
Remote Sens. 2014, 6, 4660-4686; doi:10.3390/rs6064660 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Evaluating Remotely Sensed Phenological Metrics in a Dynamic 
Ecosystem Model 

Hong Xu 1,*, Tracy E. Twine 1,* and Xi Yang 2,3  

1 Department of Soil, Water and Climate, University of Minnesota, Saint Paul, MN 55108, USA 
2 Department of Geological Sciences, Brown University, Providence, RI 02912, USA;  

E-Mail: xyang@mbl.edu 
3 The Ecosystem Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA 

* Authors to whom correspondence should be addressed; E-Mails: xuxxx624@umn.edu (H.X.); 

twine@umn.edu (T.E.T.); Tel.: +1-612-625-7278 (T.E.T).  

Received: 28 March 2014; in revised form: 16 May 2014 / Accepted: 19 May 2014 /  

Published: 26 May 2014 

 

Abstract: Vegetation phenology plays an important role in regulating processes of 

terrestrial ecosystems. Dynamic ecosystem models (DEMs) require representation of 

phenology to simulate the exchange of matter and energy between the land and atmosphere. 

Location-specific parameterization with phenological observations can potentially improve 

the performance of phenological models embedded in DEMs. As ground-based phenological 

observations are limited, phenology derived from remote sensing can be used as an 

alternative to parameterize phenological models. It is important to evaluate to what extent 

remotely sensed phenological metrics are capturing the phenology observed on the ground. 

We evaluated six methods based on two vegetation indices (VIs) (i.e., Normalized 

Difference Vegetation Index and Enhanced Vegetation Index) for retrieving the phenology 

of temperate forest in the Agro-IBIS model. First, we compared the remotely sensed 

phenological metrics with observations at Harvard Forest and found that most of the 

methods have large biases regardless of the VI used. Only two methods for the leaf onset 

and one method for the leaf offset showed a moderate performance. When remotely sensed 

phenological metrics were used to parameterize phenological models, the bias is maintained, 

and errors propagate to predictions of gross primary productivity and net ecosystem 

production. Our results show that Agro-IBIS has different sensitivities to leaf onset and 

offset in terms of carbon assimilation, suggesting it might be better to examine the 

respective impact of leaf onset and offset rather than the overall impact of the growing 

season length.  
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1. Introduction 

Vegetation phenology, or the timing of plant growth stages (e.g., the timing of budburst, flowering, 

leaf coloring), is considered a robust indicator of short-term climate variation and long-term climate 

trends because it is driven by environmental factors, such as temperature, precipitation and 

photoperiod. Vegetation phenology has received increased attention recently because evidence from 

ground observations as well as satellite remote sensing has shown that vegetation phenology has 

shifted during the past few decades [1–5], especially at middle and high latitudes of the Northern 

Hemisphere, as a result of increasing average temperature [6,7]. On the other hand, shifts in vegetation 

phenology can exert strong control on the feedbacks between the biosphere and atmosphere by 

affecting biogeochemical processes (e.g., exchange of carbon dioxide, production of biogenic volatile 

organic compounds) and biophysical properties (e.g., seasonal variation in albedo) of ecosystems [8,9]. 

Bias in vegetation phenology therefore may lead to errors in carbon and water exchange and energy 

budgets simulated in dynamic ecosystem models (DEMs) [10] as well as climate patterns simulated in 

coupled global climate models (GCMs) [11].  

A multi-model synthesis study has shown that vegetation phenology is poorly represented in many 

terrestrial biosphere models [10], which highlighted the urgency of improving phenological models 

embedded in DEMs. Phenological models can potentially be improved by reducing the uncertainties 

that stem from model structure, model parameters, or drivers [12]. For example, a comprehensive 

comparison of existing phenological models across geographic zones may help reduce the structural 

uncertainties [13]. Moreover, modeling studies at the regional scale demonstrated that, due to the 

difference in species type and composition, forests at different locations do not share common parameters, 

such as base temperature for growing degree day (GDD) calculation [13,14]. Thus, location-specific 

parameterization has the potential to reduce the uncertainty associated with model parameters. 

Parameterization of phenological models at a specific location requires corresponding phenological 

observations. As ground-based phenological observations are limited in spatial coverage and quantity, 

phenology derived from remote sensing becomes the only alternative when parameterization over a 

large continuous area is needed. 

Phenology derived from remote sensing, which has recently been referred to as land surface 

phenology (LSP) in order to distinguish it from in situ monitoring at species level, has long been used 

to examine phenological changes [2,4,5,15–17] and to develop large-scale phenology models [18,19]. 

Numerous remote sensing methods, such as vegetation index threshold and curve fitting, have been 

developed to extract phenological metrics that describe particular timing related to leaf behaviors and 

photosynthetic activities [19–25]. Start of season (SOS) and end of season (EOS) [22,26], or onset and 

offset [19] are two phenological phases (i.e., phenophases) most commonly extracted due to their 

importance in determining the growing season length (GSL). Some studies also derive more than two 

phenophases. For example, Zhang et al. extracted four phenophases including the onset of greenup, 

maturity, senescence and dormancy [25]. Most of the methods used to extract phenological metrics are 
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based purely on time series of the normalized difference vegetation index (NDVI) [19,23] and 

enhanced vegetation index (EVI) [22,25] from various sensors (e.g., Advanced Very High Resolution 

Radiometer (AVHRR), Moderate-Resolution Imaging Spectroradiometer (MODIS)).  

Although phenological metrics derived using different methods share the same name (e.g., SOS), 

they could actually represent different phenological stages (e.g., the timing when vegetation starts to 

green up, the timing when vegetation grows the fastest). An intercomparison of SOS retrieved using 10 

satellite methods shows that the difference between individual methods can be as much as two months; 

and two methods were more closely related to ground observations than other methods [27]. 

Although validation against ground observations has been conducted for remotely sensed phenological 

metrics in many studies [5,13,14,26,27], the validation process is not standardized because the 

phenology-monitoring method usually varies among sites, and even the same dataset can be processed 

differently. More importantly, remotely sensed phenological metrics have not been evaluated in the 

context of DEMs. In order to improve the accuracy of carbon and water budgets derived from DEMs, 

there is still a need to define and test phenology transition periods as estimated by satellite sensors [28]. 

Many issues therefore need to be addressed to determine whether a phenological metric can be used as 

prescribed phenology in a DEM or to parameterize the embedded phenological model. For example, 

it should be ensured that the choice of phenology references from available ground observations, 

against which the remotely sensed phenological metrics would be evaluated, represent the phenology 

requirements in a DEM. Otherwise, even if the remotely sensed phenological metrics are able to 

capture some ground phenological metrics that is selected based on the needs of certain applications, 

they may not be the appropriate variable to be used in a DEM. Remotely sensed phenological metrics 

depend not only on the method, but also the data source. When the remote sensing data source changes 

(i.e., from AVHRR to MODIS), a given method may lose its validity due to the difference between 

sensors, such as spectral and spatial resolution.  

In this study, we evaluate phenological metrics derived using six satellite methods for temperate 

deciduous trees in the context of a DEM, Agro-IBIS (the Integrated Biosphere Simulator, agricultural 

version) [29–31], using the long-term phenological observations [32] and flux measurements at the 

Harvard Forest AmeriFlux site [33]. We aim to establish a systematic evaluation process that can be 

used for the parameterization of phenology models embedded in DEMs. First, we identify the reference 

phenological metrics from ground observations according to the definition of phenology in the  

Agro-IBIS model, and use them as prescribed phenology to assess how well Agro-IBIS captures the 

seasonal evolution of LAI and carbon cycle components. Second, we compare phenological metrics 

derived from remote sensing with the ground reference. Then, all phenological metrics are used to 

parameterize the phenology models to examine the propagation of errors during the parameterization 

and modeling process. Finally, the modeled phenology is used in Agro-IBIS to evaluate the sensitivity 

of simulated carbon cycle to phenology. 
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2. Method and Material 

2.1. Agro-IBIS Model Description 

Agro-IBIS is an improved version of the IBIS DEM [29,31], with the capability to represent both 

natural and managed ecosystems [30]. The model was developed to simulate the rapid biophysical 

processes and long-term ecosystem dynamics in response to environmental drivers. It has been 

evaluated within forests at local and regional scales [34,35], and has been used for many applications 

such as the quantification of trends in net primary productivity in the 20th century [36] and climate 

regulation services of ecosystems throughout the Western Hemisphere [37]. The model is designed 

with a hierarchical conceptual framework, and includes several sub-models (e.g., land surface module, 

vegetation dynamic module, soil biogeochemistry module) that are capable of simulating vegetation 

canopy physics, vegetation phenology, soil physics and hydrology, and ecosystem biogeochemistry.  

Agro-IBIS has two critical phenophases for natural vegetation—leaf onset and leaf offset. 

For temperate deciduous trees, leaf onset and offset are defined as the date when LAI starts to increase 

from a minimum value, and the date when LAI starts to decrease from the peak value, respectively. 

The model originally used a simple scheme in which leaf onset and offset were both triggered by a 

critical temperature threshold [29]. Currently, the phenology model is modified from the algorithm 

developed in literature [19], which is based on GDD for leaf onset and the combination of photoperiod 

and temperature threshold for leaf offset. An evaluation study at three AmeriFlux sites showed that 

both schemes had poor performance in representing the phenology at the individual site level; 

simulated leaf onset dates were generally earlier than the observations with biases up to seven weeks, 

which led to large errors in canopy structure, such as canopy height and maximum LAI, and in turn the 

carbon and water exchange [34]. Evaluation at the regional scale showed relatively good performance 

in capturing the LAI evolution in the northern portion of U.S. eastern deciduous forest; however, 

earlier onsets were also found in the southern portion, which might be a result of the single threshold 

of GDD used in the model [35]. While the regional evaluation supports the argument that parameters 

of phenological models may vary with geographic location [14], the local evaluation implies that the 

applicability of parameters may change with spatial scale (e.g., from continental scale to site scale).  

2.2. Evaluation of Ground Phenology Observations 

Harvard Forest is a mixed forest dominated by red maple (Acer rubrum) and red oak (Quercus rubra), 

both of which are cold-deciduous trees. Harvard Forest is one of few sites that report continual 

phenology observations for a relatively long period. Spring phenology has been observed since 1990 

for 33 species (reduced to nine after 2002). Autumn phenology observations started in 1991 and were 

reduced to 14 species in 2002 [32]. Spring phenology is recorded as three metrics—percentage of buds 

on the tree that have broken open (BBRK), percentage of leaves on the tree that are at least 75% of 

their total size (L75), and percentage of leaves on the tree that are greater or equal to 95% of their final 

size (L95). Autumn phenology is recorded as the percentage of leaves remaining on the tree that have 

changed color (LCOLOR), and the percentage of leaves that have fallen (LFALL).  

For our Agro-IBIS runs, we used observations from the dominant species (i.e., red maple and red 

oak) to characterize the temperate deciduous tree plant functional type (PFT). Following literature [13], 
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each metric was fitted for each individual tree sample (multiple tree samples are observed for each 

species) to a logistic function. We calculated the Day of Year (DOY) when the fitted metrics reached 

particular amplitude between minimum and maximum at an interval of 10% from 10%–90% 

(e.g., DOY when 20% of buds have broken denoted by BBRK20, DOY when 30% of leaves have 

changed color denoted by LCOLOR30). Then, the average DOY of five red maple individuals and four 

red oak individuals was used to represent the phenology of the site. 

We ran a series of Agro-IBIS simulations at the Harvard Forest AmeriFlux site (42.5378°N, 

72.1715°W) to determine which observation-based phenological metrics best represent the leaf  

onset and offset, and how well the model simulates carbon exchange with those metrics. Simulations 

were conducted with spring onset and autumn offset prescribed as each combination of the 

observation-based phenological metrics (e.g., BBRK20 as the onset and LCOLOR20 as the offset). 

We drove the model with a high-resolution (5 min latitude/longitude grid, ~9 km on a side) historical 

climate dataset created by ZedX Inc. (Bellefonte, PA, USA), which contains daily values of the six 

variables required by the Agro-IBIS model—maximum and minimum air temperature, precipitation, 

incoming shortwave radiation, relative humidity and wind speed, over the conterminous U.S. for the 

period 1948–2007. More detailed information about the dataset can be found in [38]. Data from the grid 

cell containing the Harvard Forest AmeriFlux site were used to drive Agro-IBIS. The area where 

phenology is observed (42.53°N–42.54°N, 72.18°W–72.19°W) is approximately 1 km away from the 

Harvard Forest AmeriFlux site; however, both the phenology observation and the AmeriFlux site are 

located within the same grid cell of the climate dataset. We therefore assume that there was no 

variability in phenology within the grid cell. For each simulation, a soil spin-up was conducted so that 

soil carbon reached near equilibrium. Then the model was run over the period 1948–2007 with 

phenology simulated using the embedded phenology module for 1948–1990 and prescribed for  

1991–2007. We compared the LAI simulated in Agro-IBIS with the deciduous overstory LAI (i.e., LAI 

of deciduous canopy without the effect of stems, calculated as the overall LAI measured minus the 

lowest LAI value during the time when no leaves exist) at the Harvard Forest AmeriFlux site. LAI 

measurements were taken in 1998, 1999, 2005, 2006, 2007 and 2008. Data from 2005 and 2008 were 

not included because the measurement records are too few in 2005 (only four) and 2008 was beyond 

the time period of our climate dataset. We calculated the mean percentage error (MPE) between 

simulated and observed LAI for each simulation. The combination of spring onset and autumn offset 

metrics, with which the Agro-IBIS model had the best performance in simulating the LAI (i.e., the 

lowest MPE), was chosen as the ground reference to evaluate the remotely sensed phenological metrics. 

We also compared simulated annual average gross primary productivity (GPP), ecosystem respiration (Re) 

and net ecosystem production (NEP) with the gap-filled (Version 7, Level 2) eddy covariance 

measurements [39]. 

2.3. Evaluation of Remotely Sensed Phenological Metrics 

We used six VI-based methods to extract onset and offset dates. A brief description of each method 

is listed in Table 1. Although some previously published methods used EVI (e.g., [25]), and other 

methods used NDVI (e.g., [19]), we tested all methods with both VIs. NDVI and EVI were calculated 
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following Equations (1) and (2), respectively, using the eight-day 500 m MODIS surface reflectance 

product (code: MOD09A1) acquired from the USGS website [40]. 

 
(1)

 
(2)

where ρNIR, ρRED and ρBLUE are surface reflectance in the near-infrared, red, and blue bands, 

respectively, and L = 1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5.  

Table 1. Description of the remote sensing methods for retrieving phenology. 

Abbreviation Description Example Source 

MIDPOINT 

VI is normalized to a range of 

0–1. Onset is defined as the 

DOY when normalized VI 

exceeds 0.5 in the spring. Offset 

is defined as the DOY when 

normalized VI decreases below 

0.5 in the autumn. 

[19] 

LOGISTIC1 

VI time series is fitted using 

logistic function. Then, the rate 

of change in curvature of fitted 

function is calculated. Onset is 

defined as the DOY when the 

rate of change in curvature 

reaches the first local maximum 

in the spring. Offset is defined 

as the DOY when the rate of 

change in curvature reaches  

the first local minimum  

in the autumn. 

[25] 

LOGISTIC2 

VI time series is fitted using 

logistic function. Onset is 

defined as the DOY when fitted 

VI exceeds 50% amplitude 

between the minimum and 

maximum in the spring. Offset 

is defined as the DOY when 

fitted VI decreases  

below 50% amplitude between 

the minimum and maximum in 

the autumn. 

[22] 

  

NDVI = ρNIR − ρRED

ρNIR + ρRED

EVI = G × ρNIR − ρRED

ρNIR +C1 × ρRED −C2 × ρBLUE + L
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Table 1. Cont. 

Abbreviation Description Example Source 

MOVING 

Α new VI curve is established 

from moving average models 

with an introduced time lag of 

225-days. Onset is defined as the 

DOY when the original VI time 

series crosses the moving-average 

curve. Offset is defined the same 

way as onset with the VI time 

series reversed. 

[23] 

DERIVATIVE 

The derivative of VI time series 

is derived by calculating the 

change in VI with a 20-day 

moving window. Onset is 

defined as the DOY when the 

maximal increase in VI is 

reached. Offset is defined as the 

DOY when the maximal 

decrease in VI is reached. 

[24] 

CAMELBACK 

A moving window of 50 days 

(equivalent to the 5–10-day 

composite used in [20]) is 

passed over the VI time series. 

The slope of the regression of 

the VI against time within every 

window is calculated to establish 

the first order derivative time 

series. Then, the second order 

derivative is calculated using the 

same process and window. 

Onset is defined as the DOY 

when the second derivative time 

series reaches a local maximum 

and the slope is positive. Offset 

is determined at the time where 

the second order derivative 

reaches a local maximum and 

the slope is negative. 

[20] 

Because phenology derived from different data products could produce different results even if the 

same method were applied [28], we compared phenology derived from the MOD09A1 product with 

that derived from the 16-day vegetation indices product (code: MOD13A1; Figure S1 and Tables S1 

and S2 in Supplementary Material) and eight-day nadir BRDF-adjusted reflectance (NBAR) product 
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(code: MCD43A4; Figure S2 and Tables S3 and S4 in Supplementary Material), both also having a 

spatial resolution of 500 m. MOD09A1 showed the best performance (i.e., with inter-annual 

variability, which is consistent with [28]), therefore we only show results from MOD09A1 for the 

remainder of this paper. We included in our comparison the land surface dynamic product 

(code: MCD12Q2), which was derived using one of the methods evaluated here (i.e., LOGISTIC1, 

Table 1), but with NBAR EVI as input, in order to show how different data sources may affect 

the results. 

We did not consider the quadratic model [21], which involves temperature, because it is fundamentally 

different from the nonlinear fitting methods purely based on VI and sometimes fails to capture the 

offset. Methods based on arbitrary thresholds such as NDVI0.2 and NDVI0.3 [27] (i.e., 0.2 and 0.3 were 

used as NDVI threshold to determine onset) were also excluded, because the difference between 

sensors could yield large discrepancies in the range of VIs. Our preliminary investigation showed that 

the MODIS NDVI at our site is sometimes larger than 0.3 over the entire course of a year, which 

makes it impossible to determine the phenological dates.  

In order to derive the phenological metrics, we first applied an algorithm based on the Savitzky-Golay 

Filter with band quality files and state flags to smooth the VI time series [41]. Then, the reconstructed 

VI time series were fitted using logistic functions for LOGISTIC1 and LOGISTIC2 method. Before 

applying the other methods, the smoothed VI time series were interpolated to daily values using a 

linear model. Dates of onset and offset for 2000–2010 were derived using each method for the five 

MODIS pixels that are encompassed in the phenology-observation area. The phenological dates 

averaged across the five pixels were compared with the metrics based on ground observations selected 

in Section 2.2. The performance of each metric was evaluated using the root mean square deviation 

(RMSD, Equation (3)) and Spearman’s rank correlation coefficient (ρ). RMSD describes how close 

remotely sensed phenological metrics are to ground observations, while the correlation coefficient 

describes how well the remotely sensed phenological metrics capture the inter-annual variability. 

 
(3)

where DOYeva is the phenological date to be evaluated, DOYref is the reference phenological metric, 

and N is the sample size. 

2.4. Evaluation of the Propagation of Bias in Phenology 

The onset and offset dates derived using different methods with satellite data in Section 2.3 were 

used to parameterize an onset model [42] (referred to as the “Sequential” model hereafter) and an 

offset model [43] (referred to as the “Delpierre” model hereafter). The “Sequential” model assumes 

that leaf onset is triggered when a critical GDD threshold is exceeded after a chilling requirement is 

fulfilled (Equation (4)). The “Delpierre” model assumes that both temperature and photoperiod control 

the senescence process (Equation (5)). We chose the “Delpierre” model because it has been proven to 

have relatively good performance [13]. Although several model structures are available for the onset, 

we only use the “Sequential” model, which has moderate complexity in terms of parameter number, as 

an example to show the propagation of bias in phenology. Tests of the “Spring Warming” [44] and 

“Parallel” models [45] did not change our conclusion and results are not shown.  

RMSD = 1

N
(DOYeva − DOYref )2
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(4)

 

(5)

where xt is the temperature at time t; Rc is the rate of chilling (day); Tchill is base temperature (°C) 

required by chilling accumulation process; Sc is the accumulated chilling units (day); Ctotal is the 

critical threshold of the chilling process (day); Rf is the rate of heat forcing (degree-day); Tbase is the 

base temperature (°C) required by the heat accumulation process; Sf is the accumulated heat forcing 

units (degree-day); t0 is the starting date of accumulation (DOY); th is the date when the chilling 

accumulation is completed (DOY); tb is the date of onset (DOY); F* is the critical threshold of heating 

process (degree-day); P(t) is the photoperiod for day t (hour); Pstart is the photoperiod threshold for 

offset process (hour); Roff is the rate of forcing for offset process (°C hour hour−1 day−1); Soff is the 

accumulated forcing units for offset (°C hour hour−1); a and b are parameters of the “Delpierre” model; 

and Ycrit is the critical threshold of the offset process (°C hour hour−1). 

Data used to drive the phenology models include daily temperature (taken here from the ZedX 

dataset) and photoperiod, which is calculated as a function of latitude and DOY [46]. A simple genetic 

algorithm written in Interactive Data Language [47] was applied to optimize the model parameters by 

minimizing the RMSD between the modeled and remotely sensed phenological dates. Convergence 

was achieved when RMSD could no longer be reduced or 100 generations of parameters were reached. 

All the parameters of the phenological models were optimized (i.e., Tchill, Ctotal, Tbase, and F* for the 

“Sequential” model; Pstart, Tchill, a, b, and Ycrit for the “Delpierre” model). Data from the period of 

2000–2007, which is the overlap between the references (i.e., remotely sensed phenology available 

since 2000) and the driving data (i.e., ZedX data, available for 1948–2007), were used for the 

optimization. The onset and offset dates for 1991–2007 were simulated using the “Sequential” and 

“Delpierre” models, respectively, with parameters optimized using each remotely sensed phenological 

metric as reference (i.e., 6 methods × 2 VIs = 12 sets of parameters). As a test of model improvement, 

we also simulated the onset and offset dates using the default Agro-IBIS phenology algorithm. Then, 

we compared these dates with ground observations in the same manner as the evaluation of remotely 

sensed phenology. 
  

Sc = Rc (xt ) if Tchill > xt  then Rc =1 else Rc = 0
t0

th

              

When Sc ≥ Ctotal  heat accumulation starts                         

Sf = Rf (xt ) if Tbase ≥ xt  then Rf = 0 else Rc = xt −Tbase

th

tb



When Sf ≥ F*  onset is triggered                                       

















If P(t) ≤ Pstart  and xt ≤ Tchill  then Soff = Roff (xt )
Where Roff (xt ) = [Tchill − xx ]a ×[P(t) / Pstart ]

b         

When Soff ≥ Ycrit  leaf offset is triggered               
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2.5. Errors in Simulated Productivities Caused by Biases in Phenology 

Bias in phenology is known to cause errors in ecosystem processes simulated in DEMs [10]. In this 

study, we conducted a series of Agro-IBIS simulations to examine the sensitivity of simulated GPP 

and NEP to phenology. First, we ran a control simulation with both onset and offset prescribed with 

the observed phenological metrics (Section 2.2). Then, we ran two sets of experimental simulations.  

In one experiment (Dynamic Onset), offset was prescribed with observations and onset was predicted 

using the phenological model parameterized with the six remotely sensed phenological metrics 

(Section 2.4). In the second experiment (Dynamic Offset), onset was prescribed with observations and 

offset was predicted. We then compared the GPP and NEP simulated in both model runs. Because all 

the parameters, settings, and driving data are identical except the phenology, the difference in 

simulated GPP and NEP can be attributed to differences in phenology. For example, the difference 

between Dynamic Onset and the control can be attributed to the difference in the date of onset. 

We conducted a regression analysis to evaluate the relationship between the difference in simulated 

GPP and NEP and the differences in phenology. 

3. Results  

3.1. Ground Phenology Reference 

We found that Agro-IBIS had the best performance in capturing the seasonal evolution of LAI 

(i.e., smallest MPE between simulated and observed LAI; Table 2) with the onset prescribed as 

BBRK30 (i.e., the DOY when 30% of the buds have broken) and the offset prescribed as LCOLOR20 

(i.e., the DOY when 20% of the leaves have changed color) (Figure 1). These two metrics represent 

well the beginning of the increase in LAI in spring and the decrease in autumn. Because L75 and L95 

occur around the time when LAI nearly reaches its peak value, which is much later than the leaf onset 

defined in Agro-IBIS, they were excluded from the analysis. Although LFALL is consistent with the 

definition of leaf offset at first sight, our analysis suggests that even LFALL10 (close to LCOLOR80) 

is too late to represent the leaf offset. In spring, the simulated LAI accumulates a little slower than the 

observation, while the simulated LAI generally decreases faster than the observation in autumn, 

particularly in 2007. Our analysis shows that the model slightly overestimates the peak value of LAI. 

Table 2. Mean percentage error between simulated and observed LAI for different simulations. 

(%) BBRK10 BBRK20 BBRK30 BBRK40 BBRK50 BBRK60 BBRK70 BBRK80 BBRK90 

LCOLOR10 10.46 10.69 10.51 10.79 10.92 11.04 11.03 11.31 11.45 

LCOLOR20 9.09 9.09 8.86 9.10 9.19 9.30 9.23 9.45 9.48 

LCOLOR30 9.45 9.53 9.28 9.51 9.61 9.72 9.63 9.83 9.84 

LCOLOR40 10.22 10.26 9.98 10.15 10.22 10.32 10.20 10.38 10.36 

LCOLOR50 11.38 11.40 11.11 11.30 11.35 11.45 11.31 11.46 11.41 

LCOLOR60 12.63 12.65 12.35 12.54 12.59 12.71 12.55 12.68 12.60 

LCOLOR70 14.21 14.22 13.91 14.10 14.15 14.26 14.10 14.21 14.11 

LCOLOR80 15.83 15.80 15.48 15.66 15.72 15.83 15.66 15.76 15.65 

LCOLOR90 17.98 17.92 17.59 17.76 17.82 17.93 17.75 17.85 17.71 
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Figure 1. Simulated and observed LAI for 1998 (RMSD = 0.33) (a); 1999 (RMSD = 0.24) (b); 

2006 (RMSD = 0.37) (c); and 2007 (RMSD = 0.53) (d). BBRK30 and LCOLOR20 were 

used in the Agro-IBIS simulation as leaf onset and offset, respectively. Observed LAI was 

measured using a LAI2000 sensor at Harvard Forest AmeriFlux site. 

 

 

Figure 2. Simulated and observed annual GPP (RMSD = 148.3 g C m−2), Re  

(RMSD = 137.3 g C m−2) and NEP (RMSD = 157.7 g C m−2). Observation is aggregated 

from the hourly gap-filled eddy covariance measurements. Simulated GPP was computed 

within the vegetation dynamics module of Agro-IBIS; Re was computed within both the 

vegetation dynamics module and belowground carbon cycling module of Agro-IBIS, NEP 

was computed as the difference between GPP and Re. 
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The Agro-IBIS model performed well in simulating annual GPP, Re and NEP (Figure 2). The 

magnitudes of these variables were reproduced well compared with the eddy covariance measurements. 

The multi-year average GPP, Re and NEP observations were 1428.2 g C m−2, 1135.1 g C m−2,  

and 293.1 g C m−2, respectively; while for the Agro-IBIS simulation, they were 1420.1 g C m−2,  

1196.7 g C m−2, and 223.4 g C m−2. The model captured the inter-annual variability in GPP relatively 

well with a correlation of 0.5. In contrast, the correlations for Re and NEP were 0.29 and 0.18, 

respectively, suggesting the model did not capture the inter-annual variability in Re and NEP, 

particularly for the last four years of the simulation (Figure 2). 

3.2. Remotely Sensed Phenological Metrics 

Figure 3 shows the BBRK30 and LCOLOR20 for 1991–2010 along with the remotely sensed onset 

and offset derived using satellite methods for 2000–2010. At Harvard Forest, BBRK30 varies in the 

range of DOY112 to DOY135 with an average date of DOY125. In each year, BBRK30 also varies 

across species and individual trees. The standard deviation fell in the range of 1.1–9.0 days. When 

NDVI was used to retrieve the leaf onset, LOGISTIC1 and CAMELBACK produced earlier dates than 

BBRK30 (Figure 3a) with an RMSD of 36.1 and 16.5 days (Table 3), respectively. The onset dates 

retrieved using LOGISTIC2 and MOVING varied around BBRK30 showing the smallest RMSD 

(less than a week) and relatively high ρ (Figure 3a, Table 3). MIDPOINT and DERIVATIVE generally 

produced onset dates that are later than BBRK30. MOVING had the best performance capturing the 

inter-annual variability with the highest ρ of 0.54 (Table 3), whereas the ρ of LOGISTIC1, 

CAMELBACK and DERIVATIVE were relatively low (Table 3). When EVI was used to retrieve the 

leaf onset, LOGISTIC1 and CAMELBACK still produced earlier dates although they were closer to 

BBRK30, whereas LOGISTIC2, MIDPOINT and DERIVATIVE produced later dates (Figure 3b). The 

RMSD of LOGISTIC2, MIDPOINT and MOVING were larger than those when NDVI was used 

(Table 3). For all the methods, the onset dates derived from EVI have better correlation with BBRK30 

than those derived from NDVI (Table 3), suggesting that the inter-annual variability was better 

captured with EVI. 

The average date of LCOLOR20 at Harvard Forest is DOY273 over the period of 1991–2010  

with relatively small inter-annual variability (Figure 3c). However, in a certain year, the difference 

between individual trees is larger than that for BBRK30 (the standard deviation ranges from 5.8–12.7 

days). When NDVI was used to retrieve the offset, all the methods produced later dates than 

LCOLOR20 except for LOGISTIC1 (Figure 3c). The discrepancy was large with the RMSD ranging 

from 20.6–59.1 days (Table 4). The correlations between remotely sensed offsets and LCOLOR20 

were weak (Table 4). A similar pattern was found for the offsets retrieved using EVI (Figure 3d) 

except that the later dates were closer to LCOLOR20 (i.e., smaller RMSD) whereas the earlier dates 

(i.e., offset derived using LOGISTIC1) were farther. LOGISTIC2 had relatively good performance as 

the offsets fell within one standard deviation of the ground observation for most years. LOGISTIC1, 

DERIVATIVE and CAMELBACK were negatively correlated with LCOLOR20, whereas MOVING 

showed relatively high ρ (Table 4). Moreover, the phenology from the MCD12Q2 product showed 

similar biases as LOGISTIC1 with EVI calculated using MOD09A1 (Figure 3b,d, Tables 3 and 4).  
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Figure 3. Ground observed phenology with remotely sensed onset from NDVI (a); onset 

from EVI (b); offset from NDVI (c); and offset from EVI (d). Error bars indicate the 

standard deviation of observation.  

Table 3. Performance of remotely sensed onset. 

Leaf Onset 
NDVI EVI 

RMSD ρ RMSD ρ 

LOGISTIC1 36.1 0.06 13.8 0.44 
LOGISTIC2 6.3 0.31 13.3 0.80 
MIDPOINT 9.2 0.42 13.1 0.54 
MOVING 5.3 0.54 6.5 0.68 

DERIVATIVE 14.5 0.28 14.7 0.51 
CAMELBACK 16.5 0.30 12.2 0.48 

The RMSD and ρ between the onset from MCD12Q2 product and observations are 11.2 days 

and 0.79, respectively. 
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Table 4. Performance of remotely sensed offset. 

Leaf Offset 
NDVI EVI 

RMSD ρ RMSD ρ 

LOGISTIC1 20.6 0.53 45.3 −0.25 
LOGISTIC2 21.1 0.38 5.2 0.02 
MIDPOINT 21.8 0.32 9.8 0.17 
MOVING 59.1 0.13 30.0 0.51 

DERIVATIVE 29.4 0.03 17.0 −0.38 
CAMELBACK 36.4 0.30 39.3 −0.33 

The RMSD and ρ between the offset from MCD12Q2 product and observations are 49.1 days  

and 0.37, respectively. 

3.3. The Propagation of Bias in Phenology 

With different remotely sensed phenological metrics used as reference, the parameters of 

phenological models showed different capabilities of being optimized. For the “Sequential” model, the 

RMSD between modeled and remotely sensed onset was minimized to a range of 4.0–10.2 days. 

Specific RMSD depended on the combination of method and VI used to retrieve the onset. The RMSD 

from the “Delpierre” model ranged from 3.4–11.8 days. The modeled phenology generally showed a 

similar pattern of bias as the remotely sensed phenology used for parameterization in terms of whether 

it is earlier or later than the ground observation (Figure 4). When the onsets derived from NDVI were 

used as reference to parameterize the “Sequential” model, LOGISTIC1, LOGISTIC2, MOVING and 

DERIVATIVE showed a smaller RMSD (Table 5) than that between the remotely sensed onset and 

BBRK30 (Table 3), suggesting that the modeled onsets were closer to the ground observation. The 

correlation was increased for all the methods except CAMELBACK. When the onsets derived from 

EVI were used for parameterization, LOGISTIC1, LOGISTIC2, MIDPOINT and DERIVATIVE 

showed a slightly reduced RMSD; and LOGISTIC1, LOGISTIC1 and CAMELBACK showed a 

decrease in the correlation coefficient. 

The modeled leaf offsets showed smaller RMSD and higher correlation with the ground observation 

when the offsets derived from NDVI were used as reference to parameterize the “Delpierre” model, 

regardless of methods (Tables 4 and 6). In contrast, when the offsets derived from EVI were used as 

reference, increased RMSD was only found for LOGISTIC1. MIDPOINT and MOVING showed 

lower correlation coefficient, while the other methods showed higher correlation coefficient. 

Moreover, the leaf onset simulated using the Agro-IBIS algorithm was generally earlier than the 

ground observation (Figure 4) with an RMSD of 10.9 days. The correlation coefficient was 0.43, 

suggesting the inter-annual variability is not represented well. The leaf offset simulated using the 

Agro-IBIS algorithm was constant at DOY280 during the simulation period, which implies that the 

offset is only controlled by photoperiod, even though low temperature is also considered in the algorithm. 
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Figure 4. Ground observed and simulated phenology. Error bars indicate the standard 

deviation of observation. “Agro-IBIS” is the leaf onset or offset simulated using the 

original Agro-IBIS algorithm and parameters. Onset was simulated using the “Sequential” 

model and the parameters were optimized with onset derived from NDVI (a); and EVI (b); 

offset was simulated using the “Delpierre” model and parameters were optimized with 

offset derived from NDVI (c); and EVI (d).  

 

 

Table 5. Performance of modeled onset. 

Leaf Offset 
NDVI EVI 

RMSD ρ RMSD ρ 

LOGISTIC1 34.5 0.20 12.2 0.31 
LOGISTIC2 5.7 0.63 12.5 0.68 
MIDPOINT 10.2 0.72 12.5 0.68 
MOVING 5.0 0.67 9.4 0.67 

DERIVATIVE 11.3 0.65 13.5 0.80 
CAMELBACK 17.4 0.30 13.3 0.32 

The RMSD and ρ between the onset simulated using the original Agro-IBIS algorithm and observations  

are 10.9 days and 0.43, respectively. 
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Table 6. Performance of modeled offset. 

Leaf Offset 
NDVI EVI 

RMSD ρ RMSD ρ 

LOGISTIC1 18.1 0.53 49.5 0.50 
LOGISTIC2 17.1 0.47 3.4 0.40 
MIDPOINT 18.1 0.50 9.6 0.04 
MOVING 56.3 0.39 29.0 0.23 

DERIVATIVE 22.6 0.52 10.3 0.02 
CAMELBACK 34.1 0.50 37.3 0.35 

The RMSD and ρ between the onset simulated using the original Agro-IBIS algorithm and observations  

are 10.9 days and 0.43, respectively. 

3.4. Impact of Bias in Phenology on Simulated Productivities 

Figures 5 and 6 show the GPP and NEP simulated in the Dynamic Onset and Dynamic Offset runs, 

respectively. The GPP and NEP from experimental simulations have similar inter-annual variability as 

the control; however, their magnitude was overall increased or decreased compared with the control. 

This corresponds to the overall advanced or delayed phenology in the experimental simulations 

because the environmental conditions are the same. In general, higher GPP and NEP were found for 

earlier onset and later offset, mainly due to the extra days of photosynthesis. Our regression analysis 

showed a strong negative linear correlation between the bias in the onset (i.e., difference between 

modeled onset and observed onset) and the error in simulated productivities (i.e., difference in 

simulated GPP and NEP between the Dynamic Onset experiment and the control) (Figure 7a,b).  

It should be noted that, because our control simulation does not perfectly reproduce the observation 

(Figure 2), the difference between the experimental and control run might not perfectly represent the 

overall error (i.e., the difference between simulation and reality). Instead, the difference represents a 

component of the overall error due to inaccurate phenology, which we refer to as error in this paper for 

simplicity. The slopes for GPP (R2 = 0.98, p < 0.01) and NEP (R2 = 0.93, p < 0.01) were −9.48 and  

−5.02, respectively, indicating that a one-day bias in the leaf onset would result in an error  

of 9.48 g C m−2 yr−1 in GPP and 5.02 g C m−2 yr−1 in NEP. The difference in simulated GPP and NEP 

between the Dynamic Offset and the control can be represented as a quadratic function of the 

difference between modeled and observed leaf offset (Figure 7c,d). As the coefficients of the quadratic 

term were small (−0.05 for GPP and −0.02 for NEP), the relationship is approximately linear when the 

bias in offset is small (e.g., when the bias is less than 10 days). The quadratic relationship also implies 

that the magnitude of errors in productivities resulting from a negative bias (i.e., earlier offset) is larger 

than that resulting from a positive bias (i.e., later offset). Moreover, the correlation between the errors 

in simulated GPP and the bias in phenology is slightly stronger than that between the errors in NEP 

and the bias in phenology. Since NEP is the difference between GPP and Re, this implies that the Re is 

not as strongly controlled by the phenology as the photosynthesis. 
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Figure 5. Simulated annual Gross Primary Productivity (GPP) and Net Ecosystem 

Production (NEP) from Dynamic Onset experiment. Leaf onset dates were simulated using 

the “Sequential” model with the parameters optimized against remotely sensed onset using 

NDVI (a,b), and EVI (c,d). 

 

 

Figure 6. Simulated annual GPP and NEP from Dynamic Offset experiment. Leaf offset 

dates were simulated using the “Delpierre” model with the parameters optimized against 

remotely sensed offset using NDVI (a,b), and EVI (c,d). 
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Figure 6. Cont. 

 

Figure 7. Relationship between errors in phenology and errors in simulated productivities. 

Leaf onset vs. GPP (a); leaf onset vs. NEP (b); leaf offset vs. GPP (c) and leaf offset vs. 

NEP (d). Regressions were conducted using all data in the same category of simulations.  

P-Value for all regressions is less than 0.01. Symbols indicate the phenology method used. 

For example, “NDVI LOGISTIC1” in (a) indicates that the leaf onset dates were modeled 

using the “Sequential” model and the parameters were optimized with onset dates derived 

from NDVI using method “LOGISTIC1”. 

 

 
  

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
800

1200

1600

2000

(c)

G
P

P
 (

gC
/m

2 )

Year

 LOGISTIC1  LOGISTIC2  MIDPOINT  MOVING
              DERIVATIVE  CAMELBACK  Control

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
-100

0

100

200

300

400

500

(d)

N
E

P
 (

gC
/m

2 )

Year

 LOGISTIC1  LOGISTIC2  MIDPOINT  MOVING
              DERIVATIVE  CAMELBACK  Control

-60 -50 -40 -30 -20 -10 0 10 20 30
-300

-200

-100

0

100

200

300

400

500

(a)

y=-2.45-9.48x

R
2
 =0.98

 NDVI LOGISTIC1    EVI LOGISTIC1 
 NDVI LOGISTIC2    EVI LOGISTIC2
 NDVI MIDPOINT     EVI MIDPOINT
 NDVI MOVING       EVI MOVING
 NDVI DERIVATIVE  EVI DERIVATIVE
 NDVI CAMELBACK  EVI CAMELBACK

               Regression LineD
if

fe
re

nc
e 

in
 s

im
ul

at
ed

 G
P

P
 (

gC
/m

2 )

Difference between modeled and observed leaf onset (Days)
-60 -50 -40 -30 -20 -10 0 10 20 30

-200

-100

0

100

200

300
y=-2.39-5.02x

R
2
 =0.93

 NDVI LOGISTIC1    EVI LOGISTIC1 
 NDVI LOGISTIC2    EVI LOGISTIC2
 NDVI MIDPOINT     EVI MIDPOINT
 NDVI MOVING        EVI MOVING
 NDVI DERIVATIVE  EVI DERIVATIVE
 NDVI CAMELBACK  EVI CAMELBACK

               Regression LineD
if

fe
re

nc
e 

in
 s

im
ul

at
ed

 N
E

P
 (

gC
/m

2 )

Difference between modeled and observed leaf onset (Days)

(b)

-75 -60 -45 -30 -15 0 15 30 45 60 75 90
-600

-500

-400

-300

-200

-100

0

100

200

300

(c)

 NDVI LOGISTIC1    EVI LOGISTIC1 
 NDVI LOGISTIC2    EVI LOGISTIC2
 NDVI MIDPOINT     EVI MIDPOINT
 NDVI MOVING        EVI MOVING
 NDVI DERIVATIVE  EVI DERIVATIVE
 NDVI CAMELBACK  EVI CAMELBACK

               Regression LineD
if

fe
re

nc
e 

in
 s

im
ul

at
ed

 G
P

P
 (

gC
/m

2 )

Difference between modeled and observed leaf offset (Days)

y=-0.18+5.62x-0.05x
2

R
2
 =0.98

-75 -60 -45 -30 -15 0 15 30 45 60 75 90
-400

-300

-200

-100

0

100

200

(d)

 NDVI LOGISTIC1    EVI LOGISTIC1 
 NDVI LOGISTIC2    EVI LOGISTIC2
 NDVI MIDPOINT     EVI MIDPOINT
 NDVI MOVING        EVI MOVING
 NDVI DERIVATIVE  EVI DERIVATIVE
 NDVI CAMELBACK  EVI CAMELBACK

               Regression Line

D
if

fe
re

nc
e 

in
 s

im
ul

at
ed

 N
E

P
 (

gC
/m

2 )

Difference between modeled and observed leaf offset (Days)

y=-0.45+2.58x-0.02x
2

R
2
 =0.89



Remote Sens. 2014, 6 4678 

 

4. Discussion 

4.1. Ground Phenology Reference and Agro-IBIS 

Our choice of ground phenology reference was based on the model performance in simulating the 

evolution of LAI. This method allowed us to choose the ground phenology reference quantitatively. 

Due to data limitation (data missing for some required variables), the model was driven with gridded 

climate data rather than site-specific measurements. We therefore expect some uncertainties associated 

with the comparison of LAI at different spatial scales (AmeriFlux site vs. simulation in a 5-min grid 

cell). In addition, the differences in MPE resulting from different combinations of BBRK and LCOLOR 

are relatively small (Table 2). This is due to the small difference between phenological levels, which 

were derived from interpolation. On average, it takes 4.7 days for the buds to break from 10%–90%. 

Therefore, in some years, the adjacent two phenological levels (e.g., BBRK20 and BBRK30) could be 

the same. As it takes longer for the leaves to change color (e.g., 9.5 days on average from 10%–50% 

coloring), the difference resulting from different LCOLOR levels is larger (Table 2). Although 

uncertainties remain in the chosen ground phenology reference, they were confined to a small range 

based on our choice of metrics. The uncertainties in the offset are larger than those in the onset due to 

the larger variability in the offset across species and individual trees. 

Agro-IBIS captured the magnitude of productivity variables when compared with observations, 

although uncertainties exist because of model limitations. For example, the slower increase in LAI in 

spring compared with the observations (Figure 1) results from a small underestimation in net primary 

productivity (NPP), a component of simulated LAI. The faster decrease in simulated LAI in autumn 

might be because of the relatively simple scheme used in Agro-IBIS. Once the offset is triggered, the 

LAI decreases linearly to a minimum over a 30-day period. However, as the canopy photosynthesis is 

scaled using LAI in the model, the faster decrease in LAI can partly correct the errors caused by not 

taking into account the effect of leaf age and coloring. 

The discrepancies between the simulated carbon cycle components and the flux measurements can 

be explained by the following possible reasons: (1) the grid cell was simulated as temperate deciduous 

forest so that only one PFT existed [34]; (2) the footprints of other PFTs such as evergreen trees and 

understory shrubs were not simulated although they are likely small; (3) the meteorological data used 

to drive the model represents the average condition of a grid cell, which could be slightly different 

from the real condition at the site; and (4) there might also be uncertainties in the flux measurements 

and the post-processing such as gap-filling [48].  

4.2. Remotely Sensed Phenology 

With the remote sensing product chosen in this study, including the products shown in the 

supplementary material, most of the six remote sensing methods in this study show relatively poor 

performance compared with the ground-observed phenology, regardless of which VI is used. The 

discrepancy can be explained by several possible reasons, within which the difference in definition 

perhaps having the largest contribution. For example, the onset retrieved using DERIVATIVE is later 

than BBRK30 (Figure 3a) because the maximum of the first derivative of VI time series represents the 

time when VI increases the fastest, which usually responds to the period of fast leaf expansion after all 
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buds have broken. LOGISTIC2 and MIDPOINT arbitrarily define the onset as the time when 50% of 

the amplitude between the minimum and maximum of either fitted or normalized VI time series is 

reached, which is expected to be later than the time when buds break. LOGISTIC1 and CAMELBACK 

are both based on the second derivative of VI time series. The local maximum of the second derivative 

tends to capture the subtle change in the VI, which is too sensitive to the growth of understory that 

occurs earlier than the development of canopy [22,49]. The onset retrieved using LOGISTIC1 can also 

be affected by the curve fitting, because the maximum rate of change in the curvature is determined by 

the shape of the fitted curve (i.e., the parameters of logistic function), and the shape is controlled by 

how the VI changes when it starts increasing as well as when it reaches the peak. 

For the offset, MOVING and CAMELBACK use a process symmetrical to the onset. Because the 

onset derived using these methods well represents the period when LAI starts to increase from the 

minimum value, the offset tends to represent the period when LAI drops to the minimum value, which 

is much later than when LCOLOR20 is reached. LOGISTIC2, MIDPOINT and DERIVATIVE also 

produce dates later than LCOLOR20 as they tend to capture the period when VI drops the fastest, 

which usually corresponds to the fast change in leaf color and decrease in LAI rather than the 

beginning of offset. Although LOGISTIC1 is trying to capture the period when VI starts to decrease, 

there is still a difference between the offset derived using LOGISTIC1 and that based on ground 

observation, because the VI does not change synchronously with LAI. Moreover, similar to the onset, 

the offset derived using LOGISTIC1 can be affected by the shape of the fitted curve, which is 

controlled by the change in VI around the period when VI drops to the minimum. Regardless of remote 

sensing method, offset is later when using NDVI than with EVI. This is likely because NDVI tends to 

saturate when the LAI is high (3 or more for a pure forest pixel) [50,51] so that it is not as sensitive as 

EVI to the drop in LAI. Generally, EVI is more responsive to the canopy structural variation, such as 

LAI, and NDVI is more sensitive to chlorophyll [52]. 

There is a difference between the phenological dates retrieved using LOGISTIC1 with EVI, and 

those from MCD12Q2, which was produced using LOGISTIC1 as well with NBAR EVI. This highlights 

the fact that the phenology retrieved can also be affected by factors other than the method, such as the 

choice of data source (see Supplementary Material) [28] and data processing. On the other hand, the 

similar patterns shown by the two results suggest that the general features of a certain method are 

relatively independent of data source. Another issue related to the satellite methods is the parameterization. 

The width of the moving window used in MOVING, DERIVATIVE and CAMELBACK as well as  

the 50% amplitude used in LOGISTIC2 and MIDPOINT can be considered as parameters. Because 

those parameters were chosen based on the input data used when developing the method, when the 

data source changes, they may no longer be optimal and can contribute to the discrepancies between 

the remotely sensed phenology and the ground observation. Our preliminary investigation suggests 

that, by adjusting parameters, it is possible to reduce the discrepancy between remotely sensed phenology 

and the ground phenology reference at a specific site (see Figure S3 in Supplementary Material). However, 

these parameters must be evaluated at other locations. Currently, long-term ground observations of 

phenology are limited, and the phenology is usually recorded in different ways at different locations 

(e.g., Harvard Forest vs. Hubbard Brook Experimental Forest), which causes evaluation to be 

confounded [53]. Recently, digital cameras have been widely installed to observe vegetation phenology. 

Since the phenological information gathered from digital camera can be standardized, it can potentially 
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be used to validate the phenology retrieved from satellite imagery at multiple locations, and help 

resolve the issue of scale difference between ground observations and satellite imagery (i.e., individual 

trees vs. pixels) [54].  

4.3. Modeled Phenology 

Differences in RMSD and correlation coefficient between the modeled and observed phenology 

have been found in comparison with those between the corresponding remotely sensed phenology and 

ground observation. However, there is no evident pattern of whether the RMSD and correlation 

coefficient would increase or decrease, which suggests that the discrepancy between modeled and 

remotely sensed phenology may either add to or offset the discrepancy between remotely sensed 

phenology and ground observations. Overall, the magnitude of differences in the RMSD is small 

(usually less than 1 day for the onset, and less than 5 days for the offset). Thus, the RMSD between 

modeled and observed phenology is still on the same order as the RMSD between the phenology used 

for parameterization and observed on the ground. In other words, the bias in remotely sensed 

phenology is generally maintained by the modeled phenology. The magnitude of changes in correlation 

varies in a relatively wide range (Table 3 vs. Table 5 and Table 4 vs. Table 6), because the correlation 

is not considered in the cost function of the genetic algorithm. In most cases, correlation became lower 

suggesting the capability of capturing the inter-annual variability is weakened after the modeling 

process. Even though correlation became higher in some cases, it does not necessarily indicate that the 

capability of capturing the inter-annual variability has been improved. If the modeling period were 

extended, the correlation might further change. This highlights the fact that there is still a need to 

evaluate whether the phenological models and the optimized parameters can properly capture the 

changes in phenology in response to the changing climate, even if the RMSD is minimized. One 

possible solution is to maximize the correlation between modeled phenology and the reference and 

minimize the RMSD during the optimization process, which requires developing a cost function that 

incorporates both metrics. 

4.4. Impact of Phenology on Simulated Productivities 

Our analysis indicates that errors in simulated GPP and NEP result from the bias in simulated 

phenology (Figures 5 and 6). Although the sign of NEP did not change due to the bias in 

phenology, as the study site is a relatively large carbon sink, this might not be the case at other 

locations that are closer to carbon neutral. The relationship between the errors in simulated GPP 

and NEP and the bias in phenology also has implications on the impact of phenological shifts on 

carbon assimilation. The linear relationship between errors in GPP and NEP and the bias in leaf 

onset means that a one-day advance in leaf onset would result in an increase of 9.48 g C m−2 yr−1 

in GPP and 5.02 g C m−2 yr−1 in NEP (Figure 7a,b). The quadratic relationship between errors in 

GPP and NEP and the bias in leaf offset (Figure 7a,b) suggests that delayed leaf offset leads to 

higher GPP and NEP. However, the marginal increase in GPP and NEP declines with the days of 

delay. This might be because the environmental condition becomes less and less favorable for 

carbon uptake late in a year.  
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Because growing season length (GSL) is determined by leaf onset and offset, productivity is usually 

correlated with GSL. Previous studies have shown significant control of GSL on the productivities. 

For example, a modeling study found that an extension of one day in GSL would result in an increase 

of 9.8 ± 2.6 g C m−2 yr−1 in GPP for temperate deciduous broadleaf forest [55]; carbon flux measurements 

showed an increase of 5.57 m−2 yr−1 in NEP with a one-day extension of carbon uptake period 

(i.e., number of days when it is a net carbon sink), which is an alternative definition of GSL [56]. 

These relationships are similar to the impact of leaf onset on the productivities estimated from our 

simulations. This might be explained by the fact that the variation in GSL in those studies was 

dominated by the variation in leaf onset [55]. On the other hand, although our analysis indicates that 

the productivities are less sensitive to leaf offset than to leaf onset in Agro-IBIS, further analysis with 

measurements is still needed to evaluate to what extent these sensitivities represent reality. 

For example, a study using different phenological indicators suggested that the productivities are more 

sensitive to autumn senescence [57]. Despite the discrepancy, our analysis suggests that it might be 

better to examine the individual impact of leaf onset and offset instead of the overall impact of GSL. 

4.5. Uncertainties in the Evaluation 

There are several factors that have influenced our evaluation and contributed to the associated 

uncertainties. First, our evaluation is limited to Harvard Forest due to data availability; therefore, the 

results may not be representative for other locations with different species composition. Second, the 

uncertainties in ground observations, including phenology (e.g., large variation in observed leaf offset, 

Figure 3), LAI and carbon flux could propagate into our evaluation. Third, as simulated LAI was 

compared with site-level observation, the limitation of the Agro-IBIS model (e.g., linear decrease of 

LAI in a fixed period in autumn) and different spatial scales (grid cell vs. site) might introduce 

uncertainties in the selection of ground phenology reference. Finally, different data processing 

strategies (e.g., smoothing and interpolation of vegetation indices) might cause differences in the 

phenology derived using the same methods. In order to reduce such uncertainties, comprehensive 

evaluation at different locations should be conducted with ground phenological observations that can 

be standardized and that have a spatial scale more consistent with the satellite (e.g., images from 

“PhenoCam” [54]).  

5. Conclusions 

We used long-term ground phenological observations along with leaf area index and carbon flux 

measurements made at Harvard Forest to evaluate six vegetation-index-based methods for retrieving 

phenology. Our analysis shows that, compared with the ground phenology reference chosen according 

to the definition in the Agro-IBIS dynamic ecosystem model, phenology derived using the evaluated 

methods generally had relatively large discrepancies, which could be attributed to the different 

definitions of phenology, the parameters used for a certain method, and the input data. However, two 

methods for leaf onset (i.e., LOGISTIC2 [22] and MOVING [23]) and one method for leaf offset 

(i.e., LOGISTIC2 [22]) showed a bias of less than a week, and could be further improved, suggesting 

that phenological metrics derived using these methods could potentially be used in dynamic ecosystem 

models similar to Agro-IBIS. Our analysis shows that, when remotely sensed phenological metrics are 
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used to parameterize phenological models, the bias is generally maintained in the modeled phenology, 

and will propagate to cause errors in productivities simulated in dynamic ecosystem models. 

The different sensitivities of Agro-IBIS to leaf onset and offset suggest that the impact of spring and 

autumn phenology on carbon assimilation should be examined separately. Our evaluation was 

conducted at one site due to data availability, and subject to uncertainties associated with ground 

observations, model simulations, and data processing. However, the evaluation procedure proposed in 

this study, including quantitative selection of ground reference, comparison between multiple data sources 

and examination of bias propagation, can provide guidance for further evaluation at more locations.  
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