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Abstract The degradation of natural fish habitat in the ocean implies lost economic benefits. These

value losses often are not measured or anticipated fully, and therefore they are mainly ignored in

decisions to develop the coast for industrial or residential purposes. In such circumstances, the

ocean habitat and its associated ecosystem are treated as if they are worthless. Measures of actual

or potential economic values generated by fisheries in commercial markets can be used to assess a

conservative (lower-bound) value of ocean habitat. With this information, one can begin to com-

pare the values of coastal developments to the values of foregone ocean habitat in order to help

understand whether development would be justified economically. In this paper, we focus on the

economic value associated with the harvesting of commercial fish stocks as a relevant case for

the Saudi Arabian portion of the Red Sea. We describe first the conceptual basis behind supply-side

approaches to economic valuation. Next we review the literature on the use of these methods for

valuing ocean habitat. We provide an example based on recent research assessing the bioeconomic

status of the traditional fisheries of the Red Sea in the Kingdom of Saudi Arabia (KSA). We esti-

mate the economic value of ecosystem services provided by the KSA Red Sea coral reefs, finding

that annual per-unit values supporting the traditional fisheries only are on the order of $7000/

km2. Finally, we develop some recommendations for refining future applications of these methods

to the Red Sea environment and for further research.
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1. Introduction

Humans depend upon the natural resources of the Red Sea,
including its fish stocks (PERSGA, 2002). Red Sea fish stocks
are exploited for both subsistence and commerce. They may

also be used for recreation (Gladstone et al., 2012). Economic
value is generated by all of these activities.

While humans have been living and using the resources of

the Red Sea coast for many millennia, development has be-
come more extensive–even industrialized–in recent years, espe-
cially along the Red Sea coast of the Kingdom of Saudi Arabia
ing Saud University.
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Figure 2a Well-managed (rationalized) fishery with price equal

to marginal cost (MC). The market equilibrium occurs at price, p0,

and harvest, h0. Both consumer surplus (CS) and producer surplus

(PS) are realized. If all fishing vessels are identical, in terms of both

capital and labor (including fishing skills and knowledge), then the

producer surplus comprises the resource rent.

Figure 1 Economic and ecological production functions.
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(KSA). In some cases, this development has led to the degra-
dation of natural fish habitat, including the loss of mangrove
wetlands, seagrass beds, and coral reefs (Kotb, 2010; Glad-

stone et al., 2006). Moreover, coastal development can lead
to increased sedimentation due to erosion and to nutrient re-
leases from industrial effluents or sewage disposals. Sediments

and nutrient loads affect water quality adversely, thereby fur-
ther degrading fish habitat (El Sayyed, 2008).

The degradation or loss of natural fish habitat implies

losses in economic values. Commercial, subsistence, and recre-
ational fisheries are all affected adversely. In most cases, this
loss in value is not measured or anticipated fully, and therefore
it is often ignored in decisions to develop the coast. In effect,

the ocean habitat, here including coastal wetlands, the seabed
and its flora, coral reefs, ocean waters, and the associated eco-
system, is treated as if it may be worthless (i.e., as if it has no

price).
Importantly, measures of the economic value generated by

fisheries can be used to estimate the value of the ocean habitat

that supports fish stocks. These measures are commonly
known as ‘‘supply-side’’ or ‘‘productivity’’ approaches to hab-
itat valuation (Barbier, 2007; McConnell and Bockstael, 2005).

These measures can be utilized to impute a conservative (lower
bound) value on ocean habitat. (This value is conservative be-
cause ocean habitat may be a source of value for other ocean
uses, including recreation and passive, non-market benefits.)

With this information, the value of coastal development can
be compared to the value of potentially foregone ocean habitat
in order to determine whether the development would be jus-

tified economically.
In this paper, we focus on the economic value associated

with the exploitation of commercial fish stocks as the most rel-

evant case for the Saudi Arabian portion of the Red Sea. Sim-
ilar methods may apply to recreational fisheries (Bell, 1997) or,
more broadly, to other uses of the ocean or functions of hab-

itat (Barbier et al., 2011). The precise sources and measures of
economic value may depend upon the type of use under con-
sideration, however (Barbier et al., 2008).

We describe first the conceptual basis behind supply-side

approaches to valuation. Next we review the literature on
the use of these methods for valuing ocean habitat. We con-
sider an example based on recent research assessing the bio-

economic status of the traditional fisheries of the Red Sea in
the Kingdom of Saudi Arabia. Finally, we develop some rec-
ommendations for the application of these methods to the Sau-

di Arabian Red Sea environment.

2. Commercial fisheries and resource rents

The commercial harvesting of fish stocks results in the produc-
tion of seafood as an economic commodity. Using a commer-
cial fishing technology, sometimes referred to as a ‘‘black
box,’’ fishermen produce seafood by combining factors of pro-

duction, including labor, experience and knowledge, fishing
vessels, fuel, nets, bait, ice, and other inputs (Fig. 1). Fish as
seafood may be sold as it is or processed for value-added.1

Economic surpluses result from the harvest of fish stocks.
In a well-managed fishery, these surpluses are distributed be-
1 Artisanal fishermen may harvest fish for subsistence purposes.

Although such fish do not enter a formal market, they are still to be

regarded as an economic commodity.
tween fishermen (as producers) and seafood consumers. Taken
together, producer and consumer surpluses are the economic
measure of value for a commercial fishery (Fig. 2a). Producer
surplus is equivalent to the revenues earned from selling catch

net of all costs of fishing. Producer surplus is represented by
the area below price and above the supply schedule. Consumer
surplus is evaluated as what consumers are willing to pay for

seafood, less what they actually pay in the market. Consumer
surplus is represented by the area below the demand schedule
and above price.

One element of the producer surplus is known as the ‘‘re-
source rent.’’ Resource rent is the cost of fish utilized as an in-
put in the production of seafood as a commodity. Resource

rent implies that fish have a price, although nature does not
charge fishermen this price when fish are removed from their
habitat. Because fish both grow and reproduce, the removal
of fish from the ocean by harvesting imposes a dynamic cost

that depends upon the size of the relevant population; it is this
‘‘user cost’’ that comprises resource rent.2 Because this price is
2 The resource rent can be interpreted as the value of the ecosystem

‘‘service’’ as embodied in wild fish stocks, per se (see below). This

review is focused more generally on measures of the value of the

ecosystem or habitat that supports wild fish stocks.



igure 2b Open-access fishery with price equal to average cost

AC). The market equilibrium occurs at price, pAC and harvest,

AC. Average cost comprises a backward-bending supply curve.

here is no producer surplus, and therefore no resource rent, and

nly consumer surplus (CS) is realized.
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not exacted by nature, and it must be estimated by humans, it
is sometimes referred to as a ‘‘shadow price.’’

A fish stock, X, is a renewable resource. The fish stock is

capable of growth, i.e., there is a dynamic ‘‘flow’’ of fish, where
_X denotes the change in the stock per unit of time, which de-
pends upon the size of the stock at any point in time:

_X ¼ FðXÞ

Typically the growth of the fish stock, F(X), increases at low

stock sizes, reaches a peak at a level known as ‘‘maximum sus-
tainable yield’’ (MSY), and decreases until the stock reaches its
ecological ‘‘carrying capacity.’’ Fish harvest, h(E,X), is a func-

tion of both fishing effort, E,3 and stock size, X, and it removes
biomass from the stock:

_X ¼ FðXÞ � hðE;XÞ

Fish may be harvested from the ecosystem at a cost, c(X),
that depends inversely upon the size of the stock. Fish that

have been harvested are delivered to a market, where they
fetch a price, p(h), which depends upon the demand for and
the supply of fish. In steady-state equilibrium, or at any point

in time on a path to equilibrium, it is economically optimal to
harvest the fish stock so that the discounted sum of net social
benefits (i.e., economic surpluses) per period is maximized.

Under the optimal condition, the marginal revenue of harvest
equals the marginal cost of harvest, c(X), plus the user cost (the
resource rent), l. Thus, for a constant price of fish at the dock,
p, the resource rent is:

l ¼ p� cðXÞ

At the economic optimum, fish should be harvested accord-
ing to the following ‘‘modified golden rule’’:

d ¼ FX �
cXF

l

This rule states that the difference between an incremental
‘‘investment’’ in the fish stock in situ, FX (by letting it continue
to grow in the ocean), and the incremental gain from harvest-

ing it now, cXF/l, must equal the discount rate, d (Munro and
Scott, 1985).

Because there is no market for fish prior to harvest in their

natural environment, in an unregulated fishery, fishermen treat
fish as an unpriced input in the production of seafood (Fig. 1).
Fishermen fish more than they should because the absence of a

price on fish in the ocean is perceived as an implicit subsidy in
the production of seafood. In such a situation, competition
among fishermen for the fish reduces the stock and increases

the cost of fishing so that resource rents dissipate (and there-
fore l = 0). This competition leads to excessive fishing effort
(too many vessels and too much labor) and drives stocks to
levels that are too low from society’s point of view (Fig. 2b).

The optimization of economic surpluses requires the imple-
mentation of appropriate regulations (often referred to as
‘‘conservation and management measures’’) in the fishery.

Many different types of fishery regulations have been devised,
but only a few have the potential to optimize economic sur-
pluses. Economically optimal measures impute a price to the

fish, through either the imposition of taxes on harvests or on
3 Fishing effort here is a composite variable representing all of the

inputs (other than fish) in the harvest of fish.
F

(

h
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o

fishing effort or the assignment of transferable rights in shares

of allowable catch (quota rights) or in fishing areas.
Commercially exploited fish stocks depend upon the ocean

habitat (or ecosystem), O, where they are found, including wet-
lands, coral reefs, the seafloor, seagrass beds, water quality,

ecological relationships, and sources of food. Analogous to
the ‘‘black box’’ representing the economic technology for pro-
ducing seafood from an array of inputs, we define a ‘‘blue box’’

to represent the ecological ‘‘technology’’ for producing fish in
the sea from components comprising ocean habitat (Fig. 1).
Indeed, ocean habitat is a sine qua non of the fishery, and

the carrying capacity, K, of the environment may be viewed
as a positive function of habitat, possibly with diminishing re-
turns: {K(O): K0 > 0, K00 6 0}. Further, because the growth of

the fish stock depends upon the carrying capacity of the eco-
system, growth could be modeled explicitly as a function of
ocean habitat as well: F(X,O).
3. Ocean habitat and ecosystem services

Because ocean habitat supports commercial fish stocks, ocean
habitat can be conceived as another type of input in the pro-

duction of seafood. Under this interpretation, ocean habitat
provides what is often referred to as an ‘‘ecosystem service.’’
In theory, ocean habitat can be partitioned into its component

parts, and each of these components can be interpreted to pro-
vide an ecosystem service. Typically, there is much uncertainty
about the blue box technology, i.e., how these components

interact to produce the composite ocean habitat. Further, there
may be either natural or human-induced variations in the com-
ponents. Finally, there may be inexact measures of the ecolog-
ical contribution of each of these components (i.e., early

studies modeled wetland acreage as the only relevant proxy
for habitat, and even some modern studies find a similar result
(Aburto-Oropeza et al., 2008)).

In theory, the economic surpluses that result from the com-
mercial harvesting of fish can be imputed to the ocean habitat
in aggregate (or to its components individually), thereby

assigning an economic value to the ocean habitat as an ecosys-
tem service. This method of valuing the ecosystem services of
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ocean habitat is called the ‘‘productivity approach’’.4 It is
appropriate to impute both producer and consumer surpluses
in the downstream seafood markets to measure the value of

ecosystem services. In practical applications, however, because
of data limitations or ecological uncertainties, often only a
portion of surpluses, such as resource rents, are used as a mea-

sure of value. Finally, value can be imputed either to the fish
stock, the ocean habitat supporting the fish stock, or the indi-
vidual components comprising ocean habitat. Assigning value

to more than one of these three types of services simulta-
neously would lead to a double-counting of values.

The productivity approach is a supply-side method for val-
uing ecosystem services (Ellis and Fisher, 1987). It should be

contrasted with other valuation approaches that focus on the
willingness-to-pay (WTP) for the non-marketed attributes of
the ocean ecosystem.5 WTP approaches include the travel cost,

hedonic pricing, and contingent valuation methods of estimat-
ing the benefits to individuals or firms. In situations where a
total economic value (TEV) is being estimated, it may be

appropriate to apply multiple valuation methods, such as com-
bining the productivity and WTP approaches.6 DeGroot et al.
(2012) review and summarize recent estimates of TEVs for eco-

system components, including those for open oceans, coral
reefs, coastal systems, and coastal wetlands, emphasizing the
uncertain and contextual nature of the estimates.

In developing a productivity measure of the value of ocean

ecosystem services, it is important to include all of the fisheries
that are supported by the ocean habitat. The development of
such a comprehensive productivity measure raises questions

about the optimal mix of fisheries, where gear conflicts, by-
catch, or other external costs may arise among disparate fish-
ery sectors or fleets.

In the prototypical case in which market price is unaffected
by supply from the fishery, the use of supply-side measures to
value the ecosystem services provided by ocean habitat de-

pends crucially upon whether fish are managed very well. If
the fishery is unregulated, and the fish are thereby overex-
ploited, the value imputed to the habitat would be diminished
considerably. In such a case, economic surpluses would be lim-

ited to those accruing only to the more skilled fishermen (so-
called ‘‘highliner’’ rents). Where fishermen are similar in terms
of skills, technology, and behavior, theory suggests that re-

source rents would be dissipated completely. Consequently,
the imputed value of the habitat would be close to zero (cf.,
Lynne et al., 1981). Where a fishery is regulated to maximize

the net social benefit, the value of the ocean habitat supporting
the fishery is also thereby maximized.

The ocean can be of varying quality for fishery habitat,
depending upon its natural characteristics, the nature of
4 This methodology is also referred to as the ‘‘production function

approach’’(Mäler, 1991; Barbier, 1994), ‘‘valuing the environment as

an input’’ (Ellis and Fisher, 1987), or a ‘‘natural production function’’

(Bell, 1998).
5 Another valuation approach is referred to as the replacement cost

approach. This approach measures the cost of a substitute for a

natural function, such as the costs of water treatments, wetland

restoration, or the construction of artificial habitat (Milon, 1989).
6 Further, a complete measure, also known as total economic value

(TEV), would take into consideration the value of the ocean as an

input into all other human uses of the ocean, such as for waste

disposal, for shipping, for recreation, or as an aesthetic resource (e.g.,

ocean views).
ecological relationships, and the extent of human influences.
Although it is obvious that the characteristics of habitat
provide support for fish stocks, in many cases the physical,

chemical, and ecological relationships between the habitat
and the growth and maintenance of fish stocks are poorly
understood. Consequently, it can be problematic to under-

stand how changes in habitat lead to changes in fish stocks
(Armstrong and Falk-Peterson, 2008).

In many applications, stakeholders and decision-makers are

interested in estimating the economic damages associated with
changes to habitat. For example, the loss of wetlands due to
coastal development could lead to changes in the stock size
of fisheries that depend upon the wetlands as nurseries, for

protection from predators, or as a source of food. In these sit-
uations, it is critically important to understand the physical,
chemical, and ecological relationships. Further, there may be

value to undertaking scientific research that uncovers the nat-
ure of these relationships (Barbier et al., 2008).

4. Consumer surplus in seafood markets and distributional

effects

Where the demand for fish is inelastic, it is important to con-

sider the distributional effects of management measures. Free-
man (1991) has shown that there could be a larger surplus gain
from the improvement of habitat in an open-access fishery

than in a well-managed fishery. In seafood markets where price
is inelastic, an increase in habitat shifts both average and mar-
ginal costs down. In the open-access case, average cost pro-
vides the relevant supply schedule. There are no resource

rent gains in this case, because rents have been dissipated com-
pletely. Consequently, only consumer surplus gains are real-
ized as price decreases when average cost shifts down

(Fig. 3a). On the other hand, in the well-managed fishery, mar-
ginal cost is the relevant supply schedule. There are surplus
gains to both producers and consumers (a portion of consumer

surplus gains actually are a transfer from producers and
igure 3a Open-access fishery with price equal to average cost,

s in Fig. 2b. The initial market equilibrium occurs at price, p0 and

arvest, h0. Improvements in ocean habitat lead to an expansion

f the target fish biomass, reflected in a shift of average cost to the

ight, from AC0 to AC1. The new market equilibrium occurs at p1
nd h1, where yields are greater and price is lower. Even with these

hifts, which could lead to a larger consumer surplus, there is no
F

a

h

o

r

a

s

resource rent.



Figure 3b Well-managed (rationalized) fishery with price equal

to marginal cost (MC), as in Fig. 2a. The initial market

equilibrium occurs at price, p0 and harvest, h0. Improvements in

ocean habitat lead to an expansion of the target fish biomass,

reflected in a shift of marginal cost to the right, fromMC0 to MC1.

The new market equilibrium occurs at p1 and h1, where yields are

greater and price is lower. At the new equilibrium, there are

increases in combined consumer and producer surpluses, resource

rents are realized, and there is a partial transfer of surpluses from

producers to consumers.

igure 4 An open-access fisherywith an expansion of demand due

o an increase in seafood quality in combination with improvements

ocean habitat. (Note that higher seafood quality could be a

onsequence of the habitat improvements.) The initial market

quilibrium occurs at price, p0 and harvest, h0. Demand expands

rom D0 to D1 because of higher seafood quality, and average cost

hifts to the right, from AC0 to AC1, due to habitat improvements.

he new market equilibrium occurs at p1 and h1, where yields are

uch lower and price is much higher. Consumer surpluses (the only

ource of value in an open-access fishery), reflected after the shifts by

he area below D1 and above p1, has declined significantly as a

onsequence of environmental improvements.

7 Gosselink et al. (1974) attempt to value the energy flow through a

marsh as represented by estimates of primary productivity. The

authors use a controversial ‘‘life support’’ approach to value energy

flows, using a price of energy obtained by dividing GNP by domestic

energy consumption. The application of this approach yields estimates
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therefore do not count as a social gain) (Fig. 3b). Freeman

shows that it is theoretically possible that the gains to con-
sumer surplus in the open-access fishery exceed the combined
gains to producer and consumer surpluses in the well-managed

fishery.
Thus, in the case of a commodity where demand is rela-

tively unresponsive to price changes (i.e., there may be few

close substitutes), there may be significant gains from improve-
ments in habitat. As a corollary to this finding, there may be
larger losses (again to consumer surplus) from the degradation

of habitat in the open-access case with inelastic demand. Con-
sequently, in such a situation, a policy to manage fisheries to
maximize economic yield should lead to smaller losses relative
to open-access when faced with impending or ongoing habitat

degradation.
McConnell and Strand (1989) consider a different (‘‘de-

mand side’’) case where seafood demand is affected by water

quality. They show that, in the open-access case, where con-
sumer surplus is the only relevant measure of welfare, improve-
ments in water quality in theory could expand demand to the

point where the fishery is seriously overexploited, raising price
and lowering harvests. In the extreme, improvements in water
quality could actually decrease welfare (Fig. 4). The corollary
to this finding suggests that the loss of ocean habitat, as mea-

sured by the degradation of water quality, could lower seafood
quality, thereby contracting demand, and improve welfare as
price drops and harvests increase.
on the same order of magnitude as those developed by examining sales,

expenditures, and avoided costs of waste treatment. The life-support

approach has been criticized by economists as an inappropriate

‘‘energy theory of value,’’ in which energy content is incapable of

reflecting relative scarcity the way prices do in a market economy

(Shabman and Batie, 1978; Huettner, 1976). Intuitively, the ‘‘price’’ of

energy calculated using this approach cannot adjust to reflect surplus

or scarcity relative to other goods and services precisely because it is

fixed.
5. Valuing ecosystem services

Some of the earliest efforts at valuing ecosystem services are

now widely regarded as methodologically inadequate or even
invalid. Among these were efforts to estimate the energy flow
through wetlands using an energy theory of value (Gosselink
F

t

in

c

e

f

s

T

m

s

t

c

et al., 1974).7 Nevertheless, these early efforts served an impor-
tant purpose in motivating economic research on the produc-
tivity approach. In this section, we examine three supply-side

approaches to valuing ecosystem services, and, in the next sec-
tion, we present an example of the use of these approaches for
the traditional fisheries of the Red Sea. To enhance compari-

sons, all value estimates in this paper have been adjusted to
2012 US dollars, using an exchange rate of SAR3.75/$1.00
and deflating with the US Consumer Price Index.

5.1. The total value approach

An early effort to value ocean habitat was sponsored in the
early 1970s by the Center for Wetland Resources at Louisiana

State University (LSU) (Pope and Gosselink, 1973; Gosselink
et al., 1974). LSU researchers developed estimates of the value
of tidal wetlands using estimates of: (i) wild harvest shellfish

sales and value-added per acre; (ii) expenditures for saltwater
fishing, hunting, and boating per acre; (iii) potential cultured
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shellfish sales and value-added per acre; and (iv) the avoided
costs of secondary and tertiary treatment of domestic waste
and the avoided costs of phosphorous removal from domestic

waste. Combining estimates of commercial and sport fisheries,
intensive oyster culture, and tertiary treatment, these authors
estimate a value of $18,875 per acre of wetlands. Food produc-

tion, in the form of wild harvest and cultured shellfish, repre-
sent about 40 percent of the total, or $7550 per acre.

A second effort to value ocean habitat was subsequently

published by two scientists at the US Environmental Protec-
tion Agency (Tihansky and Meade, 1976).8 These authors esti-
mated the value of US estuaries by calculating estuary acreage
and dividing it into the exvessel value (the value of––typically

unprocessed or minimally processed––seafood landed at the
dock) of those fish and shellfish known to be dependent upon
estuaries. Importantly, they attempt to take into consideration

all of the fisheries and shellfisheries that depend upon the estu-
arine type of ocean habitat. In this approach, the sales value of
those fisheries dependent upon estuaries (estimated to be about

$4.2 billion for the United States in 1967) embodies the value
of the estuaries. For US estuaries, the authors estimate a cap-
italized value9 of $4920 per acre (2012 dollars). Using this

method, the authors examine the relative productivity of estu-
aries in alternative locations, for example, finding per acre val-
ues of $58,000 for San Francisco Bay; $41,200 for Delaware
Bay; $26,000 for Penobscot Bay; $16,000 for Tampa Bay;

and $7800 for Narragansett Bay (all estimates are expressed
in 2012 dollars).

These publications were criticized heavily by economists,

who were quick to point out conceptually more appropriate
methods from the field of economics (Shabman and Batie,
1978; Batie and Shabman, 1982). In particular, the following

needs were identified:

1. Economic surpluses, not commercial sales, are the relevant

measure of economic value.
2. The size of fish stocks should be linked explicitly to the rele-

vant habitat, while holding the effects of fishing effort on
stock size constant. In other words, it is important to under-

stand the relationship between the geographicmeasure of the
habitat and its ecosystem services. Further, fishing effort is a
partial substitute for habitat in the production of fish.

3. The focus should be on the effects of marginal changes in
the value of habitat (Batie and Wilson, 1978), not the value
of the entire habitat.10 (Note that it is unlikely that all tidal

wetlands would be lost to development, and, even if that
were to be the case, some fisheries would continue to be
viable.)

4. Variations in the productivity of habitat in different loca-

tions should be considered.
8 These authors refer to even earlier effort by ecologists at the

University of Georgia to value estuaries and salt marshes using a

similar methodology.
9 The authors use a discount rate of 10% to capitalize annual gross

revenues per acre of estuary; here, we re-express their estimates using a

discount rate of 5%.
10 The same issue resurfaced in a more recent attempt to value the

world’s ecosystem services and natural capital (Costanza et al., 1997),

and it received the same criticism. In the Costanza et al. (1997) study,

estuaries receive an average annual value of $14,245 per acre (adjusted

to 2012 dollars). Food production represents only about two percent

of this figure.
5. The cost of putting in place potential habitat substitutes

(e.g., artificial reefs, restored wetlands, and restocking pro-
grams) might be considered as an alternative to using eco-
nomic surpluses as a measure of value. (Note that the

substitutes must provide similar levels and qualities of eco-
system services, and they must cost less than any foregone
surpluses.)

Even with these criticisms, the total value approach contin-
ues to be used, as it is one of the simplest methodologies, rep-
resenting basically a way of standardizing data on the value of

fish harvests. For example, White et al. (2000) use the ap-
proach to estimate the economic losses associated with coral
reef destruction in the Philippines. The authors multiply the

average price of sustainable fisheries for local consumption
times a production range to develop an estimate of the value
range for coral reefs of $24,000/km2 to 70,000/km2 (2012
dollars).

5.2. The marginal productivity approach

A number of authors have taken an approach based on pro-

duction theory to evaluate the marginal productivity of ocean
habitat in steady-state (Aburto-Oropeza et al., 2008; McAr-
thur and Boland, 2006; Barbier and Strand, 1998; Bell, 1989;

Lynne et al., 1981; Batie and Wilson, 1978). The marginal pro-
ductivity approach is practical in the sense that it does not as-
sume that a fishery is being managed optimally. (As a

consequence, the imputed values for ocean habitat sometimes
can be quite small.)

An obvious initial choice for a production function is the
Cobb–Douglas form, and several authors have modeled the

value of ocean habitat using it (Bell, 1997; Batie and Wilson,
1978). The harvest of fish in period t is written as:

ht ¼ cEa
t O

b
t ;

where the sum a + b determines the type of returns to scale,

and c is a (catchability) constant. The Cobb–Douglas form is
well-known to economists, but it does not rely explicitly upon
renewable resource theory. It may be appropriate for analyzing
data that lie within a narrow range.

An alternative specification is to estimate the parameters of
a production function in which the biological growth of a fish
stock has been taken into account (Lynne et al., 1981). In the

literature, this is commonly referred to as a Gordon-Schaefer
production function. To start, a model of the relationship be-
tween ocean habitat and the productivity of the fish stock is

hypothesized. This relationship typically takes the ecological
carrying capacity, Kt, to vary in each period as a function of
some measure of ocean habitat, Ot:

11

Kt ¼ fðOtÞ

A typical Schaefer production function for the harvest, ht,
of fish in any period is written as:

ht ¼ qEtXtðfðOtÞÞ;

where Et is a composite measure of fishing effort. The fish
stock is assumed to grow logistically:
11 Many of the relevant studies examine wetland acreage as the

measure of habitat, and this function typically is specified simply as

Kt = aÆlnOt, where a is a parameter to be estimated.



13 Strictly speaking, the resource rent accounts for the dynamic stock

effects in a fishery, whereas the residual rent is a measure of static

revenue minus cost. Tihansky and Meade (1976) first suggested

calculating the resource rent as a ‘‘residual’’ when all of the costs of

fishing effort are subtracted from total revenues. Because resource rent

is a function of the state of the fishery, this residual rent method has

been utilized rarely (but see Lange (1993) for an application to green

accounting). In theory, open-access fisheries dissipate resource rents,
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@Xt

@t
¼ rXtð1�

Xt

fðOtÞ
Þ

At steady-state, fish harvest equals stock growth, and harvest
can be written as a function of ocean habitat and fishing effort:

ht ¼ qfðOtÞEt �
q2

r
ðfðOtÞE2

t Þ

Assuming a functional form for f(Æ), the parameters of this
equation can be estimated, using data on fish catch, measures
of ocean habitat, such as coral reef, seagrass or mangrove acre-

age, and fishing effort.
Where the price of seafood is pt, the marginal value product

of ocean habitat can be calculated as:

MVPO ¼ pt
@ht
@Ot

MVPO can be interpreted as the price of the ecosystem ser-
vices of the ocean habitat in the support of fish stocks. Table 1

presents some alternative estimates of MVPO from a number
of authors, showing the wide range of estimates of the value
of ocean habitat.

There are a number of variations to the marginal productiv-
ity approach that have been introduced. Employing a Gor-
don–Schaefer production function for valuing the

productivity of salt marshes in yields of blue crabs, Lynne
et al. (1981) include harvest in the previous period, ht�1, as
an additional explanatory variable. This variable in effect rep-
resents a distributed lag of the effects of ocean habitat and fish-

ing effort in the previous period (Bell, 1989). The addition of
this variable improves model fit slightly, but increases the stan-
dard errors of the estimated parameter values.

Employing a Cobb–Douglas production function to model
oyster yields in Virginia, Batie and Wilson (1978) examine the
marginal productivities of wetland acres and salinity as proxies

for habitat. The authors find only that fishing effort and salin-
ity are significant predictors of oyster yields. Notably, the
dataset is limited to cross-sectional data for Virginia counties
in only one year.

Barbier and Strand (1998) employ a Gordon–Schaefer pro-
duction function that incorporates an unusual formulation for
the fishery growth function. The authors examine the marginal

productivity of mangrove wetlands for the shrimp fishery in
Campeche, Mexico. They modify the logistic function as
follows:

@Xt

@t
¼ rXtðfðOtÞ � XtÞ

This equation behaves in the same manner as the more typ-
ical Schaefer formulation, although, for identical parameter
values, its effect is to amplify the effects of intrinsic growth

and the size of the stock.12 At steady-state, the harvest func-
tion is written as:

ht ¼ qfðOtÞEt �
q2

r
E2

Because the carrying capacity as a function of ocean habitat
does not appear in the second term on the right-hand side, the

marginal value product is affected only positively by ocean
habitat. As a consequence, the imputed value of wetland hab-
itat is much larger than that estimated using the more conven-

tional logistic form.
12 This formulation may make sense for an annual crop species such

as shrimp.
The marginal productivity approach uses a constant price
and makes no assumptions about the presence of resource
rents. This approach can be extended to the cases of inelastic

demand, expansion of demand, and optimal regulation, or
all three. Using water quality as a measure of ocean habitat,
McConnell and Strand (1989) extend the marginal productiv-

ity approach by showing the change in social returns for an
improvement in water quality. In their presentation, an inelas-
tic demand shifts out because increases in water quality lead to

higher quality seafood. Moreover, marginal cost shifts down,
increasing the resource rent, because of the increased produc-
tivity of the habitat. The net benefits are calculated as changes
in the relevant areas between old and new demands and old

and new marginal costs.
Barbier (2003) employs a similar approach to evaluate

changes in mangrove loss for fisheries exhibiting inelastic de-

mand in Thailand. Here, because of the open-access nature
of the Thai fisheries, changes in consumer surplus only are
the relevant measures of the value of changes in mangroves

as habitat. The author measures the welfare impacts at steady
state (Table 1), although the possibility of demonstrating the
welfare impacts of changes in habitat on the approach to stea-

dy-state is suggested in theory.

5.3. The residual rent approach

The fundamental bioeconomic model, developed first by Gor-

don (1954) and Scott (1955) and elaborated by Clark (1990),
Anderson (1986), and others (Flaaten 2011) can be viewed as
the basic way of valuing ocean habitat by proxy. (Essentially,

in this approach, the fish stock, X, comprises the ecosystem ser-
vice.) The value of the resource rent, l, in an optimally managed
fishery facing a constant price constitutes the value of the ecosys-

tem services that support the fish stock. This approach also has
been described as the ‘‘residual rent approach’’.13

In the simplest models, the fishery supplies only a small part

of the total market for the fish as seafood, so market price is
treated as a constant, and consumer surplus is not accounted
for as a component of the value of ocean habitat. Ocean hab-
itat provides support for all commercial fish species, and there-

fore it should be valued as the sum of resource rents from the
various fisheries that it supports. In these models, estimates of
the costs of fishing in one or more periods are subtracted from

gross revenues to derive residual rents.
Only a few studies,many not easily accessible, have estimated

the ecosystem service value of fisheries dependent upon on coral

reef habitat using the residual rent approach (see the sources in
deGroot et al., 2012). Many of these studies utilized very crude
approaches, which are not based on bioeconomic models and
which sometimes omit explicit calculations, to estimate residual
yielding no serviceable estimate of residual rent for ocean habitat. The

open-access nature of many fisheries calls for a more pragmatic

approach to valuation.



Table 1 Comparisons from the literature showing a wide range of estimates of marginal value products (MVPO) for different

categories of ocean habitat (all estimates expressed in the log of 2012 US dollars).

Authors Location Ocean habitat Fish stock ES function Marginal value

product [log $(2012)/km2]

Lynne et al. (1981) Florida Gulf Coast,

United States

Salt marsh Blue crab Semilog 2.5

McArthur and

Boland (2006)

South Australia,

Australia

Seagrasses Calamary

Blue crab

Garfish

King George whiting

Snapper

Tommy ruff

Yellowfin whiting

Log–Log 3.6

Bell (1989) Florida East and Gulf

Coasts, United States

Wetland Blue crab

Stone crab

Spiny lobster

Red snapper

Grouper

Oyster

Black mullet

Shrimp

Semilog 4.3

Barbier (2003) Gulf of Thailand and

Andaman Sea, Thailand

Mangroves Shrimp

Crab

Squid

Cuttlefish

Demersal finfish

Semilog 4.6

Barbier (2007) Gulf of Thailand and

Andaman Sea, Thailand

(dynamic estimate from

Thai data)

Mangroves Shrimp

Crab

Squid

Cuttlefish

Demersal finfish

Semilog 4.7

Batie and Wilson

(1978)

Virginia Wetland Oyster Linear 4.8

Barbier and Strand

(1998)

Laguna de Terminos,

Campeche State, Mexico

Mangroves Shrimp Linear 5.8

Aburto-Oropeza

et al. (2008)

Gulf of California,

Mexico

Mangroves Finfish

Crab

Square root 6.7

14 We thank one of the reviewers for pointing out that, to the extent

that some of these species may spend significant portions of their life-

cycles in ocean areas outside of coral reef systems, we may be

overstating the traditional fisheries ecosystem service values for the reef

systems per se. Refinement of our estimate would require ecological

studies of the extent of the reliance of these species on local Red Sea

reef systems, and we identify this as an important issue for future

research.
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rents. Berg et al. (1998) calculated estimated potential revenues
at maximum sustainable yield net of operational and labor costs

to impute an estimate from commercial fisheries of $12–15,000/
km2 for Sri Lankan coral reefs. In contrast, with only minimal
information, Samonte-Tan et al. (2007) suggested that marine

fisheries in the Bohol Marine Triangle of the Philippines likely
yield residual rents attributable to the coral reef habitat on the
order of $50–200,000/km2.

Questions about the relative contributions of each of the
components of ocean habitat to the value of fish are more
problematic and remain largely unexplored. Sanchirico and
Mumby (2009) developed a theoretical model to examine man-

groves and seagrass beds as substitutes in the ecological pro-
duction of fish that recruit to a coral reef fishery. Entry
limitations are imposed on the fishing fleet, and rents are

approximated with a license fee. Service values for mangrove
(or seagrass bed) acreage can be measured as the marginal
change in the combined total values of profits and license fee

payments with a marginal change in acreage.

6. An example: the traditional fisheries of the Red Sea

Jin et al. (2012) apply standard bioeconomic methods to char-
acterize the current status and the potential of the traditional
fisheries off the northern and central regions of the Red Sea
coast of the Kingdom of Saudi Arabia (KSA). (These two re-
gions can be distinguished ecologically from a southern region,

for which statistics are harder to compile.) In these mainly arti-
sanal coastal fisheries, fishermen deploy hand-lines, gillnets,
and traps from small, open motorboats. They catch and land

groupers, snappers, emperors, barracudas, scads/jacks/treval-
lies, kingfish, and tunas. These species are known to spend sig-
nificant portions of their lifecycles in association with the coral

reefs along the coast, and thus estimates of the value of the
fisheries could be used to impute values to the services pro-
vided by the coral reef system.14

Using time-series data on fishing effort (boat-days) and

landings obtained from the KSA Department of Marine Fish-
eries, the authors apply a Clarke–Yoshimoto–Pooley approach
to estimate the collective intrinsic growth rate, r, carrying

capacity, K, and catchability, q, for these seven stocks. With
these parameters and with calculations of a weighted average



Table 2 Annual per-unit ecosystem service values for the Red Sea coral reefs.

Economic ‘‘Values’’

($ millions)

ES valuation methods

($000/km2)

Fishery status Biomass (mt) Effort (b-d) Gross revenue Resource rent Total value Marginal productivity Residual rent

OY 6439 367,000 46 0 9.25 1.23 0.00

MSY 13,850 208,000 56 30 11.25 1.49 6.23

MEY 18,644 146,000 53 35 10.65 1.41 6.97

Abbreviations: b-d = boat-days; ES = ecosystem service; km = kilometer; MEY=maximum economic yield; MSY= maximum sustainable

yields; OY = optimal yield; mt = metric tons.

Table 3 Capitalized (at 5%) per-unit ecosystem service values
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price across the seven target species and of fishing costs, the

authors calculated actual open-access (OA) yields and theoret-
ical maximum sustainable and economic yields (MSY and
MEY).

The authors found that current annual fishing effort levels,
ranging between 300,000 and 350,000 boat-days, constituted
clear over-fishing of the stocks. Exploitation at these levels re-
sulted in combined OA yields of 7725 mt, leaving standing

stocks of 6440 mt. Total revenues were estimated to be $46
million, but net social benefits were estimated to be zero. In
contrast, using a 5% rate of discount, the authors calculated

a socially optimal level of fishing effort at 146,000 boat-days.
Optimal exploitation at this much reduced level would result
in MEY yields of 8901 mt with standing stocks of 18,644 mt.

Total revenues at MEY were estimated to be $53 million, with
net social benefits of $35 million. The authors also calculated
yields, standing stocks, revenues, and resource rents for
MSY (Table 2).

Using these estimates, we can approximate the ecosystem
service values of the coral reef-seagrass bed systems (Table 2).15

Ideally, one would like to model the blue-box technology from

Fig. 1 directly, given that many factors likely contribute to the
biological productivity of the Red Sea fish stocks, including
water quality (temperature, salinity, transparency, and nutri-

ent levels), mangrove cover, seagrass beds, and coral reefs,
among others. Further, these factors may vary geographically
and over time in terms of their relative contributions to fishery

productivity. Without detailed information on the blue-box
technology and its spatial and temporal variability, for exposi-
tional purposes, we assume that the most important ecosystem
service is a homogeneous and unchanging coral reef-seagrass

complex. For the northern and central regions combined, the
area of this complex has been estimated to be 5000 km2.16

The calculations of annual per-unit ecosystem service val-

ues are straightforward. Using the total value approach, we di-
vide gross revenues by the area of the coral reef-seagrass bed
complex to obtain the annual per-unit value. We do the same

thing with estimated resource rents to obtain the annual per-
unit value for the residual rent approach. The marginal pro-
15 In Table 2, we compare the estimated annual per-unit ecosystem

service values at three equilibrium points of the bio-economic model

for a fixed carrying capacity. In general, these per-unit service values

may change (non-linearly) with respect to the carrying capacity, which

is affected by changes in the quality or quantity of the relevant ocean

habitat. See Kahn and Kemp (1985) for a descriptive derivation of

such changes in the case of submerged aquatic vegetation in Chesa-

peake Bay.
16 Unpublished estimate developed by graduate students enrolled in

the Marine Science Program at the King Abdullah University of

Science and Technology and working with one of the current article’s

co-authors (Kite-Powell).
ductivity approach requires an assumption about the relation-

ship between yields and ocean habitat. Assume that carrying
capacity is directly proportional (here equal) to ocean habitat,
K�O. Jin et al. (2012) apply the following Fox-type produc-

tion function to the fishery:

h ¼ qEKe�q=rE

Letting K = O, and taking the derivative with respect to O
gives:

dh

dO
¼ qEe�q=rE

and the marginal productivity measure is calculated as:

MVPO ¼ p
dh

dO
¼ pqEe�q=rE

Table 2 presents estimates of the imputed per-unit ecosys-
tem service values ($/km2) for the reef-seagrass complex using
each of the three methods described above. The ecosystem ser-
vice values obtained using the ‘‘total value’’ approach are

much larger than those obtained with the two other methods.
We have discussed already the reasons why these estimates
may be inappropriate. Note that with both the total value

and the marginal productivity approaches, the MSY estimate
exceeds both the OA and MEY estimates. This result is due
to the nature of the underlying biological production, ensuring

that MSY leads also to the maximum total revenues and mar-
ginal values. Under either approach, whether the ecosystem
service values at MEY exceed or fall below those at OA de-

pends critically upon the costs of fishing, so that high costs
could lead to the (seemingly counter-intuitive) result that OA
ecosystem service values exceed those at MEY.

Only when employing the residual rent approach do we ob-

tain the sensible result that ecosystem service values are maxi-
mized when the fishery is managed rationally to optimize
resource rent. Resource rent is zero under OA. Some level of
for Red Sea coral reefs.

ES valuation methods

($000/km2; Capitalized @ 5%)

Fishery status Total value Marginal productivity Residual rent

OY 184.9 24.6 0.0

MSY 225.1 29.9 124.5

MEY 213.1 28.3 139.5

Abbreviations: b-d = boat-days; ES = ecosystem service;

km = kilometer; MEY=maximum economic yield;

MSY=maximum sustainable yields; OY= optimal yield;

mt = metric tons.
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resource rent is realized at MSY, but this is exceeded by that
obtained at MEY. Importantly, MEY leads to an outcome
where there is a larger standing stock. Although the existence

of higher stock levels has not been explored here, there may be
ancillary benefits to recreational fisheries, ecosystem health
(say, through the grazing by fish of algae on coral reefs), and

insurance against natural or anthropogenic hazards (storms,
harmful algal blooms, and pollution events).

In this example, we have assumed that the full resource rent

should be imputed to the coral reef-seagrass bed complex; in
reality, we would want to specify a blue-box ecological produc-
tion function, distributing the rent across relevant ecosystem
factors. When used in a cost-benefit context, we also should

consider capitalized per-unit ecosystem service values (Table 3).
Under MEY, capitalized ecosystem values derived from the
traditional Red Sea fisheries and summed across all of the rel-

evant coral reefs are on the order of $1 billion, surely rivaling
the net benefits of some forms of industrial development.17

Finally, note that we have estimated ecosystem service values

for the traditional fisheries only (a subset of ‘‘provisioning ser-
vices’’). There are likely to be significant service values contrib-
uting to the industrial and recreational fisheries, recreational

diving, passive non-market benefits, and other valued end-
points. While extant estimates of an array of other sources
of value, including provisioning, regulating, habitat, and cul-
tural values, are known to be uncertain and dependent upon

context, a recent compilation of estimates suggests that provi-
sioning services (interpreted broadly) may account for only
about 15% of the ecosystem service values for coral reefs

(deGroot et al., 2012).

7. Ecosystem-based management considerations

Our focus has been on ocean habitat, per se. Fishery resources
exist within an ecosystem context, and species interactions may
be important in determining the productivity of fisheries. In

particular, other species, guilds, or trophic levels may be
understood to provide ecosystem services, and a full treatment
of ecosystem services may require the characterization of eco-

logical interactions. Further, coastal development can be con-
ceptualized as a process of exploiting a non-renewable resource
with implications for the health of an associated renewable re-
source. These interactions fall within the realm of ecosystem-

based management.

7.1. The multispecies approach

In cases where species interact ecologically, the resource rent
from one or more commercial species could be used to impute
a value to species that are not utilized commercially.18 For
17 As discussed in an earlier section, this estimate of the ecosystem

service value for the entire reef would be relevant only if the entire reef

is threatened by coastal development. Further, the estimate ignores

differences in reef quality, particularly the likely lower values arising

from already degraded reefs.
18 Allen and Loomis (2006) employ a similar approach to impute the

results of nonmarket contingent values for species at high trophic

levels to develop estimates of partial willingness-to-pay for species at

lower trophic levels.
example, high trophic level commercial fish species may be pre-
dators of lower trophic level species. Consequently, it is possi-
ble to conceptualize ocean habitat as embodied in the lower

trophic level prey. Where the latter are not commercially
exploited, their value may be imputed using resource rents
from the commercial fishery. Ragozin and Brown (1985) devel-

op a model of a predator–prey system in which the economic
value of the prey is estimated as a function of the resource
rents realizable from the harvest of the predator. According

to the system, a predator stock, X, is affected positively by
the size of the prey stock, Y, and the prey stock is affected neg-
atively by the size of the predator stock. Let F(X,G(Y)) and
G(Y,F(X)) be the growth functions for the predator and prey,

respectively. The authors find that the steady-state current va-
lue resource rent for the prey is defined as:

lY ¼ lYGY þ lXFX

where the value of ocean habitat comprising the prey is

lY. This value is just matched by the sum of marginal produc-
tivities from both stocks, weighted by their marginal values.
The interpretation of this finding is that the value of the prey

is reflected in future growth values for both the prey stock,
lYGY, as food for the predator, and the predator stock, lXFX,
which depends upon the prey.19

Even if it is not possible to model the blue box technology
in full–or even in part–welfare gains seem likely from improve-
ments in fishery management, and the resulting rents could be
used as a broad proxy for the services of ocean habitat. In the-

oretical work on multispecies population dynamics on Carib-
bean coral reefs involving a generalist predator and two prey
fish species, Kellner et al. (2011) find that the largest welfare

gains may obtain from improved fishery management–and
not from improvements in understanding ecological
interactions.

7.2. Interdependent renewable and nonrenewable resources

Most of the literature on the productivity approach assumes

that a steady-state exists in harvests and fish stocks, and the
value of ocean habitat is estimated at the steady-state. Swallow
(1990) models coastal development as the extraction of an
exhaustible resource stock that also provides habitat for a fish-

ery. In this formulation, the social optimum must consider the
value of both coastal development and the fishery. Resource
rent to the fishery can be written as follows, where the growth

of the fish stock F(Æ) depends upon the exhaustible resource O:

l ¼ cXFðX;OÞ
FXðX;OÞ � d

Unlike the earlier formulations, ocean habitat itself is
diminishing at a rate that depends upon the rate of coastal
development. As a consequence, the efficient harvest level in

each period, expecting smaller stocks in the future, exceeds
harvests that would occur when coastal development is
unchanging. The diminishing ocean habitat implies that re-

source rents to the fishery also are smaller than they would
19 This description is an oversimplification, as the steady-state

resource rent, lX, is itself a positive function of the prey’s resource

rent. Notably the predator’s rent also depends positively upon the

constant price, p, of the predator, making the prey’s resource rent

indirectly a positive function of p as well.
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be in the steady-state when habitat is unchanging. Therefore,
according to Swallow, estimates of the imputed value of ocean
habitat to the fishery are overstated when a steady-state is as-

sumed. Note that, in this case, additional rents are generated
from the exhaustible resource production. When multiple
industry sectors are involved, the resource valuation can be-

come even more complex.

8. Discussion

Commercial fisheries are just one of many human activities
that use ocean habitat in the Red Sea. Red Sea habitat also
may be valued passively for its existence, for the use of future

generations, or in order to leave options open for future uses.
Some human activities may diminish the value of ocean habi-
tat for other activities or passive uses. These include the over-

exploitation of fish stocks, the pollution of the marine
environment through the release of nutrients or the spilling
of hazardous materials, and the clearing of mangroves. Some
human impacts may be irreversible, such as construction activ-

ities in mangrove wetlands or the sedimentation of coral reefs
from coastal erosion near developments.

It is important to estimate the value of ocean habitat in or-

der to make rational decisions about the best mix or sequence
of coastal and ocean uses. A supply-side approach values
ocean habitat using estimates of consumer and producer sur-

plus in downstream markets. In essence, ocean habitat is trea-
ted as an input (alternatively, it provides an ‘‘ecosystem
service’’) in the production of commercial goods and services.

We examine supply-side valuation approaches for ocean

habitat using commercial fisheries as a relevant example. Sim-
ilar techniques may be employed to value ocean habitat for
subsistence and recreational fisheries. Other methods may be

needed for valuing passive uses. In the case of commercial fish-
eries, typical supply-side valuation involves modeling ecologi-
cal carrying capacity for fisheries as a function of ocean

habitat. Extant studies consider one measure of ocean habitat,
such as wetland acreage, the proportion of the seafloor covered
by submerged aquatic vegetation, or a water quality index. The

most appropriate methodological approach depends upon the
availability of data as well as the institutional setting. Because
non-market valuation methods also require accurate informa-
tion on the relevant ecological and economic interactions, the

results of supply-side valuation studies can provide insights
beneficial to these studies as well.

In order to estimate the value of ocean habitat, data must

be compiled on fish landings, fishing effort, seafood prices,
and one or more measures of ocean habitat. Statistical estima-
tion requires variation in all of these variables, including the

measures of ocean habitat. This variation might be observed
in either cross-sectional data, time-series data, or both.

Institutional settings–both market and regulatory–are
important. We expect that resource rents will be small or non-

existent in open-access fisheries. Consequently, consumer sur-
plus may be an important measure of economic value.
Consumer surplus may be affected when demand for seafood

is inelastic or when seafood quality depends upon the condi-
tion of ocean habitat (e.g., water quality). Where demand is
inelastic, due to the absence of close substitutes––such as in

the case of subsistence fisheries, welfare changes may be very
sensitive to changes in ocean habitat.
9. Recommendations

The most important recommendation is the need to compile
data useful for developing statistical models to estimate the va-

lue of ocean habitat. In the Saudi Arabian sector of the Red
Sea, data currently are compiled on fish catches, fishing effort,
and seafood prices. Additional data are needed to describe

variations in ocean habitat across fishing regions and over
time.

Measures of ocean habitat include mangrove acreage or
coastal coverage, coral reef acreage, water quality, sea grass

acreage, among other possibilities. Research on the ecological
linkages between measures of habitat and the productivity of
fish stocks can help inform the choice of measures for sup-

ply-side valuation. This research should include developing a
better understanding of the extent to which the life cycles of
exploited species depend upon the coral-seagrass-mangrove

system. For many commercial species, research in tropical
areas outside of the Red Sea environment could help inform
the choice of habitat measures.

Once data are available, models must be developed to mea-
sure the marginal economic productivity or the resource rents
of the Red Sea habitat. These models should be refined and up-
dated on a regular basis as new data become available.

Results of the valuation should be made available for use in
decisions about the economic consequences of human activi-
ties that may adversely impact the Red Sea habitat. For exam-

ple, decisions to undertake coastal construction leading to the
cutting of mangrove wetlands or the destruction of coral reefs
should not be made without consideration of the opportunity

costs, in terms of lost habitat productivity.
Decisions about coastal development should be informed

by economic analysis, but they must also take into consider-

ation the issues of fairness to existing users and the likely value
of the resource to future generations. In cases where the net so-
cial benefits of coastal developments are positive, even if they
lead to habitat degradation, further consideration should be

made of the potential impacts on passive uses of the Red Sea
environment. This consideration may require the application
of a different set of methodological tools.
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factor of production. In: Mäler, K.G., Vincent, J.R. (Eds.), . In:

Handbook of Environmental Economics, vol. 2. Elsevier Science

Publishing Company, Inc., New York, pp. 621–669.

McConnell, K.E., Strand, I.E., 1989. Benefits from commercial

fisheries when demand and supply depend upon water quality. J.

Environ. Econ. Manag. 17, 284–292.

Milon, J.W., 1989. Economic evaluation of artificial habitat for

fisheries: progress and challenges. Bull. Mar. Sci. 44, 831–843.

Munro, G.R., Scott, A.D., 1985. The economics of fisheries manage-

ment. In: Kneese, A.V., Sweeney, J.L. (Eds.), Handbook of Natural

Resource and Energy Economics, Ch. 14. Elsevier Science

Publishing Company, Inc., New York, pp. 623–676.

Regional Organization for the Conservation of the Environment of the

Red Sea and Gulf of Aden (PERSGA), 2002. Status of the Living

Marine Resources in the Red Sea and Gulf of Aden and Their

Management. The World Bank, Washington.

Pope, R.M., Gosselink, J.G., 1973. A tool for use in making land

management decisions involving tidal marshland. Coast. Manag. 1,

65–74.

Ragozin, D.L., Brown Jr., G., 1985. Harvest policies and nonmarket

valuation in a predator-prey system. J. Environ. Econ. Manag. 12,

155–168.

Samonte-Tan, G.P.B., White, A.T., Tercero, M.A., Diviva, J., Tabara,

E., Caballes, C., 2007. Economic valuation of coastal and marine

resources: Bohol Marine Triangle, Philippines. Coast. Manag. 35,

319–338.

Sanchirico, J.N., Mumby, P., 2009. Mapping ecosystem functions to

the valuation of ecosystem services: implications of species–habitat

associations for coastal land-use decisions. Theor. Ecol. 2, 67–77.

Scott, A., 1955. The fishery: the objectives of sole ownership. J. Pol.

Econ. 63, 116–124.

Shabman, L.A., Batie, S.S., 1978. Economic value of natural coastal

wetlands: a critique. Coast. Zone Manage. J. 4, 231–247.

Swallow, S.K., 1990.Depletionof the environmental basis for renewable

resources: the economics of interdependent renewable and nonre-

newable resources. J. Environ. Econ. Manage 19, 281–296.

Tihansky, D.P., Meade, N.F., 1976. Economic contribution of

commercial fisheries in valuing US estuaries. Coast. Zone Manage.

J. 2, 411–421.

White, A.T., Vogt, H.P., Arin, T., 2000. Philippine coral reefs under

threat: the economic losses caused by reef destruction. Mar. Poll.

Bull. 40, 598–605.

https://www.ub.uit.no/munin/bitstream/handle/10037/2509/book.pdf?sequence=3
https://www.ub.uit.no/munin/bitstream/handle/10037/2509/book.pdf?sequence=3
http://dx.doi.org/10.1016/j.marpolbul.2012.09.017
http://dx.doi.org/10.1016/j.marpolbul.2012.09.017

	Supply-side approaches to the economic valuation of coastal and marine habitat in the Red Sea
	1 Introduction
	2 Commercial fisheries and resource rents
	3 Ocean habitat and ecosystem services
	4 Consumer surplus in seafood markets and distributional effects
	5 Valuing ecosystem services
	5.1 The total value approach
	5.2 The marginal productivity approach
	5.3 The residual rent approach

	6 An example: the traditional fisheries of the Red Sea
	7 Ecosystem-based management considerations
	7.1 The multispecies approach
	7.2 Interdependent renewable and nonrenewable resources

	8 Discussion
	9 Recommendations
	Acknowledgements
	References


