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Abstract Two near-surface dye releases were mapped on scales of minutes to hours temporally, meters to
order 1 km horizontally, and 1–20m vertically using a scanning, depth-resolving airborne lidar. In both cases,
dye evolved into a series of rolls with their major axes approximately aligned with the wind and/or
near-surface current. In both cases, roll spacing was also of order 5–10 times the mixed layer depth,
considerably larger than the 1–2 aspect ratio expected for Langmuir cells. Numerical large-eddy simulations
under similar forcing showed similar features, even without Stokes drift forcing. In one case, inertial shear
driven by light winds induced large aspect ratio large-eddy circulation. In the second, a preexisting lateral
mixed layer density gradient provided the dominant forcing. In both cases, the growth of the large-eddy
structures and the strength of the resulting dispersion were highly dependent on the type of forcing.

1. Introduction

Accurate representation of the surface ocean boundary layer is key to understanding the coupled ocean-
atmosphere system. Exchange at the air-sea interface is in part controlled by mixing processes in the ocean
boundary layer (OBL). Consequently, understanding such processes is crucial to accurately portraying ocean
forcing by winds and air-sea interactions that control weather and climate.

Surface wind and wave forcing are responsible for the bulk of turbulent mixing processes active in the OBL
through the formation of large-eddy circulation, including Langmuir circulation and other shear-generated
instabilities. Large-eddy circulations in the OBL have been shown by numerous investigators to enhance
upper ocean mixing through the efficient transport of momentum and heat [e.g., Smith, 1992; Skyllingstad
and Denbo, 1995; Li and Garrett, 1997; Kukulka et al., 2009]. In low wind, convection can dominate mixing
during strong surface cooling. Such processes have been observed [e.g., Shay and Gregg, 1986; Plueddemann
et al., 1996] as well as modeled [e.g., Skyllingstad and Denbo, 1995; McWilliams et al., 1997] with generally
good agreement [Kukulka et al., 2010]. More recent studies have focused on the various roles of surface wave
breaking [Melville and Matusov, 2002; Sullivan et al., 2007], wave direction [Van Roekel et al., 2012] and tidal
flow interactions [Kukulka et al., 2011].

As our understanding of large-eddy circulation in the OBL has evolved, it is now recognized that what has
historically been generically termed “Langmuir circulation” actually consists of a variety of instability
phenomena, including classic Langmuir circulation, convective turbulence in the presence of shear, and/or
inflection point, parallel, and symmetric instabilities [e.g., Thorpe, 2004]. Separating one instability mechanism
from another is still a major challenge, as numerous parameters and forcings drive the various instabilities,
including sea state (from fetch-limited to fully developed seas to nonlocally forced swell), surface buoyancy flux
(positive and negative), lateral buoyancy gradients, and ranges of angles between the wind, currents, and
waves, to name a few.

While some progress has been made differentiating regimes of one type of instability over another
[e.g., Li et al., 2005] and parameterizing the resulting mixing and/or OBL deepening under specific
circumstances [e.g., Li and Garrett, 1997], there are still many open questions as to how various theoretical
instabilities manifest and/or compete under real ocean conditions. Wind rows and/or surface thermal
structure from infrared imaging have long revealed patterns of surface convergence [e.g., Langmuir, 1938;
Marmorino et al., 2005]. Pioneering observations of Weller et al. [1985] revealed the three-dimensional
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structure of Langmuir circulation in the open ocean. Acoustic measurements of bubble clouds have
further provided direct evidence of downwelling circulations and their horizontal scales [e.g., Farmer
and Li, 1995; Plueddemann et al., 1996]. In addition, advances in observational technologies and
computational power have enabled numerous large-eddy simulation (LES) studies to at least qualitatively
reproduce the observations.

We report here on results from two dye release experiments conducted in the OBL during summertime fair-
weather forcing conditions and accompanying numerical simulations aimed at diagnosing the underlying
physical processes driving the observed dye evolution. A key aspect of this work is the combination of
high-resolution (time and space) measurements of dye dispersion in the OBL combined with realistic LES
simulations of upper ocean boundary layer dynamics.

2. Methods

The first dye experiment we report here was conducted on 3 June 2004 off the east coast of Florida, in
approximately 200m of water, 5 km east of Fort Lauderdale. The study site was offshore enough to be outside
the nearshore band of higher chlorophyll, but not so far as to be within the stronger currents associated
with the Gulf Stream. A solution of 5 kg of rhodamine dye mixed with isopropyl alcohol and seawater so as to
be approximately neutrally buoyant was injected in the near surface of the ocean at ~09:00 h local time.
During the injection, the depth of the injection sled was varied in a stair-step fashion beginning with a
segment at 2.5m for ~1min, followed by a deeper segment at 5m, followed by an even deeper segment at
10m, then returning to the surface and repeating. The result was a series of surface segments, interspersed
with progressively deeper segments at discrete depths. The complete injection lasted approximately 15min,
resulting in an injection streak ~1600m long.

The second dye experiment was conducted on 16 June 2011 in the Sargasso Sea east of North Carolina, in
approximately 4000m of water, 250 km east of Cape Hatteras. In this case, the study site was offshore of the
Gulf Stream in a region of open ocean mesoscale and submesoscale eddy and frontal activity. A solution of
9 kg of fluorescein dye mixed with isopropyl alcohol and seawater was injected in the near surface at
approximately 01:00 h local time. In this experiment the injection sled was maintained at 2.3m depth for a
total injection time of 4min, resulting in an injection streak length of ~0.13 km.

In both experiments, dye distributions were sampled using a conductivity-temperature-depth (CTD)/fluorometer
instrument package towed behind the ship, together with airborne lidar. Shipboard acoustic Doppler
current profilers (ADCPs) were used tomeasure ocean currents in and around the dye patches. Wind observations
for the 2004 experiment were obtained from nearby Fort Lauderdale airport, while for the 2011 experiment
they were measured from a meteorological package mounted on the ship.

The use of airborne lidar to survey the dye patches is a significant novel component of the experiments
reported here. For the 2004 experiment, we used a SHOALS-1000 T lidar manufactured by Optech Inc. and
operated by the U.S. Army Corps of Engineers Joint Airborne Lidar Bathymetry Technical Center of Expertise.
The system uses a frequency-doubled neodymium: yttrium/aluminum/garnet laser to produce 1064
(infrared) and 532 nm (green) pulses 6 ns in duration, with a repetition rate of 1 kHz and a scan rate transverse
to the direction of flight of 10–15Hz. Excitation at 532nm is approximately one half peak excitation (at 555nm)
for rhodamine-WT dye used in the 2004 experiments. Further details of the experiment are reported in
Sundermeyer et al. [2007].

For the 2011 experiment, we used a lidar built and designed by the Naval Air Systems Command. The
system uses a Ti:Sapphire tunable laser set to 480 nm, with a pulse length of 10 ns, a repetition rate of 1 kHz
and a conical scan rate of 15 Hz. Excitation at 480 nm is approximately three fourths peak excitation
(at 490 nm) for fluorescein dye used in the 2011 experiments. Details of the 2011 field experiments will be
reported in a forthcoming manuscript.

In both the 2004 and 2011 experiments, lidar data were georeferenced using the aircraft inertial navigation
system and translated into an advected reference frame by integrating the velocity from the shipboard
ADCP. An inversion algorithm to convert the lidar returns to absolute dye concentration was applied to the
2004 data and is reported by Sundermeyer et al. [2007]. A second generation inversion routine for the 2011
data is in preparation. However, for brevity, we report here simply the intensity and depth of the peak
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returns of the lidar, which, together with in situ dye fluorometer observations, provide sufficient insight
into the underlying physics.

Numerical simulations corresponding to the two experimental scenarios were conducted using the LES
model described in Skyllingstad et al. [2000]. The model is based on the incompressible, nonhydrostatic,
rotating f plane, Boussinesq equations with subgrid turbulence parameterization following Ducros et al.
[1996]. Periodic lateral boundaries are employed, with rigid upper and lower boundaries and a sponge layer
at the model bottom to absorb vertically propagating internal waves. Surface wave effects are parameterized
using the Craik and Leibovich [1976] Stokes drift vortex forcing term with a representative monochromatic
wave system aligned with the mean wind.

3. Results
3.1. The 2004 Experiment

Conditions during the 2004 rhodamine experiment were generally fair for the week prior to as well as during
the experiment, except for occasional thunderstorms in the area during afternoon/evening hours.
Meteorological data were not available from the ship; however, data collected at the nearby Fort Lauderdale
airport were generally consistent with conditions observed at the study site, namely, scattered to partly cloudy
with winds generally less than 10 kts out of the southeast. Wave heights throughout the experiment were of
order 0.5mor less. CTD data collected during the dye surveys showed a strongly stratified surface layer (N ~10 cph)
extending to about 10m, overlying a less stratified region down to 35m (N ~3.5 cph), followed by an abrupt
density jump (approximately 0.5 kgm�3) at 35m, consistent with a remnant mixed layer capped by surface
heating (not shown). If there was a surface mixed layer, it was confined to the upper 2–3m where the towed
CTD/fluorometer system as unable to resolve it. Mean currents were approximately 10cms�1 northward near the
surface, with a 25 cms�1 NW subsurface maximum centered around 10m, and a return to northward flow
below 20m of 15–20 cms�1, that is, with a near-surface shear in the upper 10m opposing the wind.

Airborne lidar surveys were conducted for ~1.5h beginning at the start of the dye injection. A summary of the dye
overflights is shown in Figure 1. Results show the surface segments of the patch evolved into a banded structure
oriented approximately in the direction of the wind, with a dominant length scale in the crosswind direction
of 40–50m by the end of the surveys. Notable here is that classic Langmuir circulation typically has aspect ratios of

Figure 1. Successive lidar flight lines from June 2004 dye release ordered by time from left to right [after Terray et al., 2005].
Color indicates peak lidar fluorescence for each waveform. Yaxis is latitude, with successive flight lines offset left to right for
clarity. Times at base of figure correspond to start of each flight line, with a gap from 13:27–14:08 h during a period when
flight lines were east-west rather than north-south (not shown). Top inset shows pressure record during ~15min long
injection with changes in injection depth as indicated.

Geophysical Research Letters 10.1002/2014GL061637

SUNDERMEYER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 7586



order 1–2 (cell spacing to mixed layer, ML, depth). However, as we estimate the mixed layer depth for this
experiment was not more than 2–3m, the 40–50m spacing of the observed roll structures was much larger than
would be explained by this mechanism. Further, the direction of the mean shear in the upper 3–10m opposed the
wind, suggesting the presence of either residual inertial shear, or of a lateral density gradient driving near-surface
flow. Either of these factors alone could equally explain the observed large-eddy structures.

To better understand the underlying physics, LES model runs were forced with conditions similar to those
observed. The model was started at rest using an idealized temperature profile with a 2 m deep surface mixed
layer above a thermocline gradient of 1°C per 8m depth. Wind forcing of 0.05Nm�2 was applied along with
a Stokes drift profile representing a monochromatic surface wave with amplitude 0.5m and wavelength of 15m.
Simulations were conducted for 4 h with the initial 2 h considered a spin-up period before releasing a passive
surface tracer in a north-south line 1m wide at the center of the domain at a depth of 0.5m.

Two cases were considered, one with Stokes drift forcing and hence classic Langmuir circulation and a
second with Stokes drift removed, representing mainly wind-driven shear flow. Normalized dye concentration
for each case after 30 and 60min (Figure 2) show that both cases generate banded structures with spacing
similar to the dye observations. This similarity between these two cases suggests that ML shear (associated with
wind-driven inertial oscillations in the case of the model) is equally capable of generating large-eddy
circulations given the observed stratification. The main difference between the two cases is the markedly
larger horizontal mixing in the case without Stokes drift. The cause of this greater horizontal transport is the
much higher mixed layer shear when Langmuir circulation is not present, an effect previously noted by
Skyllingstad et al. [1999]. In one case the Stokes drift forcing term and resulting Langmuir circulations act to
homogenize shear in the mixed layer, whereas without Langmuir circulation, surface currents increase rapidly

Figure 2. Normalized dye concentrations (a, c) 0.5 and (b, d) 1.0 h after release using parameters similar to 2004 lidar
dye observations shown in Figure 1 for Figures 2a and 2b Stokes drift and wind stress forcing and Figures 2c and 2d
wind stress-only forcing. Wind stress = 0.05 N/m�2, surface wave length = 15 m, wave height = 0.5 m, wind/wave
direction from 120°.

Geophysical Research Letters 10.1002/2014GL061637

SUNDERMEYER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 7587



in response to the wind until turbulence produced by shear balances the momentum flux. A key difference
between the two numerical simulations is thus that differential transport of dye by the sheared current
combined with vertical mixing generates more rapid lateral mixing. Other than this overall increase in mixing,
however, it is difficult to discern a difference in character between the two modeled dye patterns.

3.2. The 2011 Experiment

Conditions during the 2011 fluorescein experiment were again relatively fair for the period leading up to
and during the experiment. Mean wind was 13 kts from the north (354°), with wave heights typically ~2m
or less. CTD data collected during the dye surveys showed a surface mixed layer depth of ~15m,
deepening to ~18m by the end of the experiment. Mean current was approximately 40 cm s�1 WNW at the
surface, with a 50 cm s�1 NNW subsurface maximum centered at about 25m and a return to ~40 cm s�1

WNW below 40m; that is, current largely opposing the wind but with a down and slightly to the right of the
wind near-surface shear.

In this experiment, airborne lidar surveys were conducted for ~2.5 h following the injection. A summary of the
dye surveys is shown in Figure 3. Again, clear roll structures were evident in the dye distributions within
15min following the injection (note that repeat lidar surveys were more sparse in this experiment, since the
aircraft spent some of its time surveying another deeper dye release north of the surface patch). Again, the
observed roll structures were oriented roughly downwind, this time with a dominant crosswind length
scale of order 150m. Once again, we note the large horizontal scale of the rolls compared to the ML depth.
Also notable is that although the observed roll structures were roughly aligned with the wind, they also
displayed distinct tails at the ML base. That is, despite the dye injected near the surface being rapidly mixed
down to the ML base (the 0.25 h snapshot in Figure 3 already shows dye at 20m depth), the streamers at the
ML base were apparently not equally rapidly mixed back up through the ML.

LES simulations were again conducted with wind and wave forcing similar to that observed. In contrast to the
previous case, however, a background front was imposed with a geostrophic shear based on an estimated
horizontal temperature gradient of 0.1°C km�1 as measured by the ship injecting the dye. In this simulation,
mixed layer circulations were strongly affected by the frontal system, with coherent rolls produced at
horizontal scales of 150–200m or about 10–15 times the mixed layer depth. Here the model dye patch
(Figure 4) formed coherent structures of similar scale regardless of the Stokes drift forcing. By contrast,
without the front the dye organized into patches of much smaller scale, more similar to the Florida scenario.
Also evident in the frontal simulations were distinct tails at the ML base associated with dye that had been
mixed isopycnally down and into the vertically stratified region below the ML.

Figure 3. Evolution of a near-surface (3m) fluorescein dye patch as viewed by airborne lidar during the 2011 LatMix field
experiment. (top row) Peak lidar fluorescence intensity during successive surveys with time (indicated under each patch,
hours) increasing from left to right. (bottom) The depth at which the peak return was observed. Wind was from the north at
~13 kts. There was also a mean density gradient within the ML oriented roughly NW-SE. Bottom right inset shows a depth
cross section of the lidar return (marked by red line in Figure 3 (top)), revealing deep tails (i.e., at the ML base) streaming
behind (relative to the wind direction) the surface portion of the patch.
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4. Discussion/Conclusions

Field observations of dye dispersion using airborne lidar reveal a rich structure of large-eddy circulations
in the OBL. Simulations of two dye cases suggest that multiple mechanisms can lead to coherent, banded
dye structures in the ocean mixed layer. The growth of these structures and hence the strength of the
associated dispersion, for a given boundary layer depth, are highly dependent on the type of forcing. For
example, in the case of waves and wind-driven mixing, Stokes drift forcing acts to decrease shear dispersion
resulting in slower spreading of the dye plume and smaller coherent structures. Frontal instabilities, on
the other hand, generate banded structures with lateral separations many times the mixed layer depth,
which rapidly pull the dye patch apart into discrete elements with scales much larger than are produced by
shear or wave-induced circulations. The combination of high-resolution (both in time and space) field
observations together with process-driven numerical simulations provide a valuable tool for diagnosing
which of these (among other processes) might dominate under different forcing conditions.
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