nr is decreased 340 

hunger and malnutrition through the use of fertilizers, while N-related air pollutants are hazardous for 341 

humans. Atmospheric N pollution can affect human health by increasing respiratory problems especially 342 

those caused by smaller particulate matter (PM2.5), since they have the ability to penetrate deeper into the 343 

respiratory tract. Approximately 40% of PMs are NH4
+
 and NO3

-
. High levels of atmospheric NOx lead to 344 

increases in tropospheric O3 that strongly affect human respiratory function (von Mutius 2000). In 345 

addition, high concentrations of NO2 in urban air can lengthen and worsen common viral infections such 346 

as human rhinovirus, significantly elevating the risks to asthmatics and individuals with compromised 347 

immune systems (Spannhake et al. 2002).  348 

Nitrogen also affects human health via water pollution. Concentrations of NO3
-
 in drinking water

 349 

exceeding
 
10 mg L

-1
 put children at risk of methemoglobinemia (“blue-baby” syndrome; Gupta et al. 350 

2000). Even nitrate levels below the WHO standard may stimulate the endogenous formation of 351 

N-nitrosamines (van Mannen et al. 1996), compounds strongly implicated in cancer risks. Long-term 352 

consumption of water with NO3
-
 concentrations of 6.3 mg L

-1
 and above has been linked to a higher risk 353 

for Non-Hodgkin’s lymphoma (Ward et al. 1996). In Iowa, rising NO3
-
 levels well below the 10 mg L

-1
 354 

standard were associated with an increased risk of bladder and ovarian cancers (Weyer et al. 2001). 355 

One way to maintain good nourishment of the human population while decreasing fertilizer 356 

consumption would be to reduce meat consumption and increase consumption of a diversity of vegetables. 357 

Typically most NO3
-
 exposure (86%) to humans comes from vegetables, whereas the primary contributors 358 

to nitrite (NO2
-
) intake are cured meats (39%), baked goods and cereals (34%), and vegetables (16%). It is 359 
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possible that a diet based on a diversity of vegetables provides man with adequate levels of NO2
-
 which 360 

contributes to the whole-body NO production and homeostasis (Landberg et al. 2011).  361 

Global food and feed trades are one of the important drivers of global, regional and local N 362 

circulation (Galloway et al. 2008). International trade in N has increased eightfold (from 3 to 24 Tg N) 363 

during 1961–2010 and a small number of countries (e.g., USA, Argentina and Brazil) currently feed much 364 

of the rest of the world in terms of proteins and N (Lassaletta et al. 2014). The spatial imbalance of 365 

production and consumption of feed and food contributes to the spatial imbalance of risk for human 366 

health and environment quality (e.g., animal feed imports from Africa, where the export of N contributed 367 

to N limitation of human food production with negative consequences for human health locally). Also, the 368 

influence of the global trade in N is more complex than merely the N flows associated with import or 369 

export of food and feed because part of the reactive N added by fertilizers and feed during the production 370 

of crop and animal products is lost to the environment, becoming a source of water and air pollution 371 

(Leach et al. 2012).  372 

 373 

Impact on societal and economic value 374 

 375 

The concept of ecosystem services (Millennium Ecosystem Assessment Board 2005) recognizes the 376 

vital importance of the natural environment and the biodiversity it supports in underpinning human 377 

wellbeing. The nitrogen cycle is central to several key ecosystem processes including: water quality 378 

regulation (regulating services); ecosystem productivity that is often limited by N (provision of services 379 

via food, timber, and fiber); C sequestration and control of N2O emissions (via climate regulation 380 

services). Nitrogen also indirectly impacts all ecosystem services through its influence on biodiversity 381 

(e.g. Suddick and Davidson 2012). Clearly, a range of N-related ecosystem services may be threatened by 382 

anthropogenic disturbances of biogeochemical cycles. 383 
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To date, economic valuation of N-related ecosystem services and human health has been conducted 384 

mainly in Europe and the USA (Compton et al. 2011; Sutton et al. 2011), while assessment in other 385 

region such as Asia-Pacific, Africa and South America is still limited and entails great uncertainty. The 386 

European Nitrogen Assessment (ENA) estimated that the highest social costs of N are associated with air 387 

pollution effects of NOx on human health (10 to 30€ per kg of N). A similar value ($28 per kg NOx-N) 388 

relating to the USA was obtained by Compton et al. (2011). The effects of N loss to water on aquatic 389 

ecosystems were evaluated by the ENA as: 5 to 20€ per kg of N. The ENA also estimated N-related 390 

environmental damage from agriculture in the EU to be 20 to 150 billion € year
-1

, which is comparable 391 

with a benefit of N-fertilizer for farmers of 10 to 100 billion € per year
-1

 (Sutton et al. 2011). 392 

 393 

THE NEED FOR INTERNATIONAL INTEGRATION OF LONG-TERM ECOSYSTEM 394 

RESEARCH 395 

 396 

Based on the above literature review, we propose that several areas require more attention to 397 

develop a better understanding and reduce uncertainties with respect to the environmental effects of N. 398 

The long-term monitoring and analysis of N deposition, N cycles in various ecosystems, 399 

biodiversity, and N export to water are needed to provide the fundamental information necessary to 400 

address a spectrum of research questions concerning N dynamics in coupled human and ecological 401 

systems (Robertson et al. 2012; Driscoll et al. 2012). Modeling and analysis coupled with long-term 402 

monitoring and field experiments provide powerful research tools to help understand the dynamic features 403 

of the N cycle driven by multiple environmental factors, and to address new parameters to be monitored 404 

or examined (e.g., Aber et al. 2002; Driscoll et al. 2003). There are clearly regional research gaps in the 405 

context of long-term site-based research on N biogeochemistry: East Asia, South America and Africa (e.g. 406 

Anderson et al. 2012; Urakawa et al. 2012) where increased Nr pollution has been predicted for the 407 
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coming decades (Galloway et al. 2004). Also, long-term research sites in agricultural and urban 408 

ecosystems are currently limited despite their large importance in global N cycles. Increased international 409 

collaboration and integration offers the potential for further significant scientific advances, particularly 410 

with respect to the elucidation of: (i) responses of N2O emission to elevated Nr inputs; (ii) biodiversity 411 

changes associated with changes in N deposition; (iii) spatial heterogeneity of temporal trends among 412 

different deposited N species; (iv) spatial patterns in N leaching from a wide spectrum of catchments 413 

including a range of altitudinal and latitudinal gradients and different land-use types; (v) long-term trends 414 

in N concentrations in surface waters and potential linkages with inter-annual climate change.  415 

Second, studying N dynamics at the ecosystem level should be coupled with socio-economic issues. 416 

Reactive nitrogen in the environment presents society with a global problem that must be addressed at a 417 

global scale over the long-term by uniting the analyses of natural and human systems. Continued 418 

maintenance of our best long-term environmental observation systems and the development of new 419 

long-term experiments will be necessary to clarify these complex interactions and their long- and 420 

short-term impacts.  421 

At the international scale, our environmental observation capacity remains extremely limited. Based 422 

on the analysis in this review, some research questions have emerged:  423 

- To what extent do ecosystems exhibit common or unique responses to elevated Nr across different 424 

environmental and social landscapes? 425 

- What features of socio-ecological N interactions are likely to be most sensitive to global changes in 426 

human population and climate? 427 

- What are the political and management options to mitigate or adapt the N-related social issues (e.g.  428 

diet, human health and ecosystem services)? 429 

- Will future climate change have major impacts on N biogeochemistry, and what feedbacks from N 430 

cycling will be most important in influencing the climate? 431 



 

19 

 

Even though the answers to these questions remain unclear, some strategies need to be developed. 432 

For example, some previous studies have suggested that very sensitive organisms, such as lichens and 433 

mosses could be effective early warning indicators of atmospheric Nr pollution in the early stages of 434 

anthropogenic disturbance of N cycles in an ecosystem (Pinho et al. 2011). The functional diversity of 435 

lichens and/or mosses coupled with measures of their nitrogen content and isotopic composition have the 436 

potential to be explicit spatial indicators of the early effects of Nr pollution., It would therefore be 437 

possible to use lichens and mosses in the long-term ecological site to develop an early-warning biological 438 

monitoring system of atmospheric N pollution in regional and global scales. Other responses of 439 

ecosystem structure and functioning to altered N cycle often vary among sites, influenced not only by 440 

current driving factors but also by long-term socio-ecological legacies (Aber et al. 1998). Therefore, 441 

investigations need to include international comparisons of the impact of socio-ecological legacies on 442 

current N cycling processes by analyzing the relationship between current monitoring data and previous 443 

land history and other parameters. The historical records of site-management, land-use, natural 444 

disturbances, climate, atmospheric deposition, etc. should be used to help to understand how historical 445 

factors are affecting current N cycles. Such analyses should be facilitated by using the results from 446 

long-term ecological sites such as the ILTER worldwide network. Meta-analysis of comprehensive and 447 

integrated N databases and the organization of workshops on focused topics using international 448 

researchers networks (e.g. ILTER) should be encouraged. The outcomes of collaborative international 449 

research should also include analyses of the complete spectrum of socio-ecological factors related to N. 450 

This information must to be provided to both the scientific community as well as other stakeholders, 451 

including policy makers. 452 

 453 
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Fig.1 Conceptual framework of Nitrogen (N) biogeochemistry in coupled human and ecological systems 

in this review. Black arrows indicate anthropogenic disturbance and ecosystem feedbacks among both 

systems. White arrows represent dominant reactive nitrogen (Nr) flow; Nr deposition, Biological N  

fixation (BNF), N leaching and emission of nitrous oxide (N2O). Blue arrow shows N cycles among 

plant-soil-microbe systems.   
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Fig.2 Global (left panel) and continental (right panel) annual rates of Nr (NOx-N + NH3-N) emissions 

(derived from Kopáček and Posch, 2011). 
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Fig. 3 Long-term observation of nitrate concentrations in 3 small upland UK lakes (The UK Upland 

Waters Monitoring Network).  

From the top, the sites are Round Loch of Glenhead (southwest Scotland), Scoat Tarn (English Lake 

District), and Llyn Llagi (North Wales - Snowdonia). The blue circles represent the annual means of 

seasonal (4 samples per year) nitrate concentrations. The open red circles represent the December to 

March North Atlantic Oscillation Index. The NAO scale is reversed so the most negative values are 

uppermost.   
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Fig. 4 Seasonality of dissolved nutrient concentration, temperature and phytoplankton biomass in a 

coastal water body. Shown are seasonal changes in dissolved inorganic nitrogen (DIN in µmol L
-1

; open 

circles), ortho-phosphate (o-PO4 in µmol L
-1

; closed circles), temperature (T in °C; grey background area), 

DIN/o-PO4 ratio (bars; upper panel) and phytoplankton biomass (µm
3
 L

-1
, lower panel, resolved for main 

taxonomic groups) of a coastal inlet (Kubitzer Bodden and Strelasund, Southern Baltic Sea coast, 

Germany). All values are averages over a 10-year period (1988-1999). For further details see Schubert 

and Wasmund (2005). 




