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ABSTRACT

Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating

and forecasting the ocean’s state (velocity field, salinity field, etc.). However, trajectories from these in-

struments are often highly nonlinear, leading to difficulties with widely used data assimilation algorithms such

as the ensemble Kalman filter (EnKF). Additionally, the velocity field is oftenmodeled as a high-dimensional

variable, which precludes the use of more accurate methods such as the particle filter (PF). Here, a hybrid

particle–ensemble Kalman filter is developed that applies the EnKF update to the potentially high-

dimensional velocity variables, and the PF update to the relatively low-dimensional, highly nonlinear

drifter position variable. This algorithm is tested with twin experiments on the linear shallow water equations.

In experiments with infrequent observations, the hybrid filter consistently outperformed the EnKF, both by

better capturing the Bayesian posterior and by better tracking the truth.

1. Introduction

Lagrangian ocean instruments—drifters, floats, and

gliders, which are advected by velocity fields while tak-

ing measurements—provide a significant and important

source of the data collected on our oceans. However, the

Lagrangian nature of the data makes the assimilation of

it into models a formidable task (Kuznetsov et al. 2003;

Salman et al. 2006; Mariano et al. 2002). Assimilation is

a blending of data and a physical model with the aim of

both accurately determining the state of the system and

reflecting inherent uncertainties in that estimation due

to the physical model and/or the available data. Assimi-

lation methods can be broadly categorized either as se-

quential filtering or nonsequential smoothing methods.

We will be focusing on filtering methods in this work,

since this is quite natural within the context of using

Lagrangian data for forecasting the state of the ocean.

Two primary challenges hindering sequential assimi-

lation of data collected from Lagrangian instruments into

ocean models are 1) the inherent nonlinearity of the La-

grangian paths and 2) the high-dimensionality of realistic

ocean models. Different assimilation methods tackle

these two aspects in different manners. Particle filtering

(PF) methods are well suited for nonlinear problems but

face difficulties with high-dimensional systems (cf. Bickel

et al. 2008; Bengtsson et al. 2008; Snyder et al. 2008), al-

though recent work has shown promise in addressing

these issues (Morzfeld et al. 2012; Ades and van Leeuwen

2013). One commonly used method in the earth sciences
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is the ensemble Kalman filter (EnKF), which can be

modified to work well for high-dimensional systems

(Houtekamer and Mitchell 1998; Hamill et al. 2001;

Anderson, 2007; Hunt et al. 2007) but fails for problems

with a high degree of nonlinearity (Apte et al. 2008).

In this paper, we propose a hybrid particle–ensemble

Kalman filter method that overcomes both of these

challenges. We consider two specific aspects of the La-

grangian data assimilation problem, namely (i) the low-

dimensionality of the highly nonlinear Lagrangian

observations and (ii) the less severe nonlinearity of the

high-dimensional Eulerian model of the velocity flow.

These two aspects and the discussion of the comple-

mentary challenges tackled by the PF and EnKF ap-

proaches motivate the primary idea behind our strategy,

which consists of using a particle filter in the low-

dimensional, highly nonlinear Lagrangian coordinate

variables and an ensemble Kalman filter in the high-

dimensional, relatively linear flow variables.

Previous work on hybrid schemes includes the combined

ensembleKalman–particle filter of Frei andKünsch (2012),
mixture ensemble Kalman filters (Frei and Künsch 2013b),
the ensemble Kalman–particle filter (EnKPF; Frei and

Künsch 2013a), the weighted ensemble Kalman filter

(WEnKF; Papadakis et al. 2010), the hybrid grid–particle

filter (Salman 2008a,b), and many hybrid ensemble–

variational schemes, such as that of Hamill and Snyder

(2000). TheEnKPFalgorithmof Frei andKünsch provides
a continuous interpolation between the EnKF and the
particle filter, depending on the interpolation parameter.
The WEnKF of Papadakis and Mémin (Papadakis et al.
2010) is primarily a particle filter in which the proposal

distribution is motivated by the ensemble Kalman filter.

Doucet et al. (2000a) introduced the Rao–Blackwellised

particle filter (RBPF), which involves splitting the state

space into a Gaussian component and a non-Gaussian

component. However, unlike the filter presented here, the

RBPF relies on adecomposition inwhich thenon-Gaussian

variable is not coupled dynamically to the Gaussian vari-

able. Bengtsson et al. (2003) also discuss an ensemble

mixture filter that consists of a mixture of Gaussian en-

sembles, in which each component is updated with an

EnKF analysis step and the component’s associated weight

is calculated using a Bayesian update. This filter requires

choosing various parameters, including the number of

Gaussianmixture components. In contrast, the hybrid filter

presented here does not make any mixture assumptions; it

consists of estimating the distribution on the drifters using

a particle filter, and thus we do not need a priori knowledge

of the necessary number of Gaussian components. Within

the context of Lagrangian data assimilation, the idea of

splitting the state space into two different parts (the Eu-

lerian flow variables and the Lagrangian position variables)

and of using different methods for the two parts first ap-

peared in the work of Salman (2008a,b). The main differ-

ences between the work of Salman and the present paper

are described in section 3a.

The remainder of the paper is organized as follows: in

section 2, we review the traditional ensemble data as-

similation methods of the particle filter and the ensem-

ble Kalman filter. In section 3, we describe the algorithm

for the hybrid particle–ensemble Kalman filter. In sec-

tion 4, we provide numerical results of the hybrid filter

applied to the linear shallow water equations. Section 5

provides a discussion and future directions.

2. Brief review of assimilation and filters

Lagrangian data assimilation (LaDA) is concerned

with estimating the Eulerian flow field of a system (say,

currents in the ocean) given Lagrangian observations of

the positions of tracers (e.g., drifters or floaters). In most

cases, the tracers can be approximated as being passive

particles, whose motion is subject to the flow. In this

case, the dynamical system of interest is

_xF 5 f1(x
F) and (1a)

_xD 5 f2(x
F , xD) , (1b)

where xF denotes the Eulerian velocity field (generally,

this is a solution to a PDE, which is discretized over

a grid) and xD denotes the position of the drifter(s) (Ide

et al. 2002). Define the augmented state vector x 5 [xF,

xD]T. The observations y are then

y5 xD 1 e5Hx1 e, e;N (0,R) , (2)

where � represents the Gaussian observation noise with

covariance R and H 5 [0 I] is the observation operator

mapping x into the observation space.

As we will see below, f1 can be linear or nonlinear, but

the evolution of xD will always be nonlinear, typically to

a very high degree (Apte et al. 2008). In addition, the

flow field xF is usually high-dimensional. These two

defining characteristics lead to complications with

traditional data assimilation algorithms, including the

ensemble Kalman filter and the particle filter. How-

ever, we aim to show that a hybrid particle–ensemble

Kalman filter avoids many of these issues.

One initial challenge of assimilating data from La-

grangian instruments is that models of velocity fields are

almost always gridded, but the data collected are not on

grid points. One approach was to interpolate the La-

grangian paths into velocity estimates at neighboring grid

points and then assimilate (Molcard et al. 2003). The
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other approach, as described above, Lagrangian data as-

similation, appends equations for advection of an in-

strument’s coordinates to the model equations for the

velocity field. LaDA was developed and applied success-

fully in several theoretical and methodological studies

over the last decade (Ide et al. 2002; Kuznetsov et al. 2003;

Salman et al. 2006; Spiller et al. 2008; Vernieres et al.

2011). In some ways there is a trade-off between an ob-

servation operator that is not local in time and could be

nonlinear, which is the case with interpolation, versus the

strongly nonlinear dynamics of modeled advected paths

where the paths are observed directly. The latter approach

demands an assimilation strategy that can deal with strong

nonlinearities. This further motivates the primary idea

behind the proposed hybrid assimilation scheme: use

a particle filter in low-dimensional, highly nonlinear in-

strument coordinate variables and an ensemble Kalman

filter in the high-dimensional flow variables. We describe

the basics of each filtering method below.

From a Bayesian perspective, the goal of any sequen-

tial filtering algorithm is to approximate the posterior

distribution p(x j y) of a state of interest x at some time tk
given a prior distribution p(x) on x at tk, based on our

current knowledge of the state, and a likelihood distri-

butionp(y j x) of the observations y given the state x, based
on our knowledge of the noise in the observations. Bayes’s

rule gives the true posterior distribution in this case:

p(x j y)5 p(y j x)p(x)
p(y)

. (3)

In both the PF and EnKF methods, the prior and

posterior distributions are approximated by a weighted

ensemble of the state x given by fxi,wigNe

i51, which im-

plies the distribution

�
N

e

i51

wid(x2 xi) with �
N

e

i51

wi5 1, (4)

where d(x2 xi) is theDirac delta centered at xi.Usually for

the EnKF, wi 5 1/Ne. Between the observation times, the

weights are kept fixed and the state variables are evolved

according to the dynamics of the system. The main dif-

ference between the two methods comes at the time when

observations are available. This is described in the next two

subsections.Wewill use the notation that fxfi ,wf
i g

Ne

i51 is the

ensemble from the prior distribution p(x) whereas

fxai ,wa
i gNe

i51 is from the posterior distribution p(x j y).
a. Particle filter

The posterior is approximated by updating the

weights but leaving the particle positions fixed (i.e.,

xai 5 xfidxi). The updated weights are obtained by ap-

plying Bayes’s rule to the weights as follows:

wa
i 5

p(y j xi)wf
i

�
N

e

j51

p(y j xj)wf
j

, (5)

that is, the updated weights are found by multiplying the

likelihood of that particle by the previous weight and

normalizing to sum to 1. This is the simplest implementa-

tion of the particle filter, also known as sequential impor-

tance sampling (Gordon et al. 1993; Doucet et al. 2000b).

Due to the finite nature of the approximation and the

recursive updating of the weights, sequentially applying

this algorithm eventually leads to one particle with very

high weight, while the rest of the particles have almost

zero weight (so-called filter divergence or weight col-

lapse). To avoid this, various resampling methods may

be used (van Leeuwen 2009). The basic idea behind each

of these methods is to monitor when a predetermined

threshold is hit [e.g., when the ‘‘effective sample size’’

becomes small; Kong et al. (1994)], and to then resample

the particles from the discrete approximation of the

posterior distribution and reset all weights to 1/Ne. In the

remainder of this paper, we will use two different re-

sampling methods: the Metropolis–Hastings method of

resampling (Dowd 2007; van Leeuwen 2009) and the

Gaussian resampling method of Xiong et al. (2006). We

approximate the effective sample size to be

Neff ’
1

�
N

e

i51

w2
i

, (6)

as in Kong et al. (1994). We will apply resampling when

Neff ,Nthresh
eff for a predetermined threshold Nthresh

eff that

will typically be a small fraction of the total number of

particles Ne.

One major drawback to applying the particle filter in

the Lagrangian data assimilation setup is that it has

been shown to fail in high dimensions (Snyder et al.

2008). Thus, in the case where the state of interest is

a velocity field discretized over some domain, the

particle filter is intractable. However, when the state

dimension is small enough and the number of particles

is large enough, the particle filter can provide an ac-

curate approximation to the exact Bayesian posterior

distribution. This is especially useful if this distribution

is skewed or multimodal, which is often the case in

Lagrangian data assimilation.

b. Ensemble Kalman filter

Like the particle filter, the ensemble Kalman filter

(Evensen 1994, 2003) employs an ensemble of state vec-

tors fxigi51,...,Ne
to represent the posterior distribution;
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however, unlike the particle filter, the ensemble mem-

bers are equally weighted for the entire assimilation

window. Instead of updating the weights at analysis

times, the members themselves are updated according

to an ensemble approximation of the traditional Kalman

filter update step, given here by the so-called perturbed

observation EnKF (Burgers et al. 1998; Houtekamer

and Mitchell 1998; Evensen 2003):

xai 5 x
f
i 1K(y2Hx

f
i 1 ei), and (7)

K5PfHT(HPfHT 1R)21 , (8)

where xfi is the forecast of the ith ensemblemember, xai is

the ith updated (analysis) ensemble member, K is the

Kalman gain matrix, R is the covariance of the obser-

vation error, and �i ; N (0, R) are the observation per-

turbations. In addition, Pf is the forecast ensemble

covariance given by

P f 5
1

Ne2 1
�
N

e

i51

(x
f
i 2 xf )(x

f
i 2 x f )T,

x f 5
1

Ne

�
N

e

i51

x
f
i . (9)

However, the ensemble Kalman filter has its draw-

backs as well: when the true posterior distribution is

non-Gaussian, the ensemble Kalman filter will often

result in a posterior distribution that is close to Gaussian

(cf. Lawson and Hansen 2004).

There has been a lot of work toward improving the

EnKF in nonlinear, high-dimensional systems; for ex-

ample, covariance inflation and localization have pro-

vided significant improvement of the performance of the

EnKF (see Hamill et al. 2001; Houtekamer andMitchell

1998, 2001; Anderson and Anderson 1999). However,

these methods do not overcome the basic shortcoming

of the EnKF, which is its inability to capture highly non-

Gaussian distributions. In addition, the performance of

the EnKF in Lagrangian data assimilation is limited by

the observation period. It has been shown that the EnKF

fails when the time between drifter observations be-

comes long, even with improvements such as localiza-

tion (Kuznetsov et al. 2003; Salman et al. 2006), due to

the nonlinearity that becomes strong over these time

periods (Apte et al. 2008; Apte and Jones 2013).

3. Hybrid particle-ensemble Kalman filter

a. The proposed filter

Asmentioned above, neither the particle filter nor the

ensemble Kalman filter is ideal (either theoretically or

practically) in the case of Lagrangian data assimilation. The

aimof the hybrid particle–ensembleKalmanfilter proposed

here is to exploit the advantages of each filter by splitting

the drifter coordinates away from the flow variables. The

high-dimensional, relatively linear Gaussian flow compo-

nent is estimated via the ensemble Kalman filter, and the

low-dimensional, highly nonlinear, and possibly non-

Gaussian drifter variables are estimated via a particle filter.

A similar splitting was achieved by the hybrid grid–

particle filter of Salman (2008a,b). The main difference

is that Salman uses an advection-diffusion equation to

solve the Fokker–Planck equation associated with Eq.

(1b) in order to propagate the probability density func-

tion of the drifter variables xD and then updates that

density using Bayes’s rule. This process effectively gives

a weighted ensemble of the flow variables xF, which is

resampled to get an ensemble with equal weights. In

contrast, we use a Monte Carlo approximation of the

Fokker–Planck equation, by constructing an ensemble

of drifter positions, each of which is propagated using

Eq. (1b). Additionally, instead of applying the particle

filter update to the flow variables in each update step, we

use a version of the EnKF (explained in detail in ap-

pendix A) for weighted ensembles.

There are two main reasons for choosing a combined

particle–ensemble Kalman filter strategy instead of the

hybrid grid/particle filter strategy of Salman. 1) The flow

is usually high-dimensional, so a traditional particle fil-

ter approximation of the Eulerian variables (as used in

the work of Salman) will require an intractable ensem-

ble size. Since these variables usually do not behave very

nonlinearly on time scales of instrument deployment, we

choose to work with an EnKF approximation for the

updates of these variables. 2) Solving a Fokker–Planck

equation for the drifter distribution function (as done in

the work of Salman) can by itself be quite computa-

tionally challenging and, in the case of multiple drifters,

may not be feasible at all. Hence, we choose to work

with a Monte Carlo approximation given by a weighted

ensemble of drifters, with the weights updated in

a manner similar to a particle filter described in section

2a. Thus, we expect the method that we propose to work

well even for realistic models of the ocean flow, aug-

mented by equations for drifter dynamics.

1) SETUP

Let xF 2 R
NF denote the (potentially high-dimensional)

flow variable and let xD denote the drifter position vari-

able, which consists of the x and y components of each of

the ND drifters, so that xD 2 R
2ND . We assume a planar

fluid flow in which we can only observe the position of the

drifter on the surface, and not the height of the fluid at its

location. These variables evolve under Eq. (1). At

discrete times tk, we have observations of the drifter
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available: yk 5 xD,k 1 ek, ek ;N (0, R), where R is the

observation error covariance as above. At time tk, the

joint distribution of the flow and drifter variables is

p(xF,k, xD,k) 5 p(xD,k j xF,k)p(xF,k). We discretely ap-

proximate the marginal distribution on the flow

p(xF ,k)5 �Ne

i51 ~w
k
i d(x

F ,k 2 xF,ki ) with an ensemble of Ne

weighted states fxF,ki , ~wk
i gNe

i51. Initially, we set ~wk
i 5

1/Ne, so that the joint distribution is approximated

by p(xF ,k, xD,k)’ (1/Ne)�Ne

i51p(x
D,k j xF ,ki )d(xF ,k 2 xF,ki ).

Next, we approximate the conditional distribution of

the drifters given each flow ensemble member with

a weighted ensemble of M states: p(xD,k j xF,ki )’

�M
j51w

k
i,jd(x

D,k 2 xD,k
i,j ), where fxD,k

i,j gj51,...,M is the en-

semble of drifter states associated with (and subject

to) the flow xF,ki and fwk
i,jgj51,...,M are the associated

weights. Thus, the full joint distribution is approxi-

mated discretely as

p(xF ,k, xD,k)’ �
N

e

i51
�
M

j51

wk
i, jd(x

D,k2 xD,k
i, j )d(xF ,k 2 xF ,ki ) ,

(10)

where�Ne

i51�
M
j51w

k
i,j 5 1. [For simplicity, we have absorbed

the factor 1/Ne into the weights in Eq. (10).]We denote this

ensemble by fxF,ki , xD,k
i,j ,wk

i,jgj51,...,M

i51,...,Ne
. We also define ~wk

i in

terms of wk
i,j for general times tk by

~wk
i 5 �

j
wk
i,j , (11)

so that the weighted ensemble representing themarginal

distribution of the flow is given by fxF,ki , ~wk
i gNe

i51. As with

the typical particle filter, we will assume that, at time 0,

w0
i, j 5 1/(MNe) and that the ensemble members have all

been drawn independently from their respective prior

distributions. Finally, we define the following quantities

at time tk:

~xD,k
i 5

1

~wk
i

�
j
xD,k
i,j wk

i,j , (12)

xF ,k5 �
i
xF ,ki ~wk

i , xD,k5 �
i,j
xD,k
i,j wk

i,j5 �
i

~xD,k
i ~wk

i .

(13)

Thus, ~xD,k
i denotes the mean of the drifter particles as-

sociated with flow member i, while xD,k is the mean over

all the drifter particles, and xF ,k denotes the mean of the

flow variables. Figure 1 provides a schematic of the setup

for the hybrid filter.

2) BETWEEN UPDATES

Suppose, at time tk21, we have the ensemble fxF ,k21
i ,

xD,k21
i,j ,wk21

i,j gj51,...,M
i51,...,Ne

and our next observation is at time

tk. Before assimilating the observation, we must obtain

an ensemble at time tk. This will generally be performed

by first numerically integrating each flow member xF,k21
i

according to the model given by Eq. (1a). The drifter

particles xD,k21
i,j are then numerically advected according

to Eq. (1b) subject to the ith flow member:

_xDi,j 5 f2(x
F
i , x

D
i,j) . (14)

The weights wk21
i,j are then tested to determine whether

the resampling condition is met or not. That is, at time

tk, the prior weights are used to calculate the effective

dimension and determine whether Neff ,Nthresh
eff , with

Neff defined in Eq. (6). (This is done to avoid the com-

putational effort of saving two sets of weights at every

step, since the prior weights are necessary for the update

step with resampling.) If Neff ,Nthresh
eff , the update with

resampling is performed; otherwise, the update with no

resampling is performed, as described immediately below.

3) UPDATE: NO RESAMPLING

The time integration described above yields the prior

ensemble of state values at time tk, fxF,ki , xD,k
i,j g, which,

along with the weights fwk21
i,j g, describe the prior distri-

bution at time tk. Suppose an observation y
k is available at

time tk, and thatNeff $Nthresh
eff : in this case, we update the

weights wk21
i,j to wk

i,j, but leave the ensemble members

fxF,ki g and the particles fxD,k
i,j g unchanged. Following Eq.

(5), the weight update equation is given by

wk
i, j 5

p(yk j xD,k
i, j )wk21

i,j

�
l,m

p(yk j xD,k
l,m )wk21

l,m

; (15)

FIG. 1. Schematic of the hybrid filter setup: the flow variable xF is

projected onto the y axis while the drifter variable xD is projected

onto the x axis. The solid colored circles represent the ensemble:

each of the four realizations of the flowhas seven realizations of the

drifter position affiliated with it, and the area of the circle repre-

sents the weight wi,j. Striped circles represent within-flow averages
~xDi with sizes representing the weight ~wi.
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this may be viewed as a standard particle filter update on

the specific ensemble:

f(xF,k1 ;xD,k
1,1 ), (x

F,k
1 ;xD,k

1,2 ), . . . , (x
F,k
1 ;xD,k

1,M), (xF ,k2 ;xD,k
2,1 ), . . . ,

(xF,kNe
;xD,k

Ne,M
)g. The discrete approximation of the joint

posterior distribution of the flow and drifters condi-

tioned on all the observations up to and including the

observation at time tk is then given by

p(xF , k, xD,k j yk)

’ �
N

e

i51
�
M

j51

wk
i,jd(x

D,k2 xD,k
i,j )d(xF ,k 2 xF ,ki ) . (16)

4) UPDATE: WITH RESAMPLING

In this section, we discuss how to update the full en-

semble when the weights cross the resampling threshold

so that Neff ,Nthresh
eff . Since this update will occur en-

tirely at time tk, we drop the time dependence. Instead,

we indicate whether a variable has been updated using

the observation yk5: y or not: the superscript f (forecast)
will denote variables that have not yet been updated,

and the superscript a (analysis) will denote variables that

have been updated with the observation y. In particular,

note that w
f
i,j will denote wk21

i,j since the weights do not

change when the particles themselves are evolved for-

ward in time, and wa
i,j will denote the weights at time tk

after they are updated according to the observation.

Traditionally, when applying the particle filter, one

would resample fxigNe

i51 from �Ne

i51wid(x 2 xi) when

some predetermined threshold of the effective sample

size is hit; that is, the particles are resampled from the

approximate full distribution on x. In the proposed hy-

brid filter algorithm, the flow variables will be resampled

from the EnKF posterior distribution, while the drifter

variables will be resampled using the updated weights.

Generally, our hybrid filter update consists of three

main steps, which we will briefly overview here before

discussing specific details below. First, we change the

values of the flow ensemble members using a version of

the EnKF update, yielding a (weighted) ensemble ap-

proximation of the EnKF posterior distribution. Second,

we update the weights using the current observation y.

Finally, we resample the flow members and the drifter

particles from their respective distributions. More pre-

cisely, the flow variables will be resampled from the

EnKF approximation of the joint distribution between

the flow and the averaged drifters ~xD, marginalized over
~xD:p(xF j y)5 Ð

p(xF , ~xD j y) d~xD. The drifter variables

will be resampled from the approximation of the mar-

ginal distribution of the drifters conditioned on their

respective flowmembers: (xa,Di,j )
j51,...,M

i51,...,Ne
are sampled from

�Ne

i51�
M
j51w

a
i,jd(x

D 2 xf ,Di,j ).

We will see that the resampling of the flow variables

only uses information from the first and second mo-

ments of the distribution on (xF, xD), as the EnKF

does. This will produce a reasonable approximation

of p(xF j y) under the assumption that the marginal

distribution on the flow variables is approximately

Gaussian.We now describe the update process in more

detail.

Let A
f
F be the NF 3 Ne matrix with the ith column

given by x f ,F
i , and let ~A

f

D be the 2ND 3 Ne matrix with

the ith column given by the average ~x f ,D
i of the drifters

associated with x f ,F
i , defined in Eq. (12). Recall that ND

denotes the number of drifters in the flow. We will use

the perturbed-observation formulation of the EnKF and

therefore define the 2ND 3 Ne matrix Y,

Y5 [y1 e1, y1 e2, . . . , y1 eN
e

] , (17)

of perturbed observations; the distribution of each ei
must account for the fact that the ensembles of flow

members and drifter particles have associated weights,

and we therefore discuss them below.

As usual in the context of Lagrangian data assimila-

tion, we divide the covariance P into four blocks:

P5

"
PFF PFD

PT
FD PDD

#
, (18)

which correspond to the covariance of the flow, the co-

variance of the drifters, and the cross covariances be-

tween the flow and drifters. Since this algorithm uses

a different ensemble size for the flow members xFi and

the drifter particles xDi,j, the calculation of these co-

variance matrices is not as straightforward as with the

traditional EnKF, and we therefore discuss methods for

calculating these matrices for the hybrid filter in detail

below.

Other than the differences in Y and Pf, which will be

described in the following two paragraphs, the update

step on the flow members for the hybrid filter has the

same formulation as the traditional EnKF update in the

Lagrangian case:

Aa
F 5A

f
F 1P

f
FD(P

f
DD1R)21(Y2 ~A

f

D) . (19)

In particular, note that P
f
FD(P

f
DD 1R)21 defines the

upper block of the Kalman gain matrix; since the drifter

variables will be updated separately, the lower block is

not needed here.

In the Gaussian case with a linear model, the tradi-

tional ensemble Kalman filter can be shown to give the

correct Bayesian posterior mean and covariance in the

limit asNe/‘ (Mandel et al. 2011); additional relevant
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results on the EnKF are given in Furrer and Bengtsson

(2007). In order for this to hold in the weighted case, the

observation perturbations must have the correct distri-

bution when considered as weighted samples. Specifi-

cally, let Y be as defined in Eq. (17). In the traditional

EnKF, ei ; N (0, R); however, in our case, we need the

weighted ensemble fei, ~wf
i g to be a discrete approxi-

mation of the continuous normal distribution with mean

0 and covariance R. Details on how to produce this en-

semble are given in appendix A.

There are essentially two choices for calculating P
f
FD

and P
f
DD: they can be calculated using the ‘‘full’’ en-

semble fxf ,Fi , xf ,Di,j , w
f
i,jg or the ‘‘averaged’’ ensemble

fx f ,F
i , ~x f ,D

i , ~wf
i g. These two ensembles will have the

same means but different covariances, denoted with

a subscript full or avg (see appendix B for details). We

emphasize that both the full and averaged covariances

will result in an approximation when used to update the

flow members, due to the nested ensemble setup. In the

experiments presented in the following section, we im-

plemented bothmethods and found very little difference

in the results (see section 4c). Using the averaged en-

semble has the advantage that, in the linear Gaussian

case, the resulting posterior (analysis) covariance of the

flow is consistent with that of the traditional EnKF. In-

deed, note that the posterior mean and covariance of the

flow variables (after the EnKF update) will depend

on which ensemble (full or averaged) is used to calculate

P
f
DD and P

f
FD. We define K(1) 5P

f
FD(P

f
DD 1R)21, the

upper block of the Kalman gain matrix. Then, the

posterior mean of the flow is given by xa,F 5 xf ,F 1
K(1)(y2 xf ,D), and the posterior covariance can be

shown to be Pa
FF 5P

f
FF 2K(1)(P

f
FD,avg)

T 2P
f
FD,avgK

(1)T 1
K(1)(P

f
DD,avg 1R)K(1)T. Now, if the covariances from the

full ensemble are used in K(1), this expression cannot be

simplified further. However, if the covariances from the

averaged ensemble are used, this can be further simplified

to Pa
FF 5P

f
FF 2K(1)(P

f
FD,avg)

T, which is the same form

given by the traditional EnKF for Lagrangian data as-

similation. Thus, since the prior statistics on the flow use

the averaged ensemble, the update step on the flow should

also use the averaged ensemble; in the linear Gaussian

case, this will lead to posterior statistics that are consistent

with those of the traditional EnKF. In particular, the in-

novations (y2~xf ,Di ) depend on the averaged statistics,

which prevents further simplifications of the posterior

covariance if the full statistics are used in K(1).

We now present a concise description of the imple-

mentation of the update with resampling. We consider

the prior–forecast ensemble to be two ensembles: one

for the flow variables, fxf ,Fi , ~wf
i g [with ~wf

i as defined in

Eq. (11)], and one for the drifter variables, fxf ,Di,j , w
f
i,jg.

The PF–EnKF hybrid updating–resampling algorithm

proceeds as follows (with additional explanations pro-

vided subsequently):

(i) Change the state values of the flow ensemble

members using the observation y with the EnKF

update given in Eq. (19), where covariances P
f
FD

and P
f
DD are obtained using the averaged drifter

ensemble as described above. We obtain fxa,Fi , ~wf
i g.

(ii) Find wa
i,j using y and w

f
i,j with the standard particle

filter update described in Eq. (15). This gives

fx f ,D
i,j , wa

i,jg.
(iii) Now fxa,Fi , ~wf

i g and fxf ,Di,j , wa
i,jg together represent

the posterior distribution at time tk, which has

incorporated the observation y. The forecast

weights are used in the representation of the

posterior distribution on the flow, since the flow

ensemble members have already been updated to

represent the observations; this sample then has the

same properties as the traditional EnKF, except

that each ensemble member has an associated

weight. (See appendix A for more details.)

(iv) Resample the flow variables from fxa,Fi , ~wf
i g and

the drifter variables from fxf ,Di,j , wa
i,jg using stan-

dard methods. Call these f�xa,Fi g and f�xa,Di g, re-
spectively. Note, for a specific flow member i5m,

if y falls far from the support of fxf ,Dm,j g, we

recommend resampling the drifter variables for

the mth flow around the observation using the

observation error statistics.

(v) Setwa
i,j 5 1/(MNe), x

a,F
i 5 �xa,Fi , and xa,Di,j 5 �xa,Di . Then,

the posterior is represented by fxa,Fi , xa,Di,j , wa
i,jg

and sequential filtering proceeds as normal.

In particular, note that the EnKF update on the flow

variables uses the prior weights, as updating both the

weights and the flow members would lead to the ob-

servations being incorporated into the flow update

twice. However, since the weights must all be equal at

the end of the full update, the final flow members must

be resampled from fxa,Fi , ~wf
i g, so that the ensemble with

equal weights approximates the same distribution.

At any point in time, the ensemble fxFi , xDi,j,wi,jgj51,...,M

i51,...,Ne

may be used to calculate statistics of interest such as

the mean or covariance, as with a typical particle filter.

The mean flow state is given by xF 5�Ne

i51x
F
i ~wi, and the

mean drifter state is given by xD 5�M
j51�

Ne

i51x
D
i,jwi,j. The

covariance matrices will be subject to the same com-

plications described above: they can be calculated

either using the full ensemble of drifter particles or the

averaged ensemble. Define xi,j 5 [xFi , x
D
i,j]

T; then, the

covariance matrix of the full ensemble is Pfull 5

�M
j51�

Ne

i51(xi,j 2 x)(xi,j 2 x)Twi,j. Next, let ~xi 5 [xFi , ~x
D
i ]

T;
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then, the covariance matrix of the averaged ensemble is

Pavg 5�Ne

i51(~xi 2 x)(~xi 2 x)T ~wi.

b. Expected benefits and outcomes

The hybrid filter presented above is developed mainly

for the case of Lagrangian data assimilation, when the

flow field has been discretized into a high-dimensional

vector and the drifter trajectories are highly nonlinear. In

this case, the particle filter is completely intractable,

whereas the ensemble Kalman filter breaks down when

the prior distribution is highly non-Gaussian. The latter

case arises when the drifter dynamics, either near a saddle

or a center, leads to non-Gaussian distributions (Apte and

Jones 2013). In these cases, we expect the hybrid filter to

outperform the ensemble Kalman filter, since the hybrid

filter employs a particle filter on the drifters, in order to

effectively approximate such non-Gaussian distributions.

When the flow leads to highly non-Gaussian distri-

butions on the drifter trajectory, the ensemble Kalman

filter may break down. In these cases, although the hy-

brid filter may take more machine time to run due to the

large number of drifter particles, it will produce much

more accurate results than the ensemble Kalman filter,

as shown in numerical examples in section 4. In any case,

the increase in computation will be largely nominal,

since running many more evolutions of the drifter par-

ticles will be significantly cheaper than evolving more

realizations of the flow. In addition, each drifter particle

is independent given the flow field ensemble, so these

advections can be easily parallelized. We also note that

the EnKF update of the flow field in the high-dimensional

case can take advantage of common EnKF methods such

as localization, so that local observations do not overly

affect the flow at large spatial distances in this update

step. Localization can simply be applied to the weighted

covariances given in Eq. (18). Finally, we expect that this

general methodology, of splitting the state space into two

parts and applying different assimilation techniques to

them, will be useful in other contexts as well.

4. Numerical results

In this section, we test the hybrid filter on amodel with

a low-dimensional flow variable. This was chosen be-

cause the particle filter is tractable for Lagrangian data

assimilation when the flow is low-dimensional, and we

are particularly interested in comparing the hybrid and

EnKF posterior distributions to the particle filter pos-

terior. Since Lagrangian data assimilation leads to non-

Gaussian distributions, we need a method that can

handle non-Gaussianity as a benchmark to which we can

compare both the traditional method of the EnKF and

the new method of the hybrid filter. Unless otherwise

noted, the resampling method used will be a Metropolis–

Hastings (MH) scheme based on the work of Dowd

(2007) and van Leeuwen (2009). However, in Table 1,

we also include an experiment in which the flow vari-

ables are resampled using the Gaussian resampling

(GR) scheme of Xiong et al. (2006), while the drifter

variables are still resampled using the MH scheme.

a. Model

As a proof of concept, we apply the particle filter,

ensemble Kalman filter, and hybrid filter to the linear

shallow water equations with a single drifter. This

model, and the decomposed solution given below, are

based on (Pedlosky 1986) and were used as a test

problem in (Apte et al. 2008). Derived from the Navier–

Stokes equations under certain assumptions and ap-

proximations, the linear shallow water equations de-

scribe the time evolution of the horizontal velocity u, the

meridional velocity y, and the offset from the mean

height field h, and are given by

›u

›t
5 y2

›h

›x
,

›y

›t
52u2

›h

›y
,

›h

›t
52

›u

›x
2

›y

›y
. (20)

For simplicity, we use periodic boundary conditions so

that explicit solutions to this model can be found as sums

of Fourier modes:

u(x, y, t)52l sin(kx) cos(ly)u01 cos(my)u1(t),

y(x, y, t)5 k cos(kx) sin(ly)u01 cos(my)y1(t),

h(x, y, t)5 sin(kx) sin(ly)u01 sin(my)h1(t) , (21)

TABLE 1. Time-averaged errors (as described in the text) of each

filter over the assimilation window, averaged over 20 trials, with

95% confidence intervals: scenario 2. PF (lg.) provides a baseline,

using Ne 5 2 3 106.

Obs frequency Method Drifter error Flow error

High PF (lg.) 0.504 0.387

PF 0.504 6 0.007 0.473 6 0.023

Hybrid 0.475 6 0.012 0.478 6 0.041

Hybrid with GR 0.467 6 0.008 0.392 6 0.037

EnKF 0.325 6 0.010 0.268 6 0.023

EnKF (lg.) 0.295 6 0.0002 0.220 6 0.0004

Low PF (lg.) 0.793 0.635

PF 0.801 6 0.010 0.643 6 0.021

Hybrid 0.802 6 0.031 0.778 6 0.060

Hybrid with GR 0.809 6 0.020 0.743 6 0.040

EnKF 1.119 6 0.102 0.787 6 0.130

EnKF (lg.) 1.016 6 0.001 0.822 6 0.003
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where the Fourier amplitudes solve linear ordinary differ-

ential equations. We will consider a noisy version of this

system, where the noise is given by h ; N (0, Q) (indepen-

dent across the three variables) and h 5 [h(1), h(2), h(3)]:

_u05 0,

_u15 y11h
(1),

_y152u12mh11h
(2),

_h15my11h
(3) . (22)

Note that, even though the original model is symmetric

in u and y, the system governing the amplitudes is not

symmetric in u1 and y1 unless m 5 0. Next, the position

of the drifter xD 5 (x, y) solves

_x5 u(x, y, t),

_y5 y(x, y, t) . (23)

In particular, even if the flowevolutionEqs. (20) are linear

in (u, y, h), the drifter evolutionEqs. (23) will be nonlinear

in (x, y) unless (u, y, h) is constant. In this model, the

Eulerian variables of interest are xF 5 (u0, u1, y1, h1) :5
(xF1 , x

F
2 , x

F
3 , x

F
4 ), whereas the drifter variables are xD 5

(x, y). We observe a noisy measurement of (x, y), for

which the covariance is assumed to be

R5s2
R

�
1 0

0 1

�
(24)

for some scalar s2
R.

In the following experiments, we will estimate the

Fourier amplitudes as the flow variables. Therefore, since

we are only estimating a relatively small number of vari-

ables, the particle filter is tractable.With enough particles,

it can also be assumed to provide an approximation to the

true Bayesian posterior distribution, since it captures all

non-Gaussian behavior. In particular, this choice of sys-

tem provides the ability to easily compare the marginal

distributions of the flow from each filter graphically.

In some experiments we will also compare the errors

between the mean of each filter (denoted by an overbar)

and the truth (denoted by the superscript ‘‘true’’) as

a function of time, for the flow and drifter variables

separately. At a given assimilation step, these errors are

calculated according to

flow error5

"
�
N

F

m51

(xFm 2 xF ,truem )2

#1=2
and (25)

drifter error5
1

sR

[(x2 xtrue)21 (y2 ytrue)2]1
=2 , (26)

where NF may be 3 or 4 depending on the scenario

(described in the following subsections) and whether or

not we estimate u0 in that case. In particular, note also

that the error on the drifter is normalized by the ob-

servation error standard deviation.

In the remainder of this section, we explore two sce-

narios: first, in section 4b, a single-step update in which

a bimodal prior distribution is enforced; second, in sec-

tion 4c, a long trajectory in which the drifter crosses

through several cells. In this second scenario, we con-

sider cases where the observations are available at both

a high and low frequency. In scenario 1, no noise is

added to the system. Figure 2 (left) shows a snapshot in

time of the flow field in this case. (Exact parameters for

each scenario will be given in the subsections below.) In

scenario 2, nonzero noise is added to the evolution of the

flow, and the drifter crosses between several cells. The

true trajectory for this case is given in Fig. 2 (right).

Black circles represent how often drifter position was

assimilated for the high-frequency case, and red aster-

isks represent the low-frequency case. As demonstrated

in Fig. 2, in the low-frequency case, observations are

available about 4 times per drifter orbit, whereas ob-

servations are available about 40 times per orbit in the

high-frequency case. However, this depends heavily on

how close the drifter is to a saddle point in the flow,

which affects how quickly the drifter is moving at that

point in time.

b. Scenario 1: Single step, bimodal prior

In this simple case, we consider the marginal posterior

distributions on the four flow variables u0, u1, y1, h1 and

the drifter coordinates x and y after a single forecast-

update step of each assimilation algorithm. The particle

filter update step includes Metropolis–Hastings resam-

pling and the hybrid filter update step includes the

EnKF update on the flow variables described in section

3a. In this case, k 5 l 5 m 5 1 and no noise is added to

the system: Q 5 0. We let the EnKF ensemble size and

the number of particles for the particle filter both be

Ne 5 104. The ensemble of flow members for the hybrid

filter isNe5 1000 and the number of drifter particles for

each flow member is M 5 100, so that the total number

of particles in the hybrid filter is MNe 5 105. Since the

dimension of the estimated state is relatively low and

only one update step is performed, the particle filter

distribution is taken to be an approximation to the true

Bayesian posterior.

The prior distributions on each of the flow variables

u0, u1, y1, and h1 are Gaussian. The prior distribution on

x is also Gaussian, while the prior distribution on y is

bimodal to simulate a saddle case. Based on previous

applications of the EnKF to a bimodal distribution, we
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expect the EnKF to fail to capture the true distribution

of the y coordinate, but we expect the hybrid filter to

capture this distribution more accurately (since the al-

gorithm uses a particle filter on the drifter variables).

Indeed, in Fig. 3, the particle filter posterior on the y

coordinate is highly non-Gaussian, and while the hybrid

filter captures this shape, the EnKF posterior is much

closer to Gaussian. The particle filter posterior on the x

coordinate is much closer to Gaussian, and while the

EnKF posterior is more accurate than for the y co-

ordinate, it still does not quite capture the covariance of

the particle filter, while the hybrid filter does. The hybrid

filter and EnKF are equivalent on the flow variables,

since the hybrid filter employs the EnKF update on

these variables. In this case, since the flow variables

evolve linearly, the EnKF posterior and particle filter

posterior distributions are fairly close to each other.

c. Scenario 2: Long trajectory

Next, we test the performance of each filter in the case

where a drifter passes through many cells in the flow.

Within this scenario, we run experiments for two sets of

observations: high and low frequency. Here, we only

estimate three flow variables (u1, y1, h1) using Eqs. (22)

and the drifter (x, y) using Eqs. (23) with wavenumbers

k 5 l 5 m 5 4, and model noise covariance

Q5

2
4 0:05 0 0

0 0:1 0

0 0 0:1

3
5 .

The observation error covariance isR5 0.01I. The high-

frequency case uses 600 observations with Tfinal 5 10,

and the low-frequency case uses 60 observations for

the same time window. The true initial conditions are

[utrue0 (0), utrue1 (0), ytrue1 (0), htrue1 (0), xtrue(0), ytrue(0)]5
(1, 0:5, 0:9, 1, p/2, p). In each case, the initial ensem-

bles for the filters are drawn fromGaussian distributions,

which are centered away from the truth, in order to judge

whether the filters are able to recover from this initial

error. The initial ensembles for the flow variables are

drawn from distributions with mean [utrue1 (0)1
0:2, ytrue1 (0)1 0:5, htrue1 (0)1 0:5] and covariance I. The

initial ensembles for the drifter variables are drawn from

distributions withmean [xtrue(0)1 0.1, ytrue(0)1 0.1] and

covariance 0.1I. The particle filter uses ensemble size

Ne 5 93 104 and the EnKF uses ensemble size Ne 5 50.

FIG. 2. Setup for each scenario. (left) Snapshot in time of the flow field (u, y) (arrows) and height field h (shading);

scenario 1, no noise. (right) True drifter trajectory (high observation frequency, black circles; low observation fre-

quency, red asterisks) and snapshot of the flow field (u, y) (blue arrows) for scenario 2.

FIG. 3. Comparison of posterior distributions of particle filter

(blue dashed curve), ensemble Kalman filter (red solid curve), and

hybrid filter (green dashed–dotted curve): single forecast and up-

date step of stationary linear shallow water equations. Bimodal

prior on y; Gaussian priors on u0, u1, y1, and h1: scenario 1.
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The hybrid filter usesNe5 50 andM5 2000; that is, each

of the 50 flow members has 2000 drifter particles associ-

ated with it.

The time-averaged errors for the flow variables and

the drifter position are given in Table 1. We have in-

cluded a single experiment of the particle filter with

Ne5 23 106 [denoted PF (lg.)] to provide a baseline for

the errors. For the other filters, the values are averaged

over 20 assimilation trials, where each trial uses the same

observations but different realizations of the initial filter

ensemble and the system noise. For each trial, the errors

are averaged in time over the assimilation window. The

95% confidence intervals are calculated over the 20

trials, using a Student’s t distribution with p5 0.025 and

19 degrees of freedom.

For the case with a high frequency of observations, all

filters perform well. The hybrid filter and particle filter

perform similarly, while the EnKF errors are the lowest.

This is likely due to the fact that the flow is evolving

linearly and the observations are close enough to each

other than the drifter trajectory between observations is

also fairly linear. Additionally, since the EnKF errors

are lower than even the large-sample PF results, this

may be due to the EnKF overfitting to the observations;

this is discussed further below.

On the other hand, in the case of a low frequency of

observations, the particle filter and hybrid filter gener-

ally outperform the EnKF with Ne 5 50. The hybrid

filter estimates the drifter position about as well as the

particle filter, though it does not estimate the flow var-

iables quite as well. However, the hybrid filter estimates

the flow variables slightly better than does the EnKF on

average. This is likely due to the fact that the EnKF does

not estimate the drifter position very well in this case,

which affects its estimate of the flow. Additionally, note

that the confidence intervals for the EnKF are much

larger than those for the other filters. This is because the

EnKF is more likely to fail (diverge) in this case than

the hybrid or particle filter, due to the nonlinearity of

the drifter trajectory.

Figures 4 and 5 each show an example of one of these

divergent cases. The hybrid and particle filter trials

chosen here display representative behavior. Figure 4

includes the errors between each filter mean from the

truth as a function of time for the flow variables and

the drifter position. Figure 5 shows the evolution of the

mean of the EnKF, hybrid, and PF, as well as the truth

(black) of the flow variables u1, y1, h1 and the drifter

trajectory. Note that the EnKF fails to estimate the

drifter position at a saddle point, near the coordinate

(0.7, 2.5). The true drifter trajectory moves southwest

into the left cell, while the EnKF estimate moves

southeast into the right cell for several observations,

until it is eventually pulled back. However, this affects

the estimate of the flow for the rest of the assimilation

window.

Figure 6 shows the distributions of the x and y co-

ordinates of the drifter at t 5 6 for each of the filters, as

well as the true value of about (0.6, 2.3). In the x co-

ordinate, the particle filter distribution is somewhat

skewed at this time. The hybrid filter captures this be-

havior well, while the EnKF does not. In the y co-

ordinate, although the particle filter distribution is close

to Gaussian, the EnKF fails to capture this distribution

at all, while the hybrid filter captures it well. In fact, the

true value does not even fall within the support of the

EnKF distribution.

Table 1 also includes the errors of the hybrid filter

with the Gaussian resampling method of Xiong et al.

(2006) applied to the flow variables at the update step.

These errors are generally comparable to those of the

hybrid filter with MH resampling on both the flow and

drifter. This is likely due to the linear behavior of the

flow variables in this example, which suggests that the

distributions on the flow variables should be close to

Gaussian. Additionally, since this method of resampling

tends to spread the ensemble out more than the MH

method, it may be useful for deterministic models or

systems with low noise levels.

As discussed earlier, these experiments used the version

of the hybrid filter with a drifter covariance calculated

using the averaged ensemble. We also performed these

experiments using the full ensemble drifter covariance in

the update step, and the errors were indistinguishable.

FIG. 4. Scenario 2b: long drifter trajectory, low observation fre-

quency. Errors of means of particle filter (blue dashed), EnKF (red

solid), and hybrid filter (green dashed–dotted) from truth as

functions of assimilation step, for the (top) flow variables and

(bottom) drifter position. Vertical dashed lines represent steps at

which the hybrid filter performed the EnKF update, according to

the resampling threshold described in the text.
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This is likely due to the small difference between these

two covariances. In particular, after evaluating Eq. (B15)

at each update step for each trial, the average norm of the

difference (PDD,full2 PDD,avg) is 4.503 1024 for the high-

frequency case, and 0.02 for the low-frequency case. The

average norms of PDD,full are 1.66 and 3.48 for the high-

and low-frequency cases, respectively. These differences

are relatively constant in time, so taking the time average

does not lose information.

We anticipate that the hybrid filter will prove most

beneficial when the flow field is high-dimensional, in

which case the ensemble size for the EnKF and for the

flow part of the hybrid filter will be limited. On the other

hand, the number of drifter particles in the hybrid filter

is only limited by the number of drifters, not by the di-

mension of the flow. For this reason, the EnKF with

Ne 5 50 was compared to the hybrid filter with Ne 5 50

flow members, andM5 1000. However, we also ran the

EnKF with Ne 5 93 104, the same ensemble size as the

particle filter, to avoid conflation with the effects of

sampling error as much as possible. These results are

also included in Table 1, as EnKF (lg).

The large-sample EnKF errors for the high-frequency

case are significantly lower than for the other filters.

However, this information is limited: it only contains the

error of the mean estimate from the truth and does not

contain any information about the underlying distribution.

Additionally, the EnKF ensemble may be overtightened

around the mean. The results from the large-sample

FIG. 5. Scenario 2b: long drifter trajectory, low observation frequency. Evolution of the particle

filter (blue dashed), EnKF (red solid), and hybrid filter (green dashed–dotted) means of flow var-

iables (top left) u1, (top right) y1, and (bottom left) h1 as a function of assimilation step, and (bottom

right) trajectory of drifter over entire assimilation window. True evolutions are given in black.

FIG. 6. Distributions of (left) x and (right) y drifter variables for

particle filter (blue dashed), EnKF (red solid), and hybrid filter

(green dashed–dotted), with true value given by the vertical black

lines; scenario 2b: long drifter trajectory, low observation fre-

quency.
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particle filter support this, since the errors do not decrease

drastically when the ensemble size is increased. While this

does not have a detrimental effect on the high-frequency

case, we see that the EnKF (lg) errors for the low-

frequency case are still larger than for the other filters,

though the confidence intervals are much smaller. This

suggests that the drastic failure that occurs in the low-

frequency, small-ensemble EnKF is much less likely to

occurwith a large ensemble, but that in general, the large-

ensemble EnKF still does not perform as well as the hy-

brid filter in the case of low-frequency observations.

Finally, we emphasize that the large ensemble size used

for the particle filter is meant to allow this method to be

considered as a benchmark to which the hybrid and en-

semble Kalman filters can be compared. In systems with

a high-dimensional flow, the particle filter will fail due to

the limited ensemble size. On the other hand, the hybrid

filter only needs a large ensemble to capture the behavior

of the drifters, which we assumewill be of a relatively low

dimension. Here, we have also included results with

smaller ensemble sizes, to hint at the behavior of these

filters in systems with high dimension. Table 2 includes

the errors for the same scenarios described above, but the

particle filter ensemble size is Ne 5 100 and the hybrid

filter ensemble sizes are Ne 5 50, M 5 100. The particle

filter has much worse performance with this small sample

size, especially in the low-frequency case. However, the

hybrid filter errors are indistinguishable from those with

the larger ensemble size.

5. Discussion and outlook

We have introduced a hybrid particle–ensemble Kal-

man filter for assimilating Lagrangian data into ocean

models. The two primary challenges when performing

Lagrangian data assimilation are 1) the strong nonlinearity

of Lagrangian paths taken by instruments that are ad-

vected through the ocean and 2) the high-dimensionality

of realistic ocean models. We have devised a hybrid filter

to exploit the strengths of the two individual filtering

methods—handling nonlinearity for particle filters and

handling high-dimensional systems for ensemble Kalman

filters—by decomposing the underlying model as sug-

gested by the challenges. As such, we take a small number

of ensemble members to represent the flow field (ocean

dynamics). We think of updating these via an ensemble

Kalman filter. However, we represent the drifter advected

by each flowmember with a large number of particles akin

to a particle-filtering scheme. Due to the sometimes

chaotic nature of a drifter’s path, representing its path by

many particles enables accurate approximation of mul-

timodal prior distributions, which can arise when a drifter

travels near a saddle point between observations. Thus,

the forecast for the hybrid filter has an excellent chance of

placing high-weight particles near the observation be-

cause the drifter space is very well sampled. In contrast,

an EnKF would only have one drifter sample per en-

semblemember.One could easily imagine that the drifter

of a ‘‘very accurate’’ flow field ensemble member hap-

pens to follow the other natural path away from the

saddle and thus away from the observation. In this case,

lack of sampling in the nonlinear dimension will strongly

degrade estimates provided by the EnKF posterior.

The numerical experiments presented in this paper

demonstrate that the hybrid filter outperforms the en-

semble Kalman filter and often performs on par with

posterior densities estimated by the particle filter. In the

linear flow case, the hybrid filter estimated the full

posterior distribution much more accurately than did

the EnKF.Many applications involve sampling from this

posterior in order to get a sense of different possible

outcomes as well as variability among them. Thus, an

incorrect posterior distribution would result in incorrect

samples (even if the distribution has the correct mean

and covariance, after inflation). Therefore, in cases

where the true posterior distribution is highly non-

Gaussian, the EnKF will likely give poor results regard-

less of algorithmic improvements such as covariance

inflation. In the cases shown here, the hybrid filter over-

came this problem and yielded posterior distributions

that more closely represented those of the particle filter.

In addition, when the time between observations be-

came long, the EnKF failed more often than did the

hybrid filter, while the mean of the hybrid filter consis-

tently provided accurate estimations of the truth. This is

precisely the case that motivated the hybrid filter, as

drifter path nonlinearity is hard to avoid when the time

between observations is long.

A practical strength of the proposed hybrid filter,

which we believe will make it very attractive to ocean

scientists, is that it ‘‘feels like’’ an EnKF, but can easily

deal with the nonlinear nature of the data at a relatively

nominal added computational expense. However, we

foresee some remaining challenges. For instance, one

may want to assimilate multiple drifter tracks into an

ocean model. If these drifters are well separated, then

TABLE 2. Time-averaged errors (as described in the text) of the

filters over the assimilation window, averaged over 20 trials, with

95% confidence intervals: scenario 2, small ensemble sizes.

Obs frequency Method Drifter error Flow error

High PF 0.734 6 0.081 1.536 6 0.348

Hybrid 0.476 6 0.010 0.443 6 0.061

Low PF 1.330 6 0.168 1.493 6 0.395

Hybrid 0.846 6 0.038 0.787 6 0.092
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treating them independently would be natural as typical

EnKF schemes employ some kind of localization to

avoid (spurious) long-range correlations. So, one could

use the proposed hybrid filter to update part of the ocean

with drifter a and another part with drifter b. However,

if these drifters are in the same region of the ocean, we

would expect some correlations between drifter paths,

and the effects of correctly accounting for those corre-

lations within the hybrid algorithm would need to be

carefully thought through. Another potential challenge

involves resampling of the flow field after an EnKF

update of the flow. Recall, as opposed to an EnKF, the

hybrid scheme update yields weighted flow field

ensemble members. But, one purpose of updating–

resampling is to generate empirical samples of the

posterior distribution. To do so, one would have to re-

sample the high-dimensional flow posterior. General

ideas for high-dimensional resampling have recently

been proposed in N. Kantas, A. Beskos, and A. Jasra

(2013, personal communication), and we imagine

something similar would need to be employed when

using the hybrid filter for realistic ocean models. The

hybrid update with Gaussian resampling on the flow

variables may be a promising approach for high-

dimensional resampling; this would yield a spread of

flow states from the posterior where EnKF localization

could be applied. The use of Gaussian resampling for

both the flow and drifter variables may also affect the

performance of the hybrid filter adversely. Both of

these points will need further investigation.

Another issue may arise if one relaxes the assumption

that the flow field dynamics are close to linear. Under

this assumption, we have shown that if flow variables are

updated with the Kalman gain matrix, then their prior

weights remain unchanged and become each ensemble

member’s respective posterior weight (details are ex-

plained in appendixA). It remains unclear that this is the

correct approach if the prior distribution is far from

Gaussian. Potential reweighting methods for the case of

a non-Gaussian prior for the flow field are currently

being investigated and will be the subject of future work.
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APPENDIX A

EnKF with Weights

The EnKF update on a weighted ensemble has the

same posterior mean and covariance as the traditional

EnKF in the Gaussian case, and thus the correct Bayes’s

posterior mean and covariance, provided the observa-

tion perturbations are correctly defined. Here, we derive

the correct observation perturbations in this case and

show consistency with the traditional EnKF theory.

Suppose, at some time tk, the true state of the system is

x andwe have an observation available given by y5Hx1
e, where e;N (0,R). To represent the initial uncertainty

in the true state, we have a weighted ensemble of states

fxfi ,wigi51,...,Ne
, which represents a normal distribution

with mean m0, covariance C0. That is,

�
N

e

i51

x
f
i wi 5m0, �

N
e

i51

(x
f
i 2m0)(x

f
i 2m0)

Twi5C0 .

(A1)

The goal will be to show that, after updating the en-

semble members themselves (but not the weights) via

the Kalman update step, the posterior mean and co-

variance of the updated ensemble will be equivalent to

the true Bayes’s posterior mean and covariance. That is,

we want the updated ensemble fxai ,wigi51,...,Ne
to have

mean and covariance:

m15m01K(y2Hm0), C1 5 (I2KH)C0 , (A2)

where the Kalman gain matrix is, as usual, K 5
C0H

T(HC0H
T 1 R)21. The ensemble will be updated

according to the ensemble Kalman update, in the per-

turbed observation format:

xa
i 5 x

f
i 1K(y2Hx

f
i 1 ei) . (A3)

Then, the updated mean is

m15 �
N

e

i51

xai wi (A4)

208 MONTHLY WEATHER REV IEW VOLUME 143



5 �
N

e

i51

wi[x
f
i 1K(y2Hx

f
i 1 ei)] (A5)

5m01K(y2Hm0)1K �
N

e

i51

wiei . (A6)

Thus, for the updated mean to coincide with the correct

Bayesian posterior mean, we need �iwiei 5 0.

The updated covariance is now

C15 �
N

e

i51

(xai 2m1)(x
a
i 2m1)

Twi (A7)

5 �
N

e

i51

wi[x
f
i 1K(y2Hx

f
i 1 ei)2m0

2K(y2Hm0)](�)T (A8)

5 �
N

e

i51

wi[(I2KH)(x
f
i 2m0)](�)T

1 �
N

e

i51

(I2KH)(x
f
i 2m0)(Keiwi)

T

1 �
N

e

i51

[(I2KH)(x
f
i 2m0)]

TKeiwi 1 �
N

e

i51

Keie
T
i K

Twi ,

(A9)

where (�)T represents the transpose of the same term in

parentheses immediately preceding it. In this expres-

sion, the first term is equivalent to (I2 KH)C0(I2 KH)T

and the second and third terms are 0, as long as we as-

sume independence between the noise terms ei and the

ensemble members xi. Now, if �ieie
T
i wi 5R, then the

final term reduces to KRKT. Thus, we have

C1 5 (I2KH)C0(I2KH)T 1KRKT 5 (I2KH)C0 ,

(A10)

as desired. Therefore, the weighted EnKF update step

gives the correct posterior mean and covariance in the

Gaussian case provided that the perturbations ei satisfy

�
N

e

i51

eiwi5 0, �
N

e

i51

eie
T
i wi 5R . (A11)

Essentially, the weighted ensemble fei, wig must ap-

proximate the Gaussian distribution with mean 0 and

covariance R.

We now briefly describe how we generate such an

ensemble. First, draw a large (say 105) unweighted

sample fzjg from the target distribution; in our case,

this is N (0, R). Define g to be the probability density

function of this distribution, and let wmax be the max-

imum weight over fwig. For each weight wi, find zj such

that jg(zj)/wmax 2 wij is small. (This normalization al-

lows the peak of the distribution function to have the

same value as the maximum weight, and the rest of the

distribution function is changed accordingly.) Let ei 5
zj, and repeat for i 5 1, . . . , Ne (using the same un-

weighted sample).

APPENDIX B

Statistics of the Full and Averaged Ensembles

In this section we derive and compare the statistics for

the full ensemble fxFi , xDi,j, wi,jg and for the averaged

ensemble fxFi , ~xDi , ~wig. Let x 5 [xF, xD]T, and consider

the following decomposition of the covariance matrix

into the flow–flow covariance, drifter–drifter covariance,

and flow–drifter cross covariance:

P5

"
PFF PFD

PT
FD PDD

#
. (B1)

The full ensemble fxFi , xDi,j, wi,jg has mean and

covariance

xFfull 5 �
i
xFi ~wi , (B2)

xDfull 5 �
i,j
xDi,jwi,j, and (B3)

Pfull 5 �
i,j
wi,j(xi,j 2 x)(xi,j 2 x)T . (B4)

In particular,

PFF,full5 �
i

~wi(x
F
i 2 xF)(xFi 2 xF)T , (B5)

PFD,full5 �
i,j
wi,j(x

F
i 2 xF)(xDi,j 2 xD)T, and (B6)

PDD,full5 �
i,j
wi,j(x

D
i,j 2 xD)(xDi,j 2 xD)T . (B7)

The averaged ensemble fxFi , ~xDi , ~wig has mean

xFavg 5 �
i
xFi ~wi, xDavg5 �

i

~xDi ~wi5 �
i, j
xDi, jwi, j , (B8)

which is equivalent to themean of the full ensemble, and

the covariances are
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PFF ,avg 5 �
i

~wi(x
F
i 2 xF)(xFi 2 xF)T , (B9)

PFD,avg 5 �
i

~wi(x
F
i 2 xF)(~xDi 2 xD)T, and (B10)

PDD,avg 5 �
i

~wi(~x
D
i 2 xD)(~xDi 2 xD)T . (B11)

Clearly, PFF,full 5PFF,avg. We will show that PFD,full 5
PFD,avg as well, but that PDD,full 6¼ PDD,avg. Indeed,

PFD,full 5 �
i,j
wi,j(x

F
i 2 xF)(xDi,j 2 xD)T (B12)

5 �
i

"
(xFi 2 xF)�

j
wi,j(x

D
i,j 2 xD)T

#
(B13)

5 �
i

(
(xFi 2 xF)�

j
[wi,j(x

D
i,j)

T]2 (xD)T ~wi

)

5PFD,avg ,

(B14)

as claimed.

After expanding Eqs. (B7) and (B11), only one term

differs between the full distribution and the averaged

distribution:

jPDD,full 2PDD,avgj

5

������i,j wi,j(x
D
i,j)(x

D
i,j)

T 2 �
i

~wi(~x
D
i )(~x

D
i )

T

����� . (B15)

Thus, this term determines how close the prior of the full

distribution is to the prior of the averaged distribution.
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