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Abstract 

Wetlands and ponds are frequently used to remove nitrate from effluents or runoffs. However, the 

efficiency of this approach is limited. Based on the assumption that introducing vertical mixing to water 

column plus carbon addition would benefit the diffusion across the sediment–water interface, we 

conducted simulation experiments to identify a method for enhancing nitrate removal. The results 

suggested that the sediment-water interface has a great potential for nitrate removal, and the potential can 

be activated after several days of acclimation. Adding additional carbon plus mixing significantly 

increases the nitrate removal capacity, and the removal of total nitrogen (TN) and nitrate-nitrogen 

(NO3
-
-N) is well fitted to a first-order reaction model. Adding Hydrilla verticillata debris as a carbon 

source increased nitrate removal, whereas adding Eichhornia crassipe decreased it. Adding ethanol plus 
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mixing greatly improved the removal performance, with the removal rate of NO3
--N and TN reaching 

15.0-16.5 g m-2 d-1. The feasibility of this enhancement method was further confirmed with a wetland 

microcosm, and the NO3
--N removal rate maintained at 10.0-12.0 g m-2 d-1 at a hydraulic loading rate of 

0.5 m d-1.  
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1. Introduction  

Surface runoffs in some valleys are under a high load of nitrate from sewage plants and agricultural 

non-point sources. These runoffs ultimately flow into lakes or estuaries and are likely to cause the 

occurrence of harmful algal blooms (Kroeger et al., 2006; Galloway et al., 2008; Suddick et al., 2013). In 

many countries, such as the United States and China, in order to remove nitrate from effluents or 

runoffs, wetlands, riparian buffer strips, and ponds have been restored or artificially constructed at the 

interface between cultivated land and receiving waters. However, the efficiency of these ecological 

approaches is limited, and a large amount of land is usually required to achieve satisfactory removal 

(Jorgensen et al., 1994; Reilly et al., 1999; Coveney et al., 2002). Therefore, developing measures to 

improve nitrate removal is of increasing interest. 

Denitrification is a microbial-mediated process that uses nitrate as an electron acceptor and organic 

carbon as an electron donor to obtain energy for growth and maintenance. In this stepwise process, 

nitrite, nitric oxide and nitrous oxide are produced as intermediate products and nitrogen (N2) as the 

gaseous end product. The availability of carbon and nitrate, oxygen concentration, pH and temperature 

are main parameters influencing denitrification. In wetlands, plant productivity, either from biomass or 
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root release can be used as the internal carbon source to fuel denitrification. Previous studies suggested 

that supplying additional carbon is an alternative measure for improving nitrate removal in wetlands or 

ponds. It can be achieved by optimizing the physical habitat for maximum plant productivity or 

harvesting the plants but leaving the residuals in place (Lin et al., 2002; Bastviken et al., 2005; Wen et 

al., 2010). However, the improvement in nitrate removal by such internal carbon sources is limited and 

is usually below 1 g m-2 d-1. When an external carbon source such as acetate is added, the nitrate removal 

capacity would increase to its maximum, about 4 g m-2 d-1. (Ingersoll and Baker, 1998; Vidal et al., 2002; 

Pungrasmi et al., 2013).  

Unlike the biological denitrification process, which involves controlling requisite anoxic conditions 

in a bioreactor, wetland denitrification occurs in anoxic zones of the sediment–water interface or in 

anoxic microsites of a biofilm attached to plant tissue or substrata (Pfenning and McMahon, 1997; 

Bruesewitz et al., 2011; Yu et al., 2012; Finlay et al., 2013). The sediment-water interface is a shallow, 

oxic-anoxic layer that separates a mixture of solid sediment and interstitial water from an overlying 

body of water (Lerman, 1978; Sweerts et al., 1991). Recent studies on natural wetlands and ponds have 

indicated that the nitrate and carbon across the water-sediment interface would be consumed more 

quickly than with an internal vertical diffusive supply, and as a result, limiting the nitrate removal 

(Reinhardt et al., 2006; Wilson et al., 2013). Accordingly, when supplying additional carbon to wetlands 

or ponds, the diffusive carbon and nitrate supply across sediment –water interface might become a 

limiting factor instead of carbon source itself. Therefore, we hypothesize that introducing vertical 

mixing to water column plus carbon addition would benefit the diffusion across sediment–water 

interface, and thus further enhance the nitrite removal capacity to an extremely high level.  

To our knowledge, although previous studies investigated various kinds of carbon sources that can 
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enhance nitrate removal in wetlands or ponds, rare studies focuses on regulating mass diffusing across 

sediment – water interface. This study focuses on nitrate removal at the sediment-water interface of 

wetlands or pond systems with the following objectives: to comprehensively investigate the nitrate 

removal potential at sediment–water interface; to determine the mechanism for the increase of nitrate 

removal by carbon addition plus vertical mixing; to identify a feasible method for engineering 

application.  

2. Materials and Methods  

2.1 Batch test 

The experiment was conducted in growth chambers with the temperature maintained at 25-26 °C. The 

reactor for the batch tests was a small glass cylinder with a diameter of 15 cm and a height of 25 cm. 

The surface sediment samples (0-10 cm) were collected from a lake located at the Shanghai Jiao Tong 

University, Minhang campus, by using Ekman-type grab sampler (15.2cm × 15.2cm). After removing 

the gravel and plant and animal residues, the sediment samples were mixed and transferred to the 

cylinders, maintaining a layer of 5 cm. Then, 15 cm of lake water was injected into each cylinder, and 

stabilized for 24 h before the tests were initiated. There was a slight variation (<5%) in the average 

concentration of total nitrogen (TN), nitrite-nitrogen (NO2
-
-N), nitrate-nitrogen (NO3

-
-N), and 

dissolved oxygen (DO) in the overlying water before and after stabilization, whereas the 

ammonia-nitrogen (NH4
+-N) increased from 0.71 mg L-1 to 1.14 mg L-1. This result suggests that the 

release of nitrogen from the sediment is limited. After stabilization, NaNO3 was added to each cylinder 

to obtain a high nitrate concentration for further investigating the removal capacity. As the amount of 

external NO3
-
-N was much higher than the NH4

+-N released from sediment, we suggested that coupled 

denitrificaiton was not the main nitrate loss path during our experiments. 
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The batch tests were designed to illustrate the nitrate removal under different sediment-water interface 

conditions and its potential. The tests were divided into two phases. In phase I, the experiment had 5 

treatments, and each treatment had two duplicates. For treatment 1﹟ and treatment 2﹟, the sediment 

surface was covered with gravel and zeolite (particle size of 4-8 mm, approximately 1-2 cm deep), 

respectively. For treatment 3﹟, methanol was added as an additional carbon source (methanol/NO3
--N 

mass ratio of 4:1). For treatment 4﹟, the overlying water was mixed with a peristaltic pump at a flow rate 

of 25 mL min-1. Treatment 5﹟ was the control. In phase II, the overlying water was adjusted with 

methanol and NaNO3 to maintain the methanol/NO3
--N mass ratio at 4:1. During the experiment, when 

the TN and nitrate concentration decreased to a relatively low level, lake water with same methanol 

/NO3
--N mass ratio was again added to each cylinder. A total of four rounds of continuous removal 

experiments were performed. Sampling was performed every 1-2 d. Before sampling, the overlying 

water was mixed for approximately 5 s with a peristaltic pump. Then, 15 mL water was sampled from the 

upper, middle and lower layer of the overlying water. The sample was mixed for further analysis. To 

maintain a constant water volume, deionized water was added after each sampling. During the entire 

experimental process, the pH value was maintained between 7.0 and 7.5. 

2.2 Column experiment 

The experimental reactor was a Y-shape structure, comprising two polymethyl methacrylate columns 

(He et al., 2013). The main column had a 20-cm-inner diameter and was 120 cm in height, and the side 

cylinder portion had a 20 cm-inner diameter and was 20 cm in height. Both ends of the columns were 

sealed with a plastic stopper. Two mechanical agitators, fixed on the stoppers, were used to stir the water. 

Prior to the experiment, sediment that was corrected and treated as described above was filled to the main 

column, maintaining a layer of 10 cm. Then, lake water was injected into the experimental apparatus for 
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a 100 cm deep, and stabilized for 24 h. The equivalent height of overlying water was approximately 1.2 

m when taking the side cylinder portion into account. During the experiments, NaNO3 was added to 

obtain a high nitrate concentration for evaluation. Ethanol, methanol, and Hydrilla verticillata and 

Eichhornia crassipes debris were added as carbon sources. To introduce the proper mixing conditions, 

the frequencies of the vertical and side agitator were maintained at 80 and 36 r min-1, respectively. These 

conditions permitted mixing of the overlying water without disturbing the sediment surface because the 

suspended matter rarely increased when the agitators operated. The pH value of the overlying water was 

maintained at 7.0-8.0. The water temperature was approximately 30±1 °C. Each day, approximately 20 

mL water was sampled from the upper, middle and lower layers of the overlying water and was mixed for 

further analysis. For the methanol addition treatment, when the nitrate concentration of the overlying 

water decreased to a low level, nitrate and organic carbon sources were added again.  

2.3 Wetland microcosm  

The wetland microcosm was comprised of polymethyl methacrylate and consisted of two main units 

and three water distribution cells (Fig. 1). The first unit was a floating plants pond, primarily designed for 

denitrification. The pond was 45 cm × 60 cm ×70 cm (inner width, length, and height) in size, with a 

water depth maintained at 60 cm. The surface of the pond was covered by duckweed, and the bottom was 

filled with 10 centimeters of sediment. During the experiment, the overlying water was mixed with a 

pump with a flow rate of 120 mL min-1. The second unit was a gravel bed filter, measuring 15 cm × 60 

cm × 50 cm (inner width, length, and height). It was filled with 1- to 2-cm-diameter gravel, and an 

aeration device was installed at the bottom to provide aerobic conditions and allow for chemical oxygen 

demand (COD) removal and nitrification through contact with the surface of the gravel. To optimize the 

water flow, three water distribution cells with perforated baffles were located between the treatment units. 
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The source water was tap water augmented with NaNO3 to a concentration of 20-25 mg NO3
--N L-1. The 

water was pumped into the wetland and then flowed through the floating plant pond and gravel bed filter. 

The water temperature during the experiment was approximately 26±1 °C. The main hydraulic loading 

rate of the wetland was maintained at 0.5 m d-1 with a hydraulic retention time of approximately 32 

hours. 

2.4 Analysis methods 

The samples were analyzed for TN and CODcr, and the filtered samples were analyzed for NH4
+-N, 

NO3
--N, NO2

--N. All analytical measurements were recorded according to Standard Methods (APHA, 

1995). According to results of the batch tests (Fig. 2), the nitrate removal was estimated by the 

following formula: C=C0e-kT, where C is the TN or NO3
--N concentration in the control and treatments, k 

is the specific removal rate, and T is the incubation time. The error bars was analyzed by using 

SPSS13.0 statistical soft.  

3. Results and discussion 

3.1 Nitrate removal under different sediment-water interface conditions and its potential 

Fig. 2 shows nitrate removal under different sediment-water interface conditions. The reduction of TN 

and NO3
--N was well fitted by an exponential curve. The coefficients of determination (R2) ranged 

from 0.87 to 0.99, suggesting the reaction followed the first-order reaction model. The amount of 

NO3
--N removal accounted for the majority amount of TN removal (always above 80%), suggesting that 

denitrification was the primary pathway of nitrogen loss during the experiment. The incubations with 

methanol as the carbon source showed the highest specific NO3
--N removal rate of 1.27d-1, and within 3 

days, the NO3
--N concentration decreased from 9.8 mg L-1 to almost 0 mg L-1. Of the other four 

treatments without additional carbon, the treatment with mixing had the highest TN and NO3
--N removal 
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rate (0.15d-1 and 0.17 d-1 respectively), indicating that mixing promotes nitrate removal. To test our 

presumption that mass diffusion across sediment-water interface influences nitrate removal, the 

sediment surface of two incubations was covered with bed media, gravel and zeolite. As anticipated, 

the covering inhibited the nitrate removal as the specific removal rates of these two treatments were 

much lower than the incubations with the natural water-sediment interface. 

Because denitrification is a microbial-mediated process, NO3
--N removal at the sediment-water 

interface may increase after acclimation of denitrifying bacteria. Therefore, we conducted four rounds of 

continuous removal experiments with a methanol/NO3
--N mass ratio of 4:1 to investigate the nitrate 

removal potential (Fig.3). An increase in NO3
--N removal was maintained during the first three rounds of 

the experiments (0-4 d, 5-7 d and 8-10 d), and for the 4th round, the average NO3
--N removal rate 

increased to 2.31 g m-2 d-1. Comparatively, the incubation without additional carbon showed a low 

efficiency of nitrate removal, with an average removal rate of 0.21 g m-2 d-1. After 13 days of incubation, 

we assume that the denitrifying bacteria were acclimated, and the nitrate removal potential in 

water-sediment interface was at its limit. Thereafter, the overlying water was adjusted to a higher NO3
--N 

concentration of 20 mg L-1, with a methanol/NO3
--N mass ratio of 4:1. The frequency of sampling was 

shortened to hours to reflect the dynamics of the nitrate removal. As shown in Fig. 4, the result confirmed 

that the removal of TN and NO3
--N was well fitted to a first-order reaction model.  

3.2 The combined effect of mixing and carbon addition on nitrate removal 

The combined effect of mixing and carbon addition on nitrate removal was investigated through 

column experiments. During phase I of the experiments, methanol was added as a carbon source 

(methanol /NO3
--N mass ratio of 4:1). One treatment was mixed, and the other treatment was not. As 

shown in Fig.5, the results verified that mixing accelerated nitrate removal. After 9 days of acclimation, 
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the NO3
--N removal increased to a relatively high level. During the next three rounds of the experiment, 

the NO3
--N and TN in carbon addition plus mixing column decreased rapidly, with an average removal 

rate of 5.68 g m-2 d-1 and 5.17 g m-2 d-1, respectively. Comparatively, in the carbon addition without 

mixing column, a much lower rate of removal of NO3
--N and TN was maintained, with an average 

removal rate of 2.91 g m-2 d-1 and 2.72 g m-2 d-1. The positive effect of mixing on nitrate removal can be 

explained by the increase of the diffusive NO3
- and carbon supply across the water-sediment interface as 

mentioned above.  

The main objective of phase II was to determine the influence of the different carbon sources 

combined with mixing. Different carbon sources, including the debris of the floating plant Eichhornia 

crassipes and the submerged plant Hydrilla verticillata and ethanol were added to the mixing columns. 

As shown in fig.6, Hydrilla verticillata promotes NO3
--N removal compared to control column. However, 

in the column with Eichhornia crassipes, the lowest NO3
--N removal was observed. Additional studies 

suggested that a large amount of NH4
+ was released with the decomposition of Eichhornia crassipes. 

This may be the reason for the low removal of NO3
--N. For the ethanol addition (ethanol / NO3

--N mass 

ratio of 4:1) plus mixing column, the NO3
--N removal was the highest. The NO3

--N decreased from 7.4 

mg L-1 to 0.6 mg L-1, with a removal rate of 1.6 g m-2 d-1 during the first 5 days. On the 10th day, ethanol 

and NO3
--N was added again, and a much higher removal rate was obtained. This increase in the removal 

rate was similar to the batch test, indicating that the denitrifying bacteria were gradually acclimated. 

Thereafter, another three rounds of removal experiments were conducted with the same ethanol / NO3
--N 

mass ratio. During these treatments, the removal rate of NO3
--N and TN was as high as 15.0-16.5 g m-2 

d-1.  

The column experiments show that although the decomposable plant material had a positive effect on 



 

 10 

denitrification, the increase was very limited. Comparatively, molecular organic compounds have high 

bioavailability and are easy to metabolize. Studies had shown that adding molecular organic compounds 

can significantly increase the nitrate removal in wetlands. For example, Kozub and Liehr (1999) 

performed experiments on wetland microcosms, and they observed that adding acetate as an external 

carbon source led to significantly increased denitrification rates. However, the reported nitrate removal 

capacity was always below 5 g m-2 d-1. As suggested in our column experiment, ethanol and methanol 

addition plus mixing significantly improved the nitrate removal. After 14 days of acclimation, the nitrate 

removal rate increased approximately 10 fold, from1.6 g m-2 d-1to 16.5 g m-2 d-1. Comparatively, the 

ethanol addition treatment showed a higher nitrate removal capacity than the methanol treatment.  

3.3 Wetland microcosm 

 To verify the feasibility of enhancing nitrate removal by carbon addition plus mixing, a small-scale 

experiment was conducted with a wetland microcosm. A steady state was achieved after 10 days of 

operation, and the removal efficiency in the two units remained almost constant for the following 25 days. 

The concentrations of pollutants in the influent and effluents were averaged, and the values for the 

pollutant load, pollutant removal, removal efficiency, and removal of pollutant load were calculated to 

confirm the removal performance of the different units. The results are summarized in Table 1. In general, 

the system performed well for TN and NO3
--N removal, and the removal efficiencies of TN and NO3

--N 

all exceeded 90% at a hydraulic loading rate of 0.5 m/d. The floating plant pond also exhibited 

significant nitrogen removal capacity. Approximately 89.0% of the TN load and 91.1% of the NO3
- load 

were eliminated in the floating plant pond. The removal rate of NO3
--N and TN was as high as 10.0-12.0 

g m-2 d-1, suggesting that denitrification was successfully achieved. By comparison, the highest reduction 

rate of our wetland microcosm was approximately 12 g m-2 d-1, much higher than the majority of values 



 

 11 

achieved in wetlands and ponds. Therefore, as shown with the successful operation of this small-scale 

wetland, simple engineering measures can efficiently remove nitrate.  

3.4 Implications for practice 

In wetlands and ponds, the overlying water is usually aerobic, and the bottom water DO declines 

steeply when it approaches to sediment. As a result, an oxic-anoxic layer forms at the sediment-water 

interface. Such oxic-anoxic layer, although as shallow as 10 mm, has a remarkable biological activity, 

and can favor both coupled and decoupled denitrification (Sweerts et al., 1991; Jensen, et al., 1993; 

Wilson, et al., 2013). According to recent studies, steep vertical profiles of nitrate and carbon are likely 

to occur at sediment-water interface, and further limit the benthic denitrification (Reinhardt, et al., 2006; 

Wilson, et al., 2013). Our investigation provides evidence that such vertical profiles can be artificially 

controlled by carbon addition plus vertical mixing, and thus benefits the nitrate removal. However, the 

vertical profiles of parameters across sediment-water interface in response to the manipulation should be 

further investigated.  

On the other side, sediment-water interface can be considered as a kind of natural substrate that 

denitrifying bacteria has already attached on it. Therefore, when additional carbon is supplied, it takes a 

short time to acclimate and to achieve a high nitrate removal. Such rapid response favors engineering 

practice. Moreover, for practical application, the proper way to mix water should be fixed out. There are 

two essential issues for the engineering design including: the mixing device should be able to mix a 

large amount of overlying water at low cost; and meanwhile it should not significantly increase the DO in 

bottom water. Accordingly, air lifting devices which previously used for artificial destratification in deep 

reservoirs may be modified to meet the requirement (Heo and Kim, 2004). 

4 Conclusions 
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On the basis of the results we conclude that:  

1) The sediment-water interface has a great potential for nitrate removal, and adding additional carbon 

plus mixing significantly increases the nitrate removal capacity. A first-order reaction model can be used 

to fit the removal of TN and NO3
--N at water-sediment interface.  

2) Adding Hydrilla verticillata debris as a carbon source increased nitrate removal, whereas adding 

Eichhornia crassipe decreased it. Adding ethanol plus mixing greatly improved the removal 

performance, with the removal rate of NO3
--N and TN reaching 15.0-16.5 g m-2 d-1. 

3) The small-scale wetland experiment showed that the NO3
--N removal rate of the wetland 

maintained 10.0-12.0 g m-2 d-1 with a hydraulic loading rate of 0.5 m/d. This is almost the highest 

removal rate ever reported for free-surface wetland or ponds, suggesting carbon addition plus mixing is a 

simple but effective measure to improve nitrate removal in wetlands or ponds that receive effluents from 

sewage plants or agricultural non-point sources.  
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Figures and Table 

 

Fig. 1. Schematic diagram of the wetland microcosm experimental set-up. 
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Fig. 2. The nitrate removal under different sediment-water interface conditions and exponential curve 

fitting (a) Exponential curve fit for TN concentration as a function of time, -●- for carbon addition, 

C=11.38e-0.63T, R2=0.97; -×- for mixing, C=9.43e-0.15T, R2=0.99; -▲- for zeolite covering, C=9.47e-0.071T, 

R2=0.99; -■- for gravel covering, C=8.72e-0.066T, R2=0.99; -◆- for control, C=8.97e-0.10T, R2=0.99.  

(b) Exponential curve fit for NO3
--N concentration as a function of time, -●- for carbon addition, 

C=12.91e-1.27T, R2=0.87; -×- for mixing, C=8.19e-0.17T, R2=0.97; -▲- for zeolite covering, C=8.03e-0.081T, 

R2=0.98; -■- for gravel covering, C=7.97e-0.073T, R2=0.96; -◆- for control, C=7.46e-0.11T, R2=0.99. 
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Fig. 3. Enhancement of nitrate removal by carbon addition. (a) NO3
--N; (b) TN; (c) NO2

--N; (d) NH4
+-N, 

-●- Carbon addition, -◇-Control 

 

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

T
N

/N
O

3- N
/N

O
2- -N

/N
H

4+ -
N

 (m
g 

L
-1

)

Time (h)
 

Fig. 4. Dynamic of N removal after acclimation -●- Exponential curve fit for TN as a function of time, 

y=21.57e-1.13x, R2=0.98; -○- Exponential curve fit for NO3
--N as a function of time, y=21.27e-1.42x, 

R2=0.97; -△- NO2
-
-N; -X- NH4

+-N. 
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Fig. 5. Influence of mixing on NO3
--N (a) and TN (b) removal. -●- Carbon addition; -○- Carbon addition 

plus mixing. 
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Fig. 6. Influence of carbon sources on NO3
--N (a) and TN (b) removal. -●-:Ethanol; -△-:Eichhornia 

crassipes; -◇-:Hydrilla verticillata; and -*-: Control 

 

Table1 Removal performance of the entire purification system and each treatment unit 

Sampling locations (n=25) TN NO3
--N NO2

--N NH4
+-N 

Entire treatment system 
    

Influent Concentration 25.5±1.3 23.6±1.1 0.2±0.1 0.1±0.1 

Effluent concentration 2.2±0.5 1.3±0.7 0.6±0.3 0.1±0.2 

(a) 

(b) 
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Pollutant Load (g m-2d-1) 12.75  11.80  / / 

Pollutant removal (g m-2d-1) 11.65  11.15  /  / 

Removal efficiency (%) 91.4 94.5 / / 

Floating plant pond 
    

Effluent concentration 2.8±0.2 2.1±0.1 0.5±0.1 0.1±0.1 

Removal efficiency (%) 89.0 91.1 / / 

Pollutant removal (g m-2d-1) 11.35   10.75  /  / 

Gravel bed filter  
    

Effluent concentration 2.2±0.5 1.3±0.7 0.6±0.3 0.1±0.2 

Removal efficiency (%) 21.4 38.1 / / 

Pollutant removal (g m-2d-1) 0.90  1.20 /  / 

 


