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Abstract 

Atlantic killifish (Fundulus heteroclitus) thrive in New Bedford Harbor (NBH), MA, highly 

contaminated with polychlorinated biphenyls (PCBs). Resident killifish have evolved tolerance 

to dioxin-like (DL) PCBs, whose toxic effects through the aryl hydrocarbon receptor (AhR) are 

well studied. In NBH, non-dioxin like PCBs (NDL PCBs), which lack activity toward the AhR, 

vastly exceed levels of DL congeners yet how killifish counter NDL toxic effects has not been 

explored. In mammals and fish, NDL PCBs are potent activators of ryanodine receptors (RyR), 

Ca2+ release channels necessary for a vast array of physiological processes. In the current study 

we compared the expression and function of RyR related pathways in NBH killifish with killifish 

from the reference site at Scorton Creek (SC, MA). Relative to the SC fish, adults from NBH 

displayed increased levels of skeletal muscle RyR1 protein, and increased levels of FK506-

binding protein 12 kDa (FKBP12), an accessory protein essential for NDL PCB-triggered 

changes in RyR channel function. In accordance with increased RyR1 levels, NBH killifish 

displayed increased maximal ligand binding, increased maximal response to Ca2+ activation and 

increased maximal response to activation by the NDL PCB congener PCB 95. Compared to SC, 

NBH embryos and larvae had increased levels of mtor and ryr2 transcripts at multiple stages of 

development, and generations, while levels of serca2 were decreased at 9 days post-fertilization 

in the F1 and F2 generations. These findings suggest that there are compensatory and heritable 

changes in RyR mediated Ca2+ signaling proteins or potential signaling partners in NBH killifish. 

Keywords: Non-dioxin like PCBs, ryanodine receptor, Fundulus heteroclitus, PCB Tolerance
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1.0 Introduction  

 The Atlantic killifish (Fundulus heteroclitus) is a non-migratory fish species, with small 

genetically distinct subpopulations (Nacci et al., 2010) inhabiting coastal and inland regions of 

the Atlantic coast of North America. Several of these subpopulations have developed a heritable 

resistance to the effects of various contaminants, leading to the fish’s success in heavily polluted 

U.S. EPA Superfund locations (Wirgin and Waldman, 2004). Here, we use the terms resistance 

and tolerance that both have been used in other studies to indicate a killifish population that has 

reduced sensitivity to a chemical as demonstrated through a reduction in overt toxicity or 

induction of molecular pathways involved in a toxic outcome. At the Superfund National Priority 

Site found in New Bedford Harbor (NBH), on the Acushnet River, MA, USA, killifish have 

evolved tolerance to extreme levels of polychlorinated biphenyls (PCBs). PCB concentrations in 

NBH killifish have been recorded as high as 1370 µg g-1 (Lake et al., 1995), levels that far 

exceed those known to cause adverse biological effects in sensitive populations or other fish 

species (Wirgin and Waldman, 2004).  

 Several studies have addressed the mechanistic basis of this resistance to PCB toxicity in 

killifish and other resistant fish species inhabiting severely polluted sites (Wirgin and Waldman, 

2004; Burnett et al., 2007; Nacci et al., 2010). These studies have focused on PCB congeners that 

lack ortho-substitution and that mimic dioxins by activating the aryl hydrocarbon receptor (AhR) 

and related pathways. Tolerant killifish populations, as compared to susceptible reference 

populations (Nacci et al., 2002), exhibit reduced embryo toxicity when exposed to the potent 

AhR agonist PCB 126, reduced induction of AhR target genes and pathways (Bello et al., 2001), 

and decreased sensitivity to AhR ligands in the F1 and F2 generations (Wirgin and Waldman, 

2004; Burnett et al., 2007), indicating that resistance to toxicity of dioxin-like (DL) PCBs in the 
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killifish is heritable (Nacci et al., 2002; Nacci et al., 2010). While studies to date have focused 

primarily on AhR-related pathways, they have not fully explained the basis for tolerance to the 

pathophysiological potential of PCBs. Genetic studies show multiple loci are likely under 

selection in polluted versus non-polluted killifish populations (Williams and Oleksiak, 2008), 

suggesting multiple contributing mechanisms leading to acquired tolerance to extreme pollutant 

concentrations.  

Those PCBs that have one or more ortho-chlorine substitution are considered non-dioxin 

like (NDL) because they show little to no interaction with the AhR in mammalian and teleost 

species (Giesy and Kannan, 1998). Mechanisms of tolerance to NDL PBCs have not been 

addressed even though these congeners account for the majority of the total tissue load in NBH 

killifish (Lake et al., 1995), and other organismal samples including mammals, and have several 

modes of toxicity that are independent of the AhR pathway (Simon et al., 2007; Pessah et al., 

2010). Of interest to the current study is the fact that NDL PCBs are potent and direct sensitizers 

of ryanodine-sensitive Ca2+ channels, termed ryanodine receptors (RyRs), in both mammalian 

(Pessah et al., 2006; Samsó et al., 2009) and fish species (Fritsch and Pessah, 2013).  

RyRs are integral membrane Ca2+ channels anchored within the sarcoplasmic reticulum 

(SR) of muscle and endoplasmic reticulum (ER) of non-muscle cells. In addition to their well 

understood contribution to excitation-contraction (EC) coupling in striated muscle, they are 

important for the normal development of neuronal networks, endocrine health and 

neurodegenerative disorders (Pessah et al., 2010). The ramifications of RyR channel sensitization 

by NDL PCBs observed in vitro on muscle development and long-term health are not fully 

understood, but exposure to nanomolar NDL PCBs and their hydroxylated metabolites can alter 

important aspects of skeletal muscle EC coupling, and this action is highly dependent on 
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chemical structure (Niknam et al., 2013). Moreover, RyR isoforms are broadly expressed in 

neurons where they contribute to the developmental neurotoxicity induced by NDL PCBs (Kenet 

et al., 2007; Yang et al., 2009; Wayman et al., 2012a; Wayman et al., 2012b).  

The importance of the RyR to diverse physiological processes together with the extreme 

body burdens of NDL PCBs (Lake et al., 1995), suggests that NBH killifish may have developed 

altered RyR mediated Ca2+ signaling dynamics and differential sensitivity to NDL PCB induced 

disruption of the RyR. To begin addressing these hypotheses, we examined RyR related 

expression and functional differences between NBH killifish and fish from the reference 

population from Scorton Creek (SC), MA, USA. The goals of the current study were three fold: 

(1) obtain an up-to-date measure of NDL PCB concentrations, relative to DL PCBs, in NBH and 

SC killifish, (2) assess potential changes in the expression of RyR related pathways (Figure 1) in 

adult killifish collected in the field and across three generations of embryos and larvae reared in a 

laboratory setting and (3) assess potential RyR function or NDL PCB sensitivity differences 

between NBH and SC killifish populations.  
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2.0 Materials and Methods 

2.1 Animal Collection and Maintained Killifish Cultures  

Adult killifish used for PCB detection, tissue dissections, and adult breeding stock were 

collected from NBH and SC (Latitude and longitude; 41.6676 by 70.9150; 41.7649 by 70.4800, 

respectively) utilizing baited aluminum semi-collapsible traps that were deployed from the 

shoreline and collected after 1-3 h (Nacci et al., 1999; Nacci et al., 2002). Fish for chemical 

detection or tissue dissection were collected in August and September of 2009 or 2010, 

respectively, under permits from the Massachusetts Division of Marine Fisheries, and protocols 

approved by Animal Care and Use Committees at WHOI and USEPA. Upon capture fish from 

SC and NBH were returned from the field and maintained in uncontaminated laboratory 

conditions consisting of flow through aquaria receiving 5 µM filtered sea water. Fish used for 

tissue and PCB data were dissected or frozen within 48 h of collection. Here, fish were 

euthanized using an overdose of MS-222 at which time fish were measured for length and sex 

was noted. The average standard length of sampled fish was 63.5 mm or 57.6 mm for NBH and 

SC, respectively, and samples consisted of an approximate 50:50 male to female ratio. It should 

be noted; however, that fish were selected to achieve an approximate match in size and sex ratio 

for NBH and SC and therefore this information should not be used to represent potential 

differences or similarities between the killifish populations. Once dissected, skeletal muscle, 

cardiac muscle and brain tissue were immediately flash frozen in liquid nitrogen and stored at -

80 ºC until molecular analysis. For chemical analysis euthanized fish were stored at -20 ºC until 

chemical extraction procedures were conducted.  

Embryos and larvae utilized for qPCR were obtained from the breeding stocks 

maintained in uncontaminated conditions at the US EPA National Health and Environmental 
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Effects Laboratory (Atlantic Ecology Division, Narragansett RI), as described previously (Nacci 

et al., 2002; Nacci et al., 2010). Briefly, adult fish collected by trapping were kept in flow 

through tanks receiving 5 µM filtered sea water for at least 6 months and no longer than 2 years.  

Adults were feed Tetramin flakes and minced krill and were held in tanks at ambient 

temperatures and photoperiod, such as summertime conditions of 23˚C with a 14:10 light:dark-

cycle. Under these conditions killifish were reproductively active from spring through fall, 

producing embryos on an approximately semi-lunar cycle. For several days surrounding the full 

and new moons, spawning chambers were introduced into breeding tanks and fertilized eggs 

were removed from the aquaria daily after unstimulated spawning events. Embryos were then 

maintained at 23˚C in fresh seawater provided daily. Once hatched some larvae were reared to 

adulthood (~1 year) in flowing uncontaminated seawater to maintain multiple generations of 

breeding stocks.   

For the current study, we were interested in developmental and generational expression 

differences and therefore fish were collected at 3 or 9 days post fertilization (dpf; referred to as 

embryos) or 1 day post hatch (dph; referred to as larvae) from each of the F1, F2 and F3 

generations of NBH killifish and compared to the same developmental stage of the F1 generation 

from SC. This treatment structure was repeated for both the 2012 and 2013 breeding seasons. At 

collection fish were placed in pools of 10 and immediately flash froze in liquid nitrogen and 

stored at -80°C. 

  

2.2 PCB Measurements  

Three individual adult fish per site were measured for PCBs. Here, a sagittal half of an 

entire fish was utilized for chemical detection. This included half of all organs contained in the 
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body cavity and half of the brain. We detected concentrations of the 18 PCB congeners 

commonly measured under the NOAA National Status and Trends Program (nsandt.noaa.gov), 

which were determined using microwave extraction following methods described and utilized 

elsewhere (Jayaraman et al., 2001; Nacci et al., 2002). Detection of AhR potent DL PCBs (77, 

81,126 and 169; Van den Berg et al. 2006) were detected following methods described by 

Gutjahr-Gobbel and colleagues (1999), which has previously been utilized to detect DL PCBs in 

killifish tissue (Gutjahr‐ Gobell et al., 1999).  

 

2.3 Differences in RyR-Related Gene Transcription 

Total RNA from adult killifish skeletal and cardiac muscle, brain tissue or pools of 

embryos or larvae was extracted using TRIzol Reagent (Invitrogen) following manufacturer’s 

instructions. RNA concentrations were determined on a Nanodrop 1000 (Thermo Scientific) and 

quality of each sample assessed using 260/280 ratios and through visualization on an agarose gel 

stained with ethidium bromide. Complementary DNA was synthesized with 1 µg of total RNA 

using Random Primers and SuperScript Reverse Transcriptase III (Invitrogen).  

Genes of interest (GOI) along with suitable reference genes (Table 1) were measured 

utilizing quantitative Polymerase Chain Reaction (qPCR) as described elsewhere (Connon et al., 

2012). Sequences for the ryr1, ryr3, fkbp12 and mtor were graciously supplied by Dr. Sibel 

Karchner (Woods Hole Oceanographic Institution) and sequences for cav1.1, jph1, homer1 and 

nmdar1 were acquired using degenerate primers designed and implemented elsewhere (Fritsch et 

al., 2013). In the present study sequences were obtained directly from degenerate PCR amplicons 

after purification with a QIAquick PCR Purification Kit (Qiagen). Purification products were 
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sequenced at the UC Davis DNA Sequencing Facility at the College of Biological Sciences and 

submitted to the NCBI databank.  

 

2.4 Crude Microsomal Protein Preparations  

Skeletal muscle tissue of adult killifish was utilized to obtain crude microsomal protein 

preparations enriched in RyR isoform 1 (RyR1) following protocols described previously 

(Franck et al., 1998; Pessah et al., 2006). Briefly, approximately 1 g of skeletal muscle tissue, 

which represented tissue combined from at least four fish collected from either NBH or SC, were 

minced with scissors in 5 volumes ice cold homogenization buffer consisting of (in mM) 300 

sucrose, 20 HEPES, 1 PMSF, 10 NaF, 2 β-Glycerol, 5 Na4P2O7 and 0.5 Na3VO4 and 2µg ml-1 

leupeptin (pH 7.2). Tissue was further homogenized with a Polytron E2000 with 2 bursts of 20s 

at half speed, with 2 min on ice between bursts. Following centrifugation at 6,500 g (4ºC for 

15min) the supernatant was collected, the pellet re-suspended and homogenization and 

centrifugation steps repeated. The combined supernatants underwent ultracentrifugation at 

100,000 g (4ºC for 1h), the supernatant was discarded and the pellet re-suspended in 300 mM 

sucrose containing 20 mM HEPES using a glass Dounce homogenizer. Protein concentrations 

were determined in triplicate using a BCA Protein Assay (Fisher Scientific, Pittsburgh, PA).  

 

2.5 Protein Quantification Using Western Blot Analysis 

Protein, 10 µg of each homogenate, were resolved on a 4-12% gradient Bis-Tris gel (Life 

Technologies) and blotted onto a PVDF membrane (Millipore). Membranes were probed for 

anti-mouse RyR1 (1:1000, 34C, DSHB), anti-mouse CACNA1S (1:500, AbCam, here after 

referred to as CaV1.1), anti-rabbit FKBP12 (1:500, AbCam) and reference protein anti-rabbit 
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GAPDH (1:2000, Cell Signaling). Bands were detected with goat anti-mouse or goat anti-rabbit 

secondary antibodies conjugated to fluorescent dyes (DyLightTM 680 or 800, respectively), 

which were visualized and quantified using the Odyssey Infrared Imaging System (LI-COR).  

 

2.6 Saturation Radioligand Binding for RyR1 and CaV1.1 

Radioligand-receptor binding assays were utilized to determine potential changes in receptor 

ligand interactions. For both RyR1 and CaV1.1, saturation binding was completed with 100 µg 

ml-1 of the crude SR preparation incubated in the presence of 0.75-50 µM [3H]-Ryanodine 

([3H]Ry, 57 Ci mmol-1; Perkin Elmer) or 0.1-10 nM [3H]-PN200-110 ([3H]PN, 82.2 Ci mmol-1; 

Perkin Elmer) in a final volume of 300 µl. RyR1 binding did not reach saturation at 50nM; 

therefore to address binding at low-affinity sites; protein samples were incubated with 10nM 

[3H]Ry with increasing amounts of unlabeled Ry (Total ligand at 50-300 nm) and corrected for 

differences in specific activity for saturation calculations. RyR binding buffer consisted of (mM) 

250 KCl, 15 NaCl, 20 Hepes, and 0.05 CaCl2 (pH=7.1) and samples were incubated at 25ºC for 

16h. Binding buffer for assessing ligand binding to CaV1.1 contained (mM) 140 NaCL, 15 KCl, 

20 Hepes (pH=7.1) and samples were incubated for 2h at 25°C in the dark. Non-specific binding 

was determined as above with the addition of 1000-fold unlabeled ryanodine and 200 µM EGTA 

or 4000-fold unlabeled PN200-100. After incubation, reactions were quenched with rapid 

filtration through Whatman GF/B filters and washed with 15 ml ice cold buffer containing (in 

mM) 140 KCl, 0.1 CaCl2, 10 Hepes (pH=7.3). Filters were extracted in 5 ml of scintillation 

cocktail (Fisher Scientific),stored overnight and radioligand concentrations determined using 

liquid scintillation counting (Beckman LS6500) Specific binding was determined as the total 

ligand bound minus non-specific binding for a given radio-labeled compound. Specific binding 
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of [3H]Ry or [3H]PN represented 94.5 and 39.3 average percent of the total ligand bound, 

respectively.  

 

2.7 RyR1 Sensitivity to Ca2+Regulation or Disruption by NDL PCBs  

The plant alkaloid ryanodine, for which the RyR is named, binds selectively to the open 

channel state of the RyR (Pessah et al., 1985; Pessah et al., 1987) and thus increased [3H]Ry 

binding represents enhanced receptor activity. Impacts of variable Ca2+ concentrations on 

receptor activity were assessed under the RyR1 saturation binding conditions described above 

but were completed in the presence of 10 nM [3H]Ry and free Ca2+ adjusted between 0.25-10,000 

µM using titrations of CaCl2 buffered with variable amounts of EGTA as determined by the 

Bound And Determined software (Brooks and Storey, 1992). Differences in RyR1 NDL PCB 

sensitivity between killifish from the two populations was assessed under the same conditions 

listed under the saturation binding methods but was completed with 40 µg ml-1 of the crude 

protein homogenates incubated in the presence of 8 nM [3H]Ry, 50 µM CaCl2 and a 0.5% 

DMSO solvent control or 0.01-20 µM PCB 95 dissolved in 0.5% DMSO.  

 

2.8  Replication and Statistical Analysis 

2.8.1 Replication: For each population, three fish were used to conduct PCB measurements and 

data are presented as an average of the PCB congener levels detected in the three fish (n=3).  For 

protein based assays, four different skeletal muscle homogenates were created from each 

population and each homogenate was representative of the skeletal muscle of at least four fish. 

All protein homogenates were run on five different gels. For each homogenate, proteins of 
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interest were normalized to GAPDH by gel and the normalized intensity was then averaged 

across gels to determine the level expressed in each population (n=4). Radioligand binding 

assays were each completed 2-4 times (i.e 2-4 biological replicates) and each time an assay was 

run it was done so in triplicate or quadruplicate (i.e. 3-4 technical replicates). Once corrected for 

non-specific binding,, values were averaged to determine specific binding at variable 

radioligand, Ca2+ or NDL PCB concentrations. Tissue specific expression of the genes of interest 

were measured in the skeletal muscle, cardiac muscle and brain tissue of six adult killifish from 

each population (n=6). Finally, quantification of genes of interest was completed in embryos and 

larvae collected at 3 dpf, 9dpf and 1 dph from the F1, F2, and F3 generations of NBH or the F1 

generation of SC. At each developmental stage per generation and population 6-8 biological 

replicates were assessed for levels of gene transcription and each biological replicate consisted of 

pools of ten fish (n=6-8). 

 

2.8.2 Statistical Analysis: 

Parameters for radio-ligand binding assessments were determined using non-linear 

regression models (Prism 5.0; Graphpad Software). For saturation binding, one-site and two-site 

ligand binding models were compared and utilized to determine the affinity (Kd) and maximal 

binding (Bmax) for radioligands. Scatchard plots were created using the ratio of bound to free 

ligand with the x-intercept or y-intercept represented by Bmax or Bmax/Kd, respectively, as 

determined through non-linear regression. The ability of the endogenous regulator Ca2+ or the 

potent RyR activator PCB 95 to alter RyR1 in skeletal muscle was assessed using a bell shaped 

or sigmoidal-dose response curve, respectively. 
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For qPCR, the suitability of the chosen reference genes was determined using the 

geNorm® algorithm (Vandesompele et al., 2002). Genes l8, rps20, β-actin and ef1α were 

determined to be stable (M) across all tissue and age classes assessed and it was determined that 

the pair-wise variability (V) was improved by using four rather than three reference genes for 

normalization. Therefore each gene of interest was normalized to the geNorm® normalization 

factor calculated from all four reference genes. Normalized mRNA values were placed on a log-

2-scale for parametric statistical testing. Differences between adult transcript levels and protein 

were assessed using a Student’s t-test while differences in mRNA transcripts in embryos and 

larvae were compared using multifactorial ANOVAs or one-way ANOVAs (Minitab 16.0;State 

College, PA).  

 

3.0 Results and Discussion 

3.1 Adult killifish NDL PCB Concentrations 

The total PCB concentration detected in NBH killifish was 118,746 ng g-1 (Table 2). These 

levels were much greater than the total PCB concentration detected in SC killifish, 174 ng g-

1 (Table 2), confirming that the SC subpopulation is a suitable reference site for comparison 

against highly contaminated locations. The high level recorded in NBH killifish in the current 

study, which represented PCB burdens in numerous tissues including skeletal muscle, brain and 

other body cavity organs, were consistent with previously published findings.  Specifically, PCB 

levels have been documented at 22,666 ng g-1 or 100,000 ng g-1  (dry weight) in NBH sediment 

or adult killifish livers, respectively (Nacci et al., 2002; Nacci et al., 2010). The PCB 

concentrations found in NBH far exceed PCB concentrations detected in other fish species in the 

United States. For example, in a national study the maximum PCB concentration detected in 

estuarine fish was 1160 ng g-1 (Harvey et al., 2008). These levels were detected in estuarine 
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catfish populations, not killifish, from the Northeastern Atlantic but the differences exemplify the 

extreme pollution levels found in NBH.  

In NBH and SC killifish, the PCB congeners known to activate the RyR1 greatly 

exceeded the relative concentration of AhR active PCBs found in killifish tissue, as reported 

previously (Lake et al., 1995). These trends are consistent with relative levels of NDL and DL 

PCBs detected in other studies (Hwang et al., 2001; Stahl et al., 2009). The ortho-PCB congeners 

detected in the NBH killifish greatly exceed the levels that activate RyRs in mammals (Pessah et 

al., 2006) and fish (Fritsch and Pessah, 2013). For example, the concentration of di-ortho 

congener PCB 52, a potent RyR activator, was found in NBH killifish at a 77 µM equivalent 

(Mass normalized to 291.99 MW). This concentration is ~25 times or ~150 times greater than the 

concentration known to significantly increase RyR1 activity in the skeletal muscle of rainbow 

trout (Fritsch and Pessah, 2013) or mammals (Pessah et al., 2006), respectively. Such extreme 

NDL PCB concentrations found in the killifish strongly suggest that there could be NDL specific 

adaptations involving the RyRs. 

 

3.2 Compensatory and Heritable Difference in RyR Related mRNA Expression: 

3.2.1 Tissue specific differences in gene expression in NBH versus SC adult killifish: Adult 

killifish from both populations displayed tissue specific expression of the 12 genes assessed 

supporting isoform specific primer design (data not shown). To aid visualization of population 

differences, genes with low tissue specific expression levels (detected at >31 CT for qPCR; 

Figure 2) were excluded for a given tissue (e.g. ryr1, ryr3, and cav1.1 in cardiac muscle). 

Expression of the skeletal muscle RyR isoform 1 (RyR1) in adult killifish collected from 

NBH appeared to be slightly increased, compared to the mRNA transcript levels measured in the 
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reference killifish from SC; however, these levels were not significantly different (Figure 2; p = 

0.13). The so called brain RyR isoform, RyR3, which has been demonstrated to occur in skeletal 

muscle of fish (O'Brien et al., 1995; Darbandi and Franck, 2009), displayed high variability in 

NBH killifish skeletal muscle, and the expression levels were not different from levels found in 

SC killifish. Levels of cav1.1, the L-type Ca2+ channel, α subunit of isoform 1, which 

mechanically interacts with the RyR1 to drive excitation contraction (EC) coupling in skeletal 

muscle, also were consistent between killifish from the two populations. Of the other genes 

assessed in skeletal muscle, RyR accessory proteins fk506 binding protein 12 kDa (fkbp12) and 

junctophilin 1 (jph1) were significantly decreased and increased, respectively, in NBH as 

compared to SC killifish (fkbp12 p<0.01; jph1 p<0.05). FKBP12 is an accessory protein that 

stabilizes the RyR conformational state in skeletal and cardiac muscle (Pessah et al., 2010). NDL 

PCB induced activity of RyR is dependent on FKBP12 and the resulting toxicity can be reduced 

when FKBP12 is inhibited by the immunosuppressants FK506 or rapamycin (Wong and Pessah, 

1997). The accessory protein JPH1 is essential for maintaining the SR/ER in close opposition to 

plasma membranes in skeletal muscle and neuron cells. In skeletal muscle specifically, JPH1 

permits the close association of RyR1 with CaV1.1 in the plasma membrane and is necessary for 

coordinated EC-coupling and muscle contraction. Finally, in NBH killifish skeletal muscle levels 

of the SR/ER Ca2+ ATPase, slow isoform 2 (serca2), responsible for refilling SR/ER Ca2+ levels 

after muscle contraction, were increased (p<0.05) as compared to killifish from SC.  

Similar to skeletal muscle the major RyR isoform found in the heart, expression of the so 

called cardiac isoform, RyR2, was not significantly different between NBH and SC killifish 

hearts. Likewise, expression of fkbp12, known to interact with RyR2 in fish (Jeyakumar et al., 

2001), was not different between NBH and SC killifish hearts even though it was significantly 
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altered in the skeletal muscle of NBH killifish. This tissue specific expression in the PCB 

tolerant killifish may be due to differential interactions of FKBP12, versus FKBP12.6, with 

RyR1 and RyR2 channels, respectively, which currently is not fully understood (Jeyakumar et 

al., 2001) especially in regard to PCB toxicity. It should be noted however, that NDL PCBs are 

capable of interacting with both RyR1 and RyR2 in a stereospecific manner (Pessah et al., 2008). 

There was also a significant decrease in the accessory protein homer1 and the redox sensitive 

glutathione-s-transferase, isoform mu (gst-mu), in NBH versus SC killifish hearts. Homer1 is 

known to regulate signal transduction, synaptogenesis and receptor trafficking in neurons. 

Homer1, is also present in skeletal and cardiac muscle, at levels relative to that found in brain 

(Soloviev et al., 2000), and the accessory protein has been shown to have a biphasic modulatory 

effect on RyR1 and RyR2 channel activity (Feng et al., 2002; Huang et al., 2007; Pouliquin and 

Dulhunty, 2009). The redox-sensitive GSTmu is found in both skeletal and cardiac muscle, 

where it is believed to have an isoform specific regulatory role toward either RyR1 or RyR2. In 

cardiac tissue specifically, GSTmu has an inhibitory effect on RyR2 where it is suggested to help 

conserve SR Ca2+ levels (Abdellatif et al., 2007).  

Finally, in the brain of SC and NBH killifish, the expression of RyR related genes was 

highly variable between individuals, such that there were no obvious differences between the two 

populations. Examination of the tissue specific expression of RyR related proteins did suggest a 

potential difference in Ca2+ signaling dynamics between PCB tolerant and sensitive populations. 

Interestingly, the most significant differences were seen in accessory or modulator proteins, 

whereas main Ca2+ channel expression did not vary widely. Currently, the role of RyR accessory 

proteins in NDL PCB toxicity has not been addressed outside of FKB12. Research regarding the 
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implication of the observed differences in expression seen here may further elucidate 

mechanisms of NDL PCB effects on the function of RyR.  

 

3.2.2 Developmental and generational mRNA transcript levels in killifish embryos and larvae:  

In order to address developmental and transgenerational effects of NDL PCBs, we examined 

expression of the various genes in developmental stages and multiple generations derived from 

PCB tolerant NBH killifish, as compared to PCB sensitive SC killifish. The F1-F3 generations 

were progeny of a parental generation (P) obtained in the wild that were maintained and embryos 

and larvae were reared under identical uncontaminated conditions in the laboratory. RyR-related 

mRNA expression was measured in 3 or 9 dpf embryos or 1 dph larvae collected from each of 

the F1, F2 and F3 generations of NBH killifish and compared to the mRNA levels found at the 

same developmental stage of the F1 generation from SC. We completed a multifactorial 

ANOVA with two factors, namely developmental stage and population, and determined that for 

most genes, mRNA expression differences between NBH and SC occurred in a developmental 

stage specific manner. Differences between populations were thus determined using one-way 

ANOVAs comparing NBH and SC embryos and larval expression at each developmental stage 

for a given generation (Figure 3).  

Of the twelve genes assessed, ryr2, ryr3, mtor and serca2 displayed the most consistent 

age related patterns across the F1, F2 and F3 generations. Levels of ryr2 were consistently 

increased in NBH killifish embryos, as compared to embryos from SC, mainly at 3 and 9 dpf 

developmental stages. This was observed for the F1, F2 and F3 generations of NBH fish, 

although the most significant increases relative to the SC fish were detected in the F1 generation 

only. Population differences in ryr3 were at 3 dpf, and there was a significant decrease in 
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transcription at 9 dpf, and while this trend was observed in all generations of NBH killifish 

embryos it was only significant in the F1 generation. Transcripts of serca2 showed a trend to 

decrease in all NBH embryos, as compared to SC embryos, however the levels of expression 

were significantly decreased only at 9 dpf in the NBH F1 and F2 generations.  

 Of the genes assessed, NBH embryos consistently demonstrated increased transcript 

levels of the Ser/Thr kinase known as the mechanistic target of rapamycin (mtor). The increased 

expression was evident in all developmental stages for the three generations of embryos and 

larvae reared in the laboratory. To our knowledge, this is the first study to demonstrate a 

potential impact of PCBs on mtor in an organismal exposure scenario. However, there have been 

recent findings, gathered from exposed adipocytes (Kim et al., 2012) and liver carcinoma cells 

(An et al., 2014), which identify mTOR as a potential target of PCBs. In those studies, alterations 

in mTOR expression were observed in cells exposed to the NDL PCB congener 153 or Aroclor 

1254 (predominantly comprised of ortho rich NDL PCBs), but these effects were not seen in 

cells exposed to TCDD. Thus, while the DL PCBs present in NBH cannot be ruled out as 

potential contributors to the observed generational patterns in mtor we hypothesize that the 

changes may be related to NDL PCBs specifically.  

 Supporting this hypothesis are studies demonstrating a relationship between RyR related 

proteins and mTOR protein complexes. The protein now known as mTOR was previously 

termed FKBP12 rapamycin associated protein 1 (FRAP1; genecard), where it is known that in 

the presence of rapamycin FKBP12 has an inhibitory effect on the formation of mTOR complex 

1 and to a lesser extent mTOR complex 2 (mTORC1 and mTORC2), thereby blocking mTOR 

signaling. Additionally, recent work has demonstrated that even in the abscence of rapamycin, 

FKBP12 may repress mTOR activity ( (Hoeffer and Klann, 2010). As discussed above (see 
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mRNA results in adult killifish skeletal muscle), FKBP12 is a key accessory protein toward RyR 

channel function and is a necessary component in NDL PCB-induced RyR-dependent toxicity. 

To date, however, the direct protein-protein or protein-chemical interactions driving NDL PCB 

perturbation of the FKBP12/RyR complex have not been described. Potentially, NDL PCBs may 

act directly on FKBP12 altering its regulatory interaction with a number of proteins leading to 

leaky RyR channels (Pessah et al., 2010), or altered formation of mTOR complexes. Apart from 

the FKBP12-mTOR interaction, there is a recent study demonstrating that altered mTOR activity 

leads to altered RyR mediated Ca2+ release, which may represent a direct connection between 

mTOR and RyR signaling (Martín-Cano et al., 2013). To understand these relations further 

investigation is needed, where future research regarding the cause or the implications of altered 

mTOR expression in PCB exposed organisms such as the PCB tolerant killifish population, will 

provide important information regarding potential disease states induced by persistent exposure 

to PCBs. This is especially true as mTOR is well known for its role in translation initiation, 

cellular growth and division and is a potential culprit in diseases ranging from cancer (Zoncu et 

al., 2010) to neurodevelopmental disorders (Santini and Klann, 2011) 

 

3.3 Changes in Protein Levels and Channel Function in Skeletal Muscle of Adult Killifish 

3.3.1 Protein Levels in Adult Skeletal Muscle: In skeletal muscle protein homogenates from 

killifish, antibody 34C recognized one distinct band at approximately 565 kDa, the region where 

mammalian RyR1 migrates (Figure 4). There was a faint second band recognized suggesting the 

presence of two isoforms, which would be consistent with what has been observed elsewhere in 

teleost white muscle (O'Brien et al., 1995; Franck et al., 1998). The slight variations in isoform 

size (Franck et al., 1998) suggests that these bands represent RyR1 (RyR1b found in white 
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muscle) and RyR3, respectively. In contrast, antibodies for CaV1.1 and FKBP12 identified 

single bands at approximately 172 kDa and 12 kDa, respectively, which is consistent with results 

published elsewhere (Qi et al., 1998; Schredelseker et al., 2005). Unlike transcript expression, 

protein levels of RyR1, CaV1.1, and FKBP12 all were found to be significantly increased in the 

skeletal muscle of NBH killifish as compared to that from SC fish. This discrepancy, especially 

the inflection in FKBP12 mRNA versus protein, may be due to variation in tissue preparation, 

where mRNA was measured in whole skeletal muscle while protein levels were measured in 

microsomal fractions. Therefore, while the constitutive expression of fkbp12 in whole tissue may 

be decreased, that found in the microsomal fraction may represent an increase in FKBP12 

protein bound to increased levels of RyR1 channels.  

Increased levels of RyR1 and FKBP12 in adult killifish represent a potential 

compensatory response that could maintain Ca2+ signaling homeostasis in the face of extreme 

NDL PCB burdens. This is supported by studies demonstrating that increased RyR number and 

function is linked to increased muscle contractility and swimming performance in fish and 

mammals (Anttila et al., 2006; Anttila et al., 2008; James et al., 2011; Seebacher et al., 2012). 

Increased levels of FKBP12 may confer tighter regulation of channel gating because: 1) the 

number of FKBP12 proteins bound to the RyR homotetramer varies by physiological and 

pathophysiological state (Zalk et al., 2007), 2) pharmacologically inhibited binding or genetically 

induced deficiencies in FKBP12 increases RyR channel open probability and mean open time; 

and 3) RyR conformational control can be regained when recombinant FKBP12 is added to 

channels exposed to Bastidin 10, a marine sponge extract known to disrupt the FKBP12/RyR 

complex (Pessah et al., 2010). These current findings are in agreement with chronic RyR1 leak 

and SR Ca2+ depletion as NDL PCB induced consequences 
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3.3.2 Receptor Ligand Interactions: Binding of ryanodine to RyR1 of skeletal muscle from 

killifish fit a two-site model (Figure 5), rather than a one-site model (p<0.001), which is similar 

to that demonstrated in mammals (Pessah and Zimanyi, 1991). The high affinity site’s maximal 

receptor-ligand binding (Bmax) and ligand affinity (Kd) did not differ between killifish from NBH 

and SC (Table 3). The low affinity sites of NBH killifish did display a much higher Bmax 

compared to SC killifish, consistent with the observed increase in RyR1 protein level 

differences. However, it should be noted that the low affinity binding parameters were not 

significantly different between the populations due to a wide 95% confidence interval observed 

in SC killifish (Bmax 0.81 to 5.05 pmol/mg; Kd 0.0 to 556.9). [3H]PN binding to the L-type Ca2+ 

channel in killifish skeletal muscle followed a one-site model but neither Bmax nor Kd differed 

significantly between NBH and SC (Figure 6), suggesting that the observed difference in protein 

expression was not detected with the receptor-radioligand binding conditions used. 

 

3.3.3 RyR-Channel Sensitivity to Regulation by Ca2+ or by NDL PCBs:  

The binding of [3H]Ry to the open channel state of the RyR1 in Atlantic killifish displayed a 

typical bell shaped Ca2+ sensitivity curve, where Ca2+ levels below 250 µM lead to receptor 

activation and levels above 500 µM lead to receptor inactivation (Figure 7). Maximum receptor 

activation occurred at a pCa of 4 (100 µM of Ca2+), which was consistent in the crude 

microsomal preparations from both NBH and SC killifish skeletal muscle. While there was no 

shift in Ca2+ sensitivity between the two populations there was a significant difference (p < 0.01; 

Student t-test) in the maximal binding achieved at a pCa of 4.  
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 There was a characteristic rise in RyR1 activity in the presence of the potent NDL 

congener PCB 95 (Figure 8). There was a significant difference (p < 0.0001; F-test) in the 

maximum response achieved between the two populations. The maximum response achieved 

was 301% or 248% of the DMSO control measured for either NBH or SC, respectively. PCB 95 

enhanced receptor activity at levels below 10 nM (EC10; NBH=9.23 nM; SC=4.11 nM) with a 

half-maximal effect concentration (EC50) at 96.2 nM and 55.6 nM for NBH and SC, respectively 

(95% CI; 77.7-119.1 NBH; 36.6-84.6 nm SC). Even though there was no obvious shift in the 

effect concentration curve, the EC50 values were predicted to vary significantly between NBH 

and SC (p < 0.016). Normalizing the concentration-response curves by predicted percent effect 

concentrations, ranging from EC10 to EC90, did show a slight shift in NBH sensitivity as 

compared to SC and it was determined that the concentration response curves varied 

significantly by population (p < 0.001).  

 Together these findings demonstrate increased RyR1 protein levels in NBH versus SC 

killifish but suggest that there are only minor differences in ligand interactions or endogenous 

and chemical regulation of the RyR between the tolerant and sensitive killifish populations. In 

the case of NDL PCB activation of the RyR1, there was only a minor shift in chemical 

sensitivity. Perhaps the lack of an obvious chemical response difference in NBH versus SC 

killifish reflects the abundance of NDL PCBs already present in NBH killifish tissue (Table 2); 

tissues for RyR assays were sampled from fish within 48 h of field capture. Thus, future research 

in thoroughly depurated fish or those from generations reared in a laboratory may better explain 

potential phenotypic adaptations to NDL PCBs rather than compensatory changes due to 

exposure in the field. Additionally, studies that focus more on receptor function in light of 

changing FKBP12 levels may better explain population differences in NDL PCB tolerance, 
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especially as this accessory protein is necessary for RyR toxicity. Such mechanisms (i.e. altered 

receptor/accessory protein interactions) would be in accordance with that described for DL PCB 

specific tolerance in the PCB resistant tomcod (Microgadus tomcod) found in the Hudson River 

(Wirgin et al., 2011). Notably, AhR variants found in sensitive versus tolerant tomcod 

populations display differential TCDD binding, which was explained by a six base pair deletion 

occurring in the AhR region essential for binding the AhR interacting protein (AIP). We find it 

intriguing that AIP’s N-terminal sequence contains a peptidyl-prolyl cis/trans isomerase (PPIase) 

domain characteristic of FK506 binding proteins, including FKBP12 (Linnert et al., 2013). 

Therefore PPIase regulatory domains may represent a convergent target of DL and NDL PCBs 

where future studies examining RyR1or FKBP12 population variants, and the kinetic interaction 

thereof, may elucidate changes in receptor functioning in tolerant versus sensitive killifish 

populations.  

 

 

CONCLUSIONS: 

The Atlantic killifish is tolerant to a wide range of both natural and anthropogenic 

stressors acting as a useful model organism (Burnett et al., 2007). Regarding acquired tolerance 

to the pollutants present in NBH, research has mainly focused on select PCB congeners, namely 

DL PCBs. NDL PCBs comprise the majority of the PCB burden found in NBH sediment and 

NBH killifish and  represent pathway specific selective pressures. Here we focused on altered 

RyR related pathways in the PCB tolerant killifish from NBH as it compares to the sensitive 

population found at SC. Our findings demonstrate that adult NBH killifish display increased 

RyR1 and FKBP12 protein levels and increased mRNA levels of key RyR accessory or 
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modulatory proteins. It is postulated that these findings represent compensatory responses in 

NBH killifish because tighter control of more RyR channels, especially by FKBP12, would 

likely mitigate chronic RyR leak and SR Ca2+ depletion, which are believed to result from 

prolonged NDL PCB action at the Ca2+ release channel. Additionally, we identify potential 

heritable difference in the RyR-related signaling partner mTOR (Hoeffer and Klann, 2010; 

Santini and Klann, 2011; Martín-Cano et al., 2013). These findings likely relate to NDL PCB 

ability to alter FKBP12’s interaction with its modulatory proteins and the increased levels in 

NBH embryos and larvae suggests that mtor may contribute to long-term (generational) effects 

of NDL PCBsAs such, the current study identifies RyR related pathways as a candidate that may 

contribute to the NBH killifish’s ability to thrive in extreme NDL PCB concentrations. Moving 

forward, research aimed at understanding potential phenotypic (or inferred genetic) mechanisms 

of developed NDL PCB tolerance in NBH killifish will provide information regarding potential 

costs associated with extended PCB exposure. In general, however, there is a need to establish 

NDL PCB mediated toxic effects in non-mammalian vertebrates, where furthering this 

understanding will provide a more comprehensive appreciation of the exposure risks associated 

with total PCB burdens, adding to the extensive research currently available for DL congeners. 

Addressing these issues, specifically in the killifish population, will not only provide information 

about long-term multigenerational PCB impacts but may also identify genetic variation as 

determinants of NDL PCB sensitivity in vertebrates. 
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Table 1. Genes utilized to assess NDL PCB mediated differences in New Bedford Harbor and 
Scorton Creek Atlantic killifish.  

Gene Name Gene 
Symbol 

Accession 
Number Forward/Reverse Primers Probe 

Ryanodine Receptor 1 ryr1 a gccgttcggtaagcagtagt 120 cctctgaagctgctcacaaa 

Ryanodine Receptor 2 ryr2 KJ955487 agatgctgatcgcttccttca 71 gcactgagaggagataggggaga 

Ryanodine Receptor 3 ryr3 a tacctgggtcgcattgaaa 44 tcgctgatctcgaagtagacc 
L-type Voltage Gated Ca2+ Channel, 

subunit 1αS cav1.1 KJ955488 cctcaaacgttgaaacggtga 89 gaaacagttctggctagaagagagtg 

FK506-Binding Protein 1A, 12kDa fkbp12 a aaagtcttcgactcgtcgaggt 52 ggccgacactcatctgagcta 

Junctophilin 1 jph1 KJ955489 ctcgctgtctgagtggaagttg 52 cagagcaacggcgcagtt 

Homer 1 homer1 KJ955490 acgacatctgcgactccacc 106 cccagtgctttgtcatggc 

GST mu gst-mu AY725220 ggacgaaaaggtcagagtgg 22 acatcctcacaaagccgttt 

Mechanistic Target of Rampamycin mtor a acctccatagcgttggtcag 153 gaagttccccgaaaagatcc 
Sacrco/endoplasmic Reticulum 

Calcium ATPase, 2 serca2 U58326 cacgctgaccaccaatca 112 atcccgctccgctttatc 

Cardiac Phospholamban  pln CV817790 cgtcgagcgtctcagatcg 128 gcagatgaggatgagcgtgaa 
N-methyl-D-aspartate Glutamate 

Receptor 1 nmdar1 KJ955491 cgcaccttctcctattccag 2 agatgccctcaccttgtcat 

Ribosomal Protein L8 rpl8 DQ066926 gcccagctgaacattggta 96 caggcagcagatgatggtt 

Ribosomal Protein S20 rps20 CN984003 cgcatgccaaccaagact 9 gaagcgatcccaggttttg 

β-actin β-actin DR046767 ggccagaaggacagctatgt 165 tggggtacttcagggtcaag 

Elongation Factor 1 alpha ef1α AY430091 tcaccatcgacatcgctct 54 gcatcgatgatggtcacgta 
aGene sequences provided by S. Karchner; WHOI 
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Table 2. PCB concentrations detected in SC and NBH killifish 
  Population 
  Scorton Creek New Bedford Harbor 
    
PCB Congeners Chlorine Substitution          Concentration (ng g-1 dry) (SEM) 
Non-ortho    
PCB 77b 3,3',4,4' 3.11 (1.78) 1358.72 (432.15) 
PCB81b 3,4,4',5 0.40 (0.30) 82.036 (28.15) 
PCB126b 3,3',4,4',5 0.39 (0.22) 109.82 (31.15) 
PCB169b 3,3',4,4',5,5' ND 1.56 (0.35) 
    
Mono-ortho    
PCB008 2,4' <MDL 7819.19 (1410.46) 
PCB028 2,4,4′ 23.96 (13.69) 16468.85 (3065.18) 
PCB066 2,3′,4,4′ 8.86 (3.57) 3425.62 (1469.43) 
PCB105b 2,3,3',4,4’ 3.75 (0.43) 3160.61 (405.66) 
PCB118b 2,3',4,4',5 20.27 (3.44) 9206.99 (1437.15) 
    
Ortho    
PCB018a 2,2',5 9.19 (8.80) 14909.95 (2795.34) 
PCB044a 2,2',3,5' 6.12 (3.38) 8531.69 (1423.56) 
PCB052a 2,2′,5,5′ 26.40 (13.91) 22578.74 (4376.61) 
PCB101a 2,2′,4,5,5′ 18.56 (4.63) 11233.93 (1830.98) 
PCB128 2,2',3,3',4,4' 1.27 (0.43) 1856.53 (293.19) 
PCB138a 2,2',3,4,4',5' 18.73 (2.16) 5748.89 (752.310 
PCB153a 2,2′,4,4′,5,5′ 27.19 (3.63) 7895.77 (1301.28) 
PCB170a 2,2′,3,3′,4,4′,5 <MDL 927.48 (144.10) 
PCB180a 2,2′,3,4,4′,5,5′ 1.95 (0.69) 1467.24 (220.22) 
PCB187a 2,2′,3,4′,5,5′,6 4.28 (1.88) 1819.53 (374.70) 
PCB195 2,2',3,3',4,4',5,6 <MDL 81.76 (15.41) 
PCB206 2,2',3,3',4,4',5,5',6 <MDL 56.31 (10.12) 
PCB209 2,2',3,3',4,4',5,5',6,6’ <MDL 5.14 (2.45) 
ΣPCBs  174.43 118746.36 
       
aCongener has a demonstrated effect on the RyR1 in mammals or fish (Pessah et al. 2006) or (Fritsch and 
Pessah, 2013) 
bCongener has a demonstrated effect on the AhR, CB105 and CB118 are minor AhR active congeners (Van 
den Berg et al., 2006) 
Method Detection Limit (MDL); Not Detected (ND) 
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Table 3. Binding of [3H]Ry in the skeletal muscle of Atlantic killifish from SC versus NBH. 

    Site 
Binding Site Parameter SC NBH 

High Affinity 

Bmax 
(pmol/mg) 1.47 ± 0.31 1.63 ± 0.32 

Kd (nM) 4.31 ± 1.57 3.41 ± 1.25 

    

Low Affinity 

Bmax 
(pmol/mg) 2.93 ± 1.07 6.69 ± 0.92 

Kd (nM) 191.9 ± 184.3 163.2 ± 63.71 

Parameters represent estimates defined by non-linear regression ± SE                                                                
Bmax represents the maximum amount of ligand bound per binding site                                                          
Equilibrium dissociation constant ( Kd) represents binding site affinity  
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Figure Legend: 

Figure 1. Proteins involved in RyR Ca2+ signaling dynamics and potential RyR related signaling 

partners. Arrow heads and blunt ended lines represent activating or inhibiting regulation 

respectively. Full versus dashed lines represent an established versus a proposed relationship, 

respectively. Note that the diagram is not isoform or tissue specific but rather proteins displayed 

relate to Ca2+ signaling in skeletal muscle, cardiac muscle or brain tissue. Also, this is not an 

exhaustive list of RyR regulatory proteins or signaling partners. The Ca2+ channel interacts with 

or is regulated by numerous other plasma membrane bound signaling receptors, cytoplasmic 

accessory proteins and integral and luminal sarcoplasmic reticulum proteins not measured in the 

current study. Abbreviations see Table 1. Information gathered from (Hoeffer and Klann, 2009; 

Pouliquin and Dulhunty, 2009; Hoeffer and Klann, 2010; Pessah et al., 2010; Martín-Cano et al., 

2013). 

 

Figure 2. Tissue specific transcript levels in adult killifish from SC and NBH. Data shown is 

relative to the transcript levels observed for a given tissue collected for SC (0 on the y-axis). 

Abbreviations see Table 1. Means ± SEM, n=6, *p ≤ 0.05, †p ≤ 0.01.  

 

Figure 3. RyR related mRNA differences between SC and NBH embryos and larvae from 

various developmental stages across multiple generations. Data shown is relative to the transcript 

levels observed at the same age class for SC (0 on the y-axis). Means ± SEM; n≥6; * p ≤ 0.05, † 

p ≤ 0.01, ‡ p ≤ 0.001. Abbreviations see Table 1. 
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Figure 4. Differences in RyR1, CaV1.1 and FKBP12 protein levels in the skeletal muscle of 

killifish from NBH and SC. (A) Average protein band intensity shown as a ratio to SC after 

normalization to GAPDH. (B) Representative protein separation visualized on 5 gels; JSR, 

junctional sarcoplasmic reticulum preparation from white skeletal muscle of a New Zealand 

White Rabbit. Means ± SEM; (n = 4); †p ≤ 0.01,‡ p ≤ 0.001.  

 

Figure 5. Saturation binding of [3H]Ry in the skeletal muscle of adult killifish from SC and 

NBH. (A) Specific [3H]Ry binding or (B) Scatchard analysis with predicted high and low affinity 

binding sites by population. Means ± SEM; n=2; with 4 subsamples.  

 

Figure 6. Saturation binding curves for [3H]PN to in skeletal muscle of adult killifish from SC or 

NBH. (A) Specific [3H]PN binding or (B) Scatchard analysis; and (C) Population radioligand 

binding parameters. Means ± SEM; n=2; with 4 subsamples.  

 
Figure 7. Ca2+ induced [3H]Ry binding in the skeletal muscle of adult killfish from SC and NBH. 

(A) Specific [3H]Ry bound per mg of protein; (B) Data normalized to the maximum response 

observed per population. Means ± SEM; n=3, with 4 subsamples. 

 

Figure 8. PCB 95 induced [3H] Ry binding in the skeletal muscle of adult killfish from SC and 

NBH. (A) Specific binding shown as a percent of the DMSO solvent control for a given 

population; (B) Percent effect concentrations ranging from 10-90% of predicted PCB 95 induced 

RyR activity in the two populations. Means ± SEM; n=4, with 3 subsamples. 
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