

Interdisciplinary Study of Warm Core Ring

 Physics, Chemistry and BiologyCRUISE REPORTS

RV/ ENDEAVOR - RV/KNORR-RV/OCEANUS AUGUST 1982

ENDEAVOR CRUISE NO. 88, 8/5/82-8/25/82

Raymond W. Schmitt
Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

WARM CORE RINGS CRUISE REPORT: ENDEAVOR 88

This report summarizes the scientific studies carried out on the R/V ENDEAVOR during Cruise No. 88, 5-25 August, 1982. It consists of a cruise narrative and additional reports on the studies carried out by the various investigators. It is meant to serve as an informative and useful document for scientists within the WCR program - not as a publication for circulation to the general scientific community.

CRUISE NARRATIVE

R/V ENDEAVOR departed Woods Hole on Cruise 88 for the August field experiment of the Warm Core Rings Program at 1400 Hours (LT) August 5, 1982. This was only two hours behind schedule. The delay was caused by a late arrival of ENDEAVOR in Woods Hole and a malfunctioning ship's crane. Despite having only a day and a half to load the ship, the ENDEAVOR scientists managed to get nearly every component of the program in working order before departure. It was a tired but optimistic group that left the dock.

ENDEAVOR was embarking on the fourth cruise for the Warm Core Rings Program, an experiment which included the KNORR and OCEANUS as well. At the pre-cruise meeting for the August field work, held the night before ENDEAVOR sailed, there was a marked difficulty in coming to a concensus as to what ring to survey. The satellite imagery suggested that 82 B was much reduced in size and probably interacting with a shingle of the Gulf Stream. However, there was considerable interest in completing the time series on 82 B , if it proved to be a viable entity. Ring 81G was also discussed but was less interesting because previous 'ship of opportunity' data showed it to have little or no Sargasso core water. Also discussed for the first time was a large robust ring far to the east, 82E. Given the steaming time and the station time required for surveying this ring, 82E was deemed suitable for ENDEAVOR only if it was the sole object of
the cruise, not part of a 2-ring survey. Thus at the Chief Scientists meeting on the ENDEAVOR at 1100 on August 5, it was decided that ENDEAVOR would first survey 82 B and would have the option of also visiting 81G if 82B could no longer be tracked.

ENDEAVOR set course for the ring center position supplied by the University of Miami Remote Sensing Group, $36.63 \mathrm{~N}, 73.81 \mathrm{~W}$. Enroute we occupied a test station with both CTD fish, BOPS and the free fall profiler SCIMP. A calibration run for the APOC velocimeter and a test XBT drop were also performed during this transit.

The First XBT star was begun at 0000 Hrs (GMT) on the 7th. Because of the small size of the ring, XBTs were dropped every half hour. Figure 2 shows the $10^{\circ} \mathrm{C}$ isotherm topography and APOC velocity vectors. The APOC velocity profiles showed strong shears which suggest that the Gulf Stream may have been overriding the surface layer (50 m) of the ring.

The surface salinities are very low, only reaching 36.00 in the very southern part of the survey. Thus the overriding water must be of shelf or slope origin, having been entrained by the Gulf Stream to the South. These strong surface currents (> $1 \mathrm{~m} / \mathrm{s}$) made a drifter deployment at this time seem particularly risky. The one drifter which was considered expendable (the PRL mini-drifter) could not be made to function. Also, we were not receiving any satellite imagery due to heavy cloud cover; thus drifter deployment was deferred. One aspect of the first XBT survey which assured us that 82 B was still a coherent entity was the thermostad found at about $15.7^{\circ} \mathrm{C}$.

There was more than 200 m of $15^{\circ} \mathrm{C}$ water in the ring center, while this thermostad completely disappeared outside the ring boundary. Given the mappable structure of the ring and the fact that OCEANUS and KNORR were still far from the area, we assured them that $82 B$ was still an excellent site for ring studies. ENDEAVOR then proceeded to do its first CTD/BOPS section, consisting of 11 stations with 8 nm spacing from the southeast to
the northwest. Stations of the early part of the section showed a slight rise in isotherm depths between the ring and the stream, suggesting that the stream was moving away from the ring. Through ATS communication with the other ships, a concensus was reached to devote all of our time to Ring 82B rather than attempting to sample two rings. This decision was reached during the later part of the CTD section. We therefore decided to deploy a drifter in ring center on the second section.

After Station 15 at the end of the section, we steamed to the east and began our second section. Stations 16,17 and 18 went smoothly with Station 18 having 'steppy' type profiles in temperature and salinity. Such profiles were observed during EN086 and were the primary target for the SCIMP profiler. Accordingly, the third SCIMP dive was made after CTD 18. Unfortunately some malfunction caused it to stop rising at about 300 m as it was coming back. At the time, it appeared that the fast decent weight (5 1b) failed to detach while the release weight (10 1b) functioned properly. Acoustic communication with SCIMP was hindered by ships noise, the shadow zones of the instrument and the sharp seasonal thermocline. Repeated attempts to activate the acoustic release mechanism failed. It was decided to return to search for SCIMP in 24 hrs when the corrosible link holding the weight would let go. In order to facilitate the search we deployed a radar reflector buoy drogued to 100 m at the location of SCIMP. We then proceeded with Stations 19 and 20.

During Station 20, an urgent call from the KNORR indicated that the ring was moving rapidly. The KNORR found that there was no longer any $15{ }^{\circ} \mathrm{C}$ thermostad at the ring center location from our first section. All three ships were within sight of one another and two had $15^{\circ} \mathrm{C}$ beneath them while the third did not. In order to resolve this movement of the ring, the KNORR and ENDEAVOR undertook a rapid XBT survey to the NE and NW respectively. Additional XBTs were dropped in the southeast region during the search for SCIMP; these gave a clear indication of the limits of the $15{ }^{\circ} \mathrm{C}$ thermostad in which SCIMP was left floating. This data set indicated that a significant portion of the ring was carried away by the stream,
probably including the portion which contained SCIMP. During the night of the search for SCIMP, there were frequent thunder squalls which made detection of the radar reflector buoy extremely unlikely. The bad weather, combined with the strong currents, made the search unsuccessful; no radar return from the buoy nor any radio or visual contact with SCIMP was made. It seems likely that both were advected away to the east or northeast. Later close examination of SCIMP fall rates indicated that the failure was not with the weight release mechanism but rather a flooded instrument case or the loss of syntactic foam buoyancy. The acoustic tracking record is noisy and ambiguous, but post-cruise analysis suggests that SCIMP had actually sunk to the bottom, in which case it would not be expected to return to the surface.

After this ring-stream interaction it was deemed necessary to resurvey the ring to determine the extent of its mass loss and its new center location. KNORR scientists began to express doubt that $82 B$ could still be successfully surveyed. They were also concerned that the loss of ring surface water invalidated phytoplankton productivity experiments that they had planned. Investigators on ENDEAVOR and OCEANUS were still hopeful that useful data could be gleaned from further study of 82B. In order to quickly ascertain the location and extent of the ring a second XBT star survey was begun. Part way through the star it became clear that the pattern was centered too far to the south to resolve the ring and extra legs were added to the north. The survey showed that the ring had been displaced to the north and still showed some connection with the stream. During this survey we also deployed the University of Miami Loran drifter with a Lamont sediment trap.

The $15^{\circ} \mathrm{C}$ water was the focus of our next operation, a CTD Tow-yo across the thermostad. This exercise was highly successful, about 60 casts between 25 and 425 m depth were made over a horizontal distance of 15 nm . During the later part of the cast, the OCEANUS performed a midwater tow parallel to our course. This Tow-yo should provide excellent
data on the intrusive edges of the thermostad as well as the steppy finestructure at its base.

At the conclusion of the Tow-yo we steamed to the drifter location (nominally ring center) and did CTD and BOPS casts. About this time we received word from the KNORR that they intended to steam to 82E; OCEANUS and ENDEAVOR opted to stay in 82B. In order to guide further work we then executed a rapid 'perimeter' 5-point star using the Tow-yo as one leg of the pattern. The isotherm depths show marked shoaling in the southeast portion of the area, indicating that the Gulf Stream had removed itself from close proximity to the ring. This encouraged us to commit further time to 82 B as it again appeared to be a tractable target for study. We also received a message from the Albatross IV that indicated that 81G was a rather weak ring with no distinct core water. Thus we decided to commit all remaining time to a study of 82 B .

Our first act after coming to that decision was to deploy the WHOI and RSMAS satellite-tracked drifters and redeploy the RSMAS Loran drifter. Another WHOI mini-drifter and RSMAS Loran drifter failed to function and were not deployed. The particulars on the drogues and buoys are detailed in another section. The three drifters were deployed about 3 nm from one another in a triangular array.

ENDEAVOR then commenced to do three CTD sections through and around the ring. The first of these sections missed the ring which had begun to move rapidly to the southwest. This resulted in the station pattern shown in Figure 3. After this CTD work, we performed one final XBT survey of the ring. This star was quite successful, even though an adjustment in the star pattern was made when it became clear that our initial plan would partially miss the ring. The depth of the $10^{\circ} \mathrm{C}$ isotherm and APOC velocity vectors are displayed in Figure 6.

At the conclusion of the star we performed a final CTD/BOPS station in the ring center. We then retrieved all three drifters and redeployed
the WHOI satellite drifter in ring center. This drifter should provide valuable information on the final demise of $82 B$.

ENDEAVOR then left 82 B to begin a CTD/BOPS section from the shelf across the Gulf Stream and into the Sargasso Sea, beginning with Station 47 at 0100 hrs GMT on August 20, 1982. There as a NASA P3 overflight during Station 50 at 1352 on the 20th. XBTs were dropped between stations in order to map the isotherms crossing the Gulf Stream. The final CTD section was taken along 71W from 35 N northward onto the shelf, with 20 nm spacing. Nutrient samples were taken in the deeper bottles.

An event log of ENDEAVOR's scientific activity for the cruise is given in Table 1. The various programs run by the scientists onboard are described in the following sections.
$\mathrm{CTD} / \mathrm{O}_{2}$ PROGRAM

A total of 71 CTD casts were made, all but the first being done with instrument No. 7. No sensors were changed; the CTD and Lamont transmissometer functioned well throughout the cruise.

Water samples were taken, using the 24-bottle rosette sampler with 20 bottles mounted. Twenty samples per station was sufficient since most stations were in water shallower than 3000 m depth. Oxygen and salinity samples were drawn and analyzed onboard, for calibration of the CTD/O 2 sensors. In addition, nutrient samples were collected and frozen for later analysis ashore. In stations associated with the ring, a complete set of nutrient samples was obtained, while samples from only the deepest ten bottles were taken for the Sargasso and Slope water sections.

The stations are grouped as follows: Stations 1 and 2 = test stations in Slope Water; 3,4 = Ring center stations, (no water samples on 3, because of rosette failure); 5-20 = first Ring CTD survey; $21=$ Ring center; 22 = Tow-yo across Ring; $23=$ Ring center; $24-45=$ second CTD
survey of Ring; 46 = Ring center; 47-56 = Slope-Sargasso section, 56-71 = section along $71^{\circ} \mathrm{W}$ from $35^{\circ} \mathrm{N}$ to $40^{\circ} \mathrm{N}$. Positions and times for the stations are given in Table 2.

XBT PROGRAM

During this cruise, 197 XBTs were deployed. All were Type T7 and all were digitally logged on a Bathysystems Recorder. As with the CTD data, depths of selected isotherms were transcribed and distributed to other vessels and those ashore using the ATS link and Telemail. Positions and times of the XBTs are given in Table 3. The XBTs can be grouped in the following way:

$1-55$	First XBT Star Survey
$56-69$	First CTD Survey
$70-88$	Survey East of the Ring and Search for SC IMP
$89-119$	Second Star Survey
$120-126$	Underway to Tow-yo
$127-146$	Perimeter Star Survey
$147-148$	Second CTD Survey
$149-185$	Final Star Survey
$186-197$	Final CTD Section

ACOUSTIC PROFILING OF OCEAN CURRENTS (APOC)

The APOC System was operated throughout most of the cruise, except during the transit time over the Continental Shelf. The data were logged onto 42 (1200 foot) magnetic tapes. Recorded were the underway current profiles from the 300 kHz Ametek-Straza acoustic Doppler current meter, ship's position, sea surface temperature and surface salinity as computed from the conductivity and temperature of the uncontaminated seawater system shared with the Bio-Optical program. Real time calculations of absolute currents at selected depths were made, printed out, transmitted over

ATS, and used to aid in planning sampling strategies. Discrete water samples were collected at each XBT drop to aid in the post cruise calibration of the continuous salinities. Some problems were experienced with the APOC Loran unit; some noise occurred during the first calibration run which introduced uncertainties in the value of the offset angle. This only caused some problems with real time interpretation of the APOC vectors; post-cruise data analysis will be unaffected. It is planned that the data on ship's motion recorded by the underway gravity system will be used to improve the depth sorting of the APOC range bins.

FINESTRUCTURE AND MICROSTRUCTURE

The Self-Contained Imaging Microprofiler (SCIMP) was deployed three times on this cruise; at the test station and after CTD casts No. 9 and No. 18. As noted in the cruise narrative, it failed to return to the surface after the third dive. SCIMP was designed to profile temperature, salinity and relative velocity as it freely fell. In addition, it contained a laser shadowgraph system for recording optical microstructure on 8 mm movie film. Unfortunately, the camera system failed to turn on during the first two dives and no optical data was obtained, though the other components functioned properly. It was thought that the problem was corrected for the third dive; we are not likely to ever know. It is particularly disappointing to lose the data from this dive as there was a thermohaline staircase seen on the CTD trace, and strong salt fingering would be expected. As mentioned previously, the most likely cause of its loss was a leak in one of the pressure cases or the loss of some of its syntactic foam buoyancy. Given the complexity of SCIMP's structure and the fact that half of its two dozen 0-ring seals were recycled for each dive, it is perhaps remarkable that it was able to complete more than 40 dives in its long and fruitful career. The CTD and shear data from the first two dives should still prove useful, since the variance in the conductivity signal can be used as an alternate microstructure indicator.

REMOTE SENSING AND DRIFTERS

University of Miami contributions for the August, 1982 Warm Core Rings cruise included two major efforts: shorebased remote sensing of temperature and chlorophy 11 by Otis Brown and Jim Brown, and ENDEAVOR-88 seagoing efforts of Robert Evans, Kevin Leaman and Stan Hooker directed towards integration of the remote sensing and in-situ data and Loran drifter deployments. Remote sensing opportunities were limited during the August cruise period. As imagery became available, it was used to sort and interpret in-situ data acquired during periods of rapid ring motion. Drifters were deployed twice: first Loran drifter deployment occurred after Ring 82-B interacted with the Gulf Stram and showed the ring moving westward. The buoy was drogued at 175 m and included two linear temperature sensors and Jim Bishop's sediment traps. The drifters were placed in a triangle with the two satellite drifters three miles apart along 87.05 N and the Loran drifter placed north of the western satellite drifter at 87.08 N . During the first three days of the fiveday deployment, the drifters indicated that the ring was rapidly moving to the southwest. The more circular buoy trajectory of the last two days indicated that ring motion had slowed. At time of recovery the Loran drifter was southwest of the satellite drifters at 36.39N, 74.27W which placed it at the edge of the ring. The satellite drifters had converged on a common stream line with a final separation of 4.5 miles. At time of recovery, the satellite drifters showed evidence of vertical shear by the wake present at the surface float. This shear would be integrated more by the Loran drifter since no drogue was utilized. Launch and recovery configuration, position and time are given below.

Remote sensing efforts were restricted by the almost continuous cloud cover over 82-D. Imagery was processed as available and showed snapshots of the ring-stream interaction. Thermal processing was necessary to define the ring boundary due to the weak surface thermal gradients present after the loss of ring surface water. Following the stream interaction, development of slope water entrainment was tracked in the imagery. Another
result of the stream interaction was the loss of old ring surface water and the subsequent departure of the R/V KNORR for $82 E$. Separation of these two rings gave an opportunity to observe the validity of the satellite thermal calibration. During the August cruise, satellite thermal retrievals and in-situ observations showed good agreement. This is in contrast to the $1^{\circ} \mathrm{C}$ daytime difference and $2-3^{\circ} \mathrm{C}$ nighttime difference observed during the June cruise. Intercomparison of the total XBT data set and the along-track thermal data collected by Ray Smith with the satellite data has demonstrated a consistent slope but a cruise-varying bias determined from approximately 12000 samples per cruise. Further work is necessary to examine the reason for the time-varying bias term. This result means that gradient information is preserved, but the overall thermal field can be offset by a constant.

The following is a summary of pertinent drifter data collected during the fourth Warm Core Rings cruise. Three drifters were deployed: a satellite drifter from WHOI (Drifter No. O253S), a satellite drifter from RSMAS/University of Miami (Drifter No. 03482) AND A Loran-C drifter (Drifter No. 7) also from RSMAS/University of Miami.

LORAN-C DRIFTER

First Deployment: 13 August 1982 (Julian day 225)

$$
0307 \mathrm{Z} \quad 36,35.4 \mathrm{~N} \quad 73,30.0 \mathrm{~W}
$$

1950Z 12 August 1982 TDR No. 17
$1951 Z 12$ August 1982 TDR No. 27
Channels 1, 2 and 4 were set for a two-minute rate.
Sediment trap holder No. 2 was used with the traps in the following positions:

Trap No. 1 -- > Position A
Trap No. 2 -- > Position B
Trap No. 3 -- > Position C
Trap No. 4 -- > Position D
$\begin{array}{ll}\text { First Recovery: } & 14 \text { August } 1982 \text { (Julian Day 226) } \\ & 0831 \mathrm{Z} \quad 37,01.6 \mathrm{~N} \\ & 78,50.8 \mathrm{~W}\end{array}$

The radar reflector buoy sank some time during deployment. Consequently, the sediment traps were approximately 50 m deeper than planned. The sinking of the buoy is thought to be due to overloading. The drogue used was very heavy. In the past, this type of buoy has been very reliable and has been successfully drogued.

The TDRs were placed on standby as follows:

> No. 17 at $1140 Z 15 \mathrm{~s} \quad 14$ August 1982
> No. 27 at 1141 Z 15s 14 August 1982

Second Deployment: 14 August 1982 (Julian Day 226)
2218 Z 37,08.0N 73,48.7W

Channels 1, 2 and 4 of the TDRs were set for a two-minute rate and started up at:

$$
\begin{array}{lll}
20382 & 14 \text { August } 1982 \text { TDR No. } 17 \\
2039 Z & 14 \text { August } 1982 \text { TDR No. } 27
\end{array}
$$

Sediment trap holder No. 3 was used and the traps were put in the following positions:

Trap No. 5--> Position A
Trap No. 6 -- > Position B
Trap No. 7 -- > Position C
Trap No. 8 -- > Position D

Second Recovery: 19 August 1982 (Julian Day 231) 2114 Z 36,33.2N 74,37.3W

No problem with the radar buoy used with this deployment. The corner reflector (U.S. Army surplus) proved very useful; the drifter was sighted on radar several times during the deployment period.

The TDRs were placed on standby as follows:
TDR No. 17 at $2221 Z$ 15s 19 August 1982
TDR No. 27 at 2222 15s 19 August 1982

RSMAS SATELLITE DRIFTER

First Deployment:	14 August 1982 (Julian day 226)
	$2150 Z \quad 37,05.2 \mathrm{~N} 73,47.4 \mathrm{~N}$

First Recovery: 19 August 1982 (Julian Day 231) 1658 Z 36,49.3N 74,26.2W

WHOI SATELLITE DRIFTER

First Deployment: 14 August 1982 (Julian day 226)

$2110 Z 37,05.3 \mathrm{~N} 73,13.3 \mathrm{~W}$
First Recovery: 19 August 1982 (Julian Day 231) $1730 \mathrm{Z} 36,52.5 \mathrm{~N}$ 74,18.6W

Second Deployment: 19 August 1982 (Julian Day 231) $1924 Z 36,39.2 N$ 74,19.2W

The drifter was deployed without a radar buoy but it was still drogued at 100 m .

PHOTOECOLOGY STUDIES

During the R/V ENDEAVOR 88 cruise, data was taken with the BOPS (BioOptical Profiling System) instrument package from the surface to 200 m for 77 casts at each of 71 CTD/BOPS stations. On this cruise these data included: temperature, conductivity, depth, beam transmittance (670 nm), up and down-welling spectral irradiance (380, 410, 441, 465, 488, 520, $540,560,589,625,671$, and 694 nm) spectral radiance (441, 488, 520, and 550 nm), and scalar irradiance PAR (Photosynthetically Available Radiant energy). In addition, newly installed "tilt sensors" gave continuous data on the underwater orientation of the instrument which will allow first-order correction to the optical data due to non-horizontal orientation. Also, a new monochromatic scalar irradiance instrument (441 nm) was tested to see if the absorption coefficient at the absorption band of chlorophy11 could be directly measured underwater with the BOPS instrument. The SeaMartec fluorometer on the BOPS failed early during the cruise and was not used.

Discrete chlorophyll measurements were also made at nine selected depths from the vertical profile from rosette water samples. A subset of these samples from each station were filtered for, and will be analyzed by, Pat Blackwelder for coccolithophore enumeration.

As on previous WCR cruises, the horizontal distributions of both physical and biological parameters were continuously recorded for the entire cruise. The one-minute averages of these data were logged automatically and included: sea surface temperature and conductivity; total incident irradiance ($0.3-3.0$ micrometers) and UV-irradiance (340 nm); atmospheric parameters including wind speed and direction, air temperature and dewpoint temperature, barometric pressure; and continuous measurements of chlorophy 11, phycoerythrin, and fucoxanthin fluorescence.

A principal objective during this cruise was to coordinate the ENDEAVOR's activities with the testing of a new generation microwave radiometer for the remote sensing of sea surface salinity flown in a NASA P3 aircraft. The aircraft made three missions over the ENDEAVOR during this cruise: on 13 August, just after completion of our second XBT star and during BOPS Station No. 22B; on 19 August, during our last visit to ring center at CTD/BOPS Station No. 46; and on 20 August, while the ENDEAVOR was on a CTD/BOPS section from the shelf across the Gulf Stream and into the Sargasso Sea (the overflight occurred at Station No. 50, the southeast edge of the stream). Sea surface salinity, temperature and chlorophyll concentration were systematically determined before, during and after each overflight for intercomparison with the aircraft data.

These WCR cruises have provided a unique opportunity for obtaining both complementary ship and satellite, and ship and aircraft data. For example, in collaboration with Brown and Evans at Miami more than 12,000 intercomparisons of ship sea surface temperature and satellite-derived temperature have been obtained on each WCR cruise to date. Similar, although fewer in number, chlorophyll intercomparisons will be made using our along-track chlorophyll data and CZCS imagery: Also in collaboration with the NASA overflight, an effort to quantify ship and aircraft inter-
comparisons of the Aircraft Oceanographic Lidar (AOL) was made. A number of large filtered samples have been obtained by Jim Nelson during this cruise for later laboratory analysis of accessory pigments (fucoxanthin and phycoerythrin).

UNDERWAY GRAVITY MEASUREMENTS

The first sea trials for the new stable platform-gravity meter system have been completed on ENDEAVOR, Cruise 88. This system consists of three major parts. The first of these is a recently developed gyro stabilized two-axis platform. This platform has been designed to carry the vibrating string accelerometer (VSA) and its associated oven assembly as the gravity sensor. The new platform represents a major reduction in both size and weight over other platforms suitable for gravity measurement. A second major part of this system is a newly developed gravity readout. The readout interfaces with the VSA, filters out the vehicular motion and then scales the data so that the gravity signal may be resolved. It has been designed to allow flexible use of the gravity system on a variety of vehicles, including ships, submarines and aircraft. The third major part of this new instrument is the data acquisition system. It consists of a recently purchased microprocessor interfaced to a Kennedy nine-track tape drive. Both the platform and the readout are connected to the microprocessor.

The first three days were used to complete the rudiments of software for a data acquisition system. Concurrently, the system was interfaced to the ship's Doppler speed equipment. The platform was turned-on August 6. The gimbel servos were unstable, but this condition could be corrected sufficiently by careful adjustment of the loop gain. It was observed that while in the navigate mode, there is insufficient damping, such that the platform oscillates at the Schuler period. It does tend to damp toward level. In the "fast erect mode" the system is much more responsive. The integrated accelerations come within 0.5 kts of the rough estimates of ship's speed. Some post-cruise processing will be needed to
determine the accuracies of the system. Various changes were made to the damping equation coefficients while the platform performance was being recorded. These data will be analyzed post-cruise to determine proper navigate mode damping parameters.

An error on the side of sensitivity caused the data from the gravity readout to be useless in all but the calmest of seas. Correction of this condition requires a new voltage controlled oscillator. Data was obtained directly from the vertical sensor using a frequency counter in order to correctly estimate the range the redesigned phase-locked loop should have. Gravity meter data was recorded during the calmer weather. This information will be used in the development of the data reduction frequency filtering algorithms.

Data acquisition programs were developed for recording the inertial data and ship dynamic motion as sensed by the gyro stabilized platform. This time series data was merged with the frequency counts from the gravity readout so that the resultant time series could be recorded simultaneously on tape. Twenty tapes were recorded. The data includes platform behavior in the fast erect mode and in the navigate mode. It includes performance while the damping parameters were varied. Loran, speed and heading, and vertical acceleration are included. Data was recorded for one XBT star, for subsequent comparison with the APOC data.

Changes to the gravity system as indicated by this cruise include:
(1) Adjust frequency response in servo amplifiers for better response.
(2) Improve the platform temperature regulation.
(3) Add an error-handling routine to platform computer.
(4) Calibrate the gyros and accelerometers.
(5) Improve the navigate mode algorithm.
(6) Redesign the phase-lock loop.

PARTICIPANTS IN THE SCIENTIFIC PARTY

The members of the scientific party aboard ENDEAVOR for Cruise No. 88, their affiliation, and principal tasks are listed below:

Raymond W. Schmitt	WHOI	Chief Scientist
Marvel C. Stalcup	WHOI	Hydro, Drifters
Robert C. Millard, Jr.	WHOI	CTD
Nancy Galbraith	WHOI	CTD Processing
Cynthia Tynan	WHOI	AutoSal, SCIMP Processing
William J. McMahon	WHOI	APOC Processing
Cleo A. Zani	WHOI	APOC Hardware
Alan R. Duester	WHOI	SCIMP Hardware
Robert G. Goldsborough	WHOI	Underway Gravity
Raymond Smith	UCSB	Bio-Optics
Ben Fahy	UCSB	Bio-Optics
Jim Nelson	UCSB	Bio-Optics
Robert Evans	RSMAS	Drifters, Communications
Kevin Leaman	RSMAS	Drifters
Stan Hooker	RSMAS	Plots, Drifters
David Nelson	URI	Marine Technician

ACKNOWL EDGEMENTS

The scientific party gratefully thanks Captain Tate and all members of the ship's personnel aboard ENDEAVOR for their cooperation and competence. The research program WARM CORE RINGS is funded by the Ocean Sciences Division of the National Science Foundation. We also acknowledge support of the bio-optical and acoustic profiling programs by the Oceanic Processes branch of the National Aeronautics and Space Administration and the support of the fine- and microstructure studies by the Office of Naval Research.

TABLE 1: EN88 EVENT LOG

TABLE 1: EVENT LOG (Continued)

TABLE 1: EVENT LOG (Continued)

TABLE 1: EVENT LOG (Continued)

TABLE 1: EVENT LOG (Continued)

TABLE 1: EVENT LOG (Continued)

TABLE 1: EVENT LOG (Continued)

TABLE 1: EVENT LOG (Continued)

TABLE 1: EVENT LOG (Continued)

190882	1750	231
190332	1934	231
100932	1045	231
190882	1050	231
190982	1955	?3:
190882	2010	231
190882	2114	?31
190832	2245	231
200982	0047	232
200982	cos 4	232
200982	011/	232
200982	$01>0$	232
20088?	0153	232
200582	015.a	332
200982	C? 0 ¢	23?
200382	0345	232
20098?	0347	23?
200382	0547	232
200982	0550	232
202882	0429	232
2078s?	0775	732
20n38?	0816	232
200932	1072	232
200a̧?	1035	232
20098?	1105	232.
200392	1115	232
200882	1156	232
200332	1244	232
200982	1250	232
200982	135?	237.
200832	1518	232
≥ 00892	1525	232
200992	1×50	232
200982	1742	232
200882	1815	232
200882	1820	232
200932	2049	232
200382	2150	232
20028?	2242	232
200892	2316	232
210322	0272	233
210982	0315	233
210882	0412	233
210882	0771	233
210892	0728	233
210982	0972	233
210882	1022	733
210882	1318	233
210882	1325	733
210982	1400	233
210987	1706	233
210982	2145	233
210882	2145	233
220882	0032	234
220882	0106	234
220882	0157	234
220982	06IA	234
220982	09.77	234
230382	1000	234
220892	1300	234
220392	1410	734

36	52.51	-74	18.58	0001	PICK UP WHDI DRTFTER
36	39.19	-74	19.23	0001	DEPLOY KHOI DRIFTER IN RING CENTER
36	39.06	-74	18.98	0001	U/h TO SEARCH FOP BUOY
36	39.43	-74	12.76	0001	SPFFRM WHALE SIGHTEO
36	39.03	-74	22.48	0001	PILOT GHALES; FISH JUMPING
36	39.00	-74	26.52	0001	CIC TJ PICK UP LORAN DRIFTER
36	33.21	-74	37.33	0001	LORAN DRIFTER ABOARD
35	20.144	-74	40.21	0001	fly!ng fish
35	56.50	-74	47.80	0001	H/T STATION 47
35	56.50	-74	47.80	1000	CTD 447 IN
35	56.20	-74	48.20	1000	CTO 4.47 OUT
35	56.18	-74	48.13	0100	SOPS 747 IN
35	56.13	-74	48.33	0100	EOPS \$47 OUT
35	55.13	-74	48.33	0001	U/प TO STATION 4.8
35	53.40	-74	35.70	0010	YRT \#186 (G38) 10 DEG 2171
35	51.05	-74	24.46	0001	H/T STATION 48
35	51.06	-74	24.47	1000	CTO \#4A IN
35	52.03	-74	22.97	1000	CTO \#ヶ8 CUT
35	52:03	-74	22.97	0100	PUPS 448 IN
35	52.07	-74	22.31	0001	U/W TO STATON 49
35	48.44	-74	11.06	0010	$\times 8 T$ \# 197 (G39) 10 DEG 2350
35	45.13	-74	01.60	1000	CTO \#49 IN 10 DEG 2462
35	47.00	-73	59.87	1000	CTD 49 DUT
35	47.43	-73	59.51	0100	POPS \#49 IN
35	47.40	-73	59.51	0100	PJPS \$49 OUT
35	48.9.3	-73	59.41	0001	U/W TO STATIOM 50
35	44.70	-73	48.90	0010	XBT \#188 (540) 10 DEG 2578
35	39.80	-73	38.40	0001	H/T STATION 50
35	39.80	-73	38.40	1000	CTO 50 IN
35	40.30	-73	37.69	0001	HASA OVFR FLIGHT
35	41.09	-73	36.90	1000	CTS 50 OUT
35	41.04	-73	36.67	0100	ロOPS 150 IN
35	37.50	-73	25.30	0010	YGT 1.89 (G1) 10 DEG >750
35	33.84	-73	14.64	0100	SOPS \#51 IN
35	34.15	-73	14.69	0100	EOPS a 51 OUT
35	34.15	-73	14.69	1000	CTO \#51 IN
35	34.77	-73	14.45	1000	CTO \#51 OUT
35	31.22	-73	02.33	0010	XBT \#190 (G2) 10 DEG >750
35	27.71	-72	50.72	0100	BEPS
35	27.56	-72	50.62	1000	CTD \#52 IN
35	27.60	-75	50.60	0001	U/4 TO STATION 53
35	24.88	-7?	38.84	0010	X S $^{\text {T } 191}$ (G3) 10 DEG >750
35	20.80	-72	25.50	1000	CTD 53 IN
35	18.20	-72	26.40	1000	CTij 53 OUT
35	18.20	-72	26.40	0100	6OPS $=53$ IN
35	17.70	-72	15.60	0010	$\mathrm{XGT} * 192$ (G4) 10 DEG >750
35	15.89	-72	02.08	1000	CTD 254 IN
35	15.17	-72	04.45	1000	CTO 54 OUT
35	12. 23	-72.	05.91	0100	ROPS 854 IN
35	15.50	-7?	04.40	0101	ROPS 454 OUT; U/W TO STATION 55
35	00.69	-71	38.89	0100	ROPS 55 TIME SERIES
35	05.28	-71	36.28	0100	ROOS 55 OUT
35	05.28	-71	36.28	1000	CTO ${ }^{5} 55$ IN
35	04.04	-71	38.29	1000	CTO 255 OUT
35	05.20	-71	40.63	0001	U/H TO STATION 56
35	04.19	-71	29.39	0001	C/C O9O FOR APOC CALIBRATITN
35	00.18	-71	00.07	1000	CTO \#53 IN 10 DEG 2952
35	33.47	-71	01.04	1000	CTO 55 SO OUT
35	06.90	-71	03.90	0100	50PS \#5h I!
35	09.82	-71	06.04	0101	GOPS \$56 OUT; U/W TO STATION 57
35	20.16	-70	54.80	0100	509557 IN

TABLE 1: EVENT LOG (Continued)

TABLE 1：EVENT LOG（Continued）

250832	0340	237	39	20.00	－71	00.00	0100	ROPS 269 OUT	
250882	0344	237	39	20.00	－71	00.00	0031	U／M İ STATION 7	70
250982	0520	237	39	40.10	－70	59.57	1000	CTO 70 IN	
250982	0×44	237	39	40.10	－70	57.51	1000	CTD \＃70 OUT	
250882	0646	237	39	40.13	－70	59.49	0100	SOPS $\$ 70$ IN	
250982	0710	237.	39	40.10	－70	59.38	0001	U／H TO STATION 7	71
250882	0907	737	40	00.05	－70	59.99	1000	CTD \＄71 IN	
259837	0037	237	40	00.00	－70	59.99	1000	CTD \＃71 OUT	
250282	0037	23？	40	00.00	－70	59.99	0100	BOPS 71 IN	
フ！づ行	！nの＂	311	40	00.00	－10	59.77	0100		
2508.82	1010	237	40	00.00	－70	59.99	0001	HEADING FOR WODD	DS HILE

SHIP: ENDIEVIR
CPUISF: RA DATES: AUCUST 5- AUCUST 25,1982

11	8	2230	223	36	33.50	-73	36.48	Y \times T	\% 72	(NO G	10)		
11	8	2233	223	36	32.70	-73	35.20	$X B T$	473	(G27)	10	DEG	2) 430
11	8	2300	223	36	34.40	-73	29.40	$\times 8 T$	274	(G28)	10	ПEG	2455
11	8	2330	223	36	38.90	-73	22.20	$X B T$	\# 75	(629)	10	DEG	2437
12	R	0000	224	36	42.70	-73	16.50	XEY	476	(G30)	10	DEG	2379
12	8	0030	224	36	49.90	-73	10.30	XPT	477	(G31)	10	DEG	2)315
12	8	0130	224	36	43.70	-73	15.60	$\times 8 T$	178	(G32)	10	DEG	ล3 374
12	8	0158	224	36	42.30	-73	19.70		479	(N0) G	D)		
12	8	0200	224	36	41.80	-73	20.40	XBT	\#80	(G33)	10	NEG	21443
12	8	0238	224	36	36.20	-73	25.70	$X B T$	\#81	(G34)	10	DFG	2437
12	8	0300	224	36	40.30	-73	22.00	XRT	\# 82	(635)	10	DEG	2442
12	8	0330	2? 4	36	46.00	-73	18.00	$X B T$	*83	(G36)			
12	8	0400	224	36	45.24	-73	21.24	$\times B T$	484	(G37)	10	DEG	2393
12	8	0430	224	36	42.90	-73	26.10	XBT	485	(G38)	10	DEG	2433
12	8	0500	224	36	41.46	-73	31.86	$\times 8 \mathrm{~T}$	\#86	(G39)	10	DEG	2420
12	8	0530	224	36	45.80	-73	29.70	XBT	487	(G40)	10	DEG	2433
12	8	0602	224	36	51.05	-73	25.23	$\times B T$	488	(G1)	10	DEG	2400
12	8	0740	224	36	41.20	-73	39.60	XPT	+89	(G2)	10	DEG	2350
12	8	0800	224	36	43.80	-73	42.70	$\times 8 \mathrm{~T}$	490	(G3)	10	DEG	-350
12	8	0830	224	36	48.50	-73	49.09	XBT	\#91	(G4)	10	DEG	2335
12	8	0900	224	36	52.29	-73	54.83	XP, T	\# 92	(65)	10	DEG	2291
12.	8	0930	224	36	55.86	-74	1.05	XBT	493	(G6)	10	DEG	2265
12	8	1000	224	36	56.70	-73	54.20	XBT	1494	(G7)	10	DEG	จ312
12	8	1030	224	36	56.32	-73	46.50	$\times \mathrm{BT}$	*95	(G8)	10	OEG	ล358
12	8	1100	224	36	55.52	-73	38.59	XBT	\$96	(G9)	10	DFG	2405
12	8	1130	224	36	55.20	-73	30.80	XBT	\#97	(G10)	10	DEG	$2{ }^{2} 404$
12	8	1200	224	35	54.50	-73	22.20	XBT	198	(G11)	10	DEG	2367
12	8	1230	224	36	55.10	-73	12.20	$\times P \cdot T$	499	(G12)	10	חEG	- 361
12	8	1300	2.24	36	55.20	-73	4.60	$X B T$	100	(G13)	10	DEG	2336
12	8	1330	224	36	53.00	-73	8.20	XBT	* 101	(G14)	10	DEG	2344
12	8	1400	224	36	50.40	-73	14.40	XBT	\# 102	(G15)	10	DEG	2398
12	8	1430	224	36	49.00	-73	18.00	XBT	\# 103	(G16)	10	DEG	3415
12	8	1500	224	36	45.56	-73	25.80	YRT	${ }_{4} 104$	(G17)	10	DEG	2415
12	8.	1530	224	36	43.50	-73	32.00	X \times T	\#105	(618)	10	DEG	2380
12	8	1600	224	36	41.10	-73	38.30	XBT	\# 106	(G19)	10	DEG	2328
12	8	1630	224	36	39.80	-73	46.90	XPT	* 107		10	DEG	2270
12	8	1700	224	36	36.40	-73	50.60	XET	\# 108	(HI)	10	DEG	2235
12	8	1730	224	36	59.00	-73	50.10	XBT	\$109	(H_{2})	10	DEG	ล226
12	8	1800	224	36	41.30	-73	50.30	X \times T	4110	(H_{3})	10	DEG	2287
12	8	1830	224	36	49.15	-73	47.50	XRT	4111	$\left(\mathrm{H}_{4}\right)$	10	DEG	2706
12	8	1900	224	36	51.80	-73	42.40	$\times B T$	*112	(H5)	10	DEG	2358
12	8	1930	224	36	56.50	-73	39.50	XRT	N113	(H 6)	10	DEG	2380
12	8	2000	224	37	1.72	-73	37.95	XBT	1114	(H7)	10	DEG	2380
12	8	2030	224	37	7.06	-73	37.81	XBT	*115	(H 8)	10	DEG	2339
12	8	2100	224	37	12.90	-73	37.80	XBT	1116	(HC)	10	DEG	2284
12	8	2130	224	37	8.67	-73	36.06	XBT	\#117	(H 10)	10	DEG	2318
12	8	2200	224	37	4.34	-73	34.44	$X B T$	H118	(H11)	10	DEG	2 360
12	8	2230	224	36	57.88	-73	32.15	XBT	-119	(H12)	10	DEG	2402
13	8	0700	225	37	3.40	-73	27.00	XBT	4120	(H13)	10	DEG	2365
13	8	0730	225	37	8.50	-73	23.20	$X B$,	*121	(Hl_{4})	10	DEG	2315
13	8	0800	225	37	14.00	-73	19.40	$\times B T$	\$122	(H15)	10	DFG	A296
13	8	0830	225	37	18.80	-73	15.90	$\times 8 \mathrm{~T}$	4123	(H16)	10	DEG	2275
13	8	1000	225	37	15.31	-73	18.39	XET	M124	(H17)	10	DEG	2302
13	8	1030	225	37	12.00	-73	20.70	XRT	\% 125	(H18)	10	DEG	2307
13	8	1120	225	37	5.30	-73	25.60	XBT	4126	(419)	10	DEG	2337
14	8	1015	225	37	0.04	-73	41.65	$\times B T$	\$127	(G1)	10	DEG	2317
14	8	1045	226	37	5.10	-73	42.80	X \times T	\#128	(G2)	10	DEG	2330
14	8	1115	226	37	11.50	-73	44.50	XRT	129	(G3)	10	DEG	2320
14	8	1145	226	37	8.22	-73	40.39	$\times 83$	\%130	(G4)	10	DEG	2325
14	8	1215	226	37	3.20	-73	33.90	XRT	4131	(G5)	10	DEG	2324
14	8	1245	226	37	4.60	-73	28.60	$\times B T$	+132	(Gb)	10	DEG	2324
14	8	1315	226	37	8.30	-73	22.30	XPT	1133	(G7)	10	DEG	2329
14	8	1345	226	37	5.70	-73	23.50	\times BT	\#1 134	(GR)	10	NEG	П 326
14	8	1425	226	36	59.90	-73	27.40	XPAT	135	(G9)	10	DEG	2301
14	8	1445	226	36	55.50	-73	23.80	XRT	*136	(610)	10	DEG	2233
14	A	1.515	226	36	51.80	-73	21.50	XBT	\%137	(NO GO	01		
14	8	1517	226	36	51.80	-73	21.50	XRT	\#138	(G11)	10	DEG	2202
14	B	1545	226	36	52.11	-73	25.30	XFPT	\$1 39	(NT) Gon	10		
14	8	1550	2.26	36	52.20	-73	27.40	$\times B T$	\% 140	($\mathrm{r}, 12$)	10	nFG	2225
14	\%	1615	226	36	52.30	-73	33.00	YBT	141	(G13)	10	DEG	ล240
14	8	1645	226	36	45.20	-73	36.80	$\times 89$	414 ?	(G14)	10	DEG	2205
14	8	1715	226	36	45.40	-73	3 H .70	XRT	H143	(G15)		DFG	2200

TABLE 3: XBT STATIONS (Continued)

14	8	1745	226	36	51.10	-73	40.10	$\times 8 \mathrm{~T}$	1144	(GIb)	10	DFG	2243
14	8	1815	226	36	54.90	-73	44.30	Y8T	\#145	(G17)	10	DEG	2285
14	8	1845	226	36	56.20	-73	52.16	Y.3T	\#146	(G18)	10	DEG	2305
14	8	2200	226	37	6.17	-73	43.13	XRT	\$147	(G19)	10	DEG	2333
14	8	2300	226	37	14.01	-73	52.35	$\times 8 \mathrm{~T}$	\#148	(G20)	10	DEG	2290
18	8	1700	230	36	9.90	-74	40.60	xet	14.19	(61$)$	10	DEG	2218
18	8	1730	230	36	14.80	-74	35.80	$\times \mathrm{BT}$	\#150	(G2)	10	DEG	2215
18	8	1800	230	36	19.80	-74	31.80	XAT	$\because 151$	(G3)	10	DEG	2250
18	8	1830	230	36	24.50	-74	27.00	\times YT	$\$ 152$	(64)	10	DFG	2303
18.	8	1900	230	36	29.40	-74	22.60	XBT	\#153	(NO G	D)		
18	8	1903	230	36	2.9 .90	-74	22.00	XPT	\#154	(65)	10	neg	-330
18	8	1930	230	36	33.90	-74	18.20	XeT	\$155	(G6)	10	DEG	2315
18	8	2000	230	36	38.62	-74	13.76	XPT	\% 156	(G7)	10	DEG	2320
18	8	2030	230	36	43.76	-74	8.91	XP.T	\#157	(NO) GO	01		
1.8	8	2030	230	36	43.76	-74	8.91	Xet	\#158	($\mathrm{C}, 8$)	10	neg	ล306
18	8	2100	230	36	47.94	-74	5.34	XRT	\#159	(69)	10	DEG	2296
18	8	2130	230	36	41.98	-74	4.53	XbT	\$160	(G10)	10	DEG	2306
$1{ }^{18}$	8	2200	230	36	36.72	-74	4.46	$\times \mathrm{BT}$	*161	(G11)	10	DEG	2307
18	8	2230	230	36	29.51	-74	4.39	XBT	\#162	(G12)	10	DEG	2285
18	8	2300	230	36	23.35	-74	4.34	$\times 8 \mathrm{~T}$	\#163	(G13)	10	DEG	2270
18	8	2330	230	36	17.10	-74	4.2 .6	XBT	\#164	(G14)	10	DEG	2. 290
19	8	0028	231	36	14.93	-74	15.20	XBT	\#165	(G15)	10	DEG	2246
19	8	0100	231	36	18.90	-74	21.R0	XBT	\#166	(G16)	10	DEG	2245
19	8	0200	231	36	29.13	-74	26.84	XBT	4167	(G17)	10	DEG	2287
19	8	0230	231.	36	35.73	-74	26.87	XBT	\#168	(c18)	10	DEG	-305
19	8	0300	231	36	41.90	-74	26.68	XBT	1169	(619)	10	DEG	2293
19	8	0330	231	36	48.82	-74	26.59	XBT	\#170	(G20)	10	DFG	-265
19	8	0400	231	36	55.10	-74	26.70	XBT	1171	(G21)	10	DEG	2246
19	8	0430	231	36	51.80	-74	23.10	XBT	\% 172	(622)	10	DEG	2270
19	8	0500	231	36	46.20	-74	18.60	XRT	1173	(G23)	10	DEG	2325
19	8	0530	231	36	41.30	-74	14.60	XRT	\#174	(G24)	10	DEG	-329
19	8	0600	231	36	35.70	-74	10.00	$\times \mathrm{Br}$	2175	(625)	10	DFG	ค313
19	8	0630	231	36	30.50	-74	5.60	$\times 8 \mathrm{~T}$	\#176	(526)	10	DEG	2280
19	8	0700	231	36	30.50	-74	10.30	XBT	\#177	(G27)	10	DEG	2315
19	8	0730	231	36	32.80	-74	17.40	\times XT	\#178	(628)	10	DEG	2324
19	8	0830	231	36	37.40	-74	, 32.10	\times X ${ }^{\text {P }}$	\#179	(c29)	10	DEG	2290
19	8	0900	231	36	39.30	-74	38.60	$\times 8 \mathrm{~T}$	\#180	(630)	10	DEG	2248
19	8	0930	231	36	41.20	-74	37.00	XRT	181		10	DEG	2268
19	8	1000	231	36	42.60	-74	29.20	XRT	\#18?	(632)	10	DEG	2311
19	8	1045	231	36	39.20	-74	19.40	$\times \mathrm{BT}$	\#183	(634)	10	DEG	2350
19	8	1130	231	36	45.30	-74	14.40	$\times 8 T$	4184	(G36)	10	DEG	2330
19	8	1200	231	36	47.07	-74	8.05	XRT	\#185	(037)	10	DEG	2320
20	8	0250	232	35	53.40	-74	35.70	$\times 8 \mathrm{~T}$	\#186	(G38)	10	DEG	2171
20	8	0725	232	35	48.44	-74	11.06	XRT	\$187	(G39)	10	DEG	2350
20	8	1156	232	35	44.70	-73	48.90	XBT	1188	(G40)	10	DEC	2578
20	8	1650	232	35	37.60	-73	25.30	XPT	\#189	(G1)	10	DEG	> 750
20	8	2150	232	35	31.22	-73	2.33	XBT	\#190	(G2)	10	DFG	>750
21	8	0315	233	35	24.88	-72	38.84	XBT	\#191	(G3)	10	DEG	>750
21	8	n922	233	35	17.70	-72	15.60	XRT	1192	(G4)	10	DEG	>750
23	8	1501	235	35	51.88	-70	58.79	XRT	$\# 193$	(G5)	10	DEG	> 750
23	8	2033	235	37	16.66.	-70	59.29	YRT	\#194	(G6)	10	DEG	2474
24	8	0106	236	37	30.00	-70	55.60	\times MT	\#195	(G7)	10	DEG	2294
24	8	0555	236	37	49.60	-70	59.80	XBT	\#196	(G3)	10	DEG	2206
24	8	1041	236	38	10.10	-70	59.59	XBT	\#197	(69)	10	DEG	2185

SHIP: ENDFAVOR DATE
DAY MOS.

GrT

1641
130
1
4
$+$

939
0041
0806
1205 134
200 2337
0535 c
c
0
0
n
n 1804 2130 0145
1230 1755
0548 1204 1441 0514
2030 0008 6615 1625 1930 332
245 0
0
0
0 1500 819
151 0203 0544
1429 1635 2130 0212 1110 1456 1420
0550 1035 535
525 1
\sim
\sim
\sim
n
n
0728
1326 706
1000 410
2003
0110
0903
1340
154 ?
2054
0429
0429
0458
0658
1347

0937

1604	236
1119	236
236	

$\begin{array}{ll}7119 & 236 \\ n 310 & 237 \\ 0648 & 237\end{array}$
$0646 \quad 237$

CRUISE: BB DATES: AUGUST 5-AUGUST 25, 1982
JULIAN LATITUDE LONGITUDE EVENT
DEG. MIN.
$-72 \quad 46.60$

ROPS \#1
ROPS 43
BDPS \#5
BDPS W6
RDPS 4
ROPS 48
ROPS 49
BOPS 110
ROPS \#11
ROPS 12
BOPS 13
BDPS \#14
BDPS 115
ROPS \#16
BOPS 17
BOPS \#18
BOPS 119
BOPS 220
BOPS \#21
ROPS $222 A$
ROPS \#22R
BOPS 23
BOPS $24 A$
RDPS \#24B
BOPS 25
ROPS $\# 26$
ROPS $\# 27$
BOPS 29
BOPS $\$ 30$
BOPS \#31
BOPS 32
BİPS $\$ 33$
BOPS $\# 34$
BDPS
BOPS
B
BOPS 37
ROPS \#38
$\begin{array}{ll}\text { BOPS } & \# 39 \\ \text { PDPS } & 40\end{array}$
BOPS $\$ 41$
$\begin{array}{ll}\text { BOPS } & 42 \\ \text { BCPS } & 43\end{array}$
BOPS $\$ 44$
$\begin{array}{ll}\text { BDPS } & \text { M } 45 \\ \text { BOPS } & \# 6\end{array}$
BOPS $\$ 47$
BOPS 448
$\begin{array}{ll}\text { BOPS } & \$ 49 \\ \text { ROPS } & \$ 50\end{array}$
ROPS \#51
ROPS 52
ROPS
BOPS
BO
BOP
ROPS $=55$
BJPS :56
BOPS \#57
BOPS 458
ROPS
ROPS
RO
RDPS 61
ROPS 462
$\begin{array}{ll}\text { ROPS } & 463 \\ \text { ROPS } & \$ 64\end{array}$
QDPS $\$ 65$
BOPS *6t
$\begin{array}{ll}\text { ROPS } & \text { H57 } \\ \text { ROPS } & 268\end{array}$
BDPS WEO
ROPS 470
BOPS \#71

Figure 1: XBT locations for the first star.

Figure 2: Depth of the $10^{\circ} \mathrm{C}$ isotherm and APOC vectors for the first star.

Figure 3: Station locations for the second CTD survey, Stations 24 to 45.

Figure 4: The $10^{\circ} \mathrm{C}$ isotherm depths and APOC vectors for the second CTD survey.

Figure 5: XBT locations for the final survey of $82 B$.

Figure 6: The $10^{\circ} \mathrm{C}$ isotherm depths and APOC vectors for the final XBT survey.

Figure 7: CTD and XBT station locations for the Slope-Sargasso section and the $71^{\circ} \mathrm{W}$ section.

Figure 8: Meteorological variables observed during EN-088.

CRUISE REPORT

KNORR CRUISE NO. 97, 8/7/82 - 8/24/82

James J. McCarthy Harvard University Cambridge, Massachusetts

I. Objective of the Cruise

INORR 097 was the third in a series of four cruises scheduled in 1982 for the purpose of invesitgating the evolution of warm core rings. The scientists aboard this vessel are responsible for most of the experimental biological and some of the chemical studies that constitute the Warm Core Ring Program. Other components of the program were accommodated by the research vessels OCEANUS and ENDEAVOR. A portion of this work is supported by NASA, but principal support comes from NSF.

Prior to our departure it was decided that the initial effort of all three vessels would be directed towards Ring 82 -B. If this ring deteriorated to the point that we no longer found it useful to study, another ring, such as $81-\mathrm{G}$, or $82-\mathrm{E}$ would then be chosen. Shortly after arriving in the vicinity of Ring $82-\mathrm{B}$ it became apparent that the few tens of meters of water overlying the remnant of the ring core were being influenced primarily by horizontal processes, and that this water was probably a mixture of Stream, and shelf waters. The scientists aboard the $\mathbb{K N O R R}$ decided to spend the balance of their craise period in another ring, and Ring $82-B$, although farther east than $81-\mathrm{G}$, seemed to offer the most interesting prospects.

Enroute to Ring $82-E$ stations were made in both the Sargasso Sea and the Gulf Stream. The initial work in the ring indicated that its structure was relatively symmetrical, but just prior to the completion of our work an intrusion of warm water, perhaps a Gulf Stream streamer, moved into the area peviously occupied by ring center. The ring appeared to have moved to the east with the advance of a Gulf Stream meander just west of the ring.

II. Cruise Itinerary

7 August
9-11 August
12 August
13 August
15 August
16-17 August
18-19 August
20-22 August
24 August

Depart Woods Hole, MA at 1900 hr . and steam to Ring 82-B
Ring 82-B Center Station
Steam to Sargasso Sea Station
Sargasso Sea Station
Gulf Stream Station
Ring 82-E Center Station
Ring 82-E Cross Section
Ring 82-E Center Station
Arrive in Woods Hole, MA at 0900 hr .
III. Summary of Funded Investigations

Investigator	Agency Grant
Cowles	NSF OCE-80-17271
Ducklow	NSF OCE-81-17713
Fryxell	NSF OCE-81-01785
Hanson/Kester	NSF OCE-81-17848
Kester/Brown	NSF OCE-80-22989
McCarthy	NSF OCE-80-22990
Nel son	NSF OCE-80-17269-01
Raman	NSF OCE-81-17562
Smayda/Hitchcock	NSF OCE-80-17272
Yentsch	NASA grant NAG 6-17, Suppl. 1
	from Wal1ops F1ight Center

IV. Scientific Party

Dr. James J. McCarthy
Mr. Mark Altabet
Mr. Joseph Montoya
Ms. Cara Adler
Dr. Dana Kester
Dr. Alfred Hanson
Dr. Mary Brown
Dr. Richard Zueh1ke
Mr. Peter Bates
Ms. Carole Sakamoto-Arno1d
Mr. Jan Szelag
Dr. Tim Cowles
Ms. Nancy Copley
Dr. Gary Hitchcock
Mr. Christopher Langdon
Mr. Tracy Villareal
Dr. Hugh Dack1ow
Ms. Sue Hill
Dr. Mike Roman
Ms . Sarah Liboure1
Mr. Dave Phinney
Mr. Jack Laird
Dr. Dave Nelson
Mr. Mark Brzezinski
Mr. Rick Gould
Mr. Dana Wiese

V. Ship's Officers and Crew

Emerson H. Hiller
David F. Castles
John E. Sweet, Jr.
David H. Megathlin
Ernest G. Smith
Frank D. Tibbetts
Edward R. Broderick
Peter M. Flaherty
Wayne A. Bailey
Edward F. Graham
Thomas M. Macedo
Stephen W. Cotter
Joseph A. Nickowal
Emelio Soto
Harry E. Oakes
David L. Hayden
John S. Hurder
Harry Rougas
Harry F. Clinton
Herman Wagner
Peter P. Reilly
John M. Gassart
Gilberto R. Garcia
Stephen S. Bates
Robert P. Martin

Master
Chief Mate
2nd Mate
3rd Mate
Radio Officer
Boan
A.B.
A.B.
A.B.
O.S.
0.S.
O.S. (Dayman)
O.S.

Chief Engineer
1 st Asst Engineer
2nd Asst Engineer
3rd Asst Engineer
Electrician
Oiler
Oiler
Oiler
Steward
Cook
Messman
Messman

VI. Scientific Narrative

During the 18 days of KNORR 097 we occupied 16 stations. The policy of station designation and the coding of operation numbers followed the procedure established during KNORR 093. A station number was assigned for each location during continnous station work. For some stations the locations were fixed geographic positions, while for others they changed in time as we maneuvered to track a drogued booy. Operation numbers took the form KNmmdd.ss, where $K N$ is an abbreviation for KNORR, modesignates month, dd is for day, and ss indicates the sequence of the operations for any day beginning with 01 at 0000 hr. each day. All operations are listed chronologically in Table 1.

Station position abbreviations are as follows: SLOPE= Slope Water, DRFIR= Loran or Satellite drifter, $\operatorname{SECTN}=$ series of stations along a cross section of the ring, $\mathrm{SGASO}=$ Sargasso Sea, GSIRM= Gulf Stream, RNGCT= ring center position determined without the benefit of drifter position, and $E N I R N=$ western entrainment feature. The descriptors, the names of operations, are self-explanatory.
$X B T$'s were taken during several periods of the cruise to define the temperature structure of the Ring. These are summarized in Table 2. All XBT's were Sippican T-7's giving profiles to greater than 750 meters. Table 2 gives the time, month and day (GNT) position, surface bucket temperature, and the depths in meters of three selected isotherms, 15,10 and 6 degrees Celcius. The surface salinity data for XBTs are given in Table 3.

Cowles: Zooplankton Feeding and Reproduction. Work was done in four major hydrographic regimes - Slope Water, Sargasso Sea, Gulf Stream, and within warm core rings $82-B$ and $82-E$. The experiments with macrozooplankton focussed on the feeding and egg production rates of the dominant copepods. Additional experiments were done to estimate the grazing rates of microzooplankton.

The distribution of particulate matter in the upper 100 m was determined at most stations with an electronic particle counter.

The vertical distribution of small zooplankton was determined using the $1 / 4 \mathrm{~m}$ MOCNESS, in collaboration with M. Roman.

The following table provides a summary of the work completed during KNORR 97.

Activity	SLOPE	SARGASSO	G.S.	$82-\mathrm{B}$	$82-\mathrm{E}$
Feeding Expts	-	-	1	4	8
Egg Prod Expts	-	-	-	5	6
Part. Profiles	1	1	-	2	8
Microzoo Expts	1	-	-	2	8
MOC $1 / 4$ Tows	1	1	-	3	5

General Comments: The macrozooplankton in the upper 100 meters of ring $82-\mathrm{B}$ had changed considerably since our June visit to this ring. The composition of the plankton resembled that found in the Gulf Stream, with few species present which had dominated daring the June cruise. The rapidly changing hydrographic structure of ring $82-B$ made it difficult to acquire consistent rate measurements with the macrozooplankton.

In contrast, the macrozooplankton in ring $82-E$ resembled the plankton commulty seen earlier in ring $82-\mathrm{B}$ and in ring $81-\mathrm{D}$, with the copepods Eucalanus elongatus, Nannocalanus minor, and Scolecithrix danae quite abundant in the upper 100 m . Unlike the early months of $82-B, 82-E$ does not seem to have a substantial mumber of cold-water species present in the ring center plankton community. This could be a consequence of season of formation, as the summer Slope Water plankton commonity does differ from the winter populations which are entrained in 82-B.

Duck1ow: On KN097, most of our work was concentrated in Ring 82E, with other experiments in 82 B , and cooperative work in the Sargasso Sea. During this cruise we extended our ${ }^{3}$ H-thymidine incorporation studies to include all SI DEEP casts, with the objective of examining bacterial production around the 0_{2} minimum. As in previous cruises we collected bacterial abundance and production data on all productivity casts.

Other experiments performed included our contimaing studies of factors influencing bacterial growth in mamended seawater: several investigations of ${ }^{3} \mathbb{H}$ thymidine incorporation associated with Trichodesmium, and our participation in the copper addition experiments. We also tried to complete an experiment designed to examine coupling among phytoplankton, bacteria, microzooplankton grazers, and ammonia regenerators, but CID problems aborted the effort. We hope to try again next time.

On the radial section study of $82-E$ we again collected a full set of abundance and rate data for the shallow casts, and in addition collected abundance data for the entire deep series of casts.

Gould (Fryxe11): Quantitative samples were collected from twelve stations - seven during a complete transect of ring $82-\mathrm{E}$, two ring center stations in $82-\mathrm{B}$, one Gulf Stream station, one Sargasso Sea station, and two $82-E$ ring center stations. Water was collected from six depths at the transect stations, and from generally nine depths elsewhere. This yields a total of 144 discrete samples, with daplicates of most. One hmdred fifty nine filtered samples were collected from nine stations for a scanning electron microscope study of the nanoplankton. Eighty isolations of diatoms and dinoflagellates were made from the twenty net hanls. The preserved material from these net hauls will be used to create permanent light and scanning electron microscope mounts to aid in the identification of the phytoplankton species. The $1 / 4$-MDCNESS samples were collected at six stations in an attempt to describe and enumerate the phytoplankton in the chlorophyll maximum and surface layers.

Several general comments can be made from the preliminary microscope work performed during the cruise. In ring $82-B$ in June, a common constituent of the flora was Dinophysis tripos, a dinoflagellate. This species was very rare in $82-\mathrm{B}$, or at any station, during this cruise. Diatoms of the genus Rhizosoleria and chain-forming diatoms of the genera Nitzschia, Chaetoceros, and Hemiaulus were common in ring $82-\mathrm{B}$, and in the Sargasso Sea and Gulf Stream as we11. During the June occupation of $82-E$ ring center, Thalassiosira colonies were extremely abundant, particularly below 20 meters or so in the water column. These macous colonies were still present upon our return to $82-\mathrm{E}$ ring center following our transect, but there was a decrease in abundance.

Kester and Hanson: A series of chemical investigations were carried out in Warm Core Rings $82-\mathrm{B}, 82-\mathrm{E}$, the Slope Water, the Gulf Stream, and the Sargasso Sea. Nutrient samples were obtained during 41 operations at each major station. Approximately 475 samples were analyzed onboard for nitrate, nitrite, phosphate, and silicate. These results provided information for the motrient concentrations at the productivity casts, the deep CTD casts, the silica deep casts, and the radial transect stations. About 30\% of the matrient data were processed into tabular and graphical form for initial interpretations of the results.

Oxygen measurements were made on selected samples from the CID casts to provide calibration data for the in situ oxygen sensors. A microcomputer-controlled Winkler titration system was used for these analyses. Salinity samples were also processed on the AutoSal for calibration of the in situ conductivity sensor and for the surface salinity samples collected in association with the XBT data.

The antomated trace metal preconcentration system and shipboard atomic absorption spectroscopy analyses yielded a substantial amount of information. The emphasis during this cruise for the automated preconcentrator was placed on extractions and analyses of dissolved manganese in ocean water. This work complements other studies on copper concentrations and speciation and the response of phytoplankton and bacteria to trace metals.

The second aspect of the trace metal studies was concerned with several operationally defined measurements of copper species concentrations. Dissolved copper was partitioned into organically bound (retained by C_{18} reverse phase liquid chromatography, C_{18}-RPLC, and elated with methanol), 'silica labile' (retained by C_{18}-RPLC and eluted with an aqueous acid), electrochemically labile (anodic stripping voltometry
at pH 8). Total dissolved copper samples were also collected for analysis offshore. The samples processed by $C_{18}-$ RPLC were analyzed using the onboard atomic absorption spectrophotometer. Approximately 250 samples were collected for copper measurements from the deep CID, the productivity and the radial section casts.

Dissolved organic matter was isolated by C_{18}-RPLC from large volumes of seawater (approx. 50 1) collected from ring center waters (three from the chlorophyll maximum and one from the α_{2} minimum, approx. 550 m). This organic matter will be further characterized by high performance liquid chromatography and employed in laboratory experiments on copper complexation by organic ligands.

Two experiments were condacted to evaluate the sensitivity of Sargasso Sea and warm core ring center phyto-, bacterio plankton to dissolved copper. Seawater collected from the chlorophyll maximum was incubated with increasing levels ($1-130 \mathrm{mmole} / \mathrm{kg}$) of added dissolved copper in each of these experiments. Various biological rate and biomass measurements (${ }^{14} \mathrm{C}$ productivity, silica uptake, ammonia uptake, thymidine uptake, ATP and chlorophy11) were carried out by other WCR program investigators. Copper speciation measurements (ASU, C_{18}-RPLC) were made on similarly incubated samples. A time series experiment at natural and one higher copper addition level (approx. 8 mole $\mathrm{Cu} / \mathrm{kg}$) was also conducted.

Surface water samples were collected from the Zodiac at locations away from the ship in order to evaluate the cleanliness of the Rosette-Go-Flo bottle sampling systems for trace metals.

These chemical studies were carried out by Peter Bates, Mary Brown, Alfred Hanson, Dana Kester, Carole Sakamoto-Arnold, and Richard Zuehlke.

McCarthy: The primary objective of this work was to elucidate the role that nitrogenous mutrition of the phytoplankton plays in the evolution of the populations contained within wam core rings. At all of the productivity stations we sampled six depths within the euphotic zone at three times during the day: first light, midday, and late night, to determine water column properties and collect material for experiments. We measured the concentrations of amonium and urea, and held additional samples for eventual determination of particulate carbon, nitrogen, and phosphorus. Nitrogen-15 labelled ammonim, urea, and nitrate and phosphorus-33 labelled phosphate were added to samples from each of these depths, which were subsequently incubated under simulated in situ conditions on deck, for the determination of nutrient uptake rates. On the ring transect stations we collected samples from 12 depths for particulate carbon, nitrogen, and phosphorus determinations. At several stations we collected samples for eventual determination of nitrogen-15 natural abundance. We participated in the copper addition experiment described by Hanson and the Trichodesmium experiments described by Raman.

Nelson: Silicon cycling studies. In the Gulf Stream water overlying the remnants of ring $82-\mathrm{B}$ we measured the concentration of biogenic and mineral particulate silica and production and dissolution rates of biogenic silica. Biogenic and mineral particulate silica concentrations and biogenic silica dissolution rates were measured at 15 depths from the surface to 600 m (i.e. into the ring thermostad). Production rates were measured at 9 depths in the upper 100 m . Concentrations and production rates were measured day and night. We also performed biogenic silica size fractionation experiments (concentration and production rates $\langle 10 \mu, 10-64 \mu$ and $>64 \mu$ size fractions) and joined Hanson, Hitchcock, McCarthy and Ducklow in an experiment on the effects of copper on rates of phytoplankton and microbial processes (this last experiment performed in the Sargasso. Sea).

We then proceeded to ring $82-E$, a young and clearly defined wam core ring. We again made day and night measurements of biogenic silica production rates and concentrations of mineral and biogenic particulate silica in the upper waters (to 100 m) plus a single profile of concentration and dissolation rates from the surface to 700 mat ring center. We repeated this full suite of observtions four days later, just before departing from the ring.

During the intervening four days we conducted a cross section of the ring similar to those done in ring $82-B$ in June. We measured concentrations of mineral and biogenic particulate silica at 17 depths in the upper 800 m at 7 stations in a $N W$ to SE transect of the ring. A considerable number of other hydrographic, nutrient and biamass parameters were measured along this same transect. We also conducted sizefractionation studies at the center of ring $82-E$ similar to those in the Gulf Stream water overlying the sparse remnants of what once was ring $82-B$, and copper addition experiments similar to that performed with others in the Sargasso Sea.

Approximately 80 clones of various diatom species were isolated from ring center in the upper 20 m mixed 1 ayer of ring 82-B. An additional 200 clones were isolated from the mixed layer in the center of ring $82-E$. Studies concerning the mutrient physiology of these clones will be performed in the laboratory.

Enrichment experiments to ascertain whether various nutrients were limiting diatom growth in $82-E$ and $82-B$ were conducted. Subsamples collected from the various treatments were preserved for cell counts.

Phinney and Laird (Yentsch): A total of 23 operations were completed to characterize bio-optical properties of seawater in Ring 82-B, Sargasso Sea, Gulf Stream, Ring 82-E and Slope water. These operations break down to:

13 vertical pump profiles of chlorophyl1, fucoxanthin and phycoerythrin fluorescence; temperature and salinity to 110 meters.
5 Four channel photometer profiles to determine K_{T}, the total attenuation coefficient, at $440,520,550$ and 670 mm .
4 Spectral transmissometer profiles to 75 m to determine alpha, the inherent property of seawater representing scattering and absorption, at $450,491,550,585$ and 631 nm .
1 Total scalar inadiance profile. Flooding of the remote sensor for total scalar inadiance prohibited its further use.

Fifty fluorescence excitation/emission spectra were produced to evaluate spectral signatures of the particulate material for eleven pump profiles.

Underway data of pigment flnorescence, temperature, salinity and transmission of surface water and incident solar inadiance were collected continuously from +2 hours Woods Hole departure 7 August 1982 to Vineyard Sound 24 August 1982, constituting approximately 385 hours of data logged on the Woods Hole SAIL system at minate intervals. Two hmdred and fifty chlorophyll calibration samples were collected, with duplicate samples exhibiting $+/-1.0 \%$ precision.

Roman: WCR 82-B. General impressions: Gulf Stream zooplankton were overlying Slope and Sargasso Sea plankton. Variability in water colum characteristics was greater than in previous rings. MDC- $1 / 4$ night tow caught greater than 50% more
zooplankton in surface 100 m than the day tow, however it is just as likely to be a different water mass as a consequence of vertical migration. Gelatinous zooplankton which were so abundant in $82-\mathrm{B}$ during the June cruise were few or absent.

Work done: We took MOC-1/4 day/night tows (0 to 200 m in 25 m increments) and a tow-yo from 0 to 50 m (8 replicates). Zooplankton were collected by pump from $100-70,70-50,50-30,30-10,10-0 \mathrm{~m}$.

Shipboard grazing experiments, day/night, were conducted for $\rangle 333 \mu \mathrm{~m}$; $\langle 333 \mu \mathrm{~m}$; $>64 \mu \mathrm{~m}$ factions. Samples were collected for POC, PON, protein, carbohydrate, lipid, chlorophyll ($>3 \mu \mathrm{~m} ;>0.22 \mu \mathrm{~m}$), analyses and bacteria counts (free and attached). Three in situ zooplankton grazing experiments were conducted.

In the Sargasso Sea we collected samples with the MOC-1/4 (0 to $200 \mathrm{~m} ; 25 \mathrm{~m}$ increments), conducted in situ incubations ($0,11,22,33,35,76 \mathrm{~m}$), and collected zooplankton by pump from $110-70,70-50,50-30,30-10,10-0$.

We condacted Trichodesmium experiments to compare glass vs. polycarbonate incubations flasks with 6 each at 60% light ($8 / 10 ; 8 / 12$). We also 1 ooked at the effect of different concentrations of phosphate additions and ammonium additions.

WCR 82-E. General impressions: The zooplankton were most like those in 82-B in Apri1. Much Trichodesmium was present at both the surface and at 70 m . Protozoa were abundant (forams, radiolarians, tintinids). The greatest number and biomass of zooplankton was between 50 to 25 m , and were dominated by calanoid copepods. The copepods collected from this depth had full guts and those species which carried eggs had them.

Work done: $8 / 16-8 / 17 / 82$ Ring Center: Zooplankton were collected by pump ($110-70,70-50,50-30,30-10,10-0 \mathrm{~m}$) and we took MOC-1/4, day/night tows, and a tow yo ($0-80 \mathrm{~m}, 8$ replicates). Shipboard feeding experiments were conducted, day/night, with water collected from 30 m for POC, PON, protein, carbohydrate, lipid, bacteria (free/attached), and chlorophyll ($>3 \mu \mathrm{~m},>0.22 \mu \mathrm{~m})$. In situ grazing experiments were condacted $(0,12,24,35,59,81 \mathrm{~m})$.

8/20-8/21/82 Ring Center: Zooplankton were collected by pamp (radial station \#7) and we took MOC-1/4, day/night tows (200 m to 0 m with 25 mincrements). Shipboard feeding experiments were conducted as on $8 / 16$. In situ grazing experiments were conducted $(0,7,15,22,36,50 \mathrm{~m})$. Biochemical fractionation of ${ }^{14} \mathrm{C}$ into phytoplankton (30 m) and zooplankton ($>333 \mu \mathrm{~m},>64 \mu \mathrm{~m}$) was conducted for protein, carbohydrate, lipid, and low molecular weight fractions over time.

On radial transect stations zooplankton were collected from Yentsch's pump from $110-70,70-50,50-30,30-10,10-0 \mathrm{~m}$ for biamass and species enumeration.

Smayda and Hitchcock: On KNORR 97 our component was represented by Hitchcock, Langdon and Villareal. Our primary work was to determine rates of primary production and the biamass, as chlorophy11 a and ATP, for phytoplankton between the 100% and 0.1% isolume depths. In addition to the three regular productivity stations (one at $82-B$, two at $82-E$) occupied, we conducted two productivity stations on size-fractionated material with D. Nelson to establish rates of net- and nannoplankton C and Si-uptake. One of these stations was at $82-B$ and the other at the Sargasso Sea. Langdon did ATP analyses on material collected from the 'deep Si'
cast (to 700 m) for estimates of sub-euphotic zone microplankton biomass. Chris also routinely measured dissolved O_{2} profiles from the euphotic zone and deep water casts; an attempt was made to measure respiration in water collected from the O_{2} minimum. Langdon and Villareal conducted dilution growth-rate experiments with T. Cowles at each of the seven stations occupied during the radial transect of $82-E$. Additional measurements made by our group during the $82-E$ transect were 'potential productivity' (${ }^{14}$ C-based production measurements for the 4 shallowest depths); chlorophyll a and ATP biomass on net- and nannoplankton $(\langle 10 \mu)$ samples from the shallowest 6 depths. Villareal analyzed chlorophyll a from the $1 / 4$ MOCNESS tows of Cowles and Roman to establish netplankton ($>64 \mu$) chlorophy11 abundance in the upper 200 m . Preliminary analysis shows marked differences in day-night tows from the same location. He made 3 growth rate measurements on natural populations incubated in diffusion chambers and dialysis sacs (on-deck growth chambers). He attempted 127 isolations of diatoms (57 isolates in 82-E, 24 in the Sargasso Sea and 46 in $82-B$). Hitchcock conducted five experiments to determine the 1 inear rate of ${ }^{14} \mathrm{C}$ uptake in natural phytoplankton; two of these rate experiments provided material to be analyzed ashore for a measure of solvent-extracted polymers (lipids, polysaccharides and proteins). One experiment was done in conjunction with Ducklow and Roman to estimate carbon-based rates of production for bacteria, phytoplankton and micro-zooplankton. Two series of incubations were done with Raman (one in slope water, one at $82-\mathrm{E}$) to determine the diel variation in ${ }^{14} \mathrm{C}$-1abelled polymers (1ipids, polysaccharides, proteins) in phytoplankton and micro-zooplankton. A series of Cu addition-experiments was done with Hauson to assess the potential susceptability of Sargasso Sea and 'ring center' (82-E) phytoplankton to Cu toxicity.

WARM CORE RING CRUISE 0807-0824 1982

TABLE 1
KN-097 OPERATION LOG

PAGE \# 1

OP. NO.	TIME	STA	LOCAT.	LAT.	LaNG.	INVESTGR	DESCRIPT	CTD \#
KN0809.01	0405	1	RNGCT	3637.2	7347.5	KESTER	5L CTD	1
KN0809.02	0730	1	RNGCT	. 3637.2	7347.5	COFLES	30L NISKIN	
KN0809.03	0735	1	RNGCT	3637.2	7347.5	ROMAN	LIVE Tow	
KN0809.04	0830	1	RNGCT	3637.2	7347.5	нITCHC0сх	30L NISKIN	
EN0809.05	1000	1	RNGCT	3637.0	7348.1	PHINNEY	TOT IRRAD	
EN0809.06	1102	1	RNGCT	3637.1	7348.5	PHINNEY	4 CHAN LT	
KN0809.07	1220	1	RNGCT	3637.4	7349.1	PHINNEY	PUMP PROFL	2
KN0809.08	1400	1	RNGCT	3637.3	7349.2	COWLES	1/4 MOC	
KN0809.09	1546	1	RNGCT	3635.7	7341.1	GOULD	1/4 MOC	
KN0809.10	1636	1	RNGCT	3634.9	7347.0	GOULD	LIVE TOW	
KN0809.11	2045	1	RNGCT	3638.4	7348.1	ROMAN	30L NISKIN	
KN0809.12	2100	1	RNGGCT	3638.4	7348.1	ROMAN	LIVE TOW	
[N 0809.13	2215	1	RNGCT	3638.5	7348.1	DUCKLOW	NT PROD I	4
[K 0809.14	2307	1	RNGCT	3638.6	7348.1	ducklow	NT PROD II	5
[N 0809.15	2345	1	RNGCT	3638.6	7348.1	GOULD	$1 / 4 \mathrm{MOC}$	
KN0810.01	0010	1	RNGCT	3638.6	7348.1	CONLES	1/4 MDC	
KN0810.02	0505	1	RNGCT	3636.5	7348.6	нItchoocx	FL PROD I	6
KN0810.03	0553	1	RNGCT	3635.4	7348.5	нITCHо0сх	FL PROD II	7
KN0810.04	0735	1	RNGCT	3636.9	7348.3	NELSON	SI DEEP	8
$\mathbb{K} 0810.05$	0930	1	RNGGCT	3638.1	7348.2	PHINNEY	ALPHA MIR	
KN0810.06	1114	1	RNGCT	3639.2	7347.8	DUCKLO	M P PROD I	9
KN0810.07	1209	1	RNGCT	3639.6	7347.6	HITCHOOCK	MD PROD II	10
KN0810.08	1245	1	RNGCT	3639.6	7347.6	ROMAN	IN SIT GRE	
KN0810.09	1400	1	RNGCT	3640.4	7347.6	GOULD	VERT TOW	
区N0810.10	1446	1	RNGCT	3640.8	7347.7	BRZEZINSKI	VERT TOW	
KN0810.11	1605	1	RNGCT	3638.1	7347.4	HANSON	5L CTD	11
KN0810.12	1950	1	RNGCT	3639.2	7346.8	GOULD	HORIZ TOW	
KN0810.13	2051	1	RNGCT	3640.2	7347.0	ROMAN	VERT TOW	
KN0810.14	2104	1	RNGCT	3640.2	7347.2	COFLES	30L NISKIN	
KN0810.15	2114	1	RNGCT	3640.5	7347.2	COWLES	VERT TOW	
KN0810.16	2212	1	RNGCT	3640.4	7347.3	COWLES	1/4 MOC	
KN0811.01	0609	2	RNGCT	3638.4	7347.7	HITCHCOCK	FL PROD	12
KN0811.02	1400	3	RNGCT	3655.1	7342.8	BRZEZINSKI	VERT TOW	
EN0811.03	1424	3	RNGCT	3655.3	7342.2	COWLES	30L NISKIN	
KN0811.04	1432	3	RNGCT	3655.4	7342.0	COWLES	VERT TOW	
KN0811.05	1550	3	RNGCT	3655.4	7342.0	VILlareal	HORIZ TOW	
EN0811.06	1555	3	RNGCT	3655.1	7341.3	GOULD	1/4 MOC	
KN0811.07	1630	3	RNGCT	3655.1	7341.3	BROWN	30L CTD	13
[N 0811.08	2052	3	PNGCT	3655.1	7342.4	COFILES	30L NISEIN	
KN0811.09	2104	3	RNGCT	3655.1	7342.5	COWLES	VERT TOW	

TABLE 1 (contimed)

KN-097 OPERATION LOG

PAGE \# 2

PAGE \# 3

OP. NO.	TIME	STA	LOCAT.	LAT.	LONG.	INVESTGR	DESCRIPT	CID \#
KN0817.01	0501	8	RNGCT	4012.3	6117.1	HITCHCOCX	FL PROD 0	24
KN0817.02	0548	8	RNGCT	4012.3	6117.1	HITCHCOCX	FL PROD I	25
KN0817.03	0630	8	RNGCT	4012.3	6117.1	HITCHCOOX	FL PROD II	26
KN0817.04	0720	8	RNGCT	4010.6	6119.1	NELSON	SI DEEP	27
KN0817.05	0851	8	RNGCT	4010.8	6120.6	COWLES	30L NISKIN	
KN0817.06	0902	8	RNGCT	4010.7	6121.2	COWLES	VERT TOW	
KN0817.07	0958	8	RNGCT	4010.7	6121.2	ROMAN	IN SITU GRZ	
KN0817.08	1000	8	RNGCT	4010.7	6121.2	PHINNEY	4 CHAN LT	
KN0817.09	1123	8	RNGCT	4012.0	6123.2	HITCHCOCX	MD PROD I	28
KN0817.10	1223	8	RNGCT	$40 \quad 12.5$	6123.7	HITCHCOCX	MD PROD II	29
KN0817.11	1315	8	RNGCT	4012.5	6123.7	PHINNEY	4 CHAN LT	
KN0818.01	0007	9	SLOPE	4094.9	6149.9	ROMAN	1/4 MDC	
KN0818.02	0108	9	SLOPE	4050.0	6149.5	GOULD	1/4 MDC	
KN0818.03	0145	9	SLOPE	4049.3	6149.2	KESTER	5L CTD	30
KN0818.04	0600	9	SECIN	$40 \quad 50.2$	6149.6	PHINNEY	PUMP PROFL	31
KN0818.05	0725	9	SECIN	$40 \quad 50.2$	6149.6	GOULD	VERT TOW	
KN0818.06	0743	9	SECTN	$40 \quad 50.2$	6149.8	DUCXLOW	30 LCTD	32
KN0818.07	1104	10	SECIN	$40 \quad 34.2$	6134.3	PHINNEY	PUMP PROFL	33
KN0818.08	1236	10	SECTN	4037.0	6128.6	GOULD	VERT TOW	
KN0818.09	1309	10	SECIN	4037.0	6127.0	NELSON	30L CID	34
KN0818.10	1604	11	SECTN	4025.0	6127.1	PHINNEY	PUMP PROFL	35
KN0818.11	1746	11	SECIN	$40 \quad 25.8$	6124.5	GOULD	VERT TOW	
KN0818.12	1847	11	SECIN	4026.5	6122.5	NELSON	30L CID	36
KN0819.01	0713	12	SECIN	3942.5	6053.9	PHINNEY	PUMP PROFL	37
KN0819.02	0858	12	SECIN	3941.2	6056.6	GOULD	VERT TOW	
KN0819.03	0926	12	SECIN	3941.1	6057.2	NELSON	30L CTD	38
KN0819.04	1202	13	SECIN	3948.9	6104.7	HITCHCOCK	30L CID	39
KN0819.05	1316	13	SECIN	3947.4	6107.5	GOULD	VERT TOW	
KN0819.06	1349	13	SECTN	3946.9	6108.9	PHINNEY	PUMP PROFL	40
KN0819.07	1617	14	SECTN	3953.3	6112.7	DUCKLOW	30L CID	41
KN0819.08	1712	14	SECIN	3952.5	6113.9	GOULD	VERT TOW	
KN0819.09	1756	14	SECIN	3951.7	6115.2	PHINNEY	PUMP PROFL	42
KN0820.01	0625	15	SECTN	4017.8	6120.9	DUCKLOW	30L CID	43
KN0820.02	0722	15	SECIN	4017.8	6120.2	GOOLD	VERT TOW	
KN0820.03	0838	15	SECIN	4017.7	6120.2	PHINNEY	PUMP PROFL	44
KN0820.04	1008	15	RNGCT	4017.2	6118.4	ROMAN	30L NISKIN	
KN0820.05	1016	15	RNGCT	4017.1	6118.6	COWLES	VERT TOW	
KN0820.06	1050	15	PNGCT	4017.0	6119.0	HANSON	30L CTD	45
KN0820.07	1130	15	RNGCT	4017.1	6119.4	PHINNEY	ALPHA MIR	
KN0820.08	1353	15	RNGCT	4018.6	6118.0	PHINNEY	4 CHAN LT	
KN0820.09	1447	15	RNGCT	4018.8	6117.0	GOULD	MOC 1/4	
KN0820.10	1515	15	RNGCT	4018.0	6116.3	COWLES	MOC 1/4	
KN0820.11	1640	15	RNGGCT	4011.3	6120.5	KESTER	CID YOYO	46
KN0820.12	2116	15	RNGGCT	4009.0	6119.8	OOWLES	30L NISKIN	
KN0820.13	2140	15	RNGGCT	4009.0	6118.9	COWLES	VERT TOW	

TABLE 1 (contimed)
KN-097 OPERATION LOG

PAGE \# 4

OP. ND.	TIME	STA	LOCAT.		AT.	LONG.	INVESTGR	DESCRIPT	CID \#
KN0820.14	2208	15	RNGCT	40	09.3	6120.6	ROMAN	MOC 1/4	
KN0820.15	2328	15	RNGCT	40	06.5	6121.0	GOULD	MOC 1/4	
KN0821.01	0000	15	RNGCT	40	05.5	6120.9	COWLES	VERT TOW	
KN0821.02	. 0148	15	RNGCT	40	06.0	6122.3	BROWN	5L CID	47
KN0821.03	0519	15	RNGCT	40	05.8	6123.8	DUCXLOW	FL PROD I	48
KN0821.04	0610	15	RNGCT	40	05.9	6123.7	DUCKLOW	FL PROD II	49
KN0821.05	0700	15	RNGCT	40	06.2	6123.6	ROMAN	30L NLSKIN	
KN0821.06	0714	15	RNGCCT	40	06.2	6123.6	NELSON	SI DEEP	50
KN0821.07	0949	15	RNGCT	40	06.7	6122.1	GOULD	HORIZ TOW	
KN0821.08	1128	15	RNGCT	40	06.7	6122.1	NELSON	MD PROD I	*
KN0821.09	1224	15	RNGCT	40	08.5	6120.4	HITCHEOCK	MD PROD II	51
KN0821.10	1310	15	RNGCT	40	08.5	6120.4	ROMAN	IN SITU GRZ	
KN0821.11	1415	15	RNGCT	40	08.5	6120.3	ROMAN	OBLIQUE TOW	
KN0821.12	1524	15	PNGCT	40	08.3	6116.9	HANSON	30L CTD	52
KN0821. 13	2231	16	RNGCT	39	35.5	6111.3	HITCHOOCX	NT PROD I	53
KN0821.14	2318	16	RNGCT	39	31.3	6113.9	HITCHOOCK	NT PROD II	54
KN0821.15	2338	16	RNGCT	39	33.4	6114.7	COWLES	30L NISKIN	
KN0821.16	2344	16	RNGCT	39	33.1	6115.2	COWLES	VERT TOW	

* FOR OPERATION KN0821.08 THE AQUI SYSTEM WAS NOT RUNNING. JAN HAS A CASSETTE RECORDING FOR THE CTD INFORNATION FROM THIS CAST, BUT HE DID NOT LOG IT AS A REGULAR CTD \#. IN THE BRIDGE RECORDS THIS CAST WAS LABELLED AS CTD \#52, AND SUBSEQUENT CTD CASTS ARE +1. WHEN THIS TAPE IS PROCESSED, IT WILL BE LABELLED AS CTD \#55.

KN-097 XBT SUMMARY

TABLE 2
PAGE \# 1

XBT\#	TLME-GMT	DA/MO	LATTTUDE	LONGITUDE	BUCXET T	Z-15	Z-10	Z-06
							60	235

EN-097 XBT SUMMARY

TABLE 2 (continued)
PAGE \# 2

XBT\#	TLME-GMT	DA/MO	LATITUDE	LONGITUDE	BUCXET T	Z-15	Z-10	z-06
051	0230	12/08	3649.46	7341.93	27.6	292	383	560
052	0300	12/08	3645.00	7341.87	27.4	180/235	365	540
053	0330	12/08	3640.56	7341.89	27.5	210	340	540
054	0400	12/08	3635.77	7342.00	28.1	212	355	510
055	0430	12/08	3631.41	7342.04	28.2	205	340	480
056	0500	12/08	3627.13	7341.70	28.2	210	305	440
057	0530	12/08	3626.48	7338.88	28.3	248	350	465
058	0600	12/08	3629.44	7332.64	28.7	311	433/438	566
059	ABORTED							
060	0630	12/08	3632.73	7324.57	28.2	351	493	547
. 061	MALFUNCI	TION						
062	MALFUNCI	TION						
063	0730	12/08	3638.65	7324.30	27.9	310	455	619
064	0800	12/08	3642.46	7328.92	28.3	280	441	613
065	0830	12/08	3646.31	7333.80	28.3	198/310	198/310	594
066	0900	12/08	3650.06	7338.56	27.4	276	383	554-8
067	0930	12/08	3653.80	7341.10	27.3	284	385	559
068	1003	12/08	3655.45	7342.94	27.4	285	375	545
069	1233	12/08	3657.99	7341.01	27.3	290	395	550
070	1634	12/08	3655.05	7342.19	28.0	280	375	545
071	2000	12/08	3654.72	7343.42	27.9	249	370	570
072	0000	13/08	3657.15	7330.72	27.5	308	390	521/523/549
073	0400	13/08	3637.62	7302.88	28.2	358	515	670
074	0604	13/08	3621.37	7238.31	28.0	410	687	-
075	0702	13/08	3613.65	7227.33	27.5	500	735	-
076	0800	13/08	3605.11	7216.13	27.2	580	-	-
077	0900	13/08	3556.45	7205.60	27.0	610	-	-
078	1000	13/08	3548.26	7155.65	27.0	650	-	-
079	1035	13/08	3544.32	7151.52	27.4	650	-	-
080	1235	13/08	3544.19	7151.91	27.4	685	-	-
081	1608	13/08	35.39 .91	7153.06	27.8	655	-	-
082	0800	15/08	3754.84	6502.32	23.7	110	330	530
083	ABORTED							
084	0905	15/08	3259.31	6448.90	24.0	120	345	600
085	1000	15/08	3801.30	6436.80	23.4	112	350	600
086	1100	15/08	3806.01	6422.00	26.8	254	453	684
087	1124	15/08	3810.05	6416.00	27.0	318	520	760
088	1158	15/08	3814.50	6404.20	27.3	435	595	-
089	1220	15/08	3817.06	6403.38	27.0	440	606	800(7)
090	1240	15/08	3821.80	6403.20	27.0	405	570	
091	1300	15/08	3826.30	6403.00	27.0	422	580	-
092	1321	15/08	3830.20	6404.39	27.0	364	565	775
093	1606	15/08	3844.93	6358.85	27.0	382	550	753
094	ABORTED							

EN-097 XBT SUMMARY

TABLE 2 (continued)
PAGE \# 3

XBT\#	TIME-GMI	DA/M0	LATITUDE	LONGITUDE	BUCXET T	Z-15	Z-10	z-06
095	0358	16/08	3929.33	6255.39	26.7	625	-	-
096	0759	16/08	3948.74	6205.61	26.6	170	420	725
097	0900	16/08	3955.50	6155.14	24.4	170/190	395	676
098	1000	16/08	4002.00	6144.90	23.5	325	501	727
099	1100	16/08	4009.50	6134.50	25.0	370	557.	-
100	1200	16/08	4016.10	6124.00	24.5	405	593	-
101	1300	16/08	4017.40	6112.20	24.0	419	600	-
102	1400	16/08	4017.02	6106.75	24.9	412	580	-
103	0410	17/08	4013.84	6117.04	25.0	430	615	-
104	0800	17/08	4013.90	6114.30	24.7	405	615	800
105	1600	17/08	4012.16	6123.70	25.0	395	590	-
106	2000	17/08	4017.80	6127.04	25.1	410	594	-
107	2100	17/08	4028.98	6124.57	25.4	278	348	-
108	2200	17/08	4039.17	6123.04	26.0	297	450	698
109	2300	17/08	4043.15	6119.85	25.0	298	253	303
110	0000	18/08	4035.48	6108.71	23.7	330	505	703
111	0100	18/08	4037.35	6117.46	25.3	306	480	710
112	0200	18/08	4041.68	6128.34	25.1	218	400	657
113	0303	18/08	4046.09	6139.55	23.7	131	330	610
114	0402	18/08	4049.95	6150.00	23.9	36	289	595
115	1330	18/08	4045.00	6143.53	22.7	109	325	590
116	1400	18/08	4041.12	6140.14	22.7	60	214/215/335	611
117	1430	18/08	4037.01	6136.09	23.6	235	400	650
118	1445	18/08	4034.86	6134.97	24.9	280	465	690
119	0103	19/08	4024.19	6105.15	25.0	382	557	755
120	0200	19/08	4022.97	6051.58	24.5	360	520	680
121	0300	19/08	4021.62	6038.56	25.2	255	418	640
122	SKIPPED							
123	0400	19/08	4020.38	6023.37	25.4	120	$330(-10) *$	590(-10)*
124	0419	19/08	4020.21	6020.00	-	108	340	585
125	0500	19/08	4017.40	6027.33	25	145	375	625
126	ABORTED							
127	0606	19/08	4020.86	6040.12	-	280	440 (-7)*	700(-7) *
128	0702	19/08	4008.97	6050.38	-	355	512	725
129	0800	19/08	3957.29	6050.56	-	270	453(+20) *	700(+20)**
130	0900	19/08	3948.10	6051.40	-	120	363(+20)**	645(+20)**
131	1000	19/08	3944.06	6052.36	-	104	370(+20) **	610(+20)**
132	1455	19/08	3942.60	6100.58	25.6	138	382	644
133	1515	19/08	3945.62	6102.36	25.6	182	400	660

[^0]KN-097 XBT SUMMARY

TABLE 2 (cont inued)
PAGE \# 4

XBT\#	TTME-GMI	DA/MO	LATITUDE	LONGITUDE	BUCXET T	Z-15	Z-10	Z-06
134	1535	19/08	3948.60	6103.82	25.1	255	465	690
135	1940	19/08	3949.86	61.13 .00	25.2	313	509	730
136	2000	19/08	3953.08	6112.52	25.3	348	540	748
137	2400	19/08	3956.44	6112.95	25.0	375	570	760
138	0103	20/08	4005.43	6104.65	24.9	372	575	765
139	0209	20/08	4014.78	6056.17	24.8	366	557	720
140	0300	20/08	4021.77	6050.21	24.8	310	495	700
141	0400	20/08	4029.87	6043.38	24.8	250	435	660
142	0513	20/08	4040.82	60.35 .06	23.6	70/95/120	330	580
143	0600	20/08	4037.10	6041.80	23.4	89	357	623
144	0700	20/08	4031.20	6051.30	24.9	295	479	670
145	0800	20/08	4025.80	6101.10	24.8	360	532	713
146		20/08	DUD					
147	0908	20/08	4020.50	6111.90	24.8	373	548	755
148	0957	20/08	4016.58	6120.76	24.2	384	575	-
149	1016	20/08	4017.84	6120.85	24.4	380	576	-
150	2000	20/08	4016.58	6115.41	24.8	320	540	723
151	2040	20/08	4012.02	6120.05	25.7	400	556	-
152	0906	21/08	4005.76	6123.76	25.8	367	514	742
153	1723	21/08	4008.21	6119.11	26.4	372	531	722
154	2001	21/08	4008.11	6116.78	26.3	349	537	700
155	2300	21/08	4001.81	6120.37	26.5	360	538	740
156	2328	21/08	3958.45	6123.46	26.9	363	530	730
157	0011	22/08	3953.79	6129.19	25.7	355	550	-
158	0109	22/08	3946.20	6121.11	-	415	565	-
159	0212	22/08	3936.84	6112.35	-	337	500	735
160	0459	22/08	3937.30	61. 16.20	-	380	553	780
161	0557	22/08	3945.00	6114.50	25.5	400	563	792
162	0657	22/08	3953.22	6111.76	25.5	410	558	820
163	0759	22/08	4002.45	6108.28	25.5	395	540	735
164	0858	22/08	4012.43	6104.12	-	340	500	680
165	1000	22/08	4022.57	6101.00	25.2	283	461	678
166	1100	22/08	4032.88	6100.00	25.2	131	367	585
167	1200	22/08	4026.74	6106.97	25.1	238	426	650
168	1300	22/08	4019.95	6114.64	25.6	228	429	671
169	DUD							
170	1400	22/08	4013.77	6122.24	23.8	181	418	650
171	1515	22/08	4016.12	6137.89	23.5	74/85/100	355-347	515
172	1600	22/08	4017.00	6146.70	23.5	79/112/118	345	600
173	1700	22/08	4017.38	6156.96	21.5	25/36/72/105/113	365	600
174	1820	22/08	4017.44	6205.86	23.5	180	410	660

TABLE 3

PAGE \# 1

XBT\#	SALINITY PPT
029	34.382
030	34.736
032	34.368
033	34.423
035	33.409
036	33.664
037	32.897
040	33.306
045	33.118
049	34.095
050	34.774
051	35.588
053	35.964
054	36.057
055	35.992
056	35.644
057	35.969
058	35.246
060	35.179
063	35.934
064	36.028
065	36.023
066	35.554
067	35.263
068	35.282
069	35.420
070	35.758
071	35.606
072	35.422
073	36.047
074	35.818
075	36.055
076	35.920
077	36.141
078	36.107
079	35.955
080	36.178
081	36.102
084	34.900
085	34.913
086	35.923
087	35.954
088	36.009
089	35.976

TABLE 3 (continued)
PAGE \# 2

090	36.022
091	36.031
092	36.100
093	36.110
095	36.075
096	35.871
097	35.223
098	35.834
099	35.712
100	35.890
101	35.994
102	34.940
104	36.055
105	35.962
106	35.998
107	35.699
108	35.796
109	35.352
110	35.690
111	35.550
112	35.358
113	34.306
114	34.976
115	33.412
116	33.520
117	34.328
118	35.962
132	35.546
133	35.546
134	35.837
135	35.688
136	35.539
137	35.581
138	35.870
139	35.890
140	35.610
141	35.321
142	34.092
148	34.794
149	34.975
150	35.354
151	35.282
152	35.357
153	35.634

Peter H. Wiebe
Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

Contents

I. Cruise Narrative
II. Individual Reports
III. Scientific Observation Log
IV. XBT Digitizing Log

I. CRUISE NARRATIVE

OCEANUS Cruise No. 125, 8/6/82-8/23/82
Peter H. Wiebe
Woods Hole Oceanographic Institution

R/V OCEANUS left port on 6 August as one of three ships participating in the third cruise of a time-series study of Gulf Stream warm core ring 82-B. The other ships in this coordinated study were R/V ENDEAVOR, and R/V KNORR. KNORR's studies of $82-B$ were completed during the first week, and it went to the newly formed warm core ring 82-E for work during the latter portion the cruise. The R/V ALBATROSS IV was also out during this period, but warm core ring 81-G was the focus of their studies. A NASA P-3 aircraft made one overflight of ring $82-B$ while the OCEANUS and ENDEAVOR were in the ring environs, and a second flight over a larger ocean area including the Sargasso Sea and Gulf Stream after these two ships had left the ring area and were in the Gulf Stream and Sargasso Sea respectively.

The overall objective of the scientific research aboard the OCEANUS was to map the ring's horizontal and vertical distributions of zooplankton and micronekton, and to study the vertical distribution of size fractionated particulate matter, chlorophyl1 a, radon, radium 228 , and radium 226. We also studied volume reverberation of sound scatters throughout the region using 12 khz and 50 khz echo-sounders.

We left Woods Hole at 1600 and commenced our now customary XBT transect across the continental shelf just south of the entrance to Vineyard Sound: Our first station was in the Slope Water free of warm core rings around $38.55^{\circ} \mathrm{N}$; $71.40^{\circ} \mathrm{W}$. This station permitted us to check equipment out and to gather data to serve as one reference against which changes in ring properties could be compared. Two test lowerings were made with the Multiple Large Volume Filtration System (MULVFS) to determine the soundness of the electrical conductors which were rebuilt during the last period in port. A day/night pair of MOCNESS-20 (with $20-\mathrm{m}^{2}$ nets) tows, a nighttime neuston tow, a shallow radon cast, a chlorophyll cast, and a test lowering of the double MOCNESS-1 (with $1-m^{2}$ nets) were made during a 24 hour period.

This station was cut short by the need to return to shore to seek medical assistance for scientist Stephen Brandt who had contracted a serious infection of the throat and seaman Peter Hoar who had injured his hand. We returned to Woods Hole on the evening of the 8th, and after a 2-hour stay in port awaiting the return of seaman Hoar (S. Brandt's condition was serious enough to require hospitalization), we again set sail, this time on a direct course for ring $82-\mathrm{B}\left(36.40^{\circ} \mathrm{N} ; 73.40^{\circ} \mathrm{W}\right)$.

We arrived at ring center on 10 August and commencec a long station during which we obtained 4 shallow radon casts, 3 double MOCNESS tows, 3 MOCNESS-20 tows, 1 neuston tow, 2 chlorophy 11 casts, and 2 MULVFS casts. Warm core ring $82-B$, which was approximately 6 months old, had become very much smaller since June. At the time of our entry into this ring, it was undergoing a very strong interaction with the Gulf Stream. The southern half of the surface (upper 50 to 100 m) of the ring was in the process of being overwashed by the Gulf Stream, and currents, which in this portion of the ring generally run from east to west, were running from southwest to northeast at 2.5 knots or better at the surface. During the latter portion of station 2, it became apparent that the ring was moving to the north and east apparently in reaction to the force of the Gulf Stream. Scientists on the RV/KNORR, who had run a trianglular XBT pattern on the evening of 10 August to define the thermostad (15 to 16 C) region of the ring, found that they were unable to locate ring center where they had left it 6 to 12 hours earlier. As a result, a short (3 hr) 3 ship (KNORR, OCEANUS, ENDEAVOR) XBT survey was undertaken on the morning of the 11th to again define the position and limits of the ring thermostad region. OCEANUS was, at the time, in a portion of the thermostad doing a MULVFS pump cast, and our contribution to the survey was to drop XBT's at 20 -minute intervals while steaming on station. The other ships moved to the north-northwest (ENDEAVOR) and to the north-northeast(KNORR).

The next several stations taken on the 12 th to 14 th of August were abbreviated because of the difficulty of remaining in a given hydrographic portion of the ring as it continued to move away from the Gulf Stream. Thus, stations $3,4,5$, and 6 were scattered across the ring area, and this reflects the fact that instruments were put over the side of the vessel when the wire became available rather than wasting time trying to navigate back to some specific hydrographic point. There was, however, some continuity to the placement of the observations: net towing was done principally on the western edge of the ring (a day/night pair of double MOCNESS and MOCNESS-20 tows and 1 neuston tow); most of the pumping and water catching was done in ring center (a MULVFS, six-shooter, and chlorophyll cast). Furthermore, during the course of our station work on the 13th at the ring center, ENDEAVOR passed within a mile while conducting a toyo CTD section across the ring. Later, for the evening double MOCNESS tow (no. 198), we steamed over to the ENDEAVOR and paralleled her course during the tow.

By the 14 th of August, ring surface velocity vectors had returned to a more normal circular configuration, and the northward trending meander of the Gulf Stream which had been overriding the ring, moved to the east leaving the ring separated from the stream albeit strongly modified. Station 7 (14 and 15 August) was located in ring center in order to document changes that resulted from the Gulf Stream ring interaction. Three double MOCNESS tows, 3 MOCNESS-20 tows, 1 neuston tow, a chlorophyll cast, and a shallow and deep radon cast were made at this station. The MULVFS system was also deployed at this station in order to test repairs made to the cable; several breaks in the electrical conductors occurred during the previous cast. No samples were obtained. Two of the MOCNESS-20 tows were long horizontal sections. The first was taken during daylight from the ring center to outside the eastern side of the ring with the
net centered at 625 m . The second was intended to be a shallow (upper 100 m) nighttime tow back into the ring center on a reciprocal course, but the ring had moved far enough to the west in the intervening period that the tow never penetrated the ring substantially.

Following a MULVFS and a six-shooter cast on the southeastern edge of the ring (station 8), we steamed to the northwest to a Slope Water location a bare 10 miles from the ring edge. At this station, a complete complement of observations was obtained including day/night pairs of MOCNESS tows, a neuston tow, and chlorophy11, MULVFS, and six-shooter casts.

The last 5 days of the cruise were spent making a series of two reference stations and 1 series of observations along a section line: one in the Sargasso Sea at $36^{\circ} \mathrm{N}$; $71^{\circ} \mathrm{W}$; the second in the Gulf Stream at approximately $37^{\circ} \mathrm{N} ; 71^{\circ} \mathrm{W}$; and the section in the Slope Water along longitude $71^{\circ} \mathrm{W}$. At each station a complete complement of observations was obtained. While working in the Gulf Stream, the NASA P-3 made 3 overflights of the OCEANUS at which time we collected surface temperature, salinity, and chlorophyll samples for comparison with their remote sensor recordings. Lack of time prevented our working a single geographic location in the Slope Water; instead, observations were alternated with periods of steaming north along 71 W . At the shelf/slope break (approximately 200 m), a single shallow radon cast was made using 30 liter bottles deployed on the six-shooter during our transit into Woods Hole on the 23rd of August. XBT's were taken at most of the usual places along this course.

A summary of the placement of the net tows and radon, chlorophyll, MULVFS, and six-shooter casts are graphically presented in Figure 1. Table 1 gives the ring center positions used to calculate distances of individual observations from the ring center. A summary of events is given in Section 3; XBT data are given in Section 4. Individual principal investigator reports follow.

This cruise, as the last two, can be characterized as quite successful; a nearly complete set of data was obtained at the various locations around the ring. Only the repeated breakdown of the six-shopter electronics caused the near total failure to acquire samples for radium 228 analysis. The MULVFS system provided more particulate organic matter samples than had ever previously been obtained on a cruise in spite of several serious failures in the MULVFS electrical conductors. The system has proven to be repairable at sea. The MOCNESS systems' electronics packages experienced few problems, and those that did occur were related to poor cable connections. The MOCNESS-20 had difficulties releasing nets on several tows which were ultimately corrected by fine tuning the frame. It is clear that improvement to the motor/toggle release system is needed before the last of the time-series cruises. This trawl system was successfully deployed more times than on any previous cruise.

Dramatic changes in the biological as well as physical structure of ring $82-B$ had taken place since June. Many of these changes will almost certainly be ascribed to the very intense interactions between the ring and the Gulf Stream that occur when warm core rings reach the Cape Hatteras cul-de-sac, as we witnessed on this cruise. For the zooplankton, the ring was still a hybrid mix of warm and cold water species with the cold species dominating the deeper

portions of the ring and the warm dominating the surface waters. Most of the warm water species were probably introduced with the Gulf Stream overwash observed during the first part of the cruise.

Our success in gathering data on this third warm core ring cruise is due once again in large part to the full and friendly cooperation of the officers and crew of the OCEANUS. Without the OCEANUS deck crew's willingness to put in long hours in getting our equipment over the side and back on deck, our list of accomplishments would be much shorter. We also must again express our appreciation to Woods Hole's Marine Facility and Shops Services personnel for the tremendous amount of work they accomplished in helping to ready the OCEANUS for this cruise.

> Wiebe, et al

Table 1. Ring Center Positions Estimated From ENDEAVOR XBT Star Surveys
Julian Day Calendar Day Latitude Longitude

(a)	219	7 August	3638	7350
(a)	220	8 August	3638	7341
(b)	221	9 August	3640	7338
(b)	222	10 August	3643	7336
(b)	223	11 August	3647	7334
(a)	224	$12 . A$ agust	3652	7333
(a)	225	13 August	3658	7332
(a)	226	14 August	37.05	7334
(b)	227	15 August	3708	7344
(b)	228	16 August	3707	7352
(c)	229	17 August	3702	7401
(b)	230	18 August	3645	7414
(c)	231	19 August	3639	7418
(c)	232	20 August	3639	7418
(c)	233	21 August	3639	7418
(c)	234	21 August	3639	7418

(a) Ring center estimates derived from XBT data collected by RV/ ENDEAVOR using a center algorithm based on the intersection of perpendicular bisectors constructed between adjacent data point pairs of a particular isotherm at a particular depth. Information sent by Stan Hooker on the RV/ENDEAVOR.
(b) Interpolated by J.Bishop RV/OCEANUS
(c) Position based on satellite-tracked drogue.

PARTICULATE MATTER AND 12 KHZ ECHO SOUNDING STUDIES

Principal Investigator: James K. B. Bishop
Cruise Participants: Maureen Conte, Dan Schupack, James Bishop Lamont-Doherty Geological Observatory

The purpose of this program is to understand the factors governing the distributions and sedimentation of oceanic particulate matter in ring 82-B. During this third visit to 82-B, we deployed the Multiple Unit Large Volume In Situ Filtration System (MULVFS) and collected 59 samples of size fractionated particulate matter for subsequent laboratory analysis (Table 1). Sediment traps were deployed for approximately 6 hours, attached to these two systems (Table 2).

Additional activities aboard R/V Endeavor were the deployment of sediment traps attached to the Loran drifters and the collection of transmissometer data during CTD casts.

There were visable differences between samples collected from ring 82-B during this cruise and the April and June cruises. We had previously concluded that intensive biological filtering of the upper 600 m had taken place between April and June. Since June, the ring had decreased in size substantially and had been overridden by a 50 to 100 m thick layer of Gulf Stream water. Visual examination of the $>53 \mu \mathrm{~m}$ filters from the MULVFS indicated that more large aggregate material was present in the water column compared to June. The change observed was much less dramatic compared to that found between April and June.

Comparisons of aggregate material abundances in ring environs, Slope Water, Sargasso Sea, and Gulf Stream suggest that sedimentation was least in the Sargasso and Gulf Stream, intermediate in ring 82-B and highest in Slope Water.

1. MULVFS OPERATIONS

(a) System Performance

This cruise was the second sea trial of the complete MULVFS and the first time that it was the core of our sampling program. The Large Volume In Situ Filtration System was aboard but was never used.

The MULVFS, which is powered by 480 VAC 3 -phase ship's power, consists of a drum winch, level wind, electromechanical cable, twelve pump units, and an Apple II control computer. The electromechanical cable is radically different from that used with the Large Volume In Situ Filtration System (LVFS) in that it is composed of a KEVLAR strength member mated in parallel to the electrical cable: This arrangement permits us to mechanically and electrically attach twelve pump/filter units at any of the fifteen electrical "pigtails" distributed along its 1000 m length. The numbering of pigtails ran from 1 (near surface) to 15 at the end of the cable. Pigtail spacing varied from 25 m near the surface to 100 m at the end of the cable. The performance of the major components of the system was excellent with the exception of the electro-mechanical cable.

Bishop, et al.
Table 1. MULVFS Cast Summary: Oceanus. 125

Date	Day	Cast	Sta.	Time (Local)			Depths Sampled	$\frac{\text { Mean Position }}{{ }_{W}^{W}}$		Dist.
82/08/07.01	219	1 T	1	+4	0900	1219	rewind cable	38.53 .1	71.47 .8	*
08/02/08.01	220	2 T	1	+4	0322	0906	test cable	38.53 .7	71.32 .2	*
08/08/10.05	222	3 T	2	+4	1913	2035	rewind cable	36.40 .5	73.43 .3	*
82/08/11.03	223	1 M	2	+4	0740	1517	$\begin{gathered} 10,60,158,597 \\ 890 \text { bl ank } \end{gathered}$	36.43 .7	73.44 .0	16.1
82/08/12.03	224	2 M	2	+4	0530	1226	$\begin{gathered} 15,39,112,162 \\ 211,260,308,505 \\ 699,992 \end{gathered}$	35.55 .6	73.41 .9	14.8
82/08/13.02	225	3M	4	+4	0751	1510	$\begin{gathered} 15,39,112,162 \\ 211,260,308,505 \\ 699,992 \end{gathered}$	37.00 .4	73.29 .3	6.0
82/08/15.07	227	$4 T$	7	+4	2015	2200	rewind cable	36.50 .4	73.40 .1	*
82/08/16.01	228	4 M	8	+4	0404	1044	$\begin{aligned} & 10,59,108,156 \\ & 255,450,645,840 \end{aligned}$	36.51 .6	74.00.3	31.1
82/08/17.01	229	5 M	9	+4	0415	0937	$\begin{aligned} & 20,69,117,215 \\ & 314,411,606,801 \end{aligned}$	37.12 .1	74.13 .3	26.1
82/08/18.07	230	5 T	10	+4	1528	2120	repair cable	36.00 .2	71.13 .9	*
82/08/19.07	231	6 T	10	+4	1607	2150	aborted cast	36.00 .9	71.31 .9	*
82/08/19.08	231	6M	10	+4	2150	0440	$\begin{aligned} & 40,237,334,431 \\ & 529,626,724 \end{aligned}$	36.03 .6	71.32 .0	253.5
82/08/21.03	233	7M	11	+4	0511	1238	$\begin{aligned} & 25,122,219,317 \\ & 414,512 \end{aligned}$	37.05 .2	70.41 .7	316.7
82/08/22.04	234	8M	12	+4	1640	2208	$\begin{aligned} & 20,117,214,312 \\ & 507 \end{aligned}$	39.17 .7	70.59 .1	401.0

Elapsed wire time $=17.3$ hours testing; 59.9 hours sampling $=77.2$ hours
1 - Slope Water 7 - Ring Center, 82-B
2 - Ring Center, 82-B
3 - Western Edge, 82-B
8 - Southeast Edge, 82-B
4 - Ring Center, 82-B
9 - Slope Water North of 82-B
5 - Western Edge, 82-B
6 - Southeast Edge, 82-B

10 - Sargasso Sea reference station
11 - Gulf Stream reference station
12 - Slope Water reference station
13 - Upper Slope, 250 m

Bishop et al.
Table 2. MULVFS Sediment Trap Summary
Sta. Depth Trap. No. Filt. Hrs. Sta. Depth Trap No. Filt. Hrs.

1M	60	31	4.77	6 T	69	16	(No. 2)	r0093	0.67
	304	30	1.58		117	17	(No. 2)	r0089	1.97
	890	29	7.60		314	18	(No. 2)	r0090	3.10
					314	14	blk	r0086	3.10
2 M	39	19	4.50		606	20	(No. 2)	r0091	4.18
	112	33	4.88		801	21	(No. 2)	r0092	4.75
	211	32	5.30						
	505	26	6.03	6M	40	17	(No. 2)	same	4.93
	992	25	6.80		237	28	(No. 2)	same	5.27
					237	14	blk	same	5.27
3 M	39	22	4.60		529	20	(No. 2)	same	6.18
	162	24	5.43		724	21	(No. 2)	same	6.57
	308	23	6.02						
	699	27	6.65	7M	25	15	(No. 2)	r0096	5.97
	699	28 blk	6.65		122	16	(No. 3)	r0097	6.20
					219	17	(No. 3)	r0098	6.45
4M	59	19	4.73		219	14	blk	r0095	6.45
	156	17	5.20		317	18	(No. 3)	r0099	6.83
	156	18 blk	5.20		414	20	(No. 3)	r0100	7.15
	450	20	5.87		512	21	(No. 3)	r0101	7.45
	840	21	6.58						
				8M	20	15	(No. 3)	r0103	4.20
					117	16	(No. 4)	r0104	4.58
					214	18	(No. 4)	r0105	4.83
					214	14	blk	r0102	4.83
					312	20	(No. 4)	r0106	5.03
					507	21	(No. 4)	r0107	5.38

Traps 14-18 were 18 " high; traps 19-33 were $15^{\prime \prime}$ high.
They were deployed strapped to vertical members on the MULVFS.
Blank traps were covered with millipore filter holder covers and drained about as fast as regular traps.

The cable had been repaired at L-DGO following a serious failure during the June cruise. This was due to the failure of the KEVLAR strength member to support the conducting cable. We repaired cable by using new clamps to hold the cables together. It became apparent during this cruise that we had solved our problems only partially.

Our first test on August 7 involved placing one pump at pigtail number 15 at the end of the cable, spooling all the cable off the winch, test running the pump at a 1500 m depth, and respooling the cable under tension. The single pump ran 16 seconds prior to a short circuit. A second test of the cable continuity showed that one or more dummy connectors had been damaged due to crushing on the winch and that the repaired pigtail no. 3 was faulty. We unspooled the cable onto the LVFS winch and figure eighted the remaining cable on the deck for repairs as the OCEANUS returned to WHOI to drop off Stephen Brandt who had a throat infection. The cable was respooled onto the winch after pigtail no. 3 was replaced with a straight splice and dummy connectors repaired.

The third test on August 10 was necessary to respool the cable under tension. A continuity test afterwards showed that the twisted shielded conductors used for data communications had been open circuited at the splice replacing pigtail no. 3. MULVFS cast 1 on August 11 was the first attempt at filtering water with 6 pumps on line. This station was completed but only after pigtail no. 9 was capped after its connector shorted out. This failure was caused by a faulty male plug on the pump attached to that termination.

MULVFS casts 2 and 3 on August 12 and 13 near the center of $82-B$ were the first full-scale stations with ten pumps on line simultaneously. The system performed beautifully and returned excellent samples.

A cable continuity test after the third MULVFS cast showed that the main power conductors were broken in the spliced portion of the cable at no. 3 . Furthermore, it was apparent that the electrical cable was not being supported adequately by the KEVLAR cable. We once again unspooled the cable from the winch for repairs on August 14. We respliced the cable at no. 3, capped no. 4 , which was faulty, and repaired pigtail no. 9. The cable was respooled on August 15 by hand during which time additional clamps and brown friction tape were added to the portions of the cable showing wear. The cable was respooled under tension during test 4.

MULVFS station 4 on August 16 at the edge of $82-B$ went well with eight excellent samples being collected. Station 5 on August 17, just outside of the ring, ran well until a short circuit terminated the cast after 30 minutes. Test 5 showed that pigtail no. 9 was faulty, pigtail no. 4 had been crushed, necessitating us to cut the cable between no. 4 and 5, and that a bad dummy connector at no. 11 was the cause of the short. These repairs were carried out with the MULVFS cable deployed over the side.

MULVFS station 6 on the 19th of August in the Sargasso Sea was marred by the necessity to cut the conducting cable again, this time between pigtail 6 and 7. The system was powered through pigtail no. 7, and 7 samples were collected. Station 7 in the Gulf Stream ran well until a short circuit
terminated the cast 5 minutes before its scheduled end. This short was traced to pigtail no. 14, where a burned out pigtail connector was found. Station 8 on August 22 in the Slope Water was delayed due to a shorted cable harness in one of the pump units but was successfully completed as planned.

We have learned a great deal about the performance of the MULVFS and collected an excellent series of samples. This has been at the expense of the electromechanical cable which has worn during this cruise. Many of our problems are related to the fact that we are handling the cable with a drum winch and storing it under full tension and compression by overlying layers of cable on the drum. This problem would be minimized with a traction/spooling winch. A second major class of difficulties was due to our inability to make reliable flexible splices which would withstand passing over the sheave and being stored under tension on the winch. We intend to return the cable to L-DGO for repairs and should be in a strong position for the KNORR cruise in late September. We will have to have the LVFS system at sea for that cruise as a backup.

(b) Sampling Program Modifications

Approximately 60 samples of size fractionated particulate matter were collected during this cruise with the MULVFS system. Subsamples were taken from both 1-53 and <1 $\mu \mathrm{m}$ microquartz filter size fractions for combined organic analyses. These samples were placed in chloroform:methanol (2:1) and frozen and will be analyzed for total lipid and fatty acid composition. In addition, filter sets using $53 \mu \mathrm{~m}$ stainless steel prefilters in lieu of the regularly used $53 \mu \mathrm{~m}$ Nitex were loaded in several casts. These samples will be analyzed for total lipids and lipid classes for each of the $>53,1-53$, and $<1 \mu \mathrm{~m}$ size fractions. These analyses will provide information on particulate matter sources, aging, recycling and decomposition in the water column.

Integrated zooplankton samples from $0-1000 \mathrm{~m}$ were obtained from Peter Wiebe's MOC-1D tows. A portion of these samples was placed in chloroform: methanol for analysis of the lipid fraction in living zooplankton; a second portion was preserved in 5 percent formalin for identification of the contributing plankton. Several plankters were separated from the remaining portion of the sample (e.g., cyclothone, euphausids, chaetognaths) to be analyzed separately. These samples will allow comparison between the lipid fraction in living and particulate organic material.

The workup of these samples is not supported under this grant.

2. R/V ENDEAVOR PROGRAM

The R/V ENDEAVOR work apparently went very well. The transmissometer, which had performed well in June, was working on all CTD casts including the "tow-yo" series. The sediment trap frames and deployment strategy were modified to compensate for mooring motion which had damaged samples in June. Two deployments for 24 hours and 3 days were made on the Loran drifters in ring 82-B.

3. 12 KHZ ECHO SOUDING:

Twelve KHz echo sounding records to 750 m (Figure 1) were taken continuously during the cruise except during MOC-1D tows (when a 50 KHz echo

KEY
Scatterers present
depth of maximam scatter
$\hat{\hat{\lambda}}$ individual signals
\vdots patchy signals

- MULVFS casts
$\hat{\theta} \boldsymbol{\theta}$ diurnal migrations initiated

Bishop
Figure 1 cont.
Page 4 of 4
sounder was deployed) and during deep radon casts. These records provide a qualitative idea of the behavior of the animals comprising the scattering layers. The echo sounder gain controls were unreliable and frequently the upper 50 m was obscure.

Several differences in 12 KHz scattering were noted among Slope Water, ring environs, Sargasso Sea and Gulf Stream stations. The two Slope Water stations (1 and 9) both showed a weak deep sattering maximum during the day between $300-400 \mathrm{~m}$ and significant scattering primarily in the upper 200 m during the night. In contrast, ring center stations showed several strong scattering layers at $325-375 \mathrm{~m}, 400-450 \mathrm{~m}$, and 500 m during the day, and a strong non-migrating layer between $350-400 \mathrm{~m}$ at night. In addition, large individual signals, probably tightly packed schools were seen to migrate with the deep scattering maximum from 500-300 m. Maximum scattering was observed in the upper 200 m at night. Significant scattering compared with the Slope Water was observed in the upper 200 m during the day in ring 82-B. Western and Southeast edges of $82-B$ tended to resemble ring center stations.

Both the Sargasso Sea and Gulf Stream station exhibited very strong non-migrating deep scattering layers between 400 and 550 m which were not present in either Slope Water or ring stations. Non-migratory scatterers in the Sargasso Sea were present at $350-450 \mathrm{~m}$ and $450-550 \mathrm{~m}$. Strong scattering was also present in the upper 250 m at night and in the upper 150 m during the day with a distinct layer centered on 125 m . The Gulf Stream sttion also showed a strong non-migratory layer at $400-450 \mathrm{~m}$ and strong scattering in the upper 200 m at night. Three distinct scattering layers were present during the day at $150-200,300-350,400-450$, and centered on 500 m . In addition, large individual signals were seen to migrate from 350 to shallower than 250 m at night.

Vertical migrations closely followed light intensity. Records suggest that the depth of migrating scatterers during the day is inversely proportional to light intensity.

RADON AND RADIUM IN WARM CORE RINGS

Principal Investigators: David R. Schink and Norman L. Guinasso Cruise Participants: Kathleen Cole, Ken Bottom and James Orr Texas A\&M University

Our participation in this cruise has been focused on characterizing mixing processes in and around the ring, we are using three radioactive isotopes, radium 2.28 , radium 226 , and radon 222 , to understand both vertical and horizontal ring water transfer.

If there are no sources or sinks, radon 222 should be in radioactive secular equilibrium with its parent, radium 226 . however, normal oceanic profiles for radon 222 and radium 226 show deficiencies of radon in the surface layer and surpluses of radon in the near bottom water. The magnitude of the surface deficiency is related to the amount of recent air-sea gas exchange because of the relatively short half life of radon 222 (4 days). Likewise, bottom water radon 222 surplus is affected by sediment type and near bottom mixing regimes.

All radium 226 and radon 222 samples were collected using 30 -1iter Niskins which were tripped on the hydrowire or by Rosette sampling. Radon222 was stripped and counted aboard ship while radium 226 was extracted on man-ganese-coated acrylic fiber for future laboratory analysis. All bottles were sampled for shipboard determination of salinity and oxygen. Nutrient samples were taken and immediately frozen for on-shore analyis. Hydrowire casts were preceeded by an XBT just prior to the cast to aid in depth selection. Reversing thermometers were also used on each bottle. To the Rosette was attached a Nel Brown CTD which gave a simultaneous record with each cast.

Radium 228 has been shown to be a good indicator of horizontal mixing. Continental shelf sediments provide the major source of radium 228 . Because of this reason and because of the relatively short half life of radium 228 (6 years), noticeable gradients are found when moving toward the open ocean from the shelf region. The analytical problem with radium 228 lies in the fact that it requires large volumes of water on the order of 1000 liters to achieve meaningful numbers. This has encouraged us to build a large volume radium extraction system which we have labelled the "six shooter". The six shooter attaches to the base of the 30-1iter Rosette/Neil Brown CTD system and consists of a battery-operated pump which diverts water individually to one of six channels upon commands sent from a deck unit to the pump and six solenoid values. Each channel contains two wound acrylic cartridges which have been impregnated with manganese dioxide. These cartridges effectively remove about 93 percent of the radium.

The six shooter was effective only on one cast during the entire cruise, mainly due to electronic problems encountered after severe modifications had been made on the underwater electrical package. The successful cast was achieved in approximate ring center of $82-B$. On casts where the six shooter could not be used, the Rosette-CTD system was used for measurements of radium 226 and radon222. Problems with the six shooter seem relatively minor and should be alleviated by the September cruise aboard the KNORR.

Throughout the observed history of warm core ring $82-B$, we have seen some rather dramatic changes in the characteristics of the center core itself. In April, rather typical surface radon profiles were observed in ring center. As we have progressed through the June and August cruises, we have seen substantial changes in the amount of surface radon present. Radon surpluses (i.e., values in excess of the equilibrium values) have been observed with the slightly higher surpluses seen in August. With our profiles taken in the Sargasso Sea, Gulf Stream, Slope, and Shelf Water, we can verify that the excess radon is derived from infiltration of Slope and Shelf waters. The radon surpluses observed in the later $82-B$ cruises correspond to those seen in 81-D in September and October of 1981. A cruise aboard the Texas A M, R/V Gyre in July, 1982, showed no excess radon in the ring core of ring 81-G. This seems to suggest that radon 222 and radium 226 measurements provide a mechanism whereby one can map the influence of Slope and Shelf waters upon a ring. Further mreasurements in the lab with the collected radium 228 samples will provide an opportunity to more elaborately evaluate the system.

As on all of the warm core rings cruises aboard the OCEANUS, our group has provided the surface salinity measurements for all of the XBT's and the weather observations. The following table is a summary of the data collected on this cruise.

Schink, et al.							
Table 1.							
Day	Cast	Type	Station ${ }^{\circ} \mathrm{N}$	$\begin{gathered} \text { Position } \\ \underline{\text { ow }} \end{gathered}$	Sta. Type	Depth of Ring	from RC
219	1-807.3	SR	38.56 .7	71.43 .7	Slope Water	0-400 m	317 km
222	2-810.1	SR	36.39 .5	73.39 .6	Ring Center	10-400	8
223	2-811.2	SR	36.40 .2	73.43 .5	Ring Center	10-400	19
223	2-811.5	SR	36.53 .3	73.38 .8	Ring Center	0-600	14
224	2-812.3	SR	36.54 .5	73.42 .6	Ring Center	1-600	15
225	4-813.4	SS	37.00 .3	73.28 .6	Ring Center	7-1016	7
226	6-814.3	SR	3700.9	73.27 .3	SE Ring Edge	1-600	13
226	7-814.6	SR	37.01 .3	73.40 .6	Ring Center	0-600	10
227	7-815.3	DR	37.01 .3	73.48 .2	Ring Center	2255-2500	14
228	8-816.2	RR	36.47 .9	74.05 .5	SE Ring Edge	1-1414	41
229	9-817.4	RR	37.13 .4	74.17 .0	Slope Water	0.5-639	47
230	10-818.1	RR	36.00 .4	71.13 .8	Sargasso Sea	0-400	281
231	10-819.2	RR	36.07 .6	71.30 .6	Sargasso Sea	1-620	256
232	11-820.4	RR	37.04 .2	71.12 .4	Gulf Stream	5-984	279
234	12-822.1	RR	38.28 .2	70.56 .7	Slope Water	0-608	358
235	13-823.1	RR	40.02 .7	70.59 .7	Shelf Water	0.5-238	475

MESOPELAGIC FISHES

Principal Investigator: Richard Backus Cruise Participants: Richard Backus and Mary Ann Daher Woods Hole Oceanographic Institution

Hauls of the MOCNESS-20 were made at nineteen locations (Table 1). Neuston tows were made at some stations. After some initial trouble with net tripping, the MOC-20 worked very well. Five nets were fished on möst lowerings, and a total of 83 collections were made. Little can be told from a superficial examination of these collections, but it appears that ring 82-B has been thoroughly invaded by certain cold-water animals such as the myctophid fish Benthosema glaciale. Cetaceans and pelagic birds were much more abundant in and immediately around $82-B$ than they were at the reference Slope Water stations.

Backus, et al .
Table 1. WARM CORE GULF STREAM RING TIME SERIES CRUISE Oceanus Cruise No. 125, 8/6/82 - 8/23/82

MOCNESS TOW NO.	${ }^{\text {LA.T }} \mathrm{N}$	$\begin{aligned} & \text { LONG } \\ & \mathrm{W} \end{aligned}$	DATE	TIME START	$\begin{aligned} & \text { TIME } \\ & \text { UP } \end{aligned}$	STATION AREA DEPTH INTERVAL, REMARKS
MOC-20-35	$\begin{aligned} & 38.53 .3 \\ & 38.56 .4 \end{aligned}$	$\begin{aligned} & 71.47 .6 \\ & 71.42 .1 \end{aligned}$	7 August	1419	1720	$\begin{aligned} & \text { Slope Water; 0-992 } \\ & 992-800,800-601 \\ & 601-402,402-201 \\ & 201-0 \end{aligned}$
MOC-20-36	$\begin{aligned} & 38.56 .3 \\ & 38.54 .5 \end{aligned}$	$\begin{aligned} & 71.39 .8 \\ & 71.32 .0 \end{aligned}$	7-8 Aug	2334	0248	Slope Water; 0-964-0
MOC-20-37	$\begin{aligned} & 36.37 .8 \\ & 36.34 .6 \end{aligned}$	$\begin{aligned} & 73.44 .7 \\ & 73.45 .4 \end{aligned}$	10 August	1355	1714	$\begin{aligned} & \text { Center 82-B; 0-998 } \\ & 998-0 \end{aligned}$
MOC-20-38	$\begin{aligned} & 36.40 .9 \\ & 36.38 .2 \end{aligned}$	$\begin{aligned} & 73.43 .3 \\ & 73.46 .9 \end{aligned}$	11 August	0125	0414	$\begin{aligned} & \text { Center 82-B; 0-1000 } \\ & 1000-0 \end{aligned}$
MOC-20-39	$\begin{aligned} & 36.52 .9 \\ & 36.51 .0 \end{aligned}$	$\begin{aligned} & 73.37 .4 \\ & 73.43 .8 \end{aligned}$	12 August	0042	0408	$\begin{aligned} & \text { Center 82-B; 0-1000 } \\ & 1000-0 \end{aligned}$
MOC-20-40	TEST					
MOC-20-41	$\begin{aligned} & 37.01 .0 \\ & 37.07 .3 \end{aligned}$	$\begin{aligned} & 73.48 .2 \\ & 73.47 .7 \end{aligned}$	13 August	0113	0446	$\begin{aligned} & \text { West edge 82-B; } \\ & 0-1004,1004-750 \\ & 750-500,500-137 \\ & 137-0 \end{aligned}$
MOC-20-42	$\begin{aligned} & 36.54 .3 \\ & 36.58 .0 \end{aligned}$	$\begin{aligned} & 73.54 .7 \\ & 73.50 .9 \end{aligned}$	14 August	0105	0441	$\begin{aligned} & \text { West edge 82-B; } \\ & 0-1069-1000 \\ & 1000-800,800-601 \\ & 601-383,383-0 \end{aligned}$

MOCNESS TOW NO.	${ }_{\circ}^{\text {LAT }}$	$\begin{aligned} & \text { LONG } \\ & \text { OW } \end{aligned}$	DATE	TIME START	$\begin{gathered} \text { TIME } \\ \text { UP } \end{gathered}$	STATION AREA DEPTH INTERVAL, REMARKS
MOC-20-43	$\begin{aligned} & 37.07 .7 \\ & 37.00 .3 \end{aligned}$	$\begin{aligned} & 73.39 .9 \\ & 73.39 .9 \end{aligned}$	14 August	1332	1654	$\begin{aligned} & \text { Center 82-B; } \\ & 0-1037-994,994-797 \\ & 797-597,597-399 \\ & 399-115,115-0 \end{aligned}$
MOC-20-44	$\begin{aligned} & 37.07 .0 \\ & 37.04 .3 \end{aligned}$	$\begin{aligned} & 73.38 .2 \\ & 73.48 .2 \end{aligned}$	15 August	0008	0402	$\begin{aligned} & \text { Center 82-B;0-1001 } \\ & \text { 1001-797,797-598 } \\ & 598-0 \end{aligned}$
MOC-20-45	$\begin{aligned} & 36.51 .6 \\ & 36.50 .5 \end{aligned}$	$\begin{aligned} & 73.53 .7 \\ & 73.40 .4 \end{aligned}$	15 August	1304	1949	Horizontal tow from 82-B center out at 625 m with 5 nets
MOC-20-46	$\begin{aligned} & 36.50 .0 \\ & 36.50 .8 \end{aligned}$	$\begin{aligned} & 73.40 .5 \\ & 73.49 .8 \end{aligned}$	15-16 Aug	2239	0204	Aborted horizontal tow; 0-101,101-30 30-101,101-29,50-0
MOC-20-47	$\begin{aligned} & 37.12 .3 \\ & 37.15 .5 \end{aligned}$	$\begin{aligned} & 74.18 .1 \\ & 74.25 .5 \end{aligned}$	16-17 Aug	2253	0242	$\begin{aligned} & \text { Slope Water; 0-1000 } \\ & 1000-751,751-500 \\ & 500-249,249-0 \end{aligned}$
MOC-20-48	$\begin{aligned} & 37.15 .6 \\ & 37.11 .9 \end{aligned}$	$\begin{aligned} & 74.24 .9 \\ & 74.17 .3 \end{aligned}$	17 August	1424	1747	$\begin{aligned} & \text { Slope Water; 0-1000 } \\ & 1000-748,748-500 \\ & 500-250,250-0 \end{aligned}$
MOC-20-49	$\begin{aligned} & 36.02 .2 \\ & 36.05 .6 \end{aligned}$	$\begin{aligned} & 71.23 .5 \\ & 71.31 .4 \end{aligned}$	19 August	0102	0431	$\begin{aligned} & \text { Sargasso Sea; 0-1000 } \\ & 1000-749,749-500 \\ & 500-250,250-0 \end{aligned}$
MOC-20-50	$\begin{array}{r} 36.04 .4 \\ 36.00 .6 \end{array}$	$\begin{aligned} & 71.29 .7 \\ & 71.32 .8 \end{aligned}$	19 August	1229	1519	$\begin{aligned} & \text { Sargasso Sea; 0-1001 } \\ & 1001-746,746-499 \\ & 499-250,250-0 \end{aligned}$
MOC-20-51	$\begin{aligned} & 37.00 .9 \\ & 37.03 .7 \end{aligned}$	$\begin{aligned} & 71.15 .3 \\ & 71.16 .8 \end{aligned}$	20 August	1403	1711	$\begin{aligned} & \text { Gulf Stream; 0-1001 } \\ & 1001-750,750-500 \\ & 500-251,251-0 \end{aligned}$
MOC-20-52	$\begin{aligned} & 37.05 .3 \\ & 37.04 .6 \end{aligned}$	$\begin{aligned} & 70.58 .8 \\ & 70.57 .3 \end{aligned}$	21 August	0135	0425	$\begin{aligned} & \text { Gulf Stream; 0-1000 } \\ & 1000-750,750-496 \\ & 496-251,251-0 \end{aligned}$
MOC-20-53	$\begin{aligned} & 38.22 .0 \\ & 38.28 .5 \end{aligned}$	$\begin{aligned} & 70.52 .7 \\ & 70.55 .5 \end{aligned}$	21-22 Aug	2346	0308	$\begin{aligned} & \text { Slope Water; 0-1002 } \\ & 1002-751,751-500 \\ & 500-250,250-0 \end{aligned}$
MOC-20-54	$\begin{aligned} & 39.11 .4 \\ & 39.17 .5 \end{aligned}$	$\begin{aligned} & 70.59 .1 \\ & 70.58 .8 \end{aligned}$	22 August	1235	1556	$\begin{aligned} & \text { Slope Water; 0-1001 } \\ & 1001-750,750-500 \\ & 500-251,251-0 \end{aligned}$

ZOOPLANKTON SPATIAL PATTERNS

Principal Investigator: Peter H. Wiebe Cruise Participants: Steven Boyd, Alfred Morton, Valerie Barber, and Peter Wiebe
Woods Hole Oceanographic Institution
Stephen Brandt
CSIRO, Cronulla, Australia

Our objectives for this third of four time-series crusies to Gulf Stream warm core rings were to sample the macro-zooplankton at station locations placed from the center of ring $82-B$ out into the adjacent Slope Water in order to provide a picture of the vertical structure in the upper 1000 meters across the ring for a variety of species, especially the euphausiids, and to characterize the diel vertical movements of these species as well as the total zooplankton biomass. We also set out to sample the Northern Sargasso Sea and the Gulf Stream near the ring in order to compare evolution of the ring core plankton population structure with populations in waters giving rise to the ring core. In addition, we intended to collect individuals of a number of euphausiid species for biochemical analysis in order to study the effects of spatial and time-course changes in rings on their physiological and biochemical properties. As part of our program, Stephen Brandt was to have conducted a volume reverberation study of the ring survey area using a 50khz transducer mounted in a towed fish. His illness, however, (see narrative) forced us to put him ashore after only 2 days at sea. In spite of his absence, 50 khz recordings were made during each of the double MOCNESS tows.

We used a double MOCNESS-1 ($1 \mathrm{~m}^{2}$ nets) equipped with SEABIRD temperature and conductivity probes to sample the zooplankton in the upper 1000 meters. On each 3- to 3-1/2-hour haul, we generally obtained 8 samples integrating 100 meter intervals from 1000 to 200 meters, and 8 samples integrating 25 meter intervals from 200 to 0 meters. Sixteen hauls were made: 10 in the vicinity of $82-B ; 2$ in the Northern Sargasso Sea; 2 in the Gulf Stream; and 2 in the Slope Water far from the influence of $82-B$ or other rings (Table 1). Distances of each tow from the ring center were calculated using positions listed in narrative Table 1 and are given in Table 2.

To help correlate our zooplankton data with the findings of phytoplankton investigators on ENDEAVOR and KNORR, we made 10, 1.7-liter Nansen bottle casts in the upper 100 to 200 meters for analysis of chlorophyll a and phaeophytin (Table 3). Samples were taken at ten-meter intervals from the surface to at least 100 m on most occasions. In the Sargasso Sea and Gulf Stream, depths between 100 and 200 m were also sampled. In general, chlorophyll cast positions bracketed double MOCNESS tows (see Narrative, Figure 1). This chlorophyll data will also be used in conjunction with pyranometer data collected by us on the OCEANUS to calculate downwelling light levels in the upper 1000 meters. These light data were collected at 10 -minute intervals for the duration of the cruise with an MR-5 pyranometer (Hollis Observatory product). The light data are also being used by Maureen Conte (LDGO) for comparison with the movements of the scattering layers observed with the 12 khz echo sounder (see Bishop report).

Table 1. Summary of Double MOCNESS-1 Tow Statistics WARM CORE
GULF STREAM RING TIME SERIES CRUISE
Wiebe et al. -21-
Table 1
pg. 1 of 3
OCEANUS Cruise No. 125, 8/6/82-8/23/82

MOCNESS \#	- Lat. ${ }^{\circ} \mathrm{N}$	Long. ${ }^{0} \mathrm{~W}$	Local			GMT			$\begin{gathered} \text { Isotherm } \\ \text { Depths } \\ 15^{\circ} \mathrm{C} \quad 10^{\circ} \mathrm{C} \end{gathered}$		Station Area Interval, Remark
			Date (Start Down)	Time Start Up	Time Up	Date (Start Down)	Time Start Up	$\begin{aligned} & \text { Time } \\ & \text { Up } \end{aligned}$			
MOC-1D-194	$\begin{gathered} 36.37 .72 \\ 36.37 .60 \end{gathered}$	$\begin{aligned} & 73.38 .25 \\ & 73.44 .69 \end{aligned}$	$\begin{aligned} & 10 \text { August } \\ & (0815) \end{aligned}$	0920	1143	10 August (1215)	1320	1543	290	414	Ring 82-B; 1000-200 @ 100m inter; 200-0 @ 25 m inter; $\mathrm{w} / \mathrm{T} \& \mathrm{Sal}$.
MOC-1D-195	$\begin{aligned} & 36.41 .00 \\ & 36.37 .34 \end{aligned}$	$\begin{aligned} & 73.43 .30 \\ & 73.40 .74 \end{aligned}$	$\begin{aligned} & 10 \text { August } \\ & (2028) \end{aligned}$	2208	0000	$\begin{aligned} & 11 \text { August } \\ & (0028) \end{aligned}$	0208	0400	289	400	$\begin{aligned} & \text { Ring } 82-\mathrm{B} ; 100-200 \text { @ } \\ & 100 \mathrm{~m} \text { inter; 200-0 @ } \\ & 25 \mathrm{~m} \text { inter except } 0-25 \text {; } \\ & \mathrm{w} / \mathrm{T} \& \text { Sal. } \end{aligned}$
MOC-1D-196	$\begin{aligned} & 36.52 .96 \\ & 36.50 .15 \end{aligned}$	$\begin{aligned} & 73.37 .48 \\ & 73.42 .55 \end{aligned}$	$\begin{aligned} & 11 \text { August } \\ & (2041) \end{aligned}$	2144	2344	12 August (0041)	0144	0344	300	403	$\begin{aligned} & \text { Ring 82-B RC; 1000-200 } \\ & \text { @ 100m inter; 200-0@ } \\ & 25 \mathrm{~m} \text { inter; w/T \& Sal. } \end{aligned}$
MOC-1D-197	$\begin{aligned} & 36.53 .90 \\ & 36.59 .91 \end{aligned}$	$\begin{aligned} & 73.45 .16 \\ & 73.48 .04 \end{aligned}$	$\begin{aligned} & 12 \text { August } \\ & (2113) \end{aligned}$	2220	0028	13 August (0113)	0220	0428	148	34.5	Ring 82-B WE; 1000-200 @100m inter;200-0 @ 25 m inter; w/T \& Sal.
MOC-1D-198	$\begin{aligned} & 36.55 .92 \\ & 36.54 .27 \end{aligned}$	$\begin{aligned} & 73.44 .90 \\ & 73.53 .60 \end{aligned}$	13 August (2130)	2226	0003.	14 August (0i30)	0226	0403	142	283	```Ring 82-B WE; 1000- 200 @ 100m inter;200- 0 @ 25m inter; w/T & Sal.```
MOC-1D-199	$\begin{aligned} & 37.05 .15 \\ & 37.09 .89 \end{aligned}$	$\begin{aligned} & 73.39 .81 \\ & 73.39 .70 \end{aligned}$	$\begin{aligned} & 14 \text { August } \\ & (0941) \end{aligned}$	1045	1250	14 August (1341)	1445	1650	242	334	Ring 82-B RC; 1000200 @ 100 m inter; 200-0 @ 25 m inter; w/ T\& Sal.
MOC-1D-200	$\begin{aligned} & 37.04 .06 \\ & 37.07 .20 \end{aligned}$	$\begin{aligned} & 73.41 .00 \\ & 73.37 .17 \end{aligned}$	14 August (2022)	2126	2319	$\begin{aligned} & 15 \text { August } \\ & (0022) \end{aligned}$	0126	0319	182	325	```Ring 82-B RC; 1000- 200 @ 100m inter; 200-0 @ 25m inter; w/T & Sal.```

.	1 l		GULE OCE	STREAM US Cruis	$\begin{aligned} & \text { WARM CO } \\ & \text { ING TII } \\ & \text { e No. } \end{aligned}$	RE E SERIES CRU $25,8 / 6 / 82-8 /$	$\begin{aligned} & \mathrm{SE} \\ & 3 / 82 \end{aligned}$			Weib Tabl Page	et a1. e 1 cont. 2 of 3
MOCNESS \#	- Lat. ${ }^{\circ} \mathrm{N}$	Long. ${ }^{\circ} \mathrm{W}$	Local			GMT			$\begin{gathered} \text { Isotherm } \\ \text { Depths } \\ 15^{\circ} \mathrm{C} \quad 10^{\circ} \mathrm{C} \end{gathered}$		Station Area Depth Interval, Remart
			Date (Start Down)	Time Start Up	Time Up	Date (Start Down)	Time Start Up	$\begin{aligned} & \text { Time } \\ & \text { Up } \end{aligned}$			
MOC-1D-201	$\begin{aligned} & 37.00 .47 \\ & 36.52 .78 \end{aligned}$	$\begin{aligned} & 73.48 .06 \\ & 73.50 .90 \end{aligned}$	15 August (0900)	1000	1204	$15 \text { August }$ (1300)	1400	1604	242	322	$\begin{aligned} & \text { Ring 82-B RC; 1000-200 } \\ & \text { @ 100m inter; 200-0 @ } \\ & 25 \mathrm{~m} \text { inter; w/T \& Sal. } \end{aligned}$
MOC-1D-202	$\begin{aligned} & 37.09 .94 \\ & 37.11 .71 \end{aligned}$	$\begin{aligned} & 74.11 .10 \\ & 74.17 .60 \end{aligned}$	$\begin{aligned} & 16 \text { August } \\ & (1922) \end{aligned}$	2025	2213	16 August (2322)	0025	0213	78	248	$\begin{aligned} & \text { Ring } 82-\mathrm{B} \mathrm{NE} ; 1000-200 \\ & \text { @ 100m inter; 200-0 } \\ & \text { @ } 25 \mathrm{~m} \text { inter; } / \mathrm{T} \& \text { Sal } \end{aligned}$
MOC-1D-203	$\begin{aligned} & 37.12 .56 \\ & 37.13 .60 \end{aligned}$	$\begin{aligned} & 74.17 .40 \\ & 74.24 .60 \end{aligned}$	17 August (0958)	1103	1302	17 August (1358)	1503	1702	64	216	$\begin{aligned} & \text { Ring 82-B NE; 1000-200 } \\ & \text { @ } 100 \mathrm{~m} \text { inter; 200-0 @ } \\ & 25 \mathrm{~m} \text { inter; } \mathrm{w} / \mathrm{T} \& \mathrm{Sal} \end{aligned}$
MOC-1D-204	$\begin{aligned} & 36.01 .61 \\ & 36.01 .96 \end{aligned}$	$\begin{aligned} & 71.15 .84 \\ & 71.22 .95 \end{aligned}$	18 August (2135)	2232	0028	19 August (0135)	- 0232	0428	733	982	Sargasso Sea; 1000100 @ 100 m inter; 200-0 @ 25m inter; w/T \& Sal
MOC-1D-205	$\begin{aligned} & 36.09 .14 \\ & 36.04 .92 \end{aligned}$	$\begin{aligned} & 71.29 .63 \\ & 72.29 .55 \end{aligned}$	$\begin{aligned} & 19 \text { August } \\ & (0831) \end{aligned}$	0935	1142	19 August (1231)	1335	1542	696	929	$\begin{aligned} & \text { Sargasso Sea; 1000-200 } \\ & \text { d } 100 \mathrm{~m} \text { inter; 200-0 } \\ & \text { a } 25 \mathrm{~m} \text { inter } ; \mathrm{w} / \mathrm{T} \& \mathrm{Sa} \end{aligned}$
MOC-1D-206	$\begin{array}{\|l} 36.58 .56 \\ 37.00 .39 \end{array}$	$\begin{aligned} & 71.19 .06 \\ & 71.18 .61 \end{aligned}$	$20 \begin{gathered} \text { August } \\ (1020) \end{gathered}$	1130	1335	$20 \text { August }$ (1420)	1530	1735	457	635 @	Gulf Stream; 1000-200 a 100 m inter; 200-0 25 m inter; $\mathrm{w} / \mathrm{T} \& \mathrm{Sa}$
MOC-1D-207	$\begin{aligned} & 37.04 .65 \\ & 37.04 .63 \end{aligned}$	$\begin{aligned} & 71.03 .35 \\ & 71.01 .31 \end{aligned}$	20 August	2208	0019	$\begin{aligned} & 21 \text { August } \\ & (0045) \end{aligned}$	0208	0419	447	619	Gulf Stream; 1000-200 @ 100 m inter; 200-0 @ 25 m inter; $\mathrm{w} / \mathrm{T} \& \mathrm{Sal}$

Euphausiids from 7 MOCNESS-20 trawls were preserved for carbon, nitrogen, and hydrogen analysis, lipid fractionation or chlorophyll pigment levels. A total of 9 species were processed with emphasis being place on Euphausia krohnii and nematoscelis megalops (Table 4).

Wiebe, et al.
Table 2. Distance of double MOCNESS tows to ring 82-B center

MOC-1D	Dist. to Ring Center NM	Dist. to Ring Center KM
194 S	5.6	10.3
F	8.8	16.3
195 S	6.2	11.5
F	6.8	12.6
196 S	6.6	12.2
F	7.5	14.0
197 S	9.9	18.4
F	14.4	26.7
198 S	10.5	19.5
F	17.7	32.7
199 S	4.6	8.6
F	6.7	12.4
200 S	5.7	10.5
F	3.4	6.2
201 S	8.2	15.2
F	16.2	30.0
202 S	15.5	28.7
F	20.9	38.8
203 S	16.8	31.1
F	22.1	41.0
204 S	147.8	277.7
F	144.3	267.3
205 S	138.8	257.1
F	139.9	259.2

| MOC-1D | Dist. to
 Ring Center
 NM | Dist. to
 Ring Center
 KM |
| :---: | :---: | :---: | :---: |
| 206 S | 144.6 | 267.9 |
| F 207 S | 145.2 | 269.0 |
| F 208 S | 159.8 | 292.5 |
| F | 189.0 | 295.4 |
| 209 S | 192.4 | 350.3 |
| F | 212.9 | 356.5 |

Wiebe, et al
Table 3. Analysis of Chlorophyll and Phaeophytin

Cast No.	Date	Time	Region	$\stackrel{\text { Lat }}{{ }_{\mathrm{o}}}$	${ }^{\text {Lon }}$	Distance from ring center $\mathrm{km} / \mathrm{nm}$	Depth of cast
1	7 August	1300	SW	38.53 .2	71.47 .7	308/166.2	100A
2	10 August	0707	RC	36.37 .9	73.39 .2	10.6/5.7	120D
3	11 August	1650	RC	36.54 .6	73.41 .8	18.3/9.9	100A
4	13 August	1535	RC	37.00 .0	73.28 .5	6.4/3.5	100A
5	15 August	0815	RC	37.01 .3	73.48 .2	$14.3 / 7.7$	100A
6	16 August	1800	RE	37.09 .6	74.12 .5	30.7/16.5	100A
7	18 August	1454	SS	36.00 .2	71.13 .6	281.6/151.9	100A
8	19 August	1535	SS	36.00 .8	71.32 .6	256.8/138.6	200 C
9	20 August	1720	GS	37.04 .1	71.17 .9	271.0/146.3	150B
10	22 August	1614	SW	39.17 .59	70.58 .7	413.6/223.2	100A

$A=10 \mathrm{~m}$ intervals to 100 m
$B=20 \mathrm{~m}$ intervals to 60 m ; 10 m intervals to 150 m
$C=10 \mathrm{~m}$ intervals from 70 to $150 \mathrm{~m} ; 25 \mathrm{~m}$ intervals from 150 to 200 m
$D=10 \mathrm{~m}$ intervals to 120 m

Wiebe, et al.
Table 4. Number of Individuals Collected For Biochemical Analysis According to Intended Treatment

Tow/Area	Species	CHN	Chlor-Meth	Acetone	Frozen
MOC-20-35day-SW	E. krohnii	10	10	6	12
	$\frac{P_{0} \text { norvegica }}{}$	4	5		
	$\frac{N_{0} \text { microps }}{N_{0} \text { flexipes }}$		1		

MOC-testday-RC S. abbreviatum 3
N. megalops 2

MOC-20-42nite-RE E. krohnii 5 5
$\frac{E}{N} \cdot \frac{\text { krohalops }}{5} \quad 5$
$\overline{S_{.}}$abbreviatum 1
E. brevis 1
N. microps

2
E. $\begin{aligned} & \text { tenera } \\ & 2\end{aligned}$

MOC-20-43day-RC E. krohnii 8 8
$\overline{N_{0}}$ megalops 1
$\overline{S_{0}}$ abbreviatum 3
N. microps 1
E. gibboides 1

MOC-20-47nite-SW E. krohnii $\quad 6 \quad 15$

MOC-20-48day-SW E. krohnii 6
N. $\overline{\text { megalops }} 10$

40
MOC-20-54day-SW
M. norvegica 4
E. $\overline{\text { krohnii }} \quad 70$
N. megalops 7
$\overline{N_{0}}$ microps 3
III. SCIENTIFIC OBSERVATION LOG

Sta.	Op. No.	Start Time	Latitude ${ }^{\circ} \mathrm{N}$	Longitude	Descriptor	Invest.
	SLOPE WATER					
1	0807.1	0920	38.53 .10	71.47 .80	MULVFS test no. 1	Bishop
1	0807.2	1300	38.53 .20	71.47 .70	Chlorophyll cast no. 1	Boyd
1	0807.3	1315	38.53 .3	71.47 .30	MOC-20-35	Backus
1	0807.4	1849	38.56 .70	71.43 .70	Shallow radon cast no. 1	Orr
1	0807.5	1955	38.56 .81	71.44 .60	MOC-1D-test	Wiebe
1	0807.6	2334	38.56 .33	71.39 .80	MOC-20-36	Backus
1	0807.7	2355	38.57 .00	71.39 .00	Neuston tow no. 1	Backus
1	0808.1	0300	38.53 .70	71.32 .20	MULVFS test no. 2	Bishop

WARM CORE RING 82-B

0810.1	0604	36.39 .50	73.39 .60	Shallow radon cast no. 2	Orr
0810.2	0707	36.37 .88	73.39 .15	Chlorophyll cast no. 2	Boyd
0810.3	0815	36.37 .72	73.38 .25	MOC-1D-194	Wiebe
0810.4	1353	36.38 .70	73.43 .30	MOC-20-37	Backus
0810.5	1913	36.40 .50	73.43 .40	MULVFS test no. 3	Bishop
0810.6	2028	36.41 .00	71.43 .30	MOC-1D-195	Wiebe
0811.1	0125	36.40 .90	73.43 .30	MOC-20-38	Backus
0811.2	0600	36.40 .20	73.43 .50	Shallow radon cast no. 3	Orr
0811.3	0740	36.41 .40	73.44 .00	MULVFS cast no. 1	Bishop
0811.4	1650	36.54 .60	73.41 .80	Chlorophyll cast no. 3	Boyd
0811.5	1936	36.53 .30	73.38.80	Shallow radon cast no. 4	Orr
0811.6	2040	36.52 .96	73.37 .48	MOC-1D-196	Wiebe
0812.1	0042	36.52 .88	73.37 .40	MOC-20-39	Backus
0812.2	0200	36.41 .00	73.44 .00	Neuston tow no. 2	Backus
0812.3	0530	36.54 .60	73.41 .80	MULVFS cast no. 2	Bishop
0812.4	1758	36.54 .50	73.42 .60	Shallow radon cast no. 5	Orr

3	0812.5	2113	36.53 .90	73.45 .16	MOC-1D-197	Wiebe
3	0813.1	0113	37.01 .20	73.48 .20	MOC-20-41	Backus

RING 82-B CENTER

4	0813.2	0751	37.00 .20	73.29 .80	MULVFS cast no. 3	Bishop
4	0813.3	1535	37.00 .01	73.28 .46	Chlorophy11 cast no. 4	Boyd
4	0813.4	1706	37.00 .30	73.28 .60	Six-shooter cast no. 1	Orr

Sta.	Op. No.	Start Time	Latitude ${ }^{\circ} \mathrm{N}$	Longitude	Descriptor	Invest.
	RING 82-B WESTERN EDGE					
5	0813.5	2130	36.55.92	73.44 .90	MOC-1D-198	Wiebe
5	0814.1	0105	36.54.30	73.54 .70	MOC-20-42	Backus
5	0814.2	0105	36.54 .30	73.54 .70	Neuston tow no. 3	Backus

60814.30721 | $37.00 .90 \quad 73.27 .30 \quad$ Shallow radon cast no. 6 Orr |
| :---: |
| RING 82-B CENTER |

7	0814.4	0941	37.05 .15	73.39 .81	MOC-1D-199	
7	0814.5	1332	37.07 .72	73.39 .92	MOC-20-43	Wiebe
7	0814.6	1900	37.04 .30	73.40 .60	Shallow radon cast no. 7	Backus
7	0814.7	2023	37.04 .06	73.41 .04	MOC-1D-200	Wiebe
7	0815.1	0008	37.07 .02	73.38 .18	MOC-20-44	Backus
7	0815.2	0045	37.07 .02	73.38 .18	Neuston tow no. 4	Backus
7	0815.3	0600	37.03 .52	73.4834	Deep radon cast no.1	Orr
7	0815.4	0815	37.01 .25	73.48 .16	Chlorophy11 cast no.5	Boyd
7	0815.5	0900	36.00 .47	73.48 .06	MOC-1D-201	Wiebe
7	0815.6	1304	36.51 .59	73.53 .72	MOC-20-45	Backus
7	0815.7	2000	36.50 .4	73.40 .1	MULVFS test no.4	Bishop
7	0815.8	2239	36.50 .02	73.40 .46	MOC-20-46	Backus

8	0816.1	0340	36.53 .80	73.58 .80	MULVFS cast no. 4	Bishop
8	0816.2	1330	36.47 .90	74.05 .50	Six-shooter cast no.2	Orr

9	0816.3	1800	37.09 .56	74.12 .50	Chlorophy11 cast no.6	Boyd	
9	0816.4	1922	37.09 .94	74.11 .10	MOC-1D-202		Wiebe
9	0816.5	2253	37.12 .33	74.18 .13	MOC-20-47	Backus	
9	0816.6	2309	37.12 .30	74.18 .00	Neuston tow no. 5	Backus	
9	0817.1	0420	37.11 .90	74.17 .40	MULVFS cast no. 5	Bishop	
9	0817.2	0958	37.12 .56	74.17 .40	MOC-1D-203	Wiebe	
9	0817.3	1424	37.15 .64	74.24 .90	MOC-20-48	Backus	
9	0817.4	2022	37.00 .9	73.29 .30	Six-shooter cast no.3	Orr	

10	0818.1	1358	36.00 .40	71.13 .80	Shallow radon cast no. 8	Orr
10	0818.2	1454	36.00 .18	71.13 .61	Chlorophy11 cast no. 7	Boyd
10	0818.3	1528	36.00 .20	71.13 .89	MULVFS test no.5	Bishop
10	0818.4	2135	36.01 .61	71.15 .84	MOC-1D-204	Wiebe
10	0819.1	0102	36.02 .18	71.23 .52	MOC-20-49	Backus
10	0819.2	0125	36.02 .20	71.23 .50	Neuston tow no. 6	Backus

Sta.	Op. No.	Start Time	Latitude ${ }^{\circ} \mathrm{N}$	Longitude W	Descriptor	Invest.
10	0819.3	0600	36.07 .60	71.30 .60	Six-shooter cast no. 4	Orr
10	0819.4	0831	36.09 .14	71.29 .63	MOC-1D-205	Wiebe
10	0819.5	1229	36.04 .41	71.29 .72	MOC-20-50	Backus
10	0819.6	1535	36.00 .82	71.32 .56	Chlorophy 11 cast no. 8	Boyd
10	0819.7	1607	36.00 .89	71.31 .91	MULVFS test no. 6	Bishop
10	0819.8	2150	36.01 .37	71.30 .92	MULVFS cast no. 6	Bishop

11	0820.1	1020	36.58 .56	71.19 .05	MOC-1D-206	Wiebe
11	0820.2	1403	37.00 .86	71.17 .53	MOC-20-51	Backus
11	0820.3	1720	37.04 .1	71.17.9	Chlorophyll cast no.	Boyd
11	0820.4	1805	37.04 .02	71.12 .44	Six-shooter cast no.	Orr
11	0820.5	2040	37.04 .76	71.03 .50	MOC-1D-207	Wiebe
11	0821.1	0135	37.05 .30	70.58 .84	MOC-20-52	Backus
11	0821.2	0145	37.05 .30	70.58 .70	Neuston tow no. 7	Backus
11	0821.3	0446	37.04 .70	70.55 .9	MULVFS cast no. 7	Bishop
			SLOPE WATER REFERENCE SECTION			
12	0821.4	2013	38.15 .15	70.52 .98	MOC-1D-208	Wiebe
12	0821.5	2346	38.22 .00	70.52 .70	MOC-20-53	Backus
12	0822.1	0357	38.28 .20	70.56 .70	Six-shooter cast no.	orr
12	0822.2	0857	39.03 .63	71.00 .16	MOC-1D-209	Wiebe
12	0822.3	1235	39.11 .40	70.59 .10	M 0 C-20-54	Backus
12	0822.4	1640	39.17 .7	70.59 .1	MULVFS cast no. 8	Bishop
12	0823.5	0147	40.02 .54	70.59 .85	Six-shooter cast no.	

IV. XBT DIGITIZING LOG

XBT	Date	Time	Latitude	Longitude	XBT Surface	Depth (M)	
No.		(Local)	N	W	Temp. (${ }^{\circ} \mathrm{C}$)	$\underline{15}$	10
13	08/09/82	0308	39.45 .0	71.00 .0	23.6	54	249
14	08/09/82	0340	3940.0	71.00 .0	22.8	70	260
15	08/09/82	0444	39.30 .9	71.09 .2	NR	78	262
16	08/09/82	0600	39.19 .5	71.21 .3	NR	70	265
17	08/09/82	0705	39.10 .1	71.30 .5	23.8	70	272
18	08/09/82	0800	39.01 .4	71.38 .4	24.4	69	240
19	08/09/82	0900	38.52 .2	71.47 .4	24.7	57	245
20	08/09/82	1500	38.48 .8	72.24 .0	24.4	65	245
21	08/09/82	1630	38.33 .5	72.33 .2	24.4	54	270
22	08/09/82	1810	38.15 .9	72.43 .7	24.5	52	253
23	08/09/82	1941	38.00 .2	72.53 .0	24.8	61	249
24	08/09/82	2103	37.46 .1	73.01 .5	25.3	61	251
25	08/09/82	2230	37.31 .7	73.09 .8	25.4	58	250
26	08/09/82	2300	37.22 .6	73.15 .0	25.5	58	263
27	08/10/82	0030	37.13 .72	73.20 .25	NR	51	258
28	08/10/82	0130	37.06 .2	73.24 .8	25.3	41,100,140	288
29	08/10/82	0230	36.58 .76	73.28 .76	25.6	53	274
30	08/10/82	0330	36.50.14	73.33 .25	26.0	38	262
31	08/10/82	0451	36.39 .9	73.39 .8	28.0	43,50,274	390
32	08/10/82	1756	36.38 .0	73.46 .2	25.5	59	342
33	08/10/82	2005	36.41 .0	73.44 .2	27.4	308	395
34	08/11/82	0436	36.38 .7	73.46 .0	27.8	143, 168,220	362
35	08/11/82	0637	36.40 .5	73.43 .6	27.5	123,129,265	380
36	08/11/82	0755	36.41 .6	73.44 .0	27.4	105,111,251	356
37	08/11/82	0840	36.41 .9	73.44 .1	27.6	106,112,251	366
38	08/11/82	0906	36.42 .1	73.44.1	27.5	110,116,258	373
39	08/11/82	0932	36.42 .5	73.44 .1	27.3	108,115,255	359
40	08/11/82	1000	36.42 .8	73.44.1	27.6	269.	371
41	08/11/82	1030	36.43 .8	73.44 .1	27.8	115,121,275	382
42	08/11/82	1100	36.43 .5	73.44.1	27.9	112,118,277	378
43	08/11/82	1156	36.44 .0	73.44.1	27.8	110,115,284	395
44	08/11/82	1301	36.44 .6	73.44.0	27.9	114,120,295	394
45	08/11/82	1410	36.45 .1	73.44 .0	27.5	115,119,280	392
46	08/11/82	1509	36.45 .7	73.43 .8	27.9	287	388
47	08/11/82	1550	36.50 .2	73.41 .9	27.8	312	393
48	08/11/82	1624	36.55 .0	73.42 .4	27.4	279	372
49	08/11/82	1830	36.53 .6	73.39 .2	27.2	286	388
50	08/12/82	0516	36.54 .9	73.41 .9	27.4	278	388
51	08/12/82	0723	36.55 .6	73.41.6	27.2	292	376
52	08/12/82	1140	36.56 .5	73.42 .0	27.3	295	393
53	08/12/82	1702	36.54 .3	73.41 .8	28.0	246	362
54	08/13/82	0501	37.07 .4	73.47 .9	26.7	225	347
55	08/13/82	0551	37.04 .0	73.47 .0	27.3	245	355
56	08/13/82	0609	37.00 .6	73.45 .0	27.3	250	352
57	08/13/82	0632	36.59.96	73.40 .9	27.3	270	350

-31-

$\begin{aligned} & \text { XBT } \\ & \text { No. } \end{aligned}$	Date	Time (Local)	Latitude ${ }^{\circ} \mathrm{N}$	Longitude	XBT Surface Temp. (${ }^{\circ} \mathrm{C}$)	15 Depth (10
58	NG						
59	08/13/82	0716	36.59 .8	73.32 .0	27.2	307	382
60	08/13/82	0728	36.59 .8	73.29 .8	27.4	310	392
61	0.8/13/82	1201	37.00 .6	73.29 .1	28.1	315	380
62	NG						
63	08/13/82	1515	37.00 .1	73.28 .7	28.5	271	334
64	08/14/82	0525	36.58 .3	73.45 .7	NR	225	313
65	08/14/82	0615	36.59 .4	73.35 .4	28.5	115,138,178	296
66	08/14/82	0653	37.00 .7	73.28.1	28.2	181	294
67	08/14/82	0900	37.01 .4	73.32 .8	27.3	82,140,150	310
68	08/14/82	0922	37.04 .4	73.38 .9	27.2	251	332
69	08/14/82	2010	37.04 .10	73.40 .96	27.4	231	310
70	08/15/82	0643	37.02 .8	73.48 .4	27.2	202	311
71	08/15/82	1314	36.52 .0	73.54 .0	NR	234	312
72	08/15/82	1413	36.51 .2	73.52 .2	NR	220	307
73	08/15/82	1500	36.51 .2	73.50 .6	NR	200	287
74	08/15/82	1601	36.51 .32	73.48.45	NR	170	284
75	08/15/82	1700	36.51 .35	73.46 .19	NR	112	268
76	08/15/82	1759	36.51 .16	73.43 .68	NR	110	246
77	08/15/82	1904	36.50 .71	73.41 .65	NR	56,57, 94	224
78	08/15/82	2241	36.50 .02	73.40 .46	NR	116	256
79	08/15/82	2314	36.50 .0	73.42 .0	NR	152	254
80	08/15/82	2343	36.50 .2	73.43 .4	NR	68,82,105	265
81	08/16/82	0010	36.50 .2	73.44 .6	NR	118	262
82	08/16/82	0105	36.50 .4	73.47 .1	NR	127	275
83	08/16/82	0130	36.50 .5	73.48 .4	NR	141	271
84	08/16/82	0155	36.50 .7	73.49 .5	NR	147	275
85	08/16/82	0257	36.51 .1	73.52 .6	26.2	152	281
86	08/16/82	0312	36.52 .5	73.55 .4	26.5	207	313
87	08/16/82	0330	36.53 .9	73.58 .5	27.7	242	327
88	08/16/82	0504	36.52 .6	73.59 .7	27.8	237	323
89	08/16/82	0630	36.51 .8	74.00 .4	27.8	240	320
90	08/16/82	0820	36.50 .9	74.01 .6	27.8	242	325
91	08/16/82	1530	36.47 .82	74.06 .45	NR	246	332
92	08/16/82	1638	36.54 .3	74.08 .6	27.7	231	325
93	08/16/82	1704	36.58 .9	74.09 .6	27.7	104	304
94	08/16/82	1730	37.03 .8	74.11 .0	27.7	135,137,170	272
95	08/16/82	1800	37.09 .6	74.12 .5	27.7	120	249
96	08/17/82	0352	37.12 .2	74.17 .8	25.5	69	225
97	08/17/82	0606	37.12 .2	74.17 .4	26.3	68	230
98	NG						
99	08/17/82	1948	37.14 .0	74.17 .0	25.4	58	225
100	08/17/82	2230	37.11 .5	74.17 .1	25.0	50,66,71	232
101	08/17/82	2330	37.00 .3	74.11 .7	24.5	128	257
102	08/18/82	0030	36.49 .77	74.05 .06	26.2	79,112,135	291
103	08/18/82	0130	36.37 .90	74.02 .16	NR	130	276
104	08/18/82	0235	36.28 .0	73.55 .0	25.7	75	248
105	08/18/82	0330	36.24 .6	73.42 .0	25.5	51	158

$\begin{aligned} & \text { XBT } \\ & \text { No. } \end{aligned}$	Date	$\begin{aligned} & \text { Time } \\ & (\text { Local) } \end{aligned}$	Latitude N	Longitude	XBT Surface Temp. (${ }^{\circ} \mathrm{C}$)	15 Depth (M) 10	
106	08/18/82	0430	36.22 .0	73.27 .0	26.7	101	208
107	08/18/82	0530	36.20 .2	73.13 .8	24.4	68,105,175	82,
108	08/18/82	0628	36.16 .1	72.58 .8	28.4	352	88,305 500
109	08/18/82	0731	36.11 .1	72.43 .0	27.7	518	715
110	08/18/82	0832	36.06 .75	72.26 .64	27.2	592	NP

$N G=$ no good
$N R=$ not recorded
$N P=$ not present

[^0]: *See XBT Log: (-10 M and -7 M , respectively)
 **NOTE: Add 20M respectively

