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Abstract  1 

In the northern foothills of the Brooks Range, Alaska, a series of glacial retreats has created a landscape that 2 

varies widely in time since deglaciation (= soil age), from ~10k years to more than 2M years.  Productivity of 3 

the moist tundra that covers most of this landscape is generally N-limited, but varies widely, as do plant-species 4 

composition and key soil properties such as pH.  These differences might be altered in the future because of the 5 

projected increase in N availability under a warmer climate.  We hypothesized that future changes in 6 

productivity and vegetation composition across soil ages might be mediated through changes in N availability.  7 

To test this hypothesis, we compared readily available-N (water-soluble ammonium, nitrate, and amino acids), 8 

moderately-available N (soluble proteins), hydrolysable-N, and total-N pools across three tussock-tundra 9 

landscapes with soil ages ranging from 11.5k to 300k years.  We also compared the effects of long-term 10 

fertilization and warming on these N pools for the two younger sites, in order to assess whether the impacts of 11 

warming and increased N availability differ by soil age.         12 

Readily available N was largest at the oldest site, and amino acids (AA) accounted for 80-89 % of this 13 

N.  At the youngest site, however, inorganic N constituted the majority (80-97%) of total readily-available N.  14 

This variation reflected the large differences in plant functional-group composition and soil chemical properties.  15 

Long-term (8-16 years) fertilization increased soluble inorganic N by 20-100 fold at the intermediate-age site, 16 

but only by 2-3 fold at the youngest-soil site.  Warming caused small and inconsistent changes in the soil C:N 17 

ratio and soluble AA, but only in soils beneath Eriophorum vaginatum, the dominant tussock-forming sedge.  18 

These differential responses suggest that the impacts of warmer climates on these tundra ecosystems are more 19 

complex than simply elevated N mineralization, and that the response of the N cycling might differ strongly 20 

depending on the ecosystem’s soil age, initial soil properties, and plant-community composition.    21 

 22 

 23 
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Hydrolysable amino acid HAA 30 

Hydrolysable amino sugars HAS 31 
 32 

Introduction 33 

Plant productivity in arctic-tundra ecosystems is generally N-limited despite the large amount 34 

of N stored in their soils (Schimel et al. 1989; Shaver et al. 1992).  The N limitation arises 35 

because microbial decomposition of soil organic matter is slow under cold temperatures and 36 

therefore only a small portion of the stored N becomes available each year; inputs by 37 

deposition and fixation are very small (Hobara et al. 2006).  A key strategy of plant survival 38 

might involve the acquisition of N in different chemical forms (McKane et al. 2002).  The 39 

currently slow decomposition rates at these latitudes are expected to increase in the future 40 

under a warmer climate, leading to an increase in overall N availability.  The increase in N 41 

availability might be accompanied by changes in the relative availability of different forms of 42 

N and their uptake by plants, resulting in changes in plant productivity and species 43 

composition (McKane et al. 1997; Shaver et al. 2000).     44 

Moist tussock tundra is one of the most common types of tundra in arctic Alaska, 45 

USA (Shaver et al. 1991).  Although most tussock tundras are N-limited (Shaver and Chapin 46 

1995), differences in N availability and plant-species composition occur across tussock 47 

tundra landscapes of different age , resulting from different glaciation histories (Gough et al. 48 

2000; Hamilton 1978; Hamilton 2003).  Differences in N availability might be partly 49 

controlled by differences in pH and chemical properties of the soil, because these differences 50 

can affect microbial mineralization and transformation (Whittinghill and Hobbie 2011) 51 

Variations in soil pH are consistent with tundra age: moist tundra on intermediate-age and old 52 

glacier drifts (>50k years old) are more acidic (soil pH 4-5) and have lower available base 53 

cations  than tundra on young glacier drift (11.5-25k years old, soil pH 6-7) (Hahn et al. 54 
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1989; Hobbie and Gough 2002; Walker and Walker 1989).  Decomposition rates measured as 55 

cumulative field respiration of soil C are faster on older sites, and available inorganic N is 56 

higher in younger soils (Hobbie and Gough 2004; Hobbie et al. 2002).  The available N pool 57 

of both intermediate-age and young sites is dominated by ammonium (NH4
+) and soluble 58 

amino acids (AA), whereas nitrate (NO3
-) is a minor component everywhere (Hobbie and 59 

Gough 2002; Nordin et al. 2004).  These differences in soil biogeochemistry are associated 60 

with differences in plant productivity and species composition among these tundra landscapes 61 

(Gough et al. 2000).  Long-term field experiments in both intermediate-age and young 62 

tussock tundra that mimic the effects of warmer climate by raising nutrient availability (i.e., 63 

through fertilization) and by warming (in a plastic greenhouse) have revealed that these 64 

different-aged ecosystems responded differentially to the treatments (Gough and Hobbie 65 

2003; Hobbie et al. 2005).  Nonetheless, underlying N cycling processes that are likely 66 

responsible for the variation in plant-species composition and responses to the experimental 67 

treatments across different-aged tundra ecosystems are still poorly understood.  68 

Although release of readily-available inorganic N (NH4
+, NO3

-) might be linked 69 

directly to the internal metabolism of microbes and to turnover of their biomass (i.e., 70 

nitrification and mineralization), the major process responsible for the release of readily-71 

available organic N (i.e., AA) is the proteolysis of soluble proteins and peptides by 72 

extracellular enzymes produced by these microbes (Lipson and Näsholm 2001; Schimel and 73 

Weintraub 2003).  Most of the proteins and peptides are released upon lysis of dead microbial 74 

cells.  In an alpine tundra ecosystem, Lipson et al. (1999) found that soluble proteins peaked 75 

in soil after snowmelt while microbial biomass declined sharply after reaching its maximum 76 

under snowpack.  Less is understood about dynamics of other organic-N pools that are not 77 

soluble, even though they account for the largest fraction of soils (Myrold 1998; Yano et al. 78 

2010).  These organic-N pools include hydrolysable amino acids (HAA) and amino sugars 79 
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(HAS).  There is some evidence that N becomes available from these pools via gradual 80 

decomposition.  For example, Zhang et al. (1999) found that the cultivation of native 81 

grassland for >80 years reduced  hydrolysable amino sugar concentration in the soil by 6%.  82 

In a microcosm experiment in which spruce seedlings were grown in a forest (Oa horizon) 83 

soil for 145 days, Johnsson et al. (1999) found that hydrolysable amino acids or amino sugars 84 

associated with the humin fraction of soil decreased significantly.  These results suggest that 85 

HAS and HAA pools might serve as a long-term storage for N, which slowly becomes 86 

available under increased soil microbial activity and/or a prolonged increase in N demand in 87 

the system without additional N inputs.  However, little is known about how warmer climate 88 

might affect these hydrolysable N pools.  Additionally, because almost all HAS in soil 89 

originates in peptidoglycans and chitins of microbial cell walls whereas  proteins can 90 

originate from both plants and microbes (Sterner and Elser 2002), shifts in N availability and 91 

soil microbial activity might be reflected in HAS-to-HAA ratios.   92 

In this study, we assessed how N cycling differs across different-aged tundra 93 

landscapes with distinct plant-species composition by examining partitions of N among 94 

readily-available N (extractable NH4
+, NO3

-, and AA), moderately-available N (soluble 95 

proteins), and hydrolysable-N pools in three tussock-tundra sites.  Soil age of these sites 96 

ranged from 11.5 to 300k years old.  We hypothesized that a greater fraction of N would be 97 

found as soluble proteins or hydrolysable-N pools as soil age increases because of prolonged 98 

N incorporation into plant biomass and accumulation of organic matter at older sites.  This 99 

pattern might mean that plant production at older sites relies on greater capability of 100 

proteolysis and production of AA relative to younger sites.  Additionally, we hypothesized 101 

that a warmer climate would affect N dynamics differently across these different-aged tundra 102 

ecosystems.  To test this hypothesis, we investigated at intermediate-age (50k-120k years) 103 

and young (11.5-25k years) sites whether experimentally elevated N availability (achieved 104 
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directly by artificial fertilization and indirectly by warming) would alter the balance among 105 

AA, inorganic N, and hydrolysable-N pools.      106 

Materials and methods 107 

Study Sites 108 

The study was conducted in old, intermediate-age, and young moist-tussock tundra 109 

ecosystems with different deglaciation history.  Soils of the two older sites are acidic because 110 

of longer durations of soil development processes at these sites, whereas soils of the young 111 

site remain non-acidic (Table 1).  All sites are located within 11 km of the Arctic Long Term 112 

Ecological Research (LTER) site at Toolik Lake (68°38’ N, 149°36’ W, 760 m above sea 113 

level) on the northern foothills of the Brooks Range, Alaska, USA.  Average annual air 114 

temperature at the LTER site was -8.5 °C and annual precipitation was 323 mm during 1989-115 

2008.  The old site is located on the middle of the east-facing slope along Imnavait Creek, ~1 116 

km south of a gauging station on Imnavait Creek and ~11 km east of Toolik Lake.  The 117 

sample plots were located away from watertracks (vegetation bands running downslope with 118 

high shrub density and higher water flow, compared to the surrounding tundra).  The soil of 119 

this site is approximately 300k years old (Hamilton 1978; Hamilton 2003).  The other two 120 

sites are located ~500 m from Toolik Lake: the intermediate-age site (50-120k years old) is 121 

located on the south side of the lake, and the young site (11.5-25k years old) on the west side.  122 

The intermediate-age site was also called moist acidic tundra or MAT, and the young site as 123 

moist non-acidic tundra or MNT, elsewhere (Hobbie et al. 2002; Nordin et al. 2004).  At all 124 

sites, Eriophrum vaginatum is responsible for the formation of tussock microtopography, and 125 

the depressions between tussocks (inter-tussock) are dominated by mosses and shrubs.  126 

Continuous permafrost underlays all sites, and a peaty organic horizon approximately 10-20 127 

cm thick occurs beneath the live vegetation (Hobbie et al. 2002; Yano et al. 2010).  Soil 128 
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properties, biomass, and the composition of plant growth forms differed across the sites, 129 

generally showing greatest extractable cations at the young site, greatest relative dominance 130 

of shrubs at the intermediate-age site, and greatest moss abundance at the old site (Table 1).   131 

Four replicate blocks were established on the intermediate-age site in 1989 and three 132 

blocks on the young site in 1997.  Each block contained randomly-assigned 5 m x 20 m 133 

fertilizer, greenhouse, and control plots (one each/block).  The fertilizer plots received 10 g N 134 

m-2 yr-1 as NH4NO3 and 5 g P m-2 yr-1 as P2O5 or triple superphosphate applied manually as 135 

agricultural fertilizer pellets between late May and early June once the ground became snow-136 

free (Shaver et al. 2000).  The greenhouses covered an area of 12 m2 and were built of plastic 137 

sheets that were placed over greenhouse frames in early June and removed at the end of the 138 

growing season (late August).  Air temperature inside the greenhouses during the growing 139 

season was raised by 3-5°C, relative to ambient air (Shaver et al. 2000).  Details of the 140 

fertilizer applications and greenhouse design can be found in Chapin et al. (1995).  The total 141 

duration of treatment application prior to this study was 16 yrs for the intermediate-age site 142 

and 8 yrs for the young site.       143 

Soil sampling and extraction 144 

In late July 2005, three sampling plots (approximately 5 m x 5 m) were selected from the old 145 

site, with plots spaced ~50 m apart.  Within each plot, three cores each (diameter 5.4 cm) 146 

were collected at random locations in tussocks and in inter-tussock spaces.  Upon collection, 147 

the top 15 cm of soil beneath a surface layer of live moss and aboveground plants was cut out 148 

from the core with a knife for further processing.  Live roots were immediately removed in 149 

the field from the sample by hand and the soil homogenized manually.  The three cores of the 150 

same soil type (tussock or inter-tussock) were composited by plot prior to analysis (n=3 for 151 

tussock or inter-tussock soils).  All soil handling was performed with clean Nitrile gloves.   152 
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 At the intermediate-age and young sites, three cores each of tussock and inter-tussock 153 

samples were collected from the control and fertilization treatment plots of three treatment 154 

blocks.  The cores were handled in the same manner as for the old site and combined by 155 

treatment block (n=3 per tussock or inter-tussock).  For the warming treatments, three cores 156 

each (at the intermediate-age site) and two cores each (at the young site) were collected from 157 

tussock and inter-tussock within the greenhouse, and each core was considered to be one 158 

sample (n=3 for the intermediate-age site and 2 for the young site per tussock or inter-159 

tussock).   160 

 For all three sites, the samples were placed in clean plastic bags and transported to the 161 

Toolik Field Station, where soil samples were extracted and their moisture content 162 

determined.  In some cases, the soil cores from the intermediate-age and young sites had 163 

organo-mineral soil at the bottom of 15-cm cores (Table 1).  The organo-mineral soil was not 164 

removed, because root distribution did not change abruptly across the divide between this 165 

layer and the organic soil above it.  Subsamples of homogenized soils were dried at 60°C to 166 

determine moisture content and bulk C and N.  Dried soil samples were ground to pass a 167 

0.15-mm screen and analyzed using a ThermoScientific 2000 CN Analyzer at the Ecosystems 168 

Center, MBL, Woods Hole, MA.  Two sets of subsamples (20-50g, wet mass) were placed 169 

separately in clean air-tight plastic bags and stored frozen for hydrolysis.  We chose freezing 170 

over drying, because these soils are subject to freezing temperatures even in summer.  We 171 

assumed that the impact of microbial cell lysis by freezing on hydrolysable pools would be 172 

negligible because chloroform-extractable N could account for <1% of total N for soils near 173 

the Old site (Yano et al. 2010).  Extraction methods used for available and potentially-174 

available N pools (NH4
+, NO3

-, AA, and proteins) were modified from that of Lipson et al. 175 

(1999) and (Weintraub and Schimel 2005), and all extraction procedures were conducted 176 

within 14 hrs of collection.  Sixty milliliters of deionized (DI) water were added to 20 g 177 
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subsamples (wet mass) of each sample and extracted for 30 min at room temperature on a 178 

shaker table.  The extractants were filtered through ashed GF/F glass-fiber filters, and 179 

approximately half of each extractant was diluted with DI water at a 1:1 ratio for analysis of 180 

NH4
+ and NO3

-, and dissolved organic N (DON).  The remaining extractant was kept without 181 

dilution for AA analysis.  To extract soluble proteins with minimal destruction of microbial 182 

cells, another set of subsamples (10 g, wet mass) was mixed with 50 mL of 0.1 M NaHCO3 183 

(Ladd and Paul 1973), gently shaken on a shaker table for 1 hr at room temperature, and 184 

filtered through ashed GF/D glass fiber filters.  All extractants were stored frozen until 185 

analysis.   186 

Soil N fractions 187 

We determined the size of available N pools as water-extractable ammonium (NH4
+), nitrate 188 

(NO3
-), and amino-acid (AA) fractions of total soil N.  Moderately-available N was 189 

determined as a NaHCO3-soluble protein fraction of total N.  We defined hydrolysable N as 190 

types of soil N that can slowly become available over the long term: hydrolysable-ammonium 191 

(HAm), amino-acid (HAA), and amino-sugar (HAS) pools were determined as fractions of 192 

total N.  Dissolved organic N (DON) was determined as the difference between total 193 

dissolved N (TDN) and dissolved inorganic N (DIN, NH4
+ plus NO3

-) in water extracts and 194 

reported as a fraction of total N.    195 

Water-extracted NH4
+ was determined by the hypochlorite-alkaline phenol method 196 

(Weatherburn 1967), NO3
- was determined by ion chromatography (Dionex, Sunnyvale, CA, 197 

USA), and TDN was determined by a high-temperature combustion method (Shimadzu, 198 

Columbia, MD, USA).  Water-extractable AA concentrations were determined as described 199 

in (Lipson and Monson 1998), but without the concentration step.  In brief, AA was 200 

determined by subtracting NH4
+ determined by the hypochlorite-alkaline phenol method  201 

from total AA plus NH4
+ determined by the ninhydrin method (Moore and Stein 1954; Rosen 202 
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1957).  Soluble proteins were determined using the Bradford assay (Bradford 1976) with a 203 

liquid bovine serum albumin standard (Sigma-Aldrich) as analytical standard.  Protein-N 204 

fraction was estimated using the average N content for the twenty amino acids (17%) in 205 

proteins (Sterner and Elser 2002). 206 

Hydrolysable ammonium, HAA, and HAS were determined using the Mulvaney and 207 

Khan (2001) method but replacing their titration method with the hypochlorite-alkaline 208 

phenol method for NH4
+ analysis (Yano et al. 2010).  Soils were thawed and 5 g of ground 209 

samples were hydrolyzed in 6 M HCl for 12 hours.  The hydrolysates were neutralized with 210 

NaOH, filtered through Whatman #50 filters, and stored at 5°C until further analysis.  The 211 

hydrolysates were diffused with either MgO (for HAm) or NaOH (for HAm, HAS) in the 212 

presence of acid traps (5 mL of 4% H3BO3), and NH4
+ collected in the acid trap was analyzed 213 

by the hypochlorite-alkaline phenol method.  HAA remaining in the hydrolysate after 214 

diffusion for HAm and HAS was converted to NH4
+ by ninhydrin reaction (Mulvaney and 215 

Khan 2001) and re-diffused with NaOH followed by NH4
+ analysis.  Average N recoveries of 216 

standard compounds (percent ± 1 SE) after diffusion (and ninhydrin reaction for amino acids) 217 

were: NH4
+ = 96.5 ± 1.8, glucosamine = 100.2 ± 1.57, and glycine = 101.3 ± 2.38.       218 

Protease activity 219 

Protease activity was measured using a combination of the Lipson et al. (1999) and 220 

Weintraub and Schimel (2005) methods used previously for alpine- and arctic-ecosystem 221 

soils.  Five grams (wet mass) of subsamples from the homogenized soil samples were mixed 222 

with 40 mL of sodium-citrate buffer (pH 5.2) and 0.4 mL of toluene that inhibits microbial 223 

uptake of amino acids.  The mixture was incubated at 5°C and subsamples (2.0 mL) were 224 

taken at 5 min (as t=0), 4 h, and 6 h; the reaction was stopped by adding 2.0 mL of TCA 225 

solution (0.11 M trichloroacetic acid, 0.22 M sodium acetate, and 0.33 M acetic acid) 226 

(Watanabe and Hayano 1995).  The subsamples were then frozen until AA analysis occurred, 227 



 

11 

as described above.  Protease activity was calculated as an average of the first (0-4 hr) and 228 

second (4-6 hr) periods as described in Weintraub and Schimel (2005).  229 

Statistical analysis 230 

To test our hypotheses that availability and partitioning of N differ 1) across soil age, 2) 231 

across the fertilization/warming treatments within sites, and 3) between soil types (tussock vs. 232 

inter-tussock), we used two-factor factorial analysis of variance (ANOVA), followed by 233 

contrasts of treatment effects.  In the analysis, each site-treatment combination was regarded 234 

as one factor with seven levels (i.e., young site-control; young site-fertilization; young site-235 

warming; intermediate site-control; intermediate site-fertilization; intermediate site-warming; 236 

old site-control), and the soil type as the other factor with two levels (i.e., tussock; inter-237 

tussock).  Statistical analysis was performed using JMP 10.0.0 (2012 SAS Institute Inc., 238 

Cary, NC, USA).  When necessary, data were transformed to obtain equal variances prior to 239 

statistical analysis. 240 

 241 

Results 242 

Site effect on N pools 243 

Soil age had relatively minor influence on total N, but soil C:N ratios were 244 

consistently greater in older soils and in tussock compared to inter-tussock soils (Table 1, 2).  245 

The higher C:N ratios were mostly because of a tendency toward greater total C in older sites 246 

and in tussock versus inter-tussock soils (Table 1).  For both tussock and inter-tussock soils, 247 

total readily-available N was greatest at the old site, because of the 2-9 times greater AA 248 

concentrations in this site relative to the younger sites (Fig. 1a, Table 2).  AA comprised a 249 

greater proportion of readily-available N with increasing soil age: 80-89% at the old site, 43-250 

67% at the intermediate-age site, and 3-20% at the young site.  In contrast, inorganic N (NO3
- 251 



 

12 

+ NH4
+) accounted for 80-97% of total available N at the young site.  The concentrations of 252 

inorganic N were 2–7 times greater at the young site than at the two older sites, and NH4
+ 253 

accounted for 63-82% of total available N at the young site.  The soluble-NO3
- fraction was 254 

generally a minor proportion of total available N and that proportion was similar across soil 255 

types (tussock vs. inter-tussock) and soil ages (Fig. 1a).  256 

Among-site differences in soluble proteins (moderately-available N) mirrored patterns 257 

observed for AA.  Soluble protein concentrations differed significantly among sites and 258 

between soil types; highest concentrations occurred at the old site, and were progressively 259 

lower with decreasing soil age (Fig.1b, Table 2).  In contrast with AA and soluble proteins, 260 

protease activity did not vary significantly across sites, and variability within sites and soil 261 

types was large (Fig. 1c, Table 2).   262 

Total hydrolysable-N concentrations were similar among sites and between soil types.  263 

The HAA was consistently the largest pool of the three hydrolysable-N pools for all the soils, 264 

accounting for roughly 60-70% of the total hydrolysable N (Fig. 2a, Table 2).  Site age 265 

significantly affected HAS:HAA ratios; the highest ratios occurred at the young site, and 266 

were lowest at the intermediate-age site (Fig. 2b, Table 2).    267 

NP Fertilization & warming effects on N pools 268 

Neither the fertilization nor the warming treatment had a significant effect on total N 269 

concentrations, but both significantly altered C:N ratios in tussock soils (Fig. 3a, Table 3).  270 

Fertilization always lowered the C:N ratio, mainly because of a tendency toward lower total 271 

C under this treatment (data not shown).  By contrast, warming raised the mean C:N ratio at 272 

the intermiedate-age site and lowered the ratio at the young site. 273 

Fertilization tended to have a greater effect on readily-available N pools at the 274 

intermediate-age site than at the young site and in tussock compared to inter-tussock soils 275 

(Fig. 3b, Table 3).  Soluble inorganic N was significantly elevated at both fertilized sites. The 276 
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mean soluble inorganic-N concentrations were elevated by 20 (inter-tussock) to 100 (tussock) 277 

times under the fertilization treatment relative to the control at the intermediate-age site.  By 278 

contrast, inorganic N concentrations were elevated only by 2 (inter-tussock) to 3 (tussock) 279 

times at the young site.  Soluble AA concentrations were significantly elevated by both 280 

fertilization and warming treatments, but only in tussock soils at the intermediate-age site 281 

(Fig. 3b, Table 3).  The warming treatment generally had little effect on all soluble-N pools, 282 

and neither soluble-protein concentration nor protease activity was affected by the 283 

fertilization (Fig. 3b-d, Table 3); native protein levels (Fig. 1b) were maintained regardless of 284 

the field manipulation.   285 

Both fertilization and warming treatments had little effect on total hydrolysable-N 286 

pools, except in tussock soils of the young site, where total hydrolysable N under the 287 

fertilization treatment was elevated significantly relative to the control (Fig. 4a, Table 3).  288 

Although fertilization did not have a consistent effect on total hydrolysable N, the treatment 289 

elevated HAS:HAA ratios, in most cases (Fig. 4b, Table 3).   Soil type significantly affected 290 

total hydrolysable N at the intermediate-age site, having consistently higher concentrations in 291 

the inter-tussock soils than tussock soils (Fig. 3a, Table 3).   292 

 293 

Discussion 294 

Among-site differences 295 

Our findings provide quantitative assessment of the effects of soil age, fertilization, and 296 

experimental warming on a wealth of N compounds at the peak of growing season in arctic 297 

tussock tundra ecosystems.  Our results are consistent with previous findings by Nordin et al. 298 

(2004) who found greater NH4
+ abundance relative to NO3

- in inter-tussock soils at the young 299 

site compared to the intermediate-age site throughout the growing season (June-August).  In 300 

spite of different years, dates of sampling, and extraction methods, readily-available N 301 
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measured for the intermediate-age and young sites in this study and previous studies were 302 

comparable (see comparison table in the Appendix).  Some differences in the values likely 303 

resulted from inter-annual variations in environmental conditions and ecosystem productivity.  304 

Partitioning of total N among readily available and moderately available forms 305 

differed among the sites, and these partitioning patterns were not related to total N but 306 

apparently related to soil properties.  At the young site, lower available cation exchange 307 

capacity of soils (Table 1) might be partly responsible for the relatively high water-308 

extractable NH4
+.  Hobbie and Gough (2002) found that available cation exchange sites in 309 

organic soils at the young site were nearly three times lower than at the intermediate-age site, 310 

likely because of the eight-fold higher Ca2+ concentration in the former site, even though total 311 

cation exchange capacity was greater at the young site.  In contrast, more cation exchange 312 

sites might be available at the old site, because the site had low Ca2+ concentration and nearly 313 

twice the moss biomass as the young site (Table 1).  Peat derived from Sphagnum mosses, 314 

one of the most abundant species in our study sites, possesses strong cation exchange 315 

capacity that derives from uronic acid, amino acids, and phenolic acid contents of cell walls 316 

(Richter and Dainty 1989).   317 

The partitioning of available N forms across sites might also result from differences in 318 

N demand of vascular plants and their general preference of NH4
+ over other forms of N.  319 

Aboveground biomass of vascular plants was approximately twice as large at the 320 

intermediate-age site (308 g/m2) as at the other two sites (133 for the old site and 194 g/m2 321 

for the young site, Table 1).  When taking into account the nearly twice as high annual N 322 

demand of graminoids compared to deciduous or evergreen shrubs (Shaver and Chapin 323 

1991), N demand of vegetation at the intermediate-age site would be >2 times that of the 324 

demand at the old site.  N demand by mosses is expected to be minimal, because they can 325 

recycle most of their biomass N to new aboveground growth, and the new growth has a 326 
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multiple-year lifespan (Aerts et al. 1999; Eckstein 2000).  Furthermore, while many vascular 327 

plants in arctic and boreal ecosystems appear to have the ability to use inorganic N and at 328 

least some AA, studies have shown that plants more frequently used NH4
+ than AA (Näsholm 329 

et al. 1998; Nordin et al. 2001; Nordin et al. 2004).  Perhaps the low NH4
+ and AA at the 330 

intermediate-site partly explained by high plant N demand and the relatively high NH4
+ 331 

accompanied by the high AA at the old site is explained by low plant N demand.     332 

Alternatively, the progressively greater concentrations of soluble-AA and protein with 333 

increasing soil age might indicate greater proteolysis at older sites. Given the similar protease 334 

activity across all sites, the greater proteolysis was in turn driven by the higher availability of 335 

substrates at older sites (Fig. 1c, but see discussion below on protein concentrations).  This 336 

idea is consistent with Lipson et al. (1999), who concluded that low AA concentrations in 337 

alpine tundra soils during the middle to late portions of the growing season was caused by 338 

substrate limitation, because the low AA concentrations coincided with low soluble proteins 339 

while protease-substrate reaction did not appeared to be saturated.  In contrast, Weintraub and 340 

Schimel (2005) concluded that a decline in AA concentrations in arctic tussock-tundra soils 341 

during the growing season reflected strong N demand by plants and the microbial community 342 

associated with them, because protease-substrate reactions were not saturated during most of 343 

the growing season.  These variable results probably reflect complex biogeochemical 344 

processes that work simultaneously to control availability of substrates, products of enzyme 345 

reaction, and biological N demand.  For example, the high abundance of Sphagnum mosses 346 

and peat at the old site might have contributed to the large soluble protein pool, given that 347 

mosses can retain dissolved proteins via cation-exchange and a reaction with keto-carboxylic 348 

acid groups in their cell walls (Painter 1983; Painter 2003).  However, these protein-binding 349 

reactions might also hinder proteolysis, if the binding of substrates and enzymes is not 350 

transitional (Sutton and Sposito 2005; Zang et al. 2000). 351 



 

16 

The HAA pools should contain soluble proteins; the soluble protein fraction is 352 

estimated to be 4-9 % of HAA at the old site, 2-4 % at the intermediate site, and 1 % at the 353 

young site, when average N content of proteins is assumed to be 17% of the mass (Sterner 354 

and Elser 2002).  Currently available colorimetric methods for soluble protein assays, 355 

including the one used in this study, are known to have interference with humic substances.  356 

Specifically, humic acids can increase absorbance of solution, which results in overestimation 357 

of protein concentration (Roberts and Jones 2008).  Thus, we cannot rule out the possibility 358 

that the higher soluble proteins observed at the old site simply reflected high humic 359 

substances in the soils at the old site.   360 

Practically all amino sugars (as well as most soil proteins) originate from microbial 361 

biomass, because of the relatively minor pool size of other sources such as arthropods 362 

(Myrold 1998; Sterner and Elser 2002).  Upon death of these organisms, these macro-363 

polymers are either 1) stabilized for the long term in soil by encapsulation with humic or 364 

mineral components (Lipson and Näsholm 2001; Zang et al. 2000) or 2) depolymerized into 365 

smaller fragments and available N by extracellular enzymes (Schimel and Bennett 2004).  366 

Based on the absence of accumulation of HAS or HAA with increasing soil age, we suspect 367 

that HAS and HAA constitute pools that turn over at an intermediate rate, because they 368 

appear to be moderately stabilized but not completely protected from decomposition.  369 

Furthermore, the significant differences in HAS:HAA ratios across soil ages suggest that N 370 

dynamics that differ among sites are mediated by soil microbes.   371 

Fertilization and warming effects 372 

Fertilization had a large impact on readily-available N pools, but generally had little effect on 373 

all other N pools.  Total N added via fertilization was 11.4 mol/m2 at the intermediate-age site 374 

and 5.7 mol/m2 at the young site.  This N is equivalent to 54 (tussock) to 25 % (inter-tussock) 375 

of native N at the intermediate-age site and 8 % (tussock) to 11 % (inter-tussock) of native N 376 
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at the young site.  Nitrogen stored in plant biomass could account for only up to one-tenth of 377 

the added N (~1.1 mol-N/m2 at the intertmediate-age site and ~0.6 mol-N/m2 at the young 378 

site, Chapin et al. 1995; Hobbie et al. 2005).  However, total soil N concentrations were 379 

unaffected by this large N input (Fig. 3a), and even showed a trend toward decreasing total N 380 

under the fertilization treatment at the intermediate-age site, suggesting that there was little 381 

net retention of added N in the soil.  Combined with the fact that fertilization significantly 382 

lowered tussock-soil C:N ratios at both sites (young and intermediate-age), our results further 383 

suggest that fertilization has caused a net loss of soil C in tussock soils.  Our results are 384 

consistent with recent findings.  In a separate long-term fertilization study at the intermediate-385 

age site (yet in different subplot areas), in which N was added at the same rate as in this study 386 

for 20 yrs, Mack et al. (2004) found that fertilization caused net losses of both soil C and N.  387 

They concluded that increased nutrient availability had enhanced decomposition.  Because 388 

total N concentration did not differ across our treatments, our results imply that fertilization 389 

allocated a greater fraction of total N to water-soluble N or gaseous N, resulting in the lack of 390 

N accumulation in the fertilized soil.  Leaching loss from the fertilized plots during the 391 

growing season might be occurring mainly as available N (DIN) rather than as less available 392 

N (DON).  For example, fertilization significantly raised water-soluble DIN by as much as 393 

100 -fold relative to the control, but DON was raised only doubled in tussock soil of the 394 

intermediate-age site (Fig.3).  Furthermore, during the peak growing season in July, DIN 395 

concentrations in water leached to the bottom of the active layer or to micro-topographic 396 

depressions were elevated by 100-200 times at both sites (Yano, unpublished data; the water 397 

was collected using a syringe (Yano et al. 2010) from within or adjacent to the borders of the 398 

fertilized plots).  Based on these observations, we suspect that a significant portion of the N 399 

loss might be occurring as DIN leaching during the growing season, bypassing plant and 400 
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microbial uptake.  Perhaps, the plant-soil system in the fertilization plots has become N-401 

saturated after the many years of continuous fertilization.     402 

 Stronger fertilization effects on the soluble inorganic-N fraction found for the 403 

intermediate-age site relative to the young site might be associated with native differences in 404 

microbial processing of organic matter between these sites.  Soil respiration, decomposition 405 

rates, and dissolved organic matter production differed between the intermediate-age and 406 

young sites (Hobbie et al. 2002).  Differences in the effects of fertilization can also be 407 

explained simply by the “cumulative effect” of greater total N added to the former site over 408 

the longer time (intermediate-age site = 16 yrs, young site = 8 yrs).  In a long-term 409 

fertilization experiment on tussock tundra near our study sites, (Chapin et al. 1995; Shaver et 410 

al. 2001) observed progressive changes in plant biomass, production, and plant-species 411 

richness and composition over a 15-year study period.  For example, aboveground biomass of 412 

deciduous shrubs in N- and P-fertilized plots continued to increase through the study period, 413 

whereas graminoids continued to decrease (Shaver et al. 2001).  Differences in initial species 414 

composition and an early-stage response to a chronic environmental change might also have 415 

cascading effects on the status of soil nutrients that would set different response trajectories 416 

in motion, over the long term.  In the early stages of N and P fertilization, Betula became the 417 

dominant species by the second year at the intermediate-age site, whereas the young site 418 

(which had no Betula in the unmanipulated vegetative community) maintained its original 419 

species composition relatively well for the first four years (Hobbie et al. 2005).   420 

While the fertilization treatment specifically simulates the effects of expected increase 421 

in N mineralization by adding inorganic N, the warming treatment simulates all the impacts 422 

of raised air temperature, which is not limited to changes in N mineralization.  Perhaps this 423 

manifold effect is the reason that, in contrast with the fertilization that caused marked 424 

changes mostly in soluble inorganic-N fraction, the effect of warming was smaller and 425 
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occurred only to properties associated with organic compounds (i.e., soluble AA and bulk soil 426 

C:N ratio).  The changes in C:N ratios with little changes in total or inorganic-N pools might 427 

indicate that the N cycling remains tight under warming, while changes in temperature can 428 

have a greater net impact on the C cycling in the tussock soils.  The elevated C:N ratio in the 429 

tussock by warming at the intermediate-age site was perhaps because of considerable 430 

accumulation of deciduous litter at this site relative to the young site.  The discrepancy 431 

between effects of fertilization versus warming indicates that elevating nutrient availability 432 

directly by fertilization versus indirectly by warming exerts different impacts on soil 433 

biogeochemical processes.  Perhaps this difference might be partly responsible for the large 434 

differences found in composition of plant functional groups (Chapin et al. 1995; Gough and 435 

Hobbie 2003) between the fertilization and warming treatments at these sites.  A shift in 436 

HAS:HAA ratios under fertilization but not warming suggests that long-term fertilization 437 

might have altered microbially mediated N cycling. 438 

Tussock soils generally responded more strongly than did inter-tussock soil to the 439 

fertilization and warming treatments, at both intermediate-age and young sites.  We suspect 440 

that this differential response occurred partly because the treatments generally decreased the 441 

productivity of the graminoid species, including Eriophorum but increased the productivity of 442 

dwarf shrubs, which are more common in inter-tussock areas (Chapin et al. 1995; Gough and 443 

Hobbie 2003; Shaver et al. 2001).  Perhaps more-vigorous uptake in the inter-tussock area by 444 

shrubs under the treatments lowered extractable available N, whereas reduced N uptake by 445 

graminoids in tussock soils resulted in higher available N levels.   446 

Both the fertilization and warming manipulation caused large declines of moss 447 

biomass at the intermediate-age and young sites (Chapin et al. 1995; Gough and Hobbie 448 

2000; Hobbie et al. 2005).  Given mosses’ properties such as slow decomposition (Hobbie 449 

1996), preservation of surrounding organic matter (Børsheim et al. 2001; Painter 2003), and 450 
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high nutrient and water retention capacity (Kotanen 2002) (Yano et al. 2010), replacement of 451 

moss biomass with other plants because of a warmer climate would imply a significant 452 

change in N cycling in arctic moist tussock-tundra ecosystems.   453 

Conclusion 454 

Readily available and moderately available N differed markedly among the three 455 

tussock tundra ecosystems, while hydrolysable and total N concentrations were similar.   456 

High soluble-AA dominance at the old site and high inorganic-N dominance at the young site 457 

are clearly related to their contrasting soil-chemical properties, and might also be affected by 458 

differences in vegetation composition and N uptake requirements.   459 

Long-term fertilization and warming had different impacts on soil N pools in these 460 

tussock tundra ecosystems, indicating that a warmer climate will likely have more-complex 461 

impacts than a simple increase in N mineralization.  The main effect of fertilization was a 462 

several-fold increase in readily available N, with most of the increase occurring as inorganic-463 

N.  Long-term fertilization also appeared to increase N losses from the soil via leaching.  In 464 

contrast, the effect of warming occurred only in tussock soils and only affected properties 465 

associated with organic compounds, such as soil C:N ratio and soluble AA.  Finally, our 466 

results imply strong links between plant community composition and soil N dynamics in 467 

arctic tussock-tundra ecosystems.  Large declines of moss biomass under fertilization or 468 

warming, a trend found consistently across various tussock-tundra sites, might have 469 

significant impacts on N cycling in these arctic tundra ecosystems.  The initial composition of 470 

the plant community and soil chemical properties between soil types and among soil age are 471 

important factors that merit consideration when projecting ecosystem-level response to 472 

increased nutrient availability under a warmer climate.  In northern Alaska, all of these 473 

factors vary predictably with soil age, or time since deglaciation, indicating consistent and 474 
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predictable differences in the responses of different-aged landscapes to predicted climate 475 

warming.  476 
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Table 1. Aboveground live biomass and soil properties of three tussock-tundra ecosystems.   
   Old    Inter-mediate  Young   

Aboveground live biomass             
 Biomass distribution (% of total biomass) a             
  Graminoids 3    9    21    
  Deciduous 10    20    9    
  Evergreen 11    34    15    
  Forbs 0    0    1    
  Lichens 0    9    13    
  All mosses 76    28    40    
               
 Total biomass (g/m2) a 547    491    412    
               
               

Soil property Tussock Inter-tussock Tussock Inter-tussock Tussock Inter-tussock 
  pH (Soil:H2O = 1:2) b             
         Organic soil (up to 15 cm) 4.0 (0.1) 4.9 (0.1) 4.0 (0.1) 4.6 (0.1) 6.9 (0.1) 7.0 (0.1) 
         Mineral soil (within top 15cm) n.a.  n.a.  n.a.  4.8 (0.0) 7.0 (0.1) 6.9 (0.3) 
  Ca (mg/g) c   ~8    3.1 (0.5)   25.3 (1.8) 
  CEC (cmol(+)/kg) c   .    95.0    144.3  
  Total C (%) 44.6 b (0.2) 39.0 b (1.7) 30.3 (4.2) 24.5 (7.8) 36.4 (2.7) 14.8 (3.9) 
  Total N (%) 0.7 b (0.1) 1.3 b (0.2) 0.9 (0.2) 1.0 (0.3) 1.5 (0.2) 0.9 (0.2) 
  Bulk soil C:N (molar) 76.7 b (9.1) 32.5 b (6.2) 42.1 (3.9) 27.8 (2.7) 29.7 (3.2) 19.5 (1.1) 

  Base saturation (%) c   .    19.8    71.3  
  Moisture content (%) 63.8 (1.1) 59.4 (5.3) 52.1 (2.3) 56.8 (6.9) 48.3 (4.7) 44.4 (6.3) 
  Organic soil thickness (cm) ≥ 15.0 (0.0) ≥ 15.0 (0.0) ≥ 15.0 (0.0) 11.0 (2.0) 14.4 (0.5) 13.6 (0.6) 

a Sources: Old = Hahn (1996) and Hastings (1989); Intermediate & Young = data by L. Gough & S. Hobbie available on Toolik LTER web 
site(http://ecosystems.mbl.edu/arc/datacatalog.html); MNT = Gough&Hobbie (2003).  
b Soil collected in July 2012 and processed in the same manner as for the other soils. 
c Determined for organic soil.  Old = Walker & Walker (1989); Intermediate & Young = Hobbie & Gough (2002) 
n.a.: not applicable. 
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Table 2.  Statistical significance of soil-age and soil-type effects on biochemical parameters at the old, intermediate-age 
(Mid), and young sites.  To test null hypotheses (H0), contrast was used for target treatment means by fixing soil type to 
either tussock (T) or inter-tussock (IT).  HAS= hydrolysable amino sugars; HAA = hydrolysable amino acids. 
            

            
      Site age     Soil type 

    Tussock   Inter-tussock    

 unit H0 : Old = Mid Old = Young Mid = Young  Old = Mid Old = Young Mid = Young  T=IT 

Bulk N %  − * −  − − −  − 
C:N (molar)   *** *** **  − *** *  *** 
            
NO3-N µmol/g-dry soil  − − −  − − −  − 
NH4-N µmol/g-dry soil  ** − **  − − *  − 
AA µmol/g-dry soil  *** *** −  *** *** −  − 
            
Soluble proteins µg/g dry soil  *** *** **  ** *** −  *** 
Protease activity µmol g-1 dry soil h-1 − − −  − − −  * 

            
Total Hydrolysable N µmol/g-dry soil  − − −  − − −  − 
HAS:HAA     − ∗∗ ∗∗  ∗ ∗∗ ∗∗∗  − 
*P<0.05; **P<0.01; ***P<0.0001;  − lack of difference (P≥0.05).        
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Table 3.  Statistical significance of treatment and soil type effects on biochemical parameters at the intermediate-age and young sites.  To test 
null hypotheses (H0), contrast of treatment means were used  for Control (C), fertilization (F), and warming (W) treatments for each site by 
fixing soil type to either tussock (T) or inter-tussock (IT).  HAS= hydrolysable amino sugars; HAA = hydrolysable amino acids.    
                      
                      

   Intermediate-age Site  Young Site 
   Treatment  Soil 

type 
Treatment  Soil 

type 
   Tussock   Inter-tussock     Tussock   Inter-tussock    
 unit H0 : C=F C=W F=W C=F C=W F=W T=IT  C=F C=W F=W C=F C=W F=W T=IT 

Total N %  − − −  − − −  −  − − −  − − −  − 
C:N (molar)   ∗ ∗ ∗∗∗  − − −  ∗∗∗  ∗∗ ∗∗ −  − − −  − 
                      
NO3-N (µmol/g-dry soil) ∗∗∗ − ∗∗∗  ∗∗∗ − ∗∗∗  −  ∗ − ∗  ∗∗ − ∗  − 
NH4-N (µmol/g-dry soil) ∗∗∗ − ∗∗∗  ∗∗ − ∗∗  ∗  − − −  − − −  − 
DON (µmol/g-dry soil) ∗ − ∗∗  − − −  −  − − −  − − −  ∗∗∗ 
AA (µmol/g-dry soil) ∗∗ ∗∗ −  − − ∗∗  ∗  − − −  − − −  − 
                      
Soluble proteins (µg/g dry soil)  − − −  − − ∗  ∗  − − −  − − −  − 
Protease 
activity 

(µmol g-1 dry soil h-1) − − −  − − −  −  − − −  − − −  − 

                      
Total 
hydrolyzable N 

(µmol/g dry soil) − − −  − − −  ∗  ∗ − −  − − −  − 

HAS:HAA   ∗ − ∗  ∗ − −  −  ∗ − ∗  − − −  − 
*P<0.05; **P<0.01; ***P<0.0001;  − lack of difference (P≥0.05).               
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Figure Legends 
Figure 1.  Readily and moderately available N pools and protease activity across sites of varying soil age.  

Readily available N = water-extractable NH4
+, NO3

-, and AA (a); soluble proteins (b); and protease activity (c).  

Old = ~300k year-old acidic, moist-tussock tundra site in the Imnavait watershed, north-central Alaska, USA; 

Intermediate = 50-120k year-old acidic, moist-tundra site at Toolik LTER; Young = 11.5-25k year-old non-

acidic, moist-tussock tundra site in Toolik LTER; T = tussock soils; IT = inter-tussock soils.  All N pools were 

expressed per gram of dry soil.  Error bars depict ±1 SE; n=3.     

 

Figure 2.  Hydrolysable-N pools and HAS:HAA ratio in soils of tussock tundra sites of different ages. 

Hydrolysable N pools (a) and HAS:HAA ratio (b).  HAm = hydrolysable NH4
+; HAS = hydrolysable amino 

sugars; HAA = hydrolysable amino acids.  Error bars depict ±1 SE; n=3.  See Figure 1 legend for the 

abbreviations.   

 

Figure 3.  Total N and C:N ratio of bulk soils and water-soluble N pools across treatments at the intermediate-

age and young sites. Total N and C:N ratio (a); readily available N (b); soluble proteins (c); and DON (d).  Cont 

= control; Fert = fertilization; Warm = warming.  Error bars depict ±1 SE; n=2 for the warming treatment at the 

young site and n=3 for all others.  See the Figure 1 legend for all other abbreviations.   

 

Figure 4.  Hydrolysable-N pools and HAS:HAA ratio in soils across the treatments at the intermediate-age and 

young sites.  Hydrolysable N pools (a); and HAS:HAA ratio (b).  Error bars depict ±1 SE; n=2 for the warming 

treatment at the young site and n=3 for all others.  See Figure 1 and 3 legends for abbreviations.   
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Appendix       
       

Comparison of readily-available N and soluble protein pools in current and other studies.  Data 
point(s) collected in mid-late July were chosen for comparison.   
       

  NH4
+ NO3

- AA Soluble 
proteins 

Site soil 
type 

 (µg/g)  (mg/g) Source 

Intermediate-age Tus 0-1.5 0-2 0-1 1.5-2 Weintraub (2005) a,b1 

  0.1 0.1 0.2 0.5 This study2 

       
 IntTus 0-2 1.5-3 0-2 2.2-3.7 Weintraub (2005) a,b1 

  3.0 0.5 1.3 - Noridin (2004)3 

  6.8 0.2 - - Hobbie & Gough (2003)4 

  0.3 0.1 0.8 0.25 This study2 

       
Young Tus 1.3 0.2 0.1 0.08 This study2 

       
 IntTus 7.0 0.8 3.5 - Noridin (2004)3 

  6.2 0.7 - - Hobbie & Gough (2003)4 

  1.0 0.3 0.3 0.10 This study2 

       
Extraction methods and data points compared:       
1  0.5M K2SO4 for NH4

+ and NO3
-, water for AA, 0.1M NaHCO3 for proteins;  a range of late-July 

data points were used 
2  0.1M NaHCO3 for proteins, water for the rest     
3  2M KCl; Average of July and August of O-horizon soils were used   
4  Water;  July data were used       
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