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ABSTRACT 19 

Obtaining an accurate picture of microbial processes occurring in situ is essential for our 20 

understanding of marine biogeochemical cycles of global importance. Water samples are 21 

typically collected at depth and returned to the sea surface for processing and downstream 22 

experiments. Metatranscriptome analysis is one powerful approach for investigating metabolic 23 

activities of microorganisms in their habitat and which can be informative for determining 24 

responses of microbiota to disturbances such as the Deepwater Horizon oil spill. For studies of 25 

microbial processes occurring in the deep sea, however, sample handling, pressure, and other 26 

changes during sample recovery can subject microorganisms to physiological changes that alter 27 

the expression profile of labile messenger RNA. Here we report a comparison of gene expression 28 

profiles for whole microbial communities in a bathypelagic water column sample collected in the 29 

Eastern Mediterranean Sea using Niskin bottle sample collection and a new water column 30 

sampler for studies of marine microbial ecology, the Microbial Sampler – In Situ Incubation 31 

Device (MS-SID). For some taxa, gene expression profiles from samples collected and preserved 32 

in situ were significantly different from potentially more stressful Niskin sampling and 33 

preservation on deck. Some categories of transcribed genes also appear to be affected by sample 34 

handling more than others. This suggests that for future studies of marine microbial ecology, 35 

particularly targeting deep sea samples, an in situ sample collection and preservation approach 36 

should be considered. 37 
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INTRODUCTION 43 

Microbial metabolic activities are the basis of almost every major biogeochemical cycle 44 

in the oceans, and as the research community transitions away from purely descriptive studies of 45 

marine microbes to system-level investigations of community activity and responses to changing 46 

environmental conditions, it is imperative that we obtain less biased samples for those studies.  47 

As a consequence of the fact that the majority of microorganisms are not amenable to existing 48 

cultivation approaches, many marine microbiologists and microbial ecologists have embraced 49 

culture-independent methods. Metatranscriptomics, or the isolation and sequencing of messenger 50 

RNA (mRNA) from an environmental sample, is one powerful method currently used for linking 51 

diversity with activity, and for examining microbial activities in response to changing conditions. 52 

Metatranscriptomics provides an overview of (at a minimum) the most highly expressed genes in 53 

a sample. These transcripts inform about the metabolic pathways that are utilized by microbiota 54 

in that sample at the time of sample preservation, and specific proteins that were expressed. 55 

Enabled by recent advances in high-throughput sequencing technologies and bioinformatics for 56 

processing datasets that can contain tens of millions of reads, metatranscriptomics has become 57 

one of the most powerful tools for examining microbial community activities.  58 

 The metatranscriptomics approach has been used successfully to examine gene 59 

expression in varied marine habitats. Examples include deep subsurface sediments (Orsi, et al., 60 

2013), the North Pacific Subtropical gyre (Frias-Lopez, et al., 2008, Poretsky, et al., 2009), 61 

eastern tropical South Pacific oxygen minimum zone (Ulloa, et al., 2012), coastal waters 62 

(Hollibaugh, et al., 2010, Gifford, et al., 2011), hydrothermal vent plumes (Li, et al., 2013), 63 

microcosm experiments on mixed water layers from the NE Pacific Ocean (Marchetti, et al., 64 

2012). Metatranscriptomics was also recently used to study microbial responses to the Deep 65 
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Water Horizon oil spill. Mason et al. (2012) found a rapid increased expression of genes 66 

associated with motility, chemotaxis, and aliphatic hydrocarbon degradation originating from 67 

members of the Oceanospirallales in hydrocarbon plume samples (Mason et al. 2012). Rivers et 68 

al. (2013) also applied metatranscriptomics to show increased activity (primarily associated with 69 

methane- and petroleum-degrading Gammaproteobacteria) within specific metabolic pathways 70 

for the degradation of alkanes, aromatic compounds and methane following the Deepwater 71 

Horizon spill. Metatranscriptomic studies in the future will be enhanced by sampling 72 

technologies that allow us to minimize potential artifacts that can be introduced due to sample 73 

handling. 74 

For studies of gene expression it is necessary to minimize time between sample collection 75 

and chemical preservation. Historically, oceanographers studying marine microbiota have relied 76 

on ship-based hydrocasting operations whereby water samples from various depths in the ocean 77 

are brought to the surface via Niskin rosette samplers for shipboard water processing. This 78 

approach is likely not appropriate for mRNA-based investigations due to the typically large and 79 

variable lapses in time and accompanying physicochemical shifts samples are exposed to 80 

between collection and preservation. When working in the near-surface (top 1-200m) up to 30 81 

minutes may pass between when a water sample is collected and when it is returned to the 82 

surface, preserved and processed in the ship’s laboratory. In addition, samples are exposed to 83 

pressure, and potentially temperature and redox changes before preservation. Pressure changes, 84 

potential physicochemical changes, and separation in time between sample collection and 85 

processing are exacerbated when working in the deep sea and/or collecting water samples from 86 

low-oxygen or anoxic zones. Impacts on transcription by microbes captured in water samples are 87 

also likely to vary between taxa depending fragility of cell structures, and on their strategies (or 88 
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lack thereof) for responding to such changes. Given that average lifetimes of prokaryotic 89 

transcripts can be on the order of several minutes (Wang, et al., 2002, Andersson, et al., 2006, 90 

Steglich, et al., 2010), the gene expression profiles of microorganisms can potentially be altered 91 

significantly. While delays in the preservation of DNA and rRNA (often used as a phylogenetic 92 

identifier of viable organisms) is less susceptible to such biases because of their significantly 93 

longer half-lives, delayed preservation of Niskin samples can still be an issue if cell integrity is 94 

lost due to unnatural and changing conditions during transport from the ocean to the ship's 95 

laboratory. Variable and unknown fractions of genetic material from lysed cells can be lost 96 

during filtration. This problem is particularly severe for microbial eukaryotes and potentially 97 

compounded when sampling greater depths (Edgcomb, et al., 2011). 98 

Numerous technical approaches have been undertaken for microbial sampling of the sea 99 

and include hydrowire deployed devices (Zobell, 1941, Nikin, 1962, Lewis, et al., 1963), devices 100 

that minimize exogenous contamination (e.g. Jannasch & Maddux, 1967, Taylor, et al., 2006), 101 

samplers that preserve the conditions of the deep sea (e.g. Jannasch, et al., 1973, Jannasch & 102 

Wirsen, 1977, Tabor, et al., 1981, Bianchi, et al., 1999), a sampler that can preserve a whole 103 

water sample in situ from 120m depth (Feike, et al., 2012), samplers that collect hydrothermal 104 

vent fluids (e.g., Malahoff, et al., 2002, Phillips, et al., 2003, Taylor, et al., 2006), AUV 105 

(autonomous underwater vehicle) based water samplers (Bird, et al., 2007, Ryan, et al., 2010) 106 

those that conduct in situ molecular analyses, such as the Environmental Sample Processor (ESP) 107 

(Scholin, et al., 2006, Roman, et al., 2007, Scholin, 2010), assess phytoplankton assemblages via 108 

imaging flow cytometry (Olson & Sosik, 2007, Sosik & Olson, 2007) and that sample remote 109 

biospheres (Carsey, et al., 2000, French, et al., 2001, Blake & Price, 2002, Siegert, et al., 2003, 110 

Cardell, et al., 2004). A common limitation of available instrumentation for in situ preservation 111 
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of deep-sea samples, or that might be adapted for this purpose, is the restriction to one or a few 112 

samples of limited volume. Sample replication is desirable when examining microbial diversity 113 

and activities, and when working in the deep sea, greater total volumes are often required due to 114 

low cell densities. Additionally, when working in the mesopelagic and bathypelagic zones, wire 115 

time is often precious, and the ability to sample multiple depths is an advantage. 116 

Differences in microbial gene expression have been observed between samples preserved 117 

in situ vs. those recovered to the deck prior to preservation from suboxic samples collected from 118 

70-120m depth in the Baltic Sea (Feike, et al., 2012). Additionally, we have documented that 119 

changing physicochemical conditions during Niskin sampling can cause lysis of some microbial 120 

eukaryotes (Edgcomb, et al., 2011). Obtaining accurate information on in situ microbial 121 

activities is of fundamental importance to understanding microbially-driven ocean processes and 122 

responses of microbiota (and the major biogeochemical cycles that they mediate) to global 123 

climate change. To date, no data exist comparing the profile of microbial community gene 124 

expression in the deep sea using in situ vs. conventional Niskin-based approaches. Here we 125 

compare the profile of community gene expression by microbiota in waters from 2222m depth in 126 

the Eastern Mediterranean Sea using conventional Niskin rosette collection vs. in situ filtering 127 

and sample preservation performed using a newly-developed oceanographic instrument for 128 

marine microbiological studies, the Microbial Sampler – Submersible Incubation Device (MS-129 

SID) that allows for collection and in situ preservation of up to 48 filtered or whole water 130 

samples during a single hydrocasting operation. While not an ecological study of microbial 131 

activities at this location, the aim of this work was to conduct a general comparison of 132 

transcriptome results obtained using both methods, and to analyze the reproducibility of 133 

biological replicates collected sequentially using the MS-SID. 134 
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 135 

MATERIALS AND METHODS 136 

Study site: The Ionian Sea extends from the Sicily Strait to the Cretan passage, in the Eastern 137 

Mediterranean Sea, which is characterized by an eastward progression of increasingly 138 

oligotrophic conditions (Sarmiento, et al., 1988, Danovaro, et al., 1999, Thingstad, et al., 2005). 139 

The study was conducted using samples collected at a site named KM3 (36o 29’98’’N, 15o 140 

39’97’’E) from 2222m water depth in September, 2012 using the R/V Urania of the Italian 141 

National Research Council (CNR). 142 

 143 

Niskin bottle water collection: Water was collected using 12L Niskin bottles mounted on a 144 

General Oceanics rosette sampler equipped with conductivity-temperature and depth (CTD) and 145 

pressure sensors. Dissolved oxygen was measured with a SBE oxygen sensor mounted on the 146 

CTD, and nutrient concentrations were determined previously at this site using a nutrient auto-147 

analyzer (La Cono, et al., 2010). After transferring water from Niskin bottles to a large sterile 148 

carboy, 30 liters of water were pumped through a 0.22µm Sterivex filter cartridge using a 149 

peristaltic pump operating around 125 ml/min containing a Durapore filter (Millipore, Millford, 150 

MA, USA), which was immediately filled with RNAlater (Life Technologies Inc., Grand Island, 151 

NY, USA) and frozen at -80°C until extraction.  152 

 153 

Use of the MS-SID: Water samples from the same depth and on the same day were also collected 154 

and preserved in situ using the MS-SID equipped with a CTD, two turbidity sensors, and an 155 

oxygen optode (Figure 1). C. Taylor and McLane Research Laboratories developed automated 156 

micro-laboratories for conducting multiple tracer incubation studies during cabled or free-157 
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drifting deployments (Taylor & Doherty, 1990, Taylor, et al., 1993, Taylor & Howes, 1994). 158 

This technology was recently modified by C. Taylor, V. Edgcomb, and McLane Research 159 

Laboratories into an instrument (Figure 1) that conducts in situ tracer incubations in combination 160 

with in situ microbial sampling and preservation. The modular MS-SID (Figure 1) consists of a 161 

2L syringe-like incubation chamber, a 50-port Fluidic Distribution Valve, a micro- gear pump 162 

for microbial sampling, a tracer injector, 48 Fixation Filter Units (Figure 1 inset) for collection & 163 

in situ preservation, a High Range CTD (Neil Brown Ocean Sensors, Inc., Falmouth MA, USA), 164 

Aanderaa oxygen optode (Aanderaa Data Instruments, Inc., Attleboro, MA, USA), 2 NTURTD 165 

0-124 turbidity sensors (WET Labs, Inc., Philomath, OR, USA), and real-time bi-directional 166 

communication, and electronic control. The MS-SID possesses a Synchronous Digital Subscriber 167 

Line (SDSL) data link (Swartz, et al., 2012) that multiplexes digital signals from up to 5 sensors 168 

at once, and bi-directionally transmits signals to and from the instrument for triggering “adaptive 169 

sampling” operations via ordinary conducting hydro-wire. This allowed us to precisely position 170 

the instrument at the target depth in the water column and then to trigger sampling for our 171 

transcriptome studies.  172 

 The MS-SID collected three consecutive and separate samples for this analysis from the 173 

exact same depth as the Niskin rosette based on pressure readings from both instruments, and 174 

were collected within 3 hours of the Niskin collections. All samples were filtered in situ at 125 175 

ml/min through a 47mm 0.2 µm Durapore (Millipore, USA) filter that, upon cessation of 176 

filtration was within 10-20 seconds flooded with the preservative RNAlater following filtration. 177 

The three filters collected 4L, 3L and 3.4L of water, respectively. Upon retrieval of the 178 

instrument to the ship’s deck, the Fixation Filter Units were disassembled, and the filters and 179 

associated RNAlater solutions were transferred aseptically to three separate sterile cryovials, and 180 
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frozen at -80°C until extraction. The Sterivex capsule (from Niskin bottle collection) was also 181 

stored at -80°C until extraction. 182 

 183 

Extraction of RNA: For each of the 3 MS-SID filters total RNA was extracted separately from 184 

the filter and RNAlater in order to capture the mRNA from any cells that may have lysed during 185 

sample storage. The filters were transferred to 2ml tubes and homogenized without beads for 20 186 

seconds at speed 4.0m s-1 on a FastPrep-24 homogenizer (MP Biomedicals, Solon, OH, USA) 187 

in 600 µl of RLT Plus buffer (All Prep DNA/RNA Mini Kit, Qiagen). An equal volume of 70% 188 

ethanol was added and the manufacturer’s instructions were followed for remaining steps. The 189 

final volume of extracted RNA was 50 µl in distilled deionized water. The RNAlater from each 190 

filter’s original tube was transferred to a 50 ml centrifuge tube. Four ml of RLT buffer (RNeasy 191 

Midi Kit, Qiagen, USA) were added and gently mixed. An equal volume of 70% ethanol was 192 

added and mixed. Total RNA was then extracted using the RNeasy Midi Kit protocol beginning 193 

at step 3 and contained in 500 µl of distilled deionized water. Since some cell lysis may have 194 

occurred between sample preservation in situ and recovery of the filter from each Fixation Filter 195 

Unit, we also retained and extracted RNA from the RNAlater contained within the Fixation Filter 196 

Unit. For each filter separately, this RNAlater was transferred to a 50 ml centrifuge tube 197 

(~15ml). Approximately 7.5 ml of Buffer RLT were added and the samples were run through the 198 

All Prep DNA spin column (Qiagen, USA). An equal volume of 70% ethanol was mixed with 199 

the sample and total RNA was then extracted using the RNeasy Midi Kit beginning at step 3 and 200 

contained in 500µl of distilled, deionized water. The combined extractions for each sample were 201 

cleaned and precipitated following the instructions in the MEGAclear kit protocol (Life 202 

Technologies, Grand Island NY, USA). The RNA pellet was suspended in 100 µl of distilled, 203 
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deionized water, and DNAsed for 1 hour at 37°C (Turbo DNAse, Life Techologies, Grand Island 204 

NY, USA). Finally all samples were purified using the MegaClear kit one final time. 205 

RNA from the Sterivex capsule was extracted in an identical fashion, with the exception 206 

that RLT buffer (Qiagen, USA) was initially added directly into the cartridge with the RNAlater 207 

already inside the cartridge. The buffer and RNAlater were then collected into a single 50 ml 208 

centrifuge tube. An additional 2 ml of RLT buffer (final volume same as for the MS-SID 209 

samples) were added to the filter cartridge, and the collection steps were repeated. All extraction 210 

protocols were performed as described above for the MS-SID samples. The final suspension 211 

volume was 10 µl for all samples. To verify the absence of genomic DNA in the RNA extracts, 212 

one µl was used as a template for PCR using 40 cycles and the bacterial primers 8F and 1492R 213 

(Edwards, et al., 1989, Stackebrandt & Liesack, 1993) . RNA was quantified using a Qubit2.0 214 

fluorometer (Life Technologies, USA). cDNA was synthesized using the Ovation RNA-Seq 215 

system V2 (NuGEN, San Carlos, CA, USA) following the manufacturer’s protocol, and sent for 216 

transcriptome library sequencing. One lane of Illumina HiSeq 2x100bp was requested for each of 217 

the four samples.  218 

 219 

Analysis of transcriptome data: Quality trimming of the reads (minimum quality score 28, 220 

minimum read length 94 bp and no ambiguous nucleotides) as well as read assembly into contigs 221 

and mapping of reads to contigs were performed using CLC Genomics Workbench 6.0, CLCBio, 222 

Cambridge, MA, USA). The Rapid Analysis of Multiple Metagenomes with a Clustering and 223 

Annotation Pipeline (RAMMCAP) (Weizhong, 2009) was used to assign contigs to clusters of 224 

orthologous gene (COG) families, gene ontologies (GO), and protein families (Pfam). 225 

Taxonomic assignments of contigs were made using PhymmBL (Brady & Salzberg, 2009), 226 
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incorporating all available fungal and protist genomes in public databases. The total number of 227 

annotated reads assigned to different COG families for each dataset was expressed as a 228 

percentage of the total annotated reads for each dataset. 229 

The degree of variation in gene expression profiles observed between each of the three 230 

replicates collected and preserved in situ using the MS-SID was assessed by comparing each of 231 

the three replicate expression profiles to each of the other two replicate profiles using R version 232 

3.0.2 (http://www.r-project.org), the DEGseq package 233 

(http://bioconductor.org/packages/release/bioc/manuals/DEGseq/man/DEGseq.pdf) and a MA-234 

plot-based method with Random Sampling (Wang, et al., 2010), as implemented within R. This 235 

approach was also used to assess the variation in expression profile obtained with the single 236 

Niskin sample relative to the three replicated samples that were preserved in situ with the MS-237 

SID. Data for each sample were first normalized to the total number of reads within each 238 

taxonomic group being analyzed. Within DEGseq we calculated a MA-plot with random 239 

sampling to compare our three replicate MS-SID samples to our Niskin sample. This method 240 

assigns a score to each gene transcript on the basis of its differential expression relative to the 241 

standard deviation of repeated measurements and permutations of these repeated measurements 242 

are used to estimate the false discovery rate (Wang, et al., 2009).  243 

 244 

RESULTS 245 

Study site: At 2222m depth, the water temperature was 13.81°C, and salinity was 38.723 PSU. 246 

Oxygen concentration was 204µM, representative of the oxygen profiles between the near-247 

surface and 2222m at this site. Nitrate and phosphate concentrations were measured previously at 248 

this site (La Cono et al. 2010), showing an increasing trend with depth, reaching 3.75 +/- 0.54 249 

http://bioconductor.org/packages/release/bioc/manuals/DEGseq/man/DEGseq.pdf
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and 0.13 +/- 0.02 µmol L-1, respectively at 3010m depth. Nitrite was constant at 0.04 +/- 0.01 250 

µmol L-1from the sea surface to 3010 m.  251 

 252 

Transcriptome library sequencing: For each of the 4 samples (one Niskin 30L water sample and 253 

3 MS-SID samples) the number of recovered reads, reads remaining after trimming, number of 254 

contigs formed, annotated reads, and annotated contigs can be found in Table 1. 78.3 million 255 

sequence reads were obtained from the Niskin sample. From the 4L, 3L, and 3.4L MS-SID 256 

samples, 122.4, 96.1, and 118.9 million sequence reads were obtained, respectively. After 257 

trimming sequences for low-quality and short reads, we obtained 37.9, 66.3, 51.5, and 63.9 258 

million reads from the Niskin, MS-SID 4L, MS-SID 3L, and MS-SID 3.4L samples, 259 

respectively. Of the total reads that passed quality control, 8.9 million were possible to annotate 260 

from the Niskin sample, and these formed 11.8 thousand annotated contigs. From the MS-SID 261 

replicate samples, 26.6, 25.0, and 27.0 million reads were annotated, and these formed 9.7, 8.5, 262 

and 6.1 thousand annotated contigs. Data are deposited in CAMERA 263 

(https://portal.camera.calit2.net) and the Short Read Archive (SRP042349). 264 

 265 

Transcriptome library  analyses. The majority of annotated reads for both MS-SID and Niskin 266 

samples affiliated with the Gammaproteobacteria (47% and 38% for MS-SID and Niskin 267 

samples, respectively, data not shown). Percent representation of COG categories (out of total 268 

reads recovered for each library) for gammaproteobacterial transcripts recovered from the Niskin 269 

sample and from each of the three MS-SID replicate samples is shown in Figure 2 for all COG 270 

categories representing >0.001% of total reads in either library. For COG categories T (signal 271 

transduction mechanisms), M (cell wall, membrane, and envelope biogenesis), H (coenzyme 272 

https://portal.camera.calit2.net/
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transport and metabolism), F (nucleotide transport and metabolism), C (energy production and 273 

conversion), L (replication, recombination and repair), P (inorganic ion transport and 274 

metabolism), and E (amino acid transport and metabolism), percent representation out of total 275 

reads for Gammaproteobacteria was higher by ~1-2% in the MS-SID samples. In the case of 276 

COGs V (defense mechanisms), U (intracellular trafficking, secretion, and vesicular transport), Z 277 

(cytoskeleton), Q (secondary metabolites biosynthesis, transport and catabolism), N (cell 278 

motility), K (transcription), J (translation, ribosomal structure and biogenesis), I (lipid transport 279 

and metabolism), G (carbohydrate transport and metabolism), D (cell cycle control, cell division, 280 

chromosome partitioning), expression levels as a percentage of total annotated reads for each 281 

library were approximately the same (within approximately half a percent) in the Niskin and MS-282 

SID samples. For COG categories O (posttranslational modification, protein turnover, 283 

chaperones), and A (RNA processing and modification), expression levels were slightly higher in 284 

the Niskin sample than in each of the MS-SID samples. The COG categories with the most 285 

abundant annotated transcripts for Gammaproteobacteria included amino acid transport and 286 

metabolism (4.8-7.3% of total reads in each of the 4 libraries), inorganic ion transport and 287 

metabolism (3.5-6.1%), replication, recombination and repair (3.5-6.4%), and energy production 288 

and conversion (4.9-6.4%) (Figure 2). 289 

 The degree of variation in gene expression profiles, defined here as the relative 290 

abundance of annotated transcripts, between the three MS-SID replicates was assessed using the 291 

DEGseq package, which revealed 9.2-9.8% variation in pairwise expression profiles (relative 292 

transcript abundance) between replicates. Differentially expressed transcripts included 293 

peptidases, three RNA methylases, ATPases, and a NCAIR synthetase. MA plots for pairwise 294 
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comparisons of the three replicates depicting the log2 fold change in gene expression vs. the 295 

mean of normalized counts showed a balanced distribution of the contigs (data not shown). 296 

 For comparisons of Niskin to MS-SID profiles for protists and Fungi, the data for each of 297 

the MS-SID libraries were combined, representing a total of 10.4L filtered seawater. All 298 

together, annotated reads assigned to eukaryotes represented a small fraction of the 299 

metatranscriptome recovered in the MS-SID and Niskin datasets (1.3 and 1.0%, respectively). 300 

The percent representation of GOC categories for transcripts assigned to protists (Figure 3) 301 

reveal some differences from the results for Gammaproteobacteria. In most cases, the relative 302 

abundance of transcripts (within each of the categories) was higher in the MS-SID dataset than in 303 

the Niskin dataset. These categories include defense mechanisms (0.12 vs. 0.02%), signal 304 

transduction mechanisms (0.04 vs. 0.01%), secondary metabolites biosynthesis, transport and 305 

catabolism (0.06 vs. 0.01%), carbohydrate transport and metabolism (0.09 vs. 0.01%), nucleotide 306 

transport and metabolism (0.03 vs. ~0%), energy production and conversion (0.08 vs. 0.03%), 307 

replication, recombination and repair (0.29 vs. 0.08%), inorganic ion transport and metabolism 308 

(0.22 vs. 0.06%), and amino acid transport and metabolism (0.07 vs. 0.03%). There were some 309 

exceptions, however. Protists exhibited higher expression of genes in the Niskin sample 310 

associated with posttranslational modification, protein turnover, and chaperones (higher by 311 

0.12%), cell wall, membrane and envelope biosynthesis (by 0.1%), transcription (by 0.18%), 312 

cytoskeleton (by 0.02%), cellular trafficking, secretion, and vesicular transport (by 0.03%), 313 

translation, ribosomal structure and biogenesis (by 0.35%), and coenzyme transport and 314 

metabolism (by 0.03%).   315 

Fungal transcripts represented 1.8 and 0.3% of the MS-SID and Niskin datasets, 316 

respectively. For Fungi, transcript relative abundances for almost every COG category were 317 
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consistently higher by 0.02 to 0.3 in the combined MS-SID vs. the Niskin library 318 

(Supplementary Figure 1). Only for the two COG categories, transcription and cytoskeleton, 319 

were expression levels higher (0.015 and 0.005%, respectively) in the Niskin sample.  320 

Analysis of variation in relative transcript abundance obtained with the Niskin sample vs. 321 

the three replicated samples that were preserved in situ with the MS-SID was performed for both 322 

the dominant bacterial group, the Gammaproteobacteria, and the dominant eukaryotic group, 323 

Fungi, using the DEGseq package (Wang, et al., 2009). These analyses revealed that 75% of the 324 

fungal (n=319) and 99% of gammaproteobacterial transcripts (n=1713) showed differential 325 

expression (p<0.001). Supplementary Figure 2A and B show the differentially expressed 326 

transcripts for Gammaproteobacteria and Fungi on MA-plots for the MS-SID vs. Niskin 327 

comparisons, with red dots representing transcripts with significantly different (p<0.001) 328 

expression between the two types of samples. Supplementary Figure 2C and D show boxplots of 329 

the read counts per gene for libraries prepared using the two sampling methods for 330 

Gammaproteobacteria and Fungi, respectively. When transcribed genes within COG category O 331 

(posttranslational modification, protein turnover, chaperones) were compared for Niskin and the 332 

three MS-SID samples, 86% of the reads assigned to the 118 transcripts detected, were 333 

differentially expressed (p<0.001). 334 

 335 

DISCUSSION 336 

Profiles of gene expression obtained for these water column samples from 2222m in the Eastern 337 

Mediterranean Sea using in situ preservation of water samples vs. Niskin bottle collection were 338 

not the same. While it can not be entirely ruled out that some differences were due to the use of 339 

membrane filters in the MS-SID sampler vs. Sterivex filters aboard the ship where the Niskin 340 
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waters were processed, or due to differences in total volumes filtered (10.4L total for MS-SID 341 

and 30L for Niskin), it is intuitive to consider that increased handling and physicochemical 342 

alterations prior to preservation likely alters the profile of community activities. Sample 343 

collection approaches that rely on returning water samples to the surface prior to processing and 344 

preservation may be completely appropriate for many types of investigations, however our 345 

results and the results of Feike et al. who conducted a similar experiment using water samples 346 

from 70-120m depth in the Baltic Sea (Feike, et al., 2012) suggest that for examinations of 347 

microbial activities, in situ preservation is desirable. This may be increasingly important for 348 

deeper water samples.  349 

Obtaining an accurate snapshot of in situ microbial activities requires collecting and 350 

preserving samples in a fashion that minimizes detectable environmental perturbations. All 351 

existing water-sampling technologies that involve drawing water through intake plumbing into a 352 

chamber or bag or drawing water through a filter have the potential to introduce artifacts 353 

resulting from detected perturbations that cause microbes to alter transcription of particular types 354 

of genes. Nonetheless, the primary advantage of in situ approaches is that they minimize artifacts 355 

associated with sample handling, and allow for almost immediate preservation of sensitive 356 

molecules. Furthermore, moored in situ technologies are useful for studies of temporal variations 357 

in microbial communities. For example, Ottesen et al. (2011) used a moored ESP to 358 

automatically filter and preserve (in RNAlater) near-surface water samples from Monterey Bay 359 

at four time points over the course of a day. Using this technology to capture and preserve RNA 360 

allowed these researchers to track changes in community composition and gene expression over 361 

this timeframe. This was expanded upon by Ottesen and colleagues (2013) who used the moored 362 

ESP to detect coordinated gene expression between microbial groups over a 2 day timeframe at 363 
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23m depth off the coast of California, possibly in response to specific environmental cues.  364 

Preserving samples in situ in the deep ocean prior to returning them to the sea surface has the 365 

obvious advantage of avoiding potentially significant pressure and other physicochemical 366 

changes that can occur during sample retrieval and prior to processing/preservation in the ship 367 

laboratory. Preserving a whole water sample immediately upon collection by drawing it into a 368 

bag preloaded with preservative (as can be performed by the MS-SID) or into a container that is 369 

immediately injected with preservative (Feike, et al., 2012) accomplishes this goal. However, 370 

this approach limits the volume that one can collect. In some cases, such as for water samples 371 

where cell densities are low, it is desirable to collect information (e.g., RNA) from a much 372 

greater volume of water via filtration. During filtration and prior to preservation, cells impinged 373 

on filters earlier in the filtration routine undoubtedly experience more significant environmental 374 

changes than those that are captured toward the end of filtration. This is a concern not only for 375 

Niskin-based sample collection, but also for in situ filtration technologies such as the MS-SID. In 376 

contrast to waters collected using in situ filtration and preservation methods, all cells on filters 377 

from Niskin water samples have undergone depressurization and have spent variable lengths of 378 

time on deck prior to filtration. This is not the case for in situ preserved filters, where until 379 

impinged on a filter the cells are in their natural environment. The composite mRNA pools 380 

within the filtered organisms reflect an average residence time on the filter surface that is 381 

approximately one-half the total filtration time (e.g., ~10 min for our 20 min filtrations), which 382 

additionally enhances the fidelity of the samples collected. While the MS-SID will capture in situ 383 

gene expression patterns with improved fidelity, there may be some genes that reflect the stresses 384 

of being impinged on a filter during filtration.  In all cases, artifacts introduced into expression 385 

profiles by filtration can be minimized by shortening filtration times. 386 
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The three MS-SID samples for which we present data represent biological replicates, 387 

however we note that they were collected sequentially, and not concurrently, from the same 388 

water feature. Figure 2 shows that these replicates captured essentially the same profile of 389 

relative gene expression between different COG categories for Gammaproteobacteria, and this 390 

was true of all other taxonomic groups (data not shown). This is supported by analysis of 391 

variation in relative transcript abundance between the three MS-SID replicates for all taxa using 392 

the DEGseq package, which revealed 9.2-9.8% of genes were differentially expressed between 393 

replicates (<p=0.05 levels). DEGseq is suspected to overestimate differentially expressed genes 394 

between samples (Guo et al. 2013), so the amount of differential expression between replicates 395 

might be lower than this.. The 9.2-9.8% variation between replicates is still much lower than the 396 

percent of differentially expressed genes detected using the same method comparing the Niskin 397 

and the average MS-SID overall gene expression profiles (discussed below). MA plots for 398 

pairwise comparisons of the three replicates depicting the log2 fold change in gene expression vs. 399 

the mean of normalized counts showed a balanced distribution of contigs between the replicates 400 

(data not shown). Although many metatranscriptome studies of marine samples published to date 401 

have relied upon single samples from selected habitats (e.g., Frias-Lopez, et al., 2008, Poretsky, 402 

et al., 2009, Feike, et al., 2012, Orsi, et al., 2013), we would have preferred to analyze replicate 403 

samples, however replicate Niskin samples from a separate cast were not available for this study. 404 

Having biological replicates for the Niskin collection would have helped to confirm that some 405 

differences in observed profiles in the MS-SID and Niskin samples were not due to temporal 406 

variation. For this deep-sea location, however, we doubt that the 3 hours difference in sample 407 

collection between the methods could account for observed differences, although this possibility 408 

cannot be entirely ruled out.  409 
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It is noteworthy that the Niskin sample produced 64-81% of the number of initial reads 410 

obtained from the 3 MS-SID samples, and 59-73% after quality control trimming, in spite of 411 

identical library preparation protocols, equal sequencing efforts and the fact that the Niskin filter 412 

represented 30L of filtered water compared to 3-4L of water for each of the MS-SID samples. 413 

This lower number of initial reads however, assembled into roughly twice as many contigs. 414 

Approximately 23% of Niskin initial reads were successfully annotated, in comparison to 49, 40, 415 

and 42% of the initial reads for the 3 MS-SID replicates, and 29% of Niskin contigs were 416 

successfully annotated vs. an average of 44% of MS-SID contigs (Table 1). The N50 lengths for 417 

the MS-SID contigs were slightly higher than the Niskin sample (473, 447, and 428 vs. 424 bp), 418 

however this does not likely explain differences in contig formation or annotation. We 419 

hypothesize that some aspect of Niskin water collection and processing (pressure changes, 420 

increased time delays between sample collection and processing, or other unknown 421 

physicochemical alterations to the sample) reduced the community complexity in this sample 422 

(possible cell lysis, cell death) for some taxa. Lower complexity could lead to greater contig 423 

formation, and if remaining complexity favored taxa that are less represented in public sequence 424 

databases, then this may explain the lower percentage of annotated contigs for the Niskin sample.  425 

Pressure changes and sample handling are likely to have differential impacts on cell 426 

integrity and gene transcription of different taxa, and some cell activities are also likely to be 427 

more sensitive to perturbations than others. This was observed in our datasets. For example, for 428 

Gammaproteobacteria, which appear to be one of the dominant bacterial groups in our samples, 429 

certain COG categories appear to show a greater difference than others in gene expression 430 

between the Niskin and MS-SID data sets (Figure 2). However, a test for differential expression 431 

revealed that almost all unique transcripts annotated to Gammaproteobacteria in Niskin vs. the 432 
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three MS-SID datasets were expressed differentially (p<0.001). This suggests that for 433 

investigations of specific metabolic pathways within a particular COG category, that in situ 434 

fixation may provide a different picture than Niskin sampling.  435 

While the percentages of reads associated with certain functional categories, such as 436 

genes associated with the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle were 437 

detected at approximately equal levels (0.27% of Niskin library and 0.25-0.39% of the MS-SID 438 

libraries) for many other transcribed genes, expression in Niskin vs. MS-SID libraries varied. 439 

Although it was not the objective of this study proof-of-concept study to closely examine 440 

specific microbial activities (ecological function) within different COG categories of expressed 441 

genes in these samples, a closer examination of specific transcripts and taxonomic affiliation of 442 

those transcripts within COG O (posttranslational modification, protein turnover, and 443 

chaperones) provides insight into the types of variation underlying observed differences in 444 

overall results. Transcripts annotated to COG category O represented 2.8% (annotated to 29 445 

taxa) and 1.1% (annotated to 18 taxa) of total transcripts in each library for Niskin and MS-SID 446 

samples, respectively. Transcripts in the Niskin library were annotated to 10 taxonomic groups 447 

that were not also detected in the MS-SID samples; Bacillariophycea, Chlamydiae, Chlorobia, 448 

Chloroflexi, Choanoflagellata, Crenarchaeota, Tenericutes, Thaumarchaeota, Thermotogae, and 449 

Verrucomicrobia (results presented at different taxonomic levels due to variance in annotation 450 

detail). This suggests that in situ filtration and preservation may have reduced stresses 451 

experienced by some taxa. Looking within the COG O transcripts annotated to protozoa and 452 

metazoa provides insight into observed variations between Niskin and MS-SID samples, and 453 

illustrates that sensitivity to sample handling is variable between taxa.  454 
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 Among transcript types that were unique to the Niskin library, 5478, 4858, 529, and 455 

4103 reads were detected for molecular chaperones of choanoflagellates, ciliates, 456 

Bacillariophyta, and metazoa, respectively. Also unique to the Niskin library was 62 and 1301 457 

reads annotated to molecular chaperone HSP90 of choanoflagellates and various metazoan, 458 

respectively. Heat shock proteins such as HSP90 assist the proper folding of proteins under cell 459 

stress. Expression of transcripts for the protein ubiquitin was detected in both libraries, but at 460 

higher levels (1786 vs. 42 reads) in Niskin vs. MS-SID samples. Ubiquitin is a small protein 461 

associated with post-translational modification that is expressed in many eukaryotes and can 462 

among other functions, signal for the degradation of a damaged protein (Glickman and 463 

Ciechanover 2002). Some types of COG O transcripts were detected only in the MS-SID 464 

samples, and these were all affiliated with various metazoan (echinoderms, nematodes). These 465 

included metazoan transcripts for thioredoxin reductase (511 reads), FKBP-type peptidyl prolyl 466 

cis-trans isomerase (190 reads), transcripts annotated to disulfide bond chaperone activity (345 467 

reads), an ATPase with chaperone activity (345 reads), and a predicted metalloendopeptidase 468 

associated with peptide breakdown (8729 reads). Transcriptional responses to sample handling 469 

also differed between taxa. Illustrating this, in comparison to protists (Figure 3), Fungi 470 

(Supplementary Figure 1) exhibit greater differences in percentage representation within many 471 

COG categories between MS-SID and Niskin samples.  472 

Increase in hydrostatic pressure is known to affect a wide range of cellular processes of 473 

microorganisms, including DNA structure and function, membrane synthesis and repair, 474 

cytochrome formation, cell division, enzyme function, and to affect certain taxa more than others 475 

(see review by Bartlett (2002) and Ishii et al. (2004)). In studies of Escherichia coli, cellular 476 

processes including motility, substrate transport, cell division, growth, DNA replication, 477 
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translation, transcription, and viability are repressed by increases in pressure (Bartlett, 2002). 478 

Less is known about decompression effects on microorganisms. We observed lower expression 479 

levels (as a percentage of total annotated reads) in the Niskin sample for many COG categories 480 

for Fungi (Supplementary Figure 1), and decompression effects are one possible explanation for 481 

this. In comparison, for protists, some categories of transcripts appear to be suppressed and 482 

others, such as COG M (cell wall/membrane/envelope biogenesis), enhanced. In the case of 483 

COG M, this may indicate protists increase transcription of genes associated with cell membrane 484 

repair in response to decompression. Pressure is the only stressor known to simultaneously 485 

induce a wide range of both heat shock and cold shock proteins, likely in response to 486 

destabilization of protein quaternary and tertiary structures, and their simultaneous induction in 487 

E. coli may represent an attempt to repair the damaging effects of elevated pressure on 488 

membrane integrity, translation processes, and macromolecule stability (Bartlett, 2002). Heat 489 

shock proteins are known to be induced in piezophiles such as the deep-sea piezophilic 490 

hyperthermophile Thermococcus barophilus upon decompression (Marteinsson, et al., 1999). 491 

While an increase in percent transcription within COG category O (posttranslational 492 

modification, protein turnover, chaperones) was not observed in the Niskin sample relative to the 493 

MS-SID samples for Fungi (Supplementary Figure 1), an increase was observed for 494 

Gammaproteobacteria (Figure 2), protozoa (Figure 3), and many other taxa (data not shown). 495 

When the number of reads assigned to the 118 unique types of transcripts detected in our 496 

samples within this COG category in the Niskin sample were compared to those detected in the 497 

three MS-SID samples, 86% of them showed evidence of differential levels of expression 498 

(p<0.001). Given that high-pressure activation of gene expression is known among piezophilic 499 
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bacteria (Bartlett, 2002), it stands to reason that transcription of many types of genes may also be 500 

affected by decompression for potentially, a wide range of taxa.  501 

Lipid membranes are also known to be sensitive to pressure effects since lipids are highly 502 

compressible (Weber & Drickamer, 1983), and during decompression, the bacterium Colwellia 503 

responded by forming intracellular vesicles and releasing membrane fragments into the medium, 504 

followed by cell lysis (Chastain & Yayanos, 1991). Our observations of differential transcription 505 

(repression or enhancement) between Niskin and MS-SID samples of genes associated with lipid 506 

transport and metabolism, intracellular trafficking, secretion, and vesicular transport, and cell 507 

wall, membrane, and envelope biogenesis may be indicative of such decompression responses 508 

for some taxa.  509 

Free-living (dispersed in the water column), and detritus-associated protozoa are now 510 

recognized as important components of marine microbial communities (Caron, 1991). While 511 

piezotolerant protists (flagellates, ciliates, and amoebae) from the bathypelagic have been 512 

observed using microscopic analysis of cultures grown under high pressure or preserved samples 513 

(Patterson, et al., 1993, Atkins, et al., 2000, Edgcomb, et al., 2011), less is known about the 514 

effects of pressure changes on protozoa than for Bacteria and Archaea. Numbers of species of 515 

free-living and particle-associated protists declines from the photic zone into the bathypelagic, 516 

and this decline is thought to be attributed to reductions in diversity and quantities of available 517 

food, and potentially also due to pressure effects (Patterson, et al., 1993). Flagellates are known 518 

to have variable sensitivities to changes in pressure, and even species within genera can vary 519 

significantly in their responses (Turley & Carstens, 1991). This implies that significant 520 

depressurization may cause some protist taxa to lyse during recovery if cells are not preserved in 521 

situ. Supporting this notion, in studies of anoxic waters from 900m depth in the Cariaco Basin, 522 
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Venezuela, it was necessary to preserve water samples in situ for fluorescence and scanning 523 

electron microscopy in order to more accurately assess protist abundances (Edgcomb, et al., 524 

2011). Deep ocean microorganisms are known to alter the phospholipid composition of their 525 

membranes to maintain adequate membrane fluidity under higher pressures (Yano, et al., 1998). 526 

It is conceivable that for an unknown fraction of the microbial community from mesopelagic and 527 

bathypelagic realms the higher membrane fluidity upon depressurization may make them more 528 

susceptible to lysing or leaking. Depressurization during sample recovery not only has the 529 

potential to alter gene expression from what was occurring in the sampled habitat, but to bias 530 

against the recovery of an unknown fraction of the community from any sample, due to loss of 531 

cell integrity for some taxa. 532 

 533 

CONCLUSIONS 534 

 535 

Collectively, the potential effects of depressurization during sample retrieval and on deck sample 536 

handling during filtration have the potential to confound our ability to gather an accurate 537 

impression of in situ microbial metabolic activities. Results of this study suggest that such effects 538 

may be non-trivial when sampling deep-sea habitats, for certain taxa, and for certain categories 539 

of transcribed genes. Further comparisons of gene expression in a variety of marine water 540 

column and sedimentary habitats using different sampling methodologies are warranted. 541 

Understanding the mechanisms underpinning our observed pressure and/or sample handing 542 

effects on different types of microorganisms will require analyses of the integrity and/or changes 543 

in specific enzymes catalyzing apparently pressure-sensitive processes in organisms preserved in 544 

situ vs. exposed to significant pressure changes and increased sample handling.  545 
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Table 1. Summary of transcriptome sequencing, quality control, and number of annotated reads 568 

(based on the COG database) for the Niskin water sample and the three replicate MS-SID 569 

samples. 570 

 571 

Figure 1. Microbial Sampler-Submersible Incubation Device (MS-SID). Panel A, schematic of 572 

the instrument illustrating major modular components.  Each Fixation Filter Unit (lower left 573 

inset) possesses a reservoir for containing an appropriate (denser than water) chemical 574 

preservative (in our study RNAlater).  During filtration, preservative loss is prevented by a 575 

poppet that seals the access hole shown.  Upon cessation of filtration, the poppet settles by 576 

gravity, opening the reservoir, allowing preservative to flow onto the filter surface by 577 

convection.  Panel B, deployment of SID-ISMS for collection of microbial samples from 578 

Mediterranean Sea for grazing studies. 579 

 580 

Figure 2. Percentage of total annotated reads assigned to Gammaproteobacteria in each COG 581 

category for the Niskin sample (black) and the three replicate MS-SID samples (shades of grey).  582 

 583 

Figure 3. Percentage of total annotated reads assigned to protist taxa in each COG category for 584 

the Niskin sample (black) and the combined MS-SID samples (grey). 585 

 586 

Supplementary Figure 1. Percentage of total annotated reads assigned to protist taxa in each 587 

COG category for the Niskin sample (black) and the pooled MS-SID samples (grey).  588 

 589 
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Supplementary Figure 2. DEGseq analysis comparing differential expression between the three 590 

replicate MS-SID transcript libraries vs. the Niskin library. A) MA-plot B) Boxplot of read 591 

counts (log2) for each gene in the MS-SID vs. Niskin libraries. Y axis depicts the log2 fold 592 

change in gene expression (M) and X axis depicts the mean of normalized counts (A). Red data 593 

points are gene transcripts with significant differences (p<0.001) in expression levels. 594 
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Table	  1.	  Overall	  sequencing	  results	  for	  each	  sample	  collected	  from	  2222m	  depth.	  
	  

Sample	  

Volume	  
Filtered	  
(L)	  

Initial	  
Reads	  

Initial	  
Reads	  
After	  
Trimming	   Contigs	  

Total	  
Annotated	  
Reads	  

Total	  
Annotated	  
Contigs	  

Niskin	  	   30	   78,307,034	   37,947,773	  
	   	  
41,372	   8,968,832	   11,888	  

MS-‐
SID_1	   4	   122,435,482	   65,237,000	   20,973	   26,658,601	   9,731	  
MS-‐
SID_2	   3	   96,136,502	   51,529,890	   18,606	   25,003,471	   8,542	  
MS-‐
SID_3	   3.4	   118,922,488	   63,968,753	   17,000	   27,057,430	   6,153	  
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