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Abstract Using high-resolution data acquired from a shipboard ADCP and a towed Scanfish equipped
with a CTD and fluorometer, we examine the properties and transport of Middle Atlantic Bight (MAB) shelf
water over a region of the Hatteras outer shelf and slope where MAB shelf water is commonly deflected off-
shore and entrained into the Gulf Stream. The data are from a period in early August 2004 when the sea-
sonal pycnocline of the MAB is well developed and situated over a weakly stratified, near-bottom shelf
water mass commonly referred to as the cold pool. Our data show chlorophyll-rich cold pool water carried
rapidly southward over the slope and outer shelf, at a rate of up to 60 cm s21, as part of the shelf-edge fron-
tal jet. This southward transport of chlorophyll-rich cold pool water is shunted eastward and entrained into
the Gulf Stream. However, the latitude band over which this export occurs varies significantly over the 7
day course of our study, a variation which is linked to an order 50 km shift in the latitude at which the Gulf
Stream separates from the continental margin. The coupled rapid translation of the Gulf Stream frontal sep-
aration and the cold pool export zone is likely to have a significant impact on the movement and accumula-
tion of biogenic material over the Hatteras slope and rise.

1. Introduction

The oceanic region near Cape Hatteras, NC marks the terminus of the southward-trending flow of Middle
Atlantic Bight (MAB) shelf water (salinity< 34 psu), which is a part of a longer equatorward coastal current
originating on the Greenland/Labrador shelf [Chapman and Beardsley, 1989]. The sum of numerous observa-
tions indicates that the preponderance of MAB shelf water flow shunted offshore near Cape Hatteras is
entrained into the Gulf Stream, which separates from the continental margin in the vicinity of Cape Hatteras
[Ford et al., 1952; Fisher, 1972; Kupferman and Garfield, 1977; Churchill et al., 1989; Lillibridge et al., 1990; Wood
et al., 1996; Churchill and Berger, 1998; Gawarkiewicz and Linder, 2006; Gawarkiewicz et al., 2008; Churchill and
Gawarkiewicz, 2012]. Coupled with the offshore shelf water flow near Cape Hatteras is a substantial seaward
export of organic matter produced over the MAB shelf and upper slope. This export is indicated by a relatively
large accumulation rate of organic carbon over the slope east of Cape Hatteras (order 10 moles C m22 yr21 as
compared with order 2 moles C m22 yr21 over the MAB slope to the north) [Alperin et al., 2002; DeMaster
et al., 1994, 2002; Thomas et al., 2002]. Further evidence of organic carbon export near Cape Hatteras comes
from analysis of CTD and fluorescence measurements by Wood et al. [1996], which reveals transfer of
chlorophyll-rich MAB shelf water from beneath the seasonal pycnocline to the edge of the Gulf Stream.

Recently, Churchill and Gawarkiewicz [2012] examined patterns of MAB shelf water flow and export near
Cape Hatteras using CTD and velocity data from the mooring array of the Ocean Margins Program [Verity
et al., 2002]. Their analysis revealed two primary transport pathways by which MAB shelf water entering the
Hatteras region is conveyed offshore [see Churchill and Gawarkiewicz, 2012, Figure 12]. Water entering the
Hatteras region over the middle and inner shelf (bottom depths< 40 m) tends to experience very little loss
over the latitude range of the OMP array (35�270N–36�400N). Churchill and Gawarkiewicz hypothesized that
this water is likely diverted offshore upon encountering the Hatteras Front, which separates MAB shelf water
from the more saline shelf water of the South Atlantic Bight [Churchill and Berger, 1998; Savidge and Austin,
2007; Savidge et al., 2013a, 2013b]. By contrast, MAB shelf water flow seaward of the shelf edge is exported
over the length of the mooring array, essentially vanishing by the southern extreme of the array. Notably,
this flow encompasses much of the shelf-edge frontal jet, which typically extends beyond the shelf edge
and contains a transport of order 0.25 Sv with maximum velocities of order 0.3 m s21 [Linder and Gawarkie-
wicz, 1998; Fratantoni et al., 2001; Gawarkiewicz and Linder, 2006].

Key Points:
� Chlorophyll-rich water is conveyed to

the Gulf Stream within a shelf-edge
jet
� The zone of shelf water export to the

Gulf Stream rapidly shifts in latitude
� The shifts are linked to movement of

the Gulf Stream/margin separation

Correspondence to:
J. H. Churchill,
jchurchill@whoi.edu

Citation:
Churchill, J. H., and G. G. Gawarkiewicz
(2014), Shelf water and chlorophyll
export from the Hatteras slope and
outer shelf, J. Geophys. Res. Oceans,
119, 4291–4304, doi:10.1002/
2014JC009809.

Received 10 JAN 2014

Accepted 28 MAY 2014

Accepted article online 3 JUN 2012

Published online 16 JULY 2014

This is an open access article under the

terms of the Creative Commons

Attribution-NonCommercial-NoDerivs

License, which permits use and

distribution in any medium, provided

the original work is properly cited, the

use is non-commercial and no

modifications or adaptations are

made.

CHURCHILL AND GAWARKIEWICZ VC 2014. The Authors. 4291

Journal of Geophysical Research: Oceans

PUBLICATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Woods Hole Open Access Server

https://core.ac.uk/display/222884101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1002/2014JC009809
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/
http://publications.agu.org/


A number of questions remain regarding the export of MAB shelf water in the Hatteras region. With regard
to shelf water export from the slope, it is unclear to what extent biogenic material is contained in the shelf-
edge frontal jet and transported offshore (i.e., is there a large export of organic carbon associated with
entrainment of the frontal jet into the Gulf Stream?). It is also unclear how movements of the Gulf Stream
front may influence the flow of shelf water over the slope or the latitude at which it is deflected offshore.

We address these and related issues using CTD/fluorescence/velocity data acquired from a towed vehicle
and a shipboard ADCP in the shelf-edge frontal jet export zone identified by Churchill and Gawarkiewicz
[2012].

2. Methods

The data used in our study were acquired as part of the August 2004 field operations of the Frontal Interac-
tion Near Cape Hatteras (FINCH) program. These operations involved deployment and recovery of instru-
mented moorings, as well as simultaneous data collection from two research vessels: the R/V Slover
operating near Cape Hatteras in the area of the Hatteras Front [Savidge and Austin, 2007] and the R/V Cape
Henlopen operating principally over the slope and outer shelf further north. Our study focused on data
acquired from the Cape Henlopen in the 35�350N to 36�200N latitude band, and from a pair of moorings
deployed over the upper slope (at �80 m depth) near 35�450N (Figure 1).

The Cape Henlopen operations began on 4 August with the deployment of the mooring pair. One mooring
consisted of a tripod outfitted with an upward-looking, 300 kHz Acoustic Doppler Current Profiler (ADCP). The
second was comprised of a string of 12 thermistors (Onset Computer Corp. Tidbit temperature loggers) dis-
tributed, from <1 m below the surface to �5 m above bottom, on a line supported by a surface float. Single-
ping measurements from the ADCP, acquired at a rate of 1.8 s per ping, were averaged over 15 min intervals
to give vertical profiles of horizontal velocity in 1 m depth bins from roughly 6 m below the surface to 4 m
above the bottom. The thermistors were programmed to give temperature measurements at 15 min intervals.

Following the mooring deployment, water properties over the outer shelf and slope were surveyed using a
Geological and Marine Instrumentation model MKII ‘‘Scanfish’’ towed from the Cape Henlopen. The Scanfish

was outfitted with a Sea-Bird
model 9111 CTD, a WET Labs
WS3S fluorometer and a Sea-Bird
SBE 43 oxygen sensor. Data were
acquired from these instruments
with ship steaming at roughly six
knots and the Scanfish undulat-
ing roughly between 2 and
120 m depth (or to within a few
meters of the bottom in water
shallower than 120 m). Horizontal
spacing between the shallowest
points of an undulation cycle
ranged from 500 m in shallow
water to 2 km in deep water. The
measurements from each full
undulation (ascending and
descending) cycle were averaged
into a single vertical profile.

Throughout the cruise, velocity
profiles were acquired from the
Cape Henlopen’s 600 kHz hull-
mounted ADCP. The ADCP data
were averaged over 5 min inter-
vals to give profiles of horizontal
velocity in 1 m depth bins.

Figure 1. The Hatteras shelf and slope. The dots mark the centers of Scanfish profiles
used in our study, with east-west transects identified. The ‘‘cross’’ marks the location of
the ADCP/thermistor-string mooring and the ‘‘plus’’ is the site of NOAA meteorological
buoy 44014. The gray lines mark the 60, 100, and 200 m isobaths.
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Barotropic tidal currents were removed from these profiles using results of tidal simulations computed by
the finite element model ADCIRC [Luettich et al., 1992] over a North Atlantic model grid [see Blanton et al.,
2004]. Computed tidal currents over the Scanfish tracks were no larger than 0.08 m s21 and were <0.03 m
s21 at bottom depths >100 m. Unfortunately, due to the high acoustic frequency of the Cape Henlopen’s
ADCP, its measurement depth range was limited to �5–40 m.

Scanfish surveying was carried out over 5–11 August, after which the mooring pair was recovered. Survey-
ing was done over transects oriented across and along the shelf/slope and with the ship trending either
northward or southward while covering the transects. We have divided the survey into five phases, each of
which consists of a single transit over the survey region (35�350N–36�200N). Here particular attention is
given to the measurements from the four east-west transects (Figure 1), designated as transect: 0—along
36�200 (covered in phase 1 only); 1—36�000 (phase 1) or 35�550 (phases 3–5); 2—35�450; and 3—35�350.

The wind velocity data used in our study were from NOAA buoy 44014 (Figure 1) and were supplied by the
National Data Buoy Center (http://www.ndbc.noaa.gov/). Satellite radiometer-derived images of sea surface
temperature (SST) were obtained from the Rutgers University Coastal Ocean Observation Laboratory SST
image archive.

A focus of our study was on the distribution and transport of organic material in the region of the Hatteras
slope and outer shelf. However, we acquired no data from this region to relate the Scanfish fluorometer
voltage to chlorophyll concentration, and thus could not confidently convert the fluorometer’s measure-
ments to chlorophyll concentrations. As a proxy for chlorophyll concentration, we used the quantity
FV 5 V 2 Vmin, where V is the fluorometer output voltage and Vmin is the fluorometer’s lowest output voltage
(0.056 V), which is presumably roughly equal to the instrument’s clear water voltage. Previous investigators
of the chlorophyll distribution in our study region [Wood et al., 1996; Lohrenz et al., 2002] have reported a
strong statistical relationship between chlorophyll concentration determined from analysis of water samples
and the fluorescence signal of a fluorometer attached to a shipboard CTD. In particular, Wood et al. [1996]
found a linear relationship with R2 5 0.906 between the chlorophyll concentrations of water samples taken
between 35.3�N and 36.4�N over the Hatteras shelf and slope (from a bottom depth range of 28–600 m)
and in situ fluorescence measured at the water sample locations and times.

In assuming a proportional relationship between fluorometer voltage and chlorophyll concentration, the pos-
sible impact of colored dissolved organic matter (CDOM) on fluorescence measurements must be considered.
Vodacek et al. [1997] examined fluorescence measurements acquired from a CDOM-sensitive fluorometer,
with 355 nm excitation and 450 nm emission wavelengths, over a track extending from mouth of Delaware
Bay southeast to the Sargasso Sea. They reported measurable CDOM fluorescence over the full track line. The
fluorometer used in our study was designed as a chlorophyll-sensitive device, with 460 and 695 nm excitation
and emission frequencies, respectively. To estimate the impact of CDOM on the voltage measurements of this
fluorometer, we converted CDOM measurements acquired from an autonomous biogeochemical float
[Barnard and Mitchell, 2013] (http://navis.sea-birdscientific.com/profilemap.php?floatId532) over the
shelf edge and slope north of our study region to fluorometer voltage using the relationship derived by
Proctor and Roesler [2010] for a 470 nm excitation wavelength (their Figure 4b). The results indicate an order
10–30 mV response by our fluorometer to the CDOM concentrations expected in our study region. As
reported below, the FV values used in our analysis span a 1 V range, which we may assume is principally the
result of chlorophyll fluorescence.

3. Results

3.1. Water Mass Properties
The temperature/salinity (T/S) properties of the water sampled by the Scanfish show a number of distinct
water masses as well as mixtures of these masses (Figure 2). In the salinity band of MAB shelf water, weakly
stratified and relatively cold subsurface water, commonly referred to as cold pool water, is evident. Typically
residing over the middle and outer shelf of the MAB, cold pool water is as a remnant of water formed in the
winter that has been capped by the seasonal pycnocline [Bigelow, 1933; Han and Niedrauer, 1981; Houghton
et al., 1982; Flagg et al., 1998; Bignami and Hopkins, 2003]. It is situated shoreward of the shelf-edge front
and is generally bordered inshore by coastal water that is warmer due to vertical mixing induced by the
tides and wind. The cold pool water observed in our survey has a vertical density stratification of order 1 rT

Journal of Geophysical Research: Oceans 10.1002/2014JC009809

CHURCHILL AND GAWARKIEWICZ VC 2014. The Authors. 4293

http://www.ndbc.noaa.gov/
http://navis.sea-birdscientific.com/profilemap.php?floatId=32
http://navis.sea-birdscientific.com/profilemap.php?floatId=32


over 25 m and an upper rT bound of �26.4. Its lower rT bound varies between 24 and 24.5. Hereafter, the
rT range of cold pool water is specified as 24–26.4. In our survey data, the cold pool water is situated
beneath a pycnocline (with density varying by order 3 rT over 5 m), which in turn is beneath a weakly strati-
fied 5–20 m deep surface layer with T> 23�C.

Other water masses captured by the survey, and identified by their T/S properties, include: surface and
upper pycnocline Gulf Stream water, MAB slope water, MAB shelf/slope frontal water and frontal water sep-
arating near-surface Gulf Stream and MAB shelf waters (Figure 2).

Values of fluorometer voltage (FV) indicate that the highest chlorophyll concentrations are in water of 24–
26.2 rT (Figure 2). Furthermore, the highest FV are predominately from the cold pool. Of those FV in excess
of 0.4 V, 83% are from cold pool samples (i.e., 24< rT< 26.4; S< 34).

The vertical distribution of FV, represented here by averages over 5 m depth bins (Figure 3), indicates that
much of the chlorophyll sampled by our survey is from the 20 to 60 m depth band. The highest 5 m FV aver-
ages are within the 20–40 m depth band. With regard to the computation of the FV fluxes (a proxy for chlo-
rophyll flux) to be presented later, the preponderance of high FV in this depth band is fortuitous as is
overlaps the limited depth range (�5–40 m) of the ADCP velocity measurements.

3.2. Gulf Stream Frontal Movement
During the 7 days of our survey, the Gulf Stream frontal configuration seaward of the Hatteras shelf
changed significantly, as evidenced by the SST imagery of the period (Figure 4).

SST imagery from the first survey phase (5–6 August) shows the Gulf Stream separating from the continen-
tal margin at roughly 35�380 N. To the east of this separation point, a band of cold water is seen extending
along the northern margin of the Stream. This is presumably the signature of MAB shelf water entrained
into the Gulf Stream and carried eastward.

Imagery of the second survey phase (6–7 August) is more challenging to interpret. Two surface temperature
fronts appear east of the Hatteras shelf. One is near the shelf edge and separates 24 and 27�C surface
waters (the latter represented as a yellow area in Figure 4). The second front is further east and separates 27
and 28.5�C surface waters (represented by yellow and orange, respectively, in Figure 4). Based on the
sequence of SST images from this period (four clear images over 7–8 August), and the ADCP data acquired
over the slope in the area of the first front described above (which show southward flow of the warm water
seaward of this front), we hypothesize the �27�C water appearing between the fronts is the surface expres-
sion of water that had been expelled from the Gulf Stream after it separated from the continental margin.
Such parcels of expelled Gulf Stream water have been described by Churchill and Cornillon [1991a, 1991b].
The observations of Churchill and Cornillon [1991a] indicate that such parcels are comprised of Gulf Stream

Figure 2. (a) Temperature/salinity (T/S) characteristics of all Scanfish measurements at the locations shown in Figure 1. The water mass
identifications are based on examination of vertical T, S, and velocity profiles derived from the Scanfish and ADCP data and T, S data taken
as part of other studies conducted in the MAB. Abbreviations are SE, shelf edge and GS, Gulf Stream. (b) T/S characteristics and FV of only
those samples with FV> 0.4 V.

Journal of Geophysical Research: Oceans 10.1002/2014JC009809

CHURCHILL AND GAWARKIEWICZ VC 2014. The Authors. 4294



water which had upwelled along isopycnals before being expelled from the Stream, and that they contain
relatively weak velocities compared with surface Gulf Stream flow.

The edge of the Gulf Stream, and its separation from the continental margin, is clearly defined in the
imagery of survey phase 3 (Figure 4). A band of cold water, presumably entrained MAB shelf water, is seen
along the northern margin of the Gulf Stream downstream of its separation point. What may be a remnant
of the 27�C surface water seen in the phase 2 imagery (and identified as expelled Gulf Stream water)
appears to the north of this cold water band.

Figure 3. Averages of (a) rT and (b) FV, together with standard deviations about the averages, from Scanfish profiles acquired at the loca-
tions shown in Figure 1.

Figure 4. Satellite AVHRR-derived images of SST of each survey phase. The red vectors show near-surface (7 m) velocity at the time of the
image taken from the low-pass filtered (10 h half-power point) velocity record of the moored ADCP. Black vectors are wind velocity at the
time of the image taken from the buoy 44014 wind record (to constrain the image borders, the vector origin is 0.25� south of the 44014
location). The narrow black line marks the 100 m isobath. Thick black lines trace the Gulf Stream edge. Image times are in GMT.
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The Gulf Stream’s edge and the location at which is separates from the continental margin are also well
defined in the SST imagery of survey phases 4 and 5 (Figure 4). The imagery of phase 5 shows a band of
warm water, centered at roughly 35�350N, extending from the Gulf Stream edge onto the shelf, presumably
the signature of a shoreward intrusion of Gulf Stream water.

To compare shelf water flows with shifts in the Gulf Stream position, we traced the Gulf Stream frontal bor-
der on the images of Figure 4. This was done with the aid of near-surface ADCP velocity data acquired 10 h
before and after the time of each image, which for all but one image encompasses the Gulf Stream front.
Our representation of the border indicate that the point of Gulf Stream frontal separation from the conti-
nental margin shifted abruptly southward between survey phases 1 and 2, and migrated northward
throughout the rest of the survey.

3.3. Moored Velocity and Temperature Observations
Data from the moored thermistors show the upper slope water column to be highly stratified throughout our
study period (5–12 August), with a 12–24�C thermocline spanning a depth range of roughly 10–30 m (Figure
5). Throughout most of the study period, 8–12�C water with weak vertical temperature stratification (�0.1�C
m21) appears beneath the thermocline. Based on the Scanfish T/S data acquired over the upper slope near
the mooring, we identify this 8–12�C water as part of the cold pool. A warming event appears in the thermis-
tor data on 11 August, with the 8–12�C subthermocline water displaced by 14–16�C water and with a 3�C
increase in near-surface temperature (Figure 5). This event coincides with SST imagery showing an onshore
intrusion of Gulf Stream water near the mooring (Figure 4) and is thus very likely due to the intrusion.

The along-slope (north-south) flow measured by the moored ADCP is predominantly unidirectional over the
water column (Figure 5) and undergoes two reversals during the survey period: from northward-to-

Figure 5. Time series of temperature and velocity measured at the upper slope mooring, as well as northward wind velocity measured at
NOAA buoy 44014 (Figure 1). The water velocity time series have been low-pass filtered with a 10 h half-power point filter. Times of the
survey phases are shown in Figure 5a.
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southward during survey phase 2 and returning to northward during phase 3. Flow in both directions is rel-
atively strong, with the southward (northward) velocity magnitude reaching 0.4 (0.3) m s21. At 8 days in
length, the velocity record is too short for determining a meaningful statistical relationship between the
currents and the near-surface wind. Nevertheless, the wind and ADCP-measured velocities appear to be
related in a manner consistent with along-slope wind forcing of the along-slope current. Variations in the
northward flow are similar to variations in the northward wind velocity, lagging the wind variations by
�0.5 h. However, in view of the large variation in Gulf Stream frontal configuration and point of Gulf
Stream separation from the continental margin (which shifts southward during the period of southward
ADCP-measured flow and migrates northward when the flow is to the north), we cannot discount the
possibility that the along-slope velocities measured by the ADCP are, in part, influenced by Gulf Stream
frontal movements.

The east-west (across-slope) velocities often exhibit a complex vertical structure (Figure 5). At no levels are
the east-west velocities clearly related, by visual inspection, to either the north-south or east-west (not
shown) wind velocity.

Notably, during the appearance of warm water over 11–12 August, strong (order 0.25 m s21) westward
(onshore) velocities are observed, an indication that this water is part of an intrusion of Gulf Stream water
actively advected onto the shelf as suggested by the SST imagery of the period (Figure 4).

The depth and time-averaged east-west velocity is, with a mean of 0.0025 m s21 and a 90% confidence
interval of 0.02 m s21, essentially zero. Within a given ADCP measurement bin, mean east-west velocities
are larger, with mean westward (onslope) velocities reaching 0.05 m s21 in the upper 20 m and mean east-
ward (offslope) velocities reaching 0.024 m s21 in the depth range of the cold pool water. However, none of
these mean velocities are significantly different from zero within the 90% confidence interval.

3.4. Shelf Water Flow Patterns
A prominent feature seen throughout our survey is a well-defined jet of subpynocline cold pool water flow-
ing southward along transect 1 (Figure 1). This is, very likely, a southern extension of the shelf-edge frontal
jet [Linder and Gawarkiewicz, 1998; Fratantoni et al., 2001; Gawarkiewicz et al., 2008]. In data from all mea-
surement phases with multiple across-shore transects (phases 1, 3, 4, and 5) evidence of this jet is absent
along the southernmost transect (transect 3 in Figure 1). This pattern of cold pool water loss over our Scan-
fish survey area is illustrated here by the salinity and along-slope velocity fields of survey phase 3 (Figure 6).
The southward cold pool water jet appears along the northern most transect (transect 1) where it reaches a
maximum velocity in excess of 0.4 m s21 and has a width of order 10 km. The cold pool water jet is seen
transect 2, but with a sharply reduced width (order 4 km) and maximum current (0.3 m s21). Cold pool
water is absent along transect 3.

As illustrated here by cold pool velocities at 35 m (Figure 7), details of the cold pool water flow vary signifi-
cantly from one survey phase to the next. Of particular note are changes in the southward extent of the
cold pool water jet. For example, the velocities from phases 1 and 2 indicate an abrupt southward shift in
the jet’s terminus. In phase 1, the jet is sharply attenuated between transects 1 and 2, going from a maxi-
mum speed of 0.33 to 0.11 m s21, and is absent from transect 3. In phase 2, the jet appears with significant
strength at transect 2 (the only E-W transect of the phase), with southward velocities reaching 0.4 m s21.
The terminus of the jet appears to migrate northward over phases 3–5. In phase 5, cold pool water flow is
directed southward only at transect 1, with velocity of no greater than 0.12 m s21.

These latitudinal shifts in the termination of the cold pool water jet may be in part due to wind forcing.
The jet shifts southward when the wind is to the south and migrates northward during a period of north-
ward winds (Figure 7). However, the changing Gulf Stream position is strongly implicated as a mechanism
influencing the jet’s southward extent, as the latitude of the jet’s terminus is closely linked with the point
at which the Gulf Stream separates from the continental margin (Figure 7). In addition, the cold pool
water velocities often vary significantly across a transect in a manner which suggest that the flow over
the shelf and upper slope (<100 m depth) is more strongly influenced by wind forcing than the flow over
deeper water. The 35 m deep cold pool velocities measured during phases 4 and 5, for example, are
directed northward (in the wind direction) over depths <100 m, and southward over greater bottom
depths (Figure 7).
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The flow of near-surface shelf water also exhibits significant phase-to-phase variation over the 7 days of our
survey (Figure 8). Mirroring the pattern of cold pool water flow, the latitudinal extent of the southward
near-surface shelf water flow shifts southward between phases 1 and 2 and subsequently migrates north-
ward. In addition, the changes of the near-surface shelf water flow appear to be related to variations in
both the local wind and the Gulf Stream position.

Figure 6. Fields of (a–c) salinity, (d–f) north-south velocity (positive to the north), and (g–i) fluorometer voltage (FV) measured along trans-
ects (Figures 6a, 6d, and 6g) 1, (Figures 6b, 6e, and 6h) 2, and (Figures 6c, 6f, and 6i) 3 (Figure 1) during survey phase 3. Black lines in all
plots are rT contours, and white lines on the velocity fields mark the zero-velocity contour.

Figure 7. For the indicated phases, plots of salinity and cold pool water (S< 34 psu; 24< rT< 26.4) velocity at 35 m. Velocities of other
water types are not displayed. Also shown are the mean wind velocity measured at buoy 44014 during each phase (red vector with origin
displaced from the 44014 location to constrain the latitude bounds) and the northwestern edge of the Gulf Stream as determined from
SST imagery (Figure 4). Gray lines mark the 60, 100, and 200 m isobaths.
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Because high values of FV within shelf water are largely confined to the cold pool, the transport of shelf
water chlorophyll is principally tied with the flow of cold pool water. This is illustrated by the FV and south-
ward velocity fields of phase 3 (Figure 6). The fields along transect 1 show an area of high FV situated within
cold pool water immediately beneath the pycnocline. This encompasses a southward current of �0.35 m
s21. A similar band of southward moving cold pool water with high FV is seen in the fields of transect 2, but
with a much smaller horizontal extent than the band seen along transect 1.

The phase 3 fields along transect 3 reveal northward-moving near-bottom water with elevated FV in the
area where the pycnocline (shelf-edge front) intersects the bottom (Figure 6i). Similar features of
northward-moving chlorophyll-enriched water appear in the area of the pycnocline-bottom intersection
during phases 4 and 5. These features could be partly the result of enhanced sediment resuspension in the
region of pycnocline-bottom intersection, due to the injection of biogenic bottom material (phaeopig-
ments) into the water column and/or primary production stimulated by resuspended nutrients. High bot-
tom stress and enhanced sediment resuspension due to the dissipation of internal wave energy in the
bottom boundary layer have been observed in the area of the pycnocline-bottom intersection by a number
of investigators [Bogucki et al., 1997; MacIntyre et al., 1999; Klymak and Moum, 2003; Hosegood et al., 2004].
Another possible factor contributing to these features is upwelling in the area of the frontal intersection
with the bottom, which may inject nutrients and/or resuspended biogenic material into the water column
along frontal isopycnals. Upwelling at a frontal/bottom intersection has been indicated through theoretical
calculations [Gawarkiewicz and Chapman, 1992; Chapman and Lentz, 1994] and observations [Houghton,
1997; Barth et al., 1998; Houghton and Visbeck, 1998]. It is possible that enhanced resuspension and upwell-
ing at the frontal/bottom intersection may have acted in concert to produce the patches of high FV seen at
the foot of the front during phases 3–5, with internal wave dissipation injecting bottom material into the
water column and upwelling along frontal isopycnals carrying this material further upward and seaward.

An issue of interest is the extent to which chlorophyll carried into our study region along transect 1 is con-
tained within the southward-flowing cold pool jet, i.e., is the jet a principal conduit for the transport of chlo-
rophyll into the southern MAB? To address this issue, we determined the distribution of FV in shelf water as
a function of north-south velocity (vN) across transect 1. This was done by first interpolating FV, salinity and
vN onto a common grid, and then averaging shelf water FV over 0.1 m s21 vN bands. For all but phase 5, the
averages indicate a strong tendency for chlorophyll-rich water to be contained within the jet passing tran-
sect 1 (Figure 9). The FV averages for phases 2 and 3, in particular, are more than four times higher in the
20.5 to 20.3 m s21 vN bands than in the bands of vN>20.1 m s21 (southward vN is negative). By contrast,
the transect 1 FV averages of phase 5 are not dominant in any vN band, having nearly equal magnitudes
over bands extending from 20.3 to 0.4 m s21. During phase 5, the Gulf Stream separation is at its

Figure 8. Same as Figure 7, except showing salinity and shelf water (S< 34 psu) velocity at 7 m.
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northernmost extent of our survey, abutting transect 1 (Figure 4), and the cold pool water jet appears to be
near its southern terminus at transect 1 (Figure 7). We posit that the phase 5 measurements at transect 1
capture both the southward flow of chlorophyll-rich shelf water entering our study region and the north-
ward flow of chlorophyll-rich shelf water exiting the region at the edge of the Gulf Stream.

3.5. Volume and Chlorophyll Transports of Shelf Water
Shelf water transport across each Scanfish section was determined from fields of salinity and velocity (per-
pendicular to the section) interpolated to a common grid. Transports were calculated for cold pool
(24< rT< 26.4) and lower-density (rT< 24; pycnocline/near-surface) shelf water masses, according to

Ti5

ð ðAi

m?da

where Ti is the transport of water mass i (cold pool or lower-density shelf water), Ai is the cross-sectional
area of the Scanfish section occupied by the water mass and v? is the velocity normal to the section. Also,
calculated was the transport of fluorometer voltage (FV transport) across each Scanfish section, a proxy for
chlorophyll transport, according to

Fi5

ð ðAi

m?FV da

Transports were calculated for the portions of each section situated over the slope and rise seaward of the
100 m isobath. Because of the depth limitation of the ADCP data, the vertical band over which transports
were computed was confined to 5–40 m. The computed transports thus represent a fraction of the overall
shelf water transport through the southern MAB.

The volume transports (Figure 10 and Table 1) clearly show the latitudinal variations in the terminus of the
southward shelf water flow over the slope and rise during our study, with the terminus shifting southward

Figure 9. For each indicated phase, means of fluorometer voltage (FV), and the standard deviation about each mean (vertical lines) of MAB
shelf water (S< 34 psu) passing transect 1 (Figure 1). Each mean has been calculated over a 0.1 m s21 band of north-south (positive to the
north) velocity.
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between phases 1 and 2 and migrating northward over phases 3–5. As the transports of cold pool water are
determined from flows over depths >100 m and isolated from the surface by the seasonal pycnocline, these
transports are not likely to be significantly influenced by the surface wind. The latitudinal shifts in the terminus
of the cold pool transport are thus most likely due to changes in the position of the Gulf Stream’s separation
from the continental margin, which mirror the shifts in the cold pool flow termination (Figure 10).

While the volume transport of pycnocline/near-surface shelf water is often similar to the volume transport
of cold pool water (Figure 10 and Table 1), it occasionally differs from cold pool transport in a manner con-
sistent with a greater influence of surface wind forcing on the surface and pycnocline flow. Such a differ-
ence in cold pool versus upper water transport is particularly apparent over transect 1 in phases 4 and 5,
during which the near-surface/pycnocline volume transport is directed northward, with the wind, and the
cold pool transport is directed southward.

Pycnocline/near-surface volume transports typically (but not always) exceed cold pool volume transports.
However the transport of FV is typically more than four times greater in the cold pool than in the waters
above (Figure 11 and Table 2), reflecting the propensity of cold pool water samples to have significantly
higher FV than the water above.

A notable feature seen in the volume and FV transports of cold pool water over phases 3 and 4 is a relatively large
southward transport over the northernmost east-west transect (transect 1) which is not balanced by the transports
across downstream transects (to the south and east). This imbalance could be the result of subduction of cold
pool water after passing transect 1, shifting part of the cold pool flow seen at transect 1 below the ADCP measure-
ment range (of�40 m). The Scanfish data offer marginal evidence that the cold pool water observed along tran-
sect 1 may subduct upon turning eastward toward the Gulf Stream. The nominal upper level of the cold pool, the
rT 5 24 surface, is 2–5 m deeper along the N-S transect between transects 1 and 2 than along transect 1.

4. Discussion

The basic features of the chlorophyll distribution determined from our August 2004 survey data are
similar to those reported by Wood et al. [1996] based on measurements acquired over the MAB shelf

Figure 10. Estimated volume transport of MAB shelf water (S< 34 psu) across the indicated Scanfish lines and over the indicated survey
phases. The bottom plots show the transport of cold pool water (24<rT< 26.4), whereas the top plots show the transport of lower density
(rT< 24; pycnocline and surface mixed layer) water (scales of the transports of the top and bottom plots differ). Also shown are the mean
wind velocity measured at buoy 44014 during each phase (red vector with origin displaced from the 44014 location to constrain the lati-
tude bounds) and the northwestern edge of the Gulf Stream as determined from SST imagery (Figure 4). Gray lines mark the 60, 100, and
200 m isobaths.
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and slope near Cape Hatteras in July 1993. In both data sets, high chlorophyll concentrations are prin-
cipally contained within the cold pool and confined to the 24–26 rT range. Furthermore, the high
chlorophyll concentrations observed in both data sets are largely at depths >20 m, beyond the order
10 m depth range over which pigments in MAB surface waters can be detected by satellite-based flu-
orometers [Ryan et al., 1999]. This contrasts with the analysis of Ryan et al. [1999], which shows an
enhancement of chlorophyll concentrations at the MAB shelf edge, as detected by Coastal Zone Color
Scanner imagery, during the mid-April to late-June transition from well-mixed to stratified conditions.
Ryan et al. show a sample cross-shelf/slope section from early June in which high chlorophyll concen-
trations are contained within the 24–26 rT range, as observed in our observations and those of Wood
et al. [1996], but extend to within a few meters of the surface (their Figure 4). The above observations
raise the possibility of a seasonal variation in accessibility of chlorophyll-rich water near the MAB shelf-
edge front to satellite-based fluorometry. As a cautionary note for interpreting the satellite-derived
chlorophyll fields from the MAB shelf-edge region, it must be recognized that this region may often
contain chlorophyll-rich water beneath the range of detection by satellite-based fluorometers.

Our measurements indicate, for the first time, that the chlorophyll-rich water contained within the cold
pool is carried rapidly southward in the shelf-edge frontal jet at a rate of up to 0.6 m s21. The
entrainment of this biogenic-rich transport into the Gulf Stream near Cape Hatteras likely has a
substantial, but yet to be determined, impact on the carbon budget of coastal waters off of the
northeast U.S.

Table 1. Volume Transports (mSv, Positive to the North) of Cold Pool (S< 34 psu, 24< rT< 26.4; in Square Brackets) and Lower Density
(S< 34 psu, rT< 24) MAB Shelf Water Across the East-West Transects of the Scanfish Surveys (Figure 1)a

Transect (Figure 1) Phase 1 (5–6 Aug) Phase 2 (7–8 Aug) Phase 3 (9 Aug) Phase 4 (9–10 Aug) Phase 5 (10–11 Aug)

0 2227 [234]
1b 2127 [223] 229 [227] 20 [243] 29 [212]
2 211 [19] 237 [261] 3 [23] 0 [12] 65 [11]
3 0 [0] 77 [0] 63 [0] 0 [0]

aNote that these values are shown to illustrate the north/south trend in the latitude at which the southward shelf water flow termi-
nates. They should not be taken as the total shelf water transport over the slope and upper shelf as they are based on ADCP data from
the 5 to 40 m depth band. In addition, the transect lengths differ from phase to phase (Figure 10).

bThe latitude of transect 1 is 36�000 for phase 1 and 35�550 for phases 3–5.

Figure 11. Same as Figure 10, except showing the cross-sectional integral of the product of fluorometer voltage (FV) and across-transect
velocity of (bottom) cold pool and (top) lower-density shelf water.
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Our analysis reveals a tight coupling between the location of the Gulf Stream’s separation from the conti-
nental margin and the latitude at which the cold pool water is deflected offshore. The possibility that the
movement of the Gulf Stream front may influence the upper-slope flow (at 80 m depth), with the flow fol-
lowing the Gulf Stream frontal movements (i.e., northward flow associated with northward frontal migra-
tion), is also indicated. This possible relationship between the frontal position and the upper-slope flow is
consistent with analysis of satellite altimeter and SST data by Bohm et al. [2006], which revealed a south-
ward acceleration (deceleration) of the flow associated with offshore (onshore) movement of the Gulf
Stream front. However, as our mooring data set is only 8 days in duration, we cannot discern with statistical
confidence the extent to which the observed flow variations are the product of Gulf Stream or wind forcing.

Of note are the rapid north-south shifts in the Gulf Stream frontal separation from the continental margin
and the associated latitudinal shifts of cold pool water export. During the course of our study, the position
of Gulf Stream separation varies by order 50 km, with the location of the cold pool water export undergoing
a similar change. This coupled translation of the cold pool export zone and the Gulf Stream frontal separa-
tion likely has a significant impact on the movement and accumulation biogenic material over the Hatteras
slope and rise. It is possible, for example, that areas within this translation band may alternately experience
particle deposition, due to particle fallout during cold pool water passage, and erosion when exposed to
the Gulf Stream. A result may be the net transfer of particles, via Gulf Stream transport, to depths beyond
the continental slope. Such a possibility puts into question the estimates of the percent of MAB production
sequestered in deep sediments, as most of these are based on analysis of core samples from the slope
region, at depths <1200 m [Alperin et al., 2002; DeMaster et al., 2002; Thomas et al., 2002]. Developing a
fuller understanding of the complex processes influencing the movement and ultimate fate of MAB shelf
water and biogenic material exported from the Hatteras shelf and slope region clearly requires in-depth
observational studies directed at these processes.
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