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Cysts of Alexandrium fundyense, a dinoflagellate that causes toxic algal blooms in the Gulf of Maine, spend
the winter as dormant cells in the upper layer of bottom sediment or the bottom nepheloid layer and
germinate in spring to initiate new blooms. Erosion measurements were made on sediment cores
collected at seven stations in the Gulf of Maine in the autumn of 2011 to explore if resuspension (by
waves and currents) could change the distribution of over-wintering cysts from patterns observed in the
previous autumn; or if resuspension could contribute cysts to the water column during spring when
cysts are viable. The mass of sediment eroded from the core surface at 0.4 Pa ranged from 0.05 kg m—2
near Grand Manan Island, to 0.35 kg m~?2 in northern Wilkinson Basin. The depth of sediment eroded
ranged from about 0.05 mm at a station with sandy sediment at 70 m water depth on the western Maine
shelf, to about 1.2 mm in clayey-silt sediment at 250 m water depth in northern Wilkinson Basin. The
sediment erodibility measurements were used in a sediment-transport model forced with modeled
waves and currents for the period October 1, 2010 to May 31, 2011 to predict resuspension and bed
erosion. The simulated spatial distribution and variation of bottom shear stress was controlled by the
strength of the semi-diurnal tidal currents, which decrease from east to west along the Maine coast, and
oscillatory wave-induced currents, which are strongest in shallow water. Simulations showed occasional
sediment resuspension along the central and western Maine coast associated with storms, steady
resuspension on the eastern Maine shelf and in the Bay of Fundy associated with tidal currents, no
resuspension in northern Wilkinson Basin, and very small resuspension in western Jordan Basin. The
sediment response in the model depended primarily on the profile of sediment erodibility, strength and
time history of bottom stress, consolidation time scale, and the current in the water column. Based on
analysis of wave data from offshore buoys from 1996 to 2012, the number of wave events inducing
a bottom shear stress large enough to resuspend sediment at 80 m ranged from O to 2 in spring (April
and May) and 0 to 10 in winter (October through March). Wave-induced resuspension is unlikely in
water greater than about 100 m deep. The observations and model results suggest that a millimeter or so
of sediment and associated cysts may be mobilized in both winter and spring, and that the frequency of
resuspension will vary interannually. Depending on cyst concentration in the sediment and the vertical
distribution in the water column, these events could result in a concentration in the water column of at
least 10% cysts m~>. In some years, resuspension events could episodically introduce cysts into the water
column in spring, where germination is likely to be facilitated at the time of bloom formation. An
assessment of the quantitative effects of cyst resuspension on bloom dynamics in any particular year
requires more detailed investigation.

Published by Elsevier Ltd.

1. Introduction

dinoflagellate Alexandrium fundyense,' an organism that produces
potent neurotoxins that accumulate in shellfish, causing paralytic

Several types of harmful algal blooms (HABs) occur in the Gulf
of Maine. The most significant of these are caused by the toxic
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shellfish poisoning (PSP) in human consumers. The life-history of
A. fundyense has been described by Anderson and Wall (1978),
Anderson (1998), and Anderson et al. (2005c). In brief, blooms

! In this study, we have focused on the harmful algal species Alexandrium tamarense
Group I, which we refer to as A. fundyense, the renaming proposed by Lilly et al. (2007).
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begin in spring (April and May) when dormant cysts in the bottom
sediments or near-bottom waters (Kirn et al., 2005; Pilskaln et al.,
2014b) transition to motile, vegetative cells (germlings) when an
internal, annual clock allows them to germinate (Anderson and
Keafer, 1987). That germination is further regulated by oxygen,
temperature, and light (Anderson, 1980; Anderson et al., 1987). As
long as oxygen is present, germination is possible and the rate of
germination increases with higher temperature and more light.
For example, laboratory studies of germination of cysts from the
Gulf of Maine in light increased from 1.6% day ' at 6 °C to 8.7%
day~! at 15 °C; at 15 °C in dark conditions, germination was 4.2%
day~! (Anderson et al., 2005c¢). The mechanism(s) by which cysts
exit the upper centimeter or so of the bottom sediment has not yet
been elucidated. Germination may occur only in a thin, oxyge-
nated veneer at the sediment surface. Cysts buried below that
level have insufficient oxygen to germinate and thus will even-
tually die unless they are moved back to the sediment surface by
bioturbation or some other mixing process (Anderson et al.,
2014b). Alexandrium cysts are thought to remain viable in the
sediment for at least a few decades (Keafer et al., 1992).

Once in the water column and depending on conditions such as
temperature, light, nutrient availability, and currents, the single-
cell germlings can divide and produce vegetative cells that con-
tinue to divide asexually to produce blooms, commonly called ‘red
tides.” Shellfish that ingest sufficient numbers of these cells can
become toxic to humans, and their presence requires that the
shellfisheries be closed. As blooms subside, the A. fundyense cells
form cysts that sink to the sea floor and are sequestered in bottom
sediment or the benthic nepheloid layer (Kirn et al., 2005; Pilskaln
et al,, 2014b) over the winter where they remain dormant until the
following spring.

Efforts are underway to predict the intensity and extent of
A. fundyense blooms in the Gulf of Maine, which vary from year to
year (McGillicuddy et al., 2005; Anderson et al., 2014b), using
coupled physical and biological models (Stock et al, 2005;
McGillicuddy et al. 2005, 2011; He et al., 2008; Li et al., 2009). The
seasonal prediction strategy uses the distribution of
A. fundyense cysts in the upper 1 cm of bottom sediment mapped
during autumn (a ‘cyst map’ of the potential seed population) and
hydrodynamic model predictions driven by hydrodynamic and
atmospheric conditions from past years to form an ensemble of
predictions for the current year. During the bloom season, results
from an experimental weekly nowcast/forecast system are also
available  (http://omgInx3.meas.ncsu.edu/GOMTOX/2013forecast/).
Results show that the cyst abundance is a first-order predictor of
overall modeled bloom severity (He et al., 2008; McGillicuddy et al.,
2011). Metrics for characterizing the intensity of blooms include the
concentration of the bloom (He et al., 2008; Li et al, 2009),
geographic extent of coastline impacted (Kleindinst et al., 2014;
Anderson et al., 2014b), and the southernmost extent of coastline
closed due to toxicity (McGillicuddy et al., 2011). The model does not
include cyst resuspension by currents or waves.

The magnitude of bottom shear stress (tangential force per unit
area; hereafter simply stress) caused by the combined action of
steady currents and oscillatory wave flow determines sediment
(and hence cyst) resuspension. Kirn et al. (2005) observed
A. fundyense cysts in the water column in the Gulf of Maine and
Bay of Fundy in winter and spring, attributed them to resuspen-
sion by waves and currents, and proposed that such cysts from
resuspension are important in inoculating the spring bloom. This
paper extends these ideas by investigating the importance of
resuspension and transport in two phases of the A. fundyense life
history. Two questions are addressed: (1) Are stress events in
spring (April and May), when cysts are viable, sufficient to
resuspend them from the bottom sediment and mix them into the
water column; and (2) can wave- and current-induced resuspension

and transport redistribute the dormant cyst population during the
winter (October-March), thus altering the distribution of cysts
mapped the previous autumn? The answers to both these questions
have significant implications for forecasting HABs. For example, if
mixing of cysts into bottom water is influenced by stress events,
germination might occur episodically rather than at a more con-
stant, gradual rate. Resuspended cysts will germinate more easily in
the water column due to the presence of oxygen and possibly light,
compared to those in the sediments. If redistribution of the cysts by
resuspension occurs after the autumn cyst map data are collected,
forecasts might be improved by including this redistribution.

The relationship between the physical forcing (stress) and the
sediment response (erodibility) is a key to understanding the
mobilization potential of A. fundyense cysts. This paper presents
estimates of bottom stress in the winter of 2010-2011 and spring
of 2011 computed from wave and current models, and field
measurements of sediment eroded as a function of stress magni-
tude at selected locations in the Gulf of Maine. The sediment
erodibility observations and stress estimates are used to assess the
extent of sediment resuspension and its possible effect on the
abundance and germination of A. fundyense cysts. Estimates of
wave-induced stress for the period 2004-2010 provide an assess-
ment of the inter-annual variability of large stress events.

2. Methods
2.1. Sampling

Sampling of the bottom sediment in the western Gulf of Maine
was carried out on two autumn cyst surveys: R.V. Endeavor cruise
486 (EN486) from October 10 to 23, 2010 and R.V. Oceanus cruise
477 (0C477) from October 23 to November 4, 2011 (Fig. 1). Stations
are referenced by letters that refer to their geographic location:
Grand Manan (GM), eastern Maine shelf (EMS), central Maine shelf
(CMS), western Maine shelf (WMS), central Maine seed bed
(CMSB), western Jordan Basin (WJB), and northern Wilkinson
Basin (NWB). Although stations are referenced by geographic area
for simplicity, they are observations at a single location. The
primary objective of these cruises was to map the concentration
and distribution of A. fundyense cysts in the surficial sediment in
autumn to use as the basis for model predictions of blooms the
following spring. Samples to determine cyst concentrations and
sediment texture were obtained at 101 stations on EN486 and 109
stations on OC477 using a Craib corer with a 0.06-m diameter core
barrel that reliably collects cores with undisturbed surface layers
(Craib, 1965). Six replicate Craib cores were obtained at stations 43,
CMSB, and GM to assess local variability. For cyst analysis, 5 cm® of
sediment were obtained from the O to 1 cm interval of the core and
5cm’® from the underlying 1 to 3 cm interval. After sampling for
cyst enumeration, there was insufficient sediment left from the 0 to
1 cm sample for texture analysis, so 5 cm® of sediment from the 0 to
1cm interval and 10cm® from the 1 to 3 cm interval were
combined, providing a 15 cm?® sample for texture analysis that
characterizes the average texture in the upper 3 cm.

Two 10.7-cm diameter cores were obtained for analysis of
sediment erodibility at six locations on EN486 (4, 15, CMS, CMSB,
EMS, and GM) and at 10 locations on 0C477 (4, 9, WMS, NWB,
CMS, CMSB, EMS, 52, W]B, and GM) (Fig. 1) with a U.S. Geological
Survey (USGS) hydraulically damped gravity corer designed to
collect undisturbed samples of the surficial sediment (Bothner
et al, 1997; Law et al., 2008). On OC477, video imagery of the core
barrel entering the sediment was obtained at stations in water
depths less than 200 m (the pressure limit of the video housing).
A qualitative assessment of core quality was based on the video of
the core operation; and the extent of edge disturbance, surface
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Fig. 1. Stations (Table 1) sampled for erosion analysis (black squares) and concentration of A. fundyense cysts in 0-1 cm interval of surface sediment for 2011 (pink circles).
Erosion results are reported in this paper for seven stations: Grand Manan (GM), eastern Maine shelf (EMS), central Maine shelf (CMS), western Maine shelf (WMS), central
Maine seed bed (CMSB), western Jordan Basin (WJB), and northern Wilkinson Basin (NWB). The surfaces of cores obtained at stations 4, 9, 15, and 52 were deemed disturbed.
Samples obtained at the cyst-map stations were analyzed for cyst concentration (0O-1 cm and 1-3 cm intervals) and sediment texture (0-3 cm interval). Multiple samples
with the Craib corer were obtained at stations 43, CMSB, and GM. Triangles mark locations of NDBC Buoys 44005 and 44007. The largest cyst concentrations are in the Bay of
Fundy east of Grand Manan Island (GM); south of Penobscot Bay (CMSB); and southwest along the western Maine and New Hampshire coasts. Isobaths smoothed over

~7 km.

curvature, surface slope, and surface cracking observed in the
recovered cores (Fig. 2). The video on 0C477 suggested that the
core lowering rate used on EN486 could have resulted in cores
with disturbed surfaces. Thus, results are reported in this paper
only for undisturbed cores collected on OC477 at seven locations
(a total of 10 cores): CMSB, GM, EMS, CMS, WMS, NWB, and W]B
(Table 1). After processing for erodibility (see Section 2.2), the
upper 0-1cm of the core was extruded and saved for texture
analysis.

2.2. Erodibility measurements

Replicate cores from each station collected with the USGS corer
were processed onboard to determine the mass eroded as
a function of shear stress using a dual core University of Maryland
Gust Erosion Microcosm System (UGEMS) manufactured by Green
Eyes Environmental Observing Systems (Stevens et al., 2007; Law
et al.,, 2008; Dickhudt et al., 2011). The erosion heads of the UGEMS
system used a rotating disc with central suction to impart a nearly
uniform, user-specified shear stress to the core surface (Gust and
Mueller, 1997). Prior to erosion, sediment cores were extruded so
the sediment surface was 0.07 m from the rotating disc of the
erosion head. A pump passed 15-um filtered seawater through the
system, generating the central suction and flushing resuspended
sediment from the system. The effluent was passed through

a bench top turbidity meter to continuously measure the sediment
concentration and then collected to calibrate the turbidity meter
and determine the number of cysts eroded with the sediment.
Each erosion experiment consisted of a sequence of increasing
levels of shear stress. The stress levels applied were 0.01, 0.05, 0.1,
0.2, 0.3, 0.45, and 0.6 Pa. The first step (0.01 Pa) was a 30-min
flushing step and subsequent steps lasted 20-min. The UGEMS
data were analyzed using the erosion formulation of Sanford and
Maa (2001). This linear erosion rate expression allows for depth-
varying parameters for critical shear stress erosion rate. A variety
of devices and protocols have been developed for erosion testing
and there is uncertainty in the accuracy and reproducibility of
results (Sanford, 2006). One concern is edge effects from the 10-
cm diameter UGEMS device, but comparison of results obtained
using UGEMS and a Sea Carousel, a 2-m diameter rotating annulus
with a 15 cm cross-section (Maa et al., 1993), showed similar
erodibility if data were processed in a uniform manner (Sanford,
2006). For a more detailed description of sample processing and
data analysis see Dickhudt et al. (2011).

Effluent from one of the two cores collected at each station was
used to determine the number of A. fundyense cysts eroded at each
applied stress level. A subsample (~200 ml) of the effluent from
that core and the entire effluent sample from the second core were
used for turbidity meter calibration to determine suspended
sediment concentration. To prepare the eroded material for analysis
of cyst concentrations, the effluent eroded at each stress level was
sieved through a 20-pm Nitex screen. The sediment was
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Fig. 2. Photographs of UGEMS core surfaces. Diameter of core tube is 10.7 cm. Uneven lighting (streaks and shadows) reflects conditions on deck when the photographs were

obtained.

backwashed into a 50 ml centrifuge tube using filtered seawater,
sonicated with a Branson Sonifier 250D at a constant 40-watt
output for 1 min, and sieved to yield a clean, 20-100-um size
fraction (Anderson et al., 2003). This sample was preserved by the
addition of 0.7 ml of a 20% formaldehyde solution (1% final) and
returned to 2-4 °C for at least 24 h. The sample was then centri-
fuged (3000g) for 10 min and the overlying formaldehyde solution
removed by aspiration. The resulting pellet was brought up to 10 ml
with cold methanol, and stored at —20 °C.

2.3. Sediment texture

The 0-3 cm sample from the Craib cores and the 0-1cm
sample from the UGEMS cores were processed for sediment
texture by sieving the sand fraction and using a Coulter counter
for the fine fraction, as outlined in Poppe et al. (2000) (Table 2).
Solids volume fraction (and concurrently, porosity) was estimated
by first determining the solids mass fraction as the ratio of dry
weight to wet weight and then converting to volume fraction
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Table 1

Location of undisturbed cores obtained in the Gulf of Maine on 0C477 in 2011 (Fig. 1).

Station Key Geographic location Latitude (N) Longitude (W) Water depth (m) Date sampled Cyst-map Station
WMS Western Maine shelf 43.162 —70.421 71 10/26/2011 22
NWB Northern Wilkinson Basin 42.859 —69.800 265 10/27/2011 29
CMS Central Maine shelf 43.756 —69.508 95 10/27/2011 42
CMSB Central Maine seed bed 43.705 —68.860 103 10/28/2011 54
WJB Western Jordan Basin 43,839 —67.838 201 11/03/2011 71
EMS Eastern Maine shelf 44121 —68.104 88 10/29/2011 73
GM Offshore of Grand Manan Island, Bay of Fundy 44.729 —66.630 122 11/02/2011 97
Table 2

Sediment texture of UGEMS samples (0-1 cm interval following erosion processing) and adjacent Craib cores (0-3 cm interval); cyst concentration in eroded mass; mass
eroded at 0.4 Pa; estimate of sediment depth eroded at 0.4 Pa (calculated as eroded mass (in kg m~2)/(solids fraction x 2650 kg m~2)). Station is the regional identifier
(Fig. 1) and the number in parentheses is the cyst-map station, Stdev is standard deviation.

Station Cruise Sample Water Sample Gravel Sand Silt Clay Classification Median Mean Stdev Cystsineroded Eroded mass Solids  Estimated
depth depth (%) (%) (%) (%) (phi) (phi) (phi) material at 0.4 Pa fraction depth of
(m) (cm) (cystskg™1) (kg m~2) erosion
(mm)
WMS  EN486 Craib 72 0-3 0.0 309 442 249 Sandsiltclay 6.51 6.11 235
(22) 0C477 Craib 69 0-3 58 779 127 3.7 Sand 1.76 225 255
0C477 UGEMS2 71 0-1 52 791 11.7 39 Sand 1.85 237 244 18x10° 0.0584 0.42 0.05
NWB  EN486 Craib 226 0-3 0.0 03 509 48.9 Clayey silt 7.96 793 14
(29) 0C477 Craib 246 0-3 0.0 0.1 511 48.8 Clayey silt 7.95 793 133
0C477 UGEMS2 254 0-1 0.0 03 48.0 51.8 Silty clay 8.05 794 117 13 x10° 0.3500 0.11 1.2
CMS EN486 Craib 95 0-3 0.0 59 64.7 29.3 C(layey silt 7.02 7.04 171
(42) 0C477 Craib 94 0-3 0.0 59 55.8 383 C(layey silt 7.59 752  1.64
0C477 UGEMS2 88 0-1 0.0 4.8 58.6 36.6 Clayey silt 7.55 746 1.6 3.3 x10° 0.1579 0.11 0.5
CMSB EN486 Craib 103 0-3 0.0 3.7 625 33.7 Clayey silt 7.26 723 1.81
(54) 0C477 Craib 91 0-3 0.0 2.7 589 384 C(layey silt 7.55 756  1.58
0C477 UGEMS1 97 0-1 0.0 0.5 59.0 40.5 Clayey silt 7.62 7.67 137 0.2039
0C477 UGEMS2 87 0-1 0.0 0.6 58.8 40.6 Clayey silt 7.66 768 136 5.0x10° 0.1767 0.12 0.6
WJB EN486 Craib 197 0-3 0.0 7.8 53.9 383 C(layey silt 7.55 737 1.87
(71) 0C477 Craib 195 0-3 1.2 16.2 504 322 Clayey silt 712 6.61 255
0C477 UGEMS3 201 0-1 0.0 59 531 411 Clayey silt 7.67 7.5 1.76  23x10° 0.2704 0.16 0.6
EMS EN486 Craib 90 0-3 0.0 50 64.0 31.0 Clayey silt 7.14 715 1.72
(73) 0C477 Craib 87 0-3 0.0 9.6 57.0 33.4 C(layey silt 7.32 712 197
0C477 UGEMS1 80 0-1 34 39.0 358 219 Sandsilt clay 6.09 494 339 74x10° 0.1606 0.24 0.3
0C477 UGEMS2 82 0-1 149 429 272 151 Gravelly 2.65 343 391 0.1293
sediment
GM EN486 Craib 122 0-3 0.0 7.3 533 394 C(layey silt 7.48 732 191
(97) 0C477 Craib 122 0-3 0.0 91 571 33.8 Clayey silt 7.22 713 1.88
0C477 UGEMS1 115 0-1 0.2 11.6 561 321 Clayey silt 7.19 6.97  2.01 1.4 x 10° 0.0503 0.22 0.1
0C477 UGEMS2 118 0-1 0.0 11.7 54.8 33.5 Clayey silt 7.35 71 1.92 0.0554

using a density of water of 1030 kg m > and a sediment density of
2650 kg m 3. Additional texture data for the Gulf of Maine was
obtained from McMullen et al. (2011).

2.4. Cyst concentrations in eroded material

A. fundyense cysts were counted in 1-ml Sedgewick-Rafter
slides according to standard methods for cyst identification and
enumeration (Anderson et al., 2003) using primulin to stain the
cysts (Yamaguchi et al., 1995). The processed and stored samples
were centrifuged and aspirated, and 2 ml of primulin stain
(2 mg ml~!) was added directly to the sample pellet. After staining
for 1 h, the sample was centrifuged and aspirated for the final time
and diluted up to 2-10 ml with distilled water, depending on the
amount of particulate in the sample. For low stress (levels 1-4),
the final resuspension volume was 2 ml and for high stress (levels
5-7), resuspension volumes were 5-10 ml. All A. fundyense cysts
present in the 1 ml volume of the Sedgewick-Rafter chamber were
counted using a Zeiss epi-florescence microscope at 100 x with a
chlorophyll filter set (excitation band pass 450-490 nm, emission

long pass 520 nm). Even though primulin is not a species-specific
stain, green-stained “capsule-shaped” cysts representing A. fundyense
were easily and rapidly counted at low magnification. Some stained
A. fundyense cysts with no contents may be counted with this
method, but these are few in number as empty A. fundyense cysts
are easily deformed during sonication and sieving and most empty
cysts therefore do not have the intact, elongate morphology used as a
diagnostic feature for counting. The total number of cysts present in
the UGEMS effluent was calculated using the raw cyst count obtained
from a 1ml subsample of the final resuspension volume. The
number of counted cysts was standardized to correct for the 200-
ml subsample removed for turbidity meter calibration.

2.5. Regional cyst concentrations

Surveys of the cyst concentration in sediment in the Gulf of
Maine have been made for 9 years (1997 and 2004-2011;
Anderson et al., 2014b). An estimate of the overall distribution
was computed by taking the median cyst concentration at each
station. Because samples were not obtained at all stations on all
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surveys, the number of observations at a station ranged from
1to9.

The concentration of cysts kg~ ' in the 0-3 cm interval at the
UGEMS sites was determined using the solids mass fraction of the
sample collected for texture analysis, and the concentration of
cysts (cysts cm > wet sediment) in the 0-1 and 1-3 intervals.

1

2.6. Bottom stress model for 2010-2011

Time-series of wave-current bottom stress (shear stress due to
the combined effects of waves and currents) at 1-h intervals for
the period October 1, 2010-May 31, 2011 were calculated for the
entire Gulf of Maine using modeled currents and waves. Archived
modeled currents were obtained from the tidally-resolving Northeast
Coastal Ocean Forecast System (NECOFS) which used the Finite
Volume Coastal Ocean Model (FVCOM, v3.1.6) (Chen et al, 2003).
Hourly values were downloaded from the hindcast archive (http://
www.smast.umassd.edu:8080/thredds/archives.html). FVCOM has 40
layers in the vertical and the height of the bottom layer above the sea
floor ranged from greater than about 2.5 m in the deep basins to less
than 0.5 m on the shelf. Bottom wave orbital velocity and periods were
generated using the Simulating Waves Nearshore (SWAN) model
(Holthuijsen et al,, 1993) and a roughness of 0.05 m, an empirically
calibrated model parameter. The currents from the bottom-most layer
of FVCOM, the bottom wave orbital velocity and period from SWAN,
and a uniform and constant bottom physical roughness of 0.005 m
were used for the bed stress calculations following Madsen (1994) (see
Dalyander et al., 2012; U.S. Geological Survey, 2012; Dalyander et al.,
2013). Harmonic analysis of the FVCOM near-bottom velocities was
performed using the MATLAB code t_tide (Pawlowicz et al,, 2002) to
determine semidiurnal (M,) tidal strength.

2.7. Sediment resuspension model

The Regional Ocean Modeling System (ROMS) in combination
with the Community Sediment Transport Modeling System
(CSTMS, Warner et al., 2008) was used to estimate the amount
of sediment eroded and the vertical distribution of sediment in the
water column during the winter (October 2010-March 2011) and
spring (April-May 2011) seasons. CSTMS models sediment
response to processes such as erosion, deposition, settling, and
bedload transport. The CSTMS implementation used here models
bed erosion behavior as a non-cohesive (a property of individual
particles) when composed of less than 3% fines (silt plus clay) and
as cohesive (a bulk property of the bed) when composed of greater
than 20% fines, and used a transitional mixed behavior between 3%
and 20% fines. Station WMS was in the transitional behavior and
the only station with less than 20% fines (Table 2). For cohesive
sediments, the implementation, based on the results of Sanford
and Maa (2001) and Sanford (2008), used a linear erosion model
with depth varying parameters in the form of E = M(z,(t) —zc(m))
where E=erosion rate (kg m~2s~!), M=erosion rate parameter
(kgem~2s~1Pa~!), y(t)=time varying applied stress (Pa), and
7(m)=depth varying critical stress for erosion (Pa). Erodibility of
cohesive beds in the model depends on the bulk critical shear
stress. The model is initialized with an equilibrium profile that is
based on the UGEMS measurements and that typically increases
with depth in the bed. The model tracks the bulk critical stress
profile as erosion and deposition occur, and models the processes
of swelling and consolidation by nudging it toward the equili-
brium shape over specified time scales. When erosion occurs,
surficial sediment, which tends to have a lower critical shear
stress, is removed leaving a less erodible sediment surface. Over
time, this over-consolidated material will become more erodible
(swell) as the instantaneous critical shear stress profile is nudged
toward the equilibrium profile. When deposition occurs, the newly

deposited sediment is easy to erode (critical shear stress of
0.05 Pa) but consolidates over time to reestablish the equilibrium
profile. For the simulations presented here, swelling time scale
was 400 days and the consolidation time scale was 4 days. The
consolidation time scale was chosen to be longer than a typical
resuspension event but shorter than the expected interval
between events. The swelling time scale was chosen to be much
longer than a typical resuspension event to minimize the addition
of new erodible material during an event. There is very little
experimental data to constrain either the consolidation or resus-
pension time scales but the chosen values are consistent with
other studies using a similar bed model (Rinehimer et al., 2008;
Sanford, 2008), and simulation results were not sensitive to
varying these parameters within a reasonable range.
One-dimensional (vertical) implementations of ROMS were run
for each location where sediment data from undisturbed cores
were obtained (Fig. 1). Profiles of the critical shear stress for
erosion (z.) used in the CSTMS model were derived from expo-
nential fits to UGEMS erosion data. A constant value of
0.0005 kgm~2s~'Pa~! was chosen for the erosion rate para-
meter (M) based on the UGEMS measurements. An analysis
following the example in Sanford and Maa (2001) compared the
rate of sediment depletion (M(dz./dm)) to the time scale of events
for both the UGEMS measurements and the chosen constant value
of M. This indicated depth-limited erosion (i.e., erodibility that
decreases with depth from the sediment surface) in UGEMS
measurements and that the chosen constant value of M would
produce depth-limited erosion in the model. The sediment bed
initial conditions were obtained from the measured surficial grain
size distribution at each site (Table 2). The model internally
calculates roughness lengths based on sediment grain roughness,
sediment transport, and bedform roughness (ssw_bbl formulation
described in Warner et al., 2008). The velocity boundary condi-
tions were obtained from the archived FVCOM model run
described above; the interior velocity was strongly nudged
(adjusted to minimize the difference between the two model
solutions with a tendency term that used a one-hour time scale)
to approximate the vertical shear from FVCOM. SWAN simulations
provided significant wave height and dominant wave period for
each location, which were used to approximate the bottom wave
orbital velocity assuming a monochromatic wave. Bed changes and
sediment concentration in the water column were tracked for
three sediment classes that summarize the fractional distribution
observed in the cores: one sand class (125 um) with a settling
velocity of 8 mm s~ and critical erosion stress of 0.1 Pa; one silt
class (mud, 8 pm) and one clay class (mud, 2 pm) both with
settling speeds of 0.1 mm s~ '. The sand class was characteristic
of the bed material at the study sites; its settling velocity was
estimated with the Dietrich formulation (Dietrich, 1982). A settling
velocity of 0.1 mms~! was chosen for the mud classes, a value
commonly observed in shelf environments and used in sediment
transport models (e.g. Hill et al., 2000; Bever et al., 2009; Xu et al.,
2011) to represent silt and small flocs. Additionally, 0.1 mm s~ ! is
consistent with the observed settling velocity of A. fundyense cysts
(Anderson et al., 1985) making the behavior of the mud classes
representative of both fine sediment and A. fundyense cysts.

2.8. Interannual variability in bottom shear stress

The interannual variation in bottom shear stress in the Gulf of
Maine depends primarily on waves and storm-driven currents. The
interannual variability in the number of wave-driven events that
exceed a stress sufficient to mobilize sediment, hereafter referred
to as critical erosion stress, was assessed to determine if the
primary focus period of this study, 2010-2011, was typical, and to
determine an approximate range of variation from 1 year to the
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next. A critical erosion stress of 0.1 Pa was chosen for this analysis
because this was the minimum applied stress capable of eroding
sediment in all cores from the UGEMS erodibility measurements.
The longest data records available were wave buoy observations
from NOAA buoys 44005 and 44007 (Fig. 1), which cover the time
period of 1996-present, with occasional gaps due to instrument
malfunction. Neither observed nor modeled current data were
available for a sufficient period of time to robustly assess inter-
annual current variability. Given that storm-driven currents are
expected to be well-correlated in time with storm-driven waves,
the number of wave- and (non-tidal) current-induced events is
expected to vary directly with the number of wave-only events.
Aretxabaleta et al. (2014) show that the near-bottom currents in
the wind band are only a few cms~!, much less than the tidal
currents, and unlikely to contribute to interannual variability in
bottom stress.

Wave-induced bottom shear stress was calculated with data
from each buoy following Madsen (1994) and using a physical
roughness of 0.005 m. Storm-driven events were defined as time
periods lasting longer than 6 h when the bottom stress was above
0.1 Pa. Multiple events separated by less than 12 h were assumed
to be a single event with a short lull in bottom stress, and were
combined into one event (following Butman et al., 2008). Stress
using waves from buoy 44007 was calculated at the buoy depth
(24 m), whereas stress from buoy 44005 (located in water 206 m
deep) was calculated at a shallower depth of 83 m chosen to be
representative of shear stress in the central Maine seed bed
(CMSB). This method does not account for wave transformation
processes that might occur between the two sites to modify the
wave field and thus shear stress at a given depth, but should be
robust for estimating interannual variability. The number of events
was calculated for winter (October-March) and spring (April and
May). The years with less than 75% data coverage over the period
of interest were excluded.

3. Results
3.1. Regional setting and cyst distribution

The largest and most persistent A. fundyense cyst accumula-
tions are found in the Bay of Fundy east of Grand Manan Island
and offshore of Penobscot Bay and Casco Bay, Maine (the latter
termed the mid-coast Maine seedbed), as summarized in
Anderson et al. (2014b) (Fig. 1 and Fig. 3). Cyst concentrations
are low in Jordan and Wilkinson Basin.

The bottom sediment texture and M, tidal current strength
provide an overview of the sea floor environment of the Gulf of
Maine and some context for interpreting the cyst distribution
(Fig. 3). High-resolution geologic surveys are needed to resolve the
complex spatial variability in the surficial geology that occurs in
the Gulf; however, the existing data define some broad areas with
similar texture characteristics. Along the Maine inner shelf, the
sediment texture is varied, with sand, gravel, exposed bed rock,
and fine-grained sediment in topographic lows (Barnhardt et al.,
1996). Fine silt and clay (median grain size finer than 6 phi
(15.6 um); phi= —logy(grain diameter in mm)) is found in the
northern Gulf of Maine in the region extending northeastward
from Jeffreys Ledge to south of Bar Harbor, Maine and offshore
about 75 km (Fig. 3A). Jordan Basin is uniformly floored by silt and
Wilkinson Basin primarily by clay. The LaHave clay, east of Grand
Manan, has been defined on the basis of echograms and texture
(Fader et al., 1977) as well as backscatter intensity (Todd et al.,
2011; Shaw et al., 2012). Near bottom tidal currents, as defined by
the major axis of the M, tidal current, are strongest over Georges
Bank, the Scotian Shelf, and in the Bay of Fundy; they are weakest

in the northwestern portion of the Gulf (northern Wilkinson Basin
and along the western Maine and New Hampshire coast) (Fig. 3A).
Near-bottom tidal currents are less than 0.1 m s~ ! on the western
side of the Gulf and increase to 0.2-0.4 m s~ ' on the eastern side.
There is a local minimum in the near-bottom tidal flow east and
northeast of Grand Manan, associated with a minimum in mean
kinetic energy (Greenberg, 1979) and a minimum in eddy viscosity
(Lynch and Naimie, 1993). The amplitude of the M, minor axis, a
measure of the minimum tidal current flow, is less than
0.05m s~ ' over most of the Gulf of Maine, except over Jordan
Basin and the region leading to the Bay of Fundy (Fig. 3B).

Sediment texture at the UGEMS sites was consistent with the
overall sediment distribution in the Gulf of Maine. Sediment was
clayey silt at CMS, CMSB, W]B, NWB, and GM; sand at WMS; and a
mix of gravel, sand and fines at EMS (Table 2). The size-class
fractions determined from the Craib cores at regional stations on
EN486 and 0C477 and from the UGEMS cores typically agreed to
within a few percent, except at EMS where the Craib sample
obtained on 0C477, separated by about 200 m, was significantly
finer than the UGEMS sample.

3.2. Sediment erodibility

The UGEMS results provided estimates of the mass of sediment
eroded as a function of applied shear stress (Fig. 4, Table 2). At all
stations, erosion began between 0.05 Pa and 0.1 Pa; thereafter, the
rate varied depending on location. The mass eroded for a given
applied stress was largest at the basin stations NWB (265 m water
depth) and WJB (200 m), where sediments were silt and clay; and
smallest on the WMS (71 m), where sediment was sandy, and GM
(122 m) in the Bay of Fundy where the sediment was clayey silt.
The mass eroded increased with increasing water depth (Table 2),
with the exception of GM. Using the measured porosity of the
UGEMS samples and the eroded mass at 0.4 Pa, approximately
1.2 mm of sediment was eroded from the core obtained in NWB
and less than 0.7 mm at all other stations. Mass eroded for the
replicate cores obtained at CMSB, WMS, and GM, where both cores
were undisturbed, was similar. The mass eroded at 0.4 Pa
increased linearly with increasing clay-to-silt ratio (Fig. 5), except
at GM, where the sediment was the least erodible of all tested.

3.3. Bottom stress

The value of wave-current stress exceeded 5% of the time, a
measure of the largest stresses, decreases from east to west across
the central Gulf of Maine (Fig. 6) reflecting the strength of the
near-bottom tidal current (Fig. 3), and increases in water less than
about 100 m deep reflecting the contribution of surface waves. The
weakest stresses (less than 0.05 Pa 95% of the time) occur in the
northwest portion of the Gulf (offshore of southern Maine and
New Hampshire) in water deeper than 100 m where tidal currents
are weakest and wave-driven currents do not significantly reach
the sea floor. Bottom stress caused by waves is minimal in the Bay
of Fundy because of the limited fetch that produces shorter period
wind-waves that do not reach as deeply as longer period swell.
The spatial pattern of the value of stress exceeded 5% of the time
(Fig. 6) was similar between winter and spring (not shown),
reflecting the dominance of tidal currents driving the stress.
However, the stress exceeded 5% of the time in winter was slightly
greater than in spring in shallower water along the Maine-New
Hampshire-Massachusetts coast, over the isolated topographic
highs in the Gulf of Maine, and on Georges Bank reflecting
additional wave events in winter (Table 3). In Jordan Basin, the
stress exceeded 5% of the time was less than 0.1 Pa on the western
side of the basin, where station WJB was located, and increased to
0.1-0.2 Pa toward the east. In Wilkinson Basin, stress exceeded 5%



86 B. Butman et al. / Deep-Sea Research Il 103 (2014) 79-95

(A)
71°W 70°W 69°W 68°W 65°W
o T T ! "-4
- Multi-year3cyst median Sedimentary regions :
Q B (CyStS cm ) e | aHave clay
° 0-100 e Fine silt and clay
® 101-250
® 251-500 ‘
I ® 501-1000 ) ;'
@ 1001- 1500 ¥
z w s
| 8 A
v .
P4
gv) -
<
- M, major axis (ms™)
I 00-01 0.6
o2 07
z 0.3 0.8
St i \ ‘ i 0.4 0.9
sa e : 0.5 o
AR ﬁ | 3 I Cosss—
0 45 90 180 Kilometers
L 1 1 1 | 1 1 1 |
(B)
71°W 70°W 69°W 68°W 67°W 66°W 65°W
Ll 1 Ll Ll / Ll
- Multi-yearacyst median Sedimentary regions
Er" - (cysts cm”) e | aHave clay
° 0-100 e Fine silt and clay
® 101-250
® 251-500
® 501-1000
@® 1001 - 1500
Z
g
<
P4
20 -
<
M. minor axis (ms™) |
I 0.00-005
0.06 -0.10
= 0.11-0.15
ST 0.16-0.20
I 021-035

0 50 100
1

200 Kilometers
L 1 1 1 |

Fig. 3. (A) Amplitude of the major axis of the bottom M, tidal current (computed from FVCOM forecast data), polygons outlining the sedimentary regions of fine silt and clay
(6-10 phi) and the LaHave clay; and the median of the A. fundyense cyst concentration in 0-1 cm interval for 2004-2011 regional surveys (Anderson et al., 2014b). The smoothed 100-
m isobath is in black and smoothed 200 and 300 m isobaths are in gray and light gray, respectively. (B) Amplitude of the minor axis of the bottom M, tidal current (a measure of the
minimum bottom current); sedimentary regions and cyst concentration as in (A). Gray squares outline UGEMS stations. Note different current speed scales in A and B.
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Fig. 4. Eroded mass vs. applied stress for undisturbed cores (all obtained on 0C477)
(solid lines). Replicates are shown for stations GM, EMS, and CMSB where both
cores were deemed undisturbed. Dashed lines show exponential fits for erosion
simulations using the Community Sediment Transport Modeling System (CSTMS).
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Fig. 5. Eroded mass at 0.4 Pa vs. ratio of clay to silt in 0-1 cm interval of UGEMS
core (sampled after erosion measurements). Linear fit (with GM data excluded) is:
Mass Eroded at 0.4 Pa=0.41(ratio of clay to silt)-0.09; R>=0.89.

of the time was < 0.05Pa in the northern basin in vicinity of
station NWB, increasing to 0.05-0.1 Pa to the south.

The strength and variability of the near-bottom combined
wave-current stresses calculated following Madsen (1994) (using
a MATLAB implementation of the Soulsby (1997) formulation) at
each of the study sites reflects the increase in tidal currents to the
east and decrease in wave stress with water depth (Fig. 7). At the
shelf stations (WMS, CMS, EMS, and GM), the persistent bottom
stress caused by tidal currents was weakest at WMS and largest at
GM, where tidal stress exceeded 0.4 Pa. At WMS, the bottom stress
was mostly less than 0.1 Pa, but exceeded 0.4 Pa during a few
storm events. At CMSB, in the central Maine seedbed, tidal
currents contributed a small but significant stress of ~0.05 Pa to
the stress time-series, and stress exceeded 0.4 Pa during one storm
event. At GM in the Bay of Fundy, offshore of Grand Manan, the
dominant stress was from the strong tidal currents and there was
spring-neap modulation of about 0.15 Pa; wave stress during large
storms was minor, as this location is partially shielded from waves
associated with nor'easters. In the deep basins, the bottom stress

was mostly less than 0.1 Pa (W]B) and less than 0.05 Pa (NWB),
and dominated by tidal currents with no contributions from
surface waves.

The number of events where the wave current-stress exceeded
0.1 Pa at buoy 44007 for winter 2010-2011 and spring 2011 was
slightly above average (within one standard deviation) for the time
period of 1996-2011 (Table 3). At the deeper location (buoy
44005), the number of events in the 2010-2011 period was
slightly below average compared to the rest of 1996-2012, but
was within one standard deviation. At buoy 44005 (buoy at 206 m,
wave stress calculated at 83 m), the number of resuspension
events ranged from 0 to 10 in winter (6 months) and 0-2 in
spring (2 months); at buoy 44007 (24 m) the number of resuspen-
sion events ranged from 11 to 23 in winter and 1-8 in spring
(Table 3).

3.4. Sediment resuspension

The modeled time series of suspended sediment concentration
in the water column during winter-spring 2010-2011 (Fig. 7)
reflects the magnitude and duration of energetic stresses, the
composition of the bed, the erodibility of the bed, the sequence of
resuspension events that alter the erodibility profile and the
sediments at the surface of the bed, and the vertical velocity and
stratification in the water column (in FVCOM). The model esti-
mates of sediment resuspension can be grouped based on fre-
quency and extent of resuspension, and the processes causing
resuspension. The tidal current provided a consistent background
stress that decreased from east to west and offshore, and was
strongest at GM. The model predicted near constant mobility at
GM and EMS, primarily as a result of the tidal currents. At CMS,
CMSB, and WMS, resuspension was episodic caused by wave-
driven currents associated with storms; the largest two storms
during the simulated period occurred in late December 2010 and
mid-April 2011. Variability in the stress between stations partially
reflects the spatial variability in the wind and wave field. In the
deep basins, where the tides are weak and the water is too deep
for wave currents to affect the sea floor, the model predicted very
small resuspension at WJB and no resuspension at NWB. The
modeled sediment concentrations of the two mud classes (silt and
clay) in the water column greatly exceeded those for the sand class
because of their smaller settling velocity and the larger mud
fraction in the surface sediments, typically greater than 90%,
except at EMS and WMS where the sediment was about 40% and
80% sand, respectively.

At GM (122 m water depth) the stress was dominated by tidal
fluctuations at semidiurnal frequencies modulated at the spring-
neap period (Fig. 7). The critical erosion stress for both sand
(0.1 Pa) and recently-deposited mud (0.05 Pa) and was exceeded
most of the time, causing the eroded mass to gradually reach
equilibrium within about 3 months from the beginning of the
simulation. Sediment remained suspended for most of the simu-
lated period until late April when the stress dropped below the
threshold value. Maximum sand concentrations were associated
with periods of spring tides, but the magnitudes were very small.

At EMS (88 m water depth) both wave and tidal stresses were
important (Fig. 7). A series of storms, superimposed on a back-
ground tidal stress of about 0.1 Pa, gradually eroded the bed about
0.5 mm. The difference between the critical erosion stress for mud
and for sand is a key determining factor for the sediment evolution
at EMS, because when only the mud threshold was exceeded, mud
remained in resuspension (resulting in a near-constant eroded
mass) while sand was able to redeposit in the bed (resulting in
eroded mass more event driven). The constant cycles of resuspen-
sion and deposition caused the modeled instantaneous critical
stress profiles to evolve to be more erodible than the equilibrium
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Table 3

Number of events when the wave-induced bottom shear stress exceeded 0.1 Pa for
greater than 6 h based on buoy observations between 1996 and 2011. Winter is
defined as October through March; spring is April and May. Included is the depth of
calculation, the number of years with sufficient data coverage for inclusion, the
mean value, the standard deviation (St. Dev.), the range, and the value for the 2010-
2011 time period focused on in this study.

Buoy  Season Depth (m) Years Mean St.Dev. Range 2010-2011
44007 Winter 24 13 17.5 33 12-23 20
44005 Winter 83 9 5.8 3.1 0-11 4
44007 Spring 24 14 50 20 1-8 6
44005 Spring 83 10 06 07 0-2 1

profile (Fig. 4), resulting in high resuspension volumes. The mass
of suspended sediment that corresponded to sand was largest at
EMS because of the higher percentage of sand, relatively large
stresses, and easily eroded material (Fig. 4). There was more
suspended sediment at EMS than at any other station, but the
maximum eroded depth was larger at CMS and CMSB which had
higher porosity than EMS (Table 2).

At CMS (95 m water depth), the December storm eroded about
1.5 mm of sediment, and two subsequent smaller storms kept
sediment in suspension for more than a month. A mid-December
and mid-April storm both eroded about 0.7 mm, but the vertical
extent of the suspended sediment was limited by the vertical
distribution of velocity and turbulence in the model (largely
constrained by the flow and stratification in FVCOM), resulting in
the sediment settling to the bed within a few days. Reduced

mixing or strong downwelling limited the vertical extent of the
sediment resuspension in the water column.

At CMSB (103 m water depth) sediment resuspension was
dominated by a single storm event at the end of December 2010
(Fig. 7). The model predicts about 1 mm of the bed was eroded
during this event, and the suspended material took about 2 weeks
to settle and return to background. The sediment resuspended
during this storm event is estimated to mix vertically over the
entire water column with larger concentrations in the first few
meters above bottom (Fig. 8). There is a delay between the peak
stress and the maximum suspended sediment in the water
column, as sediment continues to be eroded until the stress falls
below threshold. Sediment, especially mud, can remain suspended
for long periods of time when bottom stress remains above the
erosion threshold (for example, at EMS and GM, Fig. 7).

At NWB, the simulated stress never exceeded threshold. At W]B
the stress, caused by primarily by tidal currents, was almost
always less than 0.1 Pa. Stress exceeded 0.1 Pa in December and
April during two storms coincident with spring tides, causing
small resuspension (not visible at the scale shown in Fig. 7).

The maximum eroded depth during the winter-spring period
(Figs. 9 and 10A), an estimate of the maximum perturbed layer in
the bed, exceeded about 0.5 mm at stations shallower than 140-m
water depth, except at WMS, where the higher fraction of coarser
sediment resulted in maximum eroded depths of order 0.2 mm.
There was little or no sediment mobility at stations sampled
deeper than 200 m; resuspension in western Jordan Basin was
negligible (maximum eroded depth of 0.01 mm) and the model
did not calculate any resuspension in northern Wilkinson Basin.
The estimated maximum eroded depth in the central Maine seed bed
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(CMSB) was about 1.0 mm and occurred during the late December
storm. Despite the persistent tidal stresses in the Bay of Fundy
(Fig. 7), the maximum eroded depth was about 0.6 mm because of
the low erodibility of the sediment in this region (Fig. 4). The mean
eroded depth (Figs. 9 and 10B), the average of the eroded depth over
the winter-spring period and a measure of the average amount of
bed material in suspension, was largest at EMS and GM, a result of
the persistent tidal currents that maintained a near-constant 0.5 mm
of sediment in suspension once steady state was reached (Fig. 7). The
mean eroded depth at the stations in water depth less than 120 m
ranged from approximately 0.05 to 0.2 mm. The smallest mean
eroded depths are estimated for stations in water depths greater
than about 120 m, and at WMS.

Both maximum eroded depth and mean eroded depth generally
increased with maximum wave-current stress (Fig. 10), with the
coarse sediment station WMS an outlier. Stations GM and EMS, and
CMSB and CMS have similar maximum bottom stresses, but the
maximum eroded depth was higher for CMSB and CMS because they
have a higher erosion rate (Table 2). However, the mean eroded depth
was higher at GM and EMS where the persistent tidal currents
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Fig. 9. (A) Maximum depth of sediment eroded and (B) mean eroded depth during
resuspension simulation for the period October 1, 2010-May 31, 2011. Both (A) and
(B) show parameters in map view and as a function of bottom depth (inset graph
lower right). See Fig. 1 for station key. The number adjacent to the stations in (B) is
the number of times the threshold of 0.1 Pa is exceeded. Although stress exceeds
the threshold each tidal cycle at GM (northernmost station), the number of events
is limited by the 6 h persistency requirement for an event. Isobaths are 50, 100
(dark) and 200 m. The mean eroded depth over the winter-spring period is a
measure of the average amount of bed material in suspension.

maintain sediment in suspension for most of the simulated period
(Fig. 7).

4. Discussion

The largest cyst populations in the Gulf of Maine generally are
found in the area of fine silt and clay and M, tidal currents less than
about 0.10ms~' (Fig. 3). The minor axis of the M, tidal current
(Fig. 3B) is a measure of the weakest current that occurs at a particular
location, and sets an approximate threshold for passive particle
settlement. In the Gulf of Maine (excluding the Bay of Fundy), cysts
were found in regions where the minor axis of the tidal current was
less than 0.10 m s~ ' (Fig. 3B and Fig. 11), and mostly less than about
0.07 m s~ . Near-bottom current speeds less than this value appear
necessary for cysts, where present, to become incorporated into the
sediments. However, there are regions where the minimum tidal
current is less than 0.10 m s~ ! and cysts are not found in abundance,
suggesting that incorporation of cysts into the sediment in these
regions is also limited by the dynamics of the bloom and the regional
circulation (McGillicuddy et al., 2005; Anderson et al. 2014).

The area of high cyst concentration northeast of Grand Manan
Island is in a local minimum of the M, current. In addition,
sediment at GM was unique compared to the sediments at stations
in the Gulf of Maine. GM sediment was the most difficult to erode
(Fig. 4), fell below the mass-eroded vs. clay-to-silt ratio curve
defined by the other UGEMS stations in the Gulf of Maine (Fig. 5),
and was an outlier in the mean eroded depth vs. water depth
(Fig. 9) and mean eroded depth vs. wave stress (Fig. 10) curves.
Station GM, and the high cyst concentrations in the region east
and north of Grand Manan, are in a triangle-shaped, fine-grained
sedimentary environment east of Grand Manan extending north-
ward toward the St. John River (Fig. 3) (Martin et al., 2014). This
region of seabed is identified as LaHave clay (Fader et al., 1977;
Fig. 3), and defined as a muddy seascape on the basis of multibeam
bathymetry and backscatter and other characteristics (Shaw et al.,
2012). These sediments are most likely derived from winnowing of
glacial till on the floor of the Bay of Fundy during the last rise in
sea level, as well as some contribution from the Saint John River
(Fader et al., 1977). The deposit is located in a local minimum of
bottom tidal currents (Fig. 3), bottom stress (Fig. 6), and Sediment
Mobility Index. The Sediment Mobility Index is a parameter that
integrates both magnitude and frequency of sediment mobilization
and is defined as: z/z., times the percentage of time ., is exceeded,
where 7 is bed shear stress and z., is critical bed stress (Shaw et al.,
2012). This area is described as having an ‘active surface layer and
immobile compact substrate under present tidal conditions’ (Shaw
et al.,, 2012). The resistance of the LaHave clay to erosion, the local
minimum in stress, and a persistent residual counter-clockwise gyre
(Aretxabaleta et al., 2008) are unique features of this region of high
cyst abundance.

The clay to silt ratio is representative of the grain size
distribution in the fine sediment fraction and may be related to
bed erodibility (van Rijn, 2007; Dickhudt et al., 2011; Le Hir et al.,
2011). In some cases, an increase in the clay to silt ratio may
cause a muddy bed to become more cohesive and less erodible.
Alternatively, an increase in the clay to silt ratio may inhibit
dewatering and result in a less consolidated and more erodible
bed. The UGEMS mass eroded at 0.4 Pa increased linearly with
the clay to silt ratio in the Gulf of Maine (Fig. 5). While this may
imply that the effect of inhibited consolidation outweighed
increased cohesiveness (in fact solids fraction does decrease as
clay to silt ratio increases, not shown), the relationship between
erodibility and solids fraction (not shown) was not as strong as
that with clay to silt ratio implying other unaccounted for
factors. While the relationship between clay to silt ratio and
erodibility is not directly causative, it is quite strong (R>=0.89)
and this relationship was used to predict erodibility at other
locations (Figs. 9 and 10) where the surface of the UGEMS cores
was deemed disturbed. Further UGEMS observations would be
helpful to evaluate the robustness of the eroded-mass to clay-to-
silt ratio relationship and its suitability to estimate erodibility in
model simulations of sediment resuspension where texture data
are available.

Collecting quality cores for erosion analysis in deep water
proved difficult; only 10 cores obtained at seven different stations
on 0C477 had an undisturbed sediment surface (Table 2). Almost
all cores on both cruises were recovered with clear water above
the sediment-water interface, suggesting cores undisturbed in the
coring process. However, despite overlying clear water, the sur-
faces of some cores were rounded, sediment was pulled away from
the core tube around the edges, or the surface was cracked.
Interestingly, the mass eroded from all cores using the UGEMS
system fell approximately in the same range, whether their
surfaces were determined to be disturbed or undisturbed. How-
ever, the relationship between erodibility and the clay-to-silt ratio
(Fig. 5) was only well-defined for the undisturbed cores.
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Fig. 10. (A) Maximum eroded depth and (B) mean eroded depth as a function of
maximum wave-current stress for the period October 1, 2010-May 31, 2011.
Stations identified by numbers are locations where the surface of cores were
determined to be disturbed; at these locations the erosion rate curve was
determined using the clay-to-silt ratio (Fig. 5). The correlation between maximum
eroded depth and maximum wave-current stress is 0.89 (with WMS removed). In
the deep basins where stress is small, erosion is predicted to be zero at stations
nine and NWB; and near-zero at WJB. The low erosion at WMS reflects the sandy
sediments there. The mean eroded depth at GM and EMS reflects the constant
resuspension by tidal currents.
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Fig. 11. Cyst concentration in 0-1 cm for all cyst-map cruises vs. amplitude of the
minor axis of the M, tidal ellipse (a measure of the minimum near-bottom tidal
current). The vertical lines indicate a bottom stress of 0.05Pa for a bottom
roughness (zp) of 0.005 and 0.05 m.

The UGEMS system provided an opportunity to estimate cyst
abundance in the material mostly likely to be suspended. Concentra-
tion, in cysts kg~ !, was determined directly from the UGEMS analysis
and in the 0-3 cm interval of the Craib cores using the measured
solids mass fraction and measured cysts cm~>. The concentration of
cysts in the eroded sediment was higher than the concentration in
the 0-3 cm interval at some stations (by a factor of 15.4, 1.5, 3.0, and
1.6 at WMS, EMS, CMS, and CMSB, respectively) and lower at others

(by a factor 0.6, 0.4, and 0.8 at NWB, WJB, and GM, respectively). The
near-surface enrichment at CMSB is qualitatively consistent with
model predictions that recently settled cysts in the central Maine
seedbed remain at the sediment surface for at least a few months
(Shull et al., 2014). However, the concentrations were determined
from separate cores taken at slightly different locations, so differ-
ences caused by local spatial variability cannot be ruled out. In
addition, UGEMS might preferentially remove cysts in sandy sedi-
ments (for example WMS).

The combination of increasing critical erosion stress with
sediment depth, varying critical stresses for each sediment class,
swelling, consolidation, the time-varying magnitudes of deposi-
tion and erosion, and the vertical velocity in the water column
predicted by FVCOM result in a complex interaction between the
processes that goes beyond the intuitive relation of larger wave-
current stress resulting in larger erosion. In addition, the sediment
response predicted by the model is sensitive to the initial condi-
tions; the mass-eroded profile in the model (Fig. 4) is assumed to
be the average state, but in fact reflects the history of sediment
processes prior to sampling. For a given bottom stress, the particle
settling velocities have a strong impact on the duration and
vertical extent of resuspension; the chosen speeds for mud
(0.1 mm s~ and sand (8 mm s~ ') might be increased by floccu-
lation and pelletization, factors that are not included in the model.
A faster settling speed would result in the suspended mass settling
more quickly.

The analysis of inter-annual variability of bottom stress indi-
cates that wave-driven (and, by extension, storm-driven) pro-
cesses for 2010-2011 are typical for the region and that
resuspension and mobility of sediment and cysts are probable
during most years. The contribution to stress from tidal currents
will not show significant inter-annual variability (except for the
18.6-year nodal modulations, see below); therefore these results
indicate that the mobility and potential for resuspension indicated
by the analysis of 2010-2011 are not anomalous. The range in the
number of events in winter (12-23 at 24 m and 0-11 at 83 m over
a 6-month period) and spring (1-8 at 24 m and 0-2 at 83 min a 2-
month period) (Table 3) suggests there could be significant inter-
annual differences in resuspension along the Maine coast.

Several processes that are potentially capable of affecting
sediment resuspension are not included in these simulations.
Resuspension of sediment by large-amplitude internal waves,
common in nearby coastal environments (Butman et al.,, 2006),
would be expected in late summer when water-column stratifica-
tion is strongest. Effects would occur in regions along the coast
and around topographic highs as the internal waves shoal.
Variability in the tidal currents at the 18.6-year nodal period,
estimated at about 4% (Godin, 1972; Greenberg et al., 2012)
(approximately 7% in stress), could modulate the stress character-
istics, resulting in peak tidal stress during 1997 and minimal
values in 2005-2006. Deposition might be reduced during periods
of stronger tides and enhanced during periods of weaker tides,
affecting the inventory of cysts. It is of note that 1997 falls in a
decadal interval or regime of low shellfish toxicity and presumed
low cyst abundance in the Gulf of Maine, whereas 2005 and 2006
fall within a regime with much higher toxicity, and demonstrably
higher cyst concentrations (Anderson et al., 2014a; Kleindinst
et al,, 2014).

In addition to sediment and cyst resuspension attributed to
waves and currents, resuspension of the bottom sediments may
also be caused by bottom trawling (Pilskaln et al., 1998). Churchill
(1989) reported that as much as 0.04 m of surficial sediment might
be reworked during passage of otter trawl doors over a muddy
bottom. Present estimates of bottom trawling from the Swept Area
Seabed Impact (SASI) model (New England Fishery Management
Council, 2011) for 2008-2010 data shows the seafloor was trawled
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in excess of 5 times per year in eastern Wilkinson Basin, over
Jeffreys Ledge and Stellwagen Bank, and in some locations along
the coast (S. Lucey, personal communication). There was little
trawling in the mid-coast Maine seed bed south of Penobscot Bay.
Given the estimates that less than a few mm of sediment are
reworked by waves and currents, bottom trawling appears likely
to be an important cause of sediment resuspension in some areas
of the Maine coast and in the eastern Wilkinson Basin.

There is a well-defined near-bottom nepheloid layer (BNL) in
Wilkinson and Jordan Basins (Spinrad, 1986; Townsend et al.,
1992; Pilskaln et al.,, 1998, 2014a, 2014b). Sediment trap flux
observations in Jordan Basin at a location in water 280 m deep
are not inconsistent with a local balance between input from the
upper water column and local resuspension (Pilskaln et al., 2014a).
The 1-dimensional model used here predicts minor and infrequent
resuspension at WJB (Fig. 7), a result of near-bottom tidal currents
less than about 0.15m s~ ! and water too deep to be affected by
waves. Station WJB, however, is located on the western side of
Jordan Basin and the estimated wave-current bottom stress
exceeded 5% of the time increases to between 0.1 and 0.3 Pa on
the eastern side of the basin, and continues to increase eastward
into the Bay of Fundy (Fig. 6). Although no erodibility measure-
ments were made in eastern Jordan Basin, the estimated stresses
there are likely sufficient to resuspend sediment that could
contribute to the BNL. Indeed, beam attenuation observations
suggest resuspension in eastern Jordan Basin, continuing into the
Bay of Fundy (Pilskaln et al., 2014b); this resuspended material
could be transported throughout the basin by the Jordan Basin
gyre (Brooks, 1985; Pettigrew et al., 1998; Aretxabaleta et al.,
2014). In Wilkinson Basin, stress exceeded 5% of the time was less
than 0.05 Pa in the northern part of the basin, increasing to 0.05-
0.1 Pa toward the south. The model did not predict resuspension at
either NWB or station nine in southern Wilkinson Basin
(Figs. 9 and 10), suggesting that sediment in the BNL in Wilkinson
Basin is not from local flow-induced resuspension. Several pro-
cesses not included in the model could contribute sediment to the
observed persistent BNL in the basins: (1) local resuspension by
trawling (especially in eastern Wilkinson Basin) or benthic organ-
isms; (2) resuspension in shallower water (by storm-driven
currents, surface waves, tides, or internal waves) and subsequent
transport to the deeper basins; (3) and settling of biogenic or
terrigenous sediment from surface waters. Sediment delivered to
the bottom boundary layer via any of these mechanisms could be
maintained in suspension indefinitely in a BNL if vertical mixing is
sufficient to balance (potentially very slow) settling rates. The
relative contributions of these processes to the formation and
maintenance of the BNL and the sensitivity of resuspension to
model parameters could be explored using a full 3-dimensional
circulation and sediment transport model.

The effect of resuspension on cysts depends on their concen-
tration in the mobile layer of the bed, estimated here to be about
1 mm thick. Using a bed model with non-local mixing based on
the abundance and depth distribution of benthic deposit feeders at
168 m in the mid-coast Maine cyst seedbed, Shull et al. (2014)
suggest that some recently deposited cysts remain at the sediment
surface for several months; the surface concentration decreases by
about 80% after about 3 months as cysts are mixed downward.
Keafer et al. (1992), using a constant mixing rate model based on
observations at 160 m in the western Gulf of Maine, suggest that
mixing would reduce the concentration of cysts at the sediment
surface by about 50% after 6 months. Thus the amount of cysts
available for resuspension is highest immediately following deposi-
tion and decreases with time, but both studies suggest significant
cyst concentrations remain in the mobile layer after a few months.

The answer to the question ‘is resuspension a mechanism for
cysts to enter the water column in spring' is that there are some

years when cysts may be resuspended into the water column at
that time. Typically, less than 1 mm of sediment was predicted to
be eroded by the events of 2010-2011. Shull et al. (2014) suggests
that about 20% of the cysts deposited in fall might remain in the
upper mm of sediment after about 3 months. In spring, a single
storm event could resuspend most of these cysts in a few hours.
For sediment with 1000 cystscm™ > mixing the upper mm
throughout a water depth of 100 m would result in a concentra-
tion of about 10 cystsm~3. If cysts with a high germination
potential (April through June) (Anderson et al., 2005) are resus-
pended into conditions more favorable for growth (primarily
increased light and warmer temperatures), the resuspension could
affect the evolution of the bloom. The number of resuspension
events in spring varied from O to 2 at 83 m and 1-8 at 24 m
(Table 3), and thus resuspension of cysts might occur in some
years, and not at all in others. Kirn et al. (2005) reached similar
conclusions but predicted more frequent resuspension events
using a critical shear stress of 0.02 Pa (less than the 0.05 Pa used
here) and stress calculated using a bottom roughness of 1 cm
(probably an overestimate for the grain-sized based skin friction
used for sediment transport calculation).

Downwelling-favorable winds (from the north or northeast)
drive currents that carry A. fundyense cells southwestward and
compress them in a plume along the coast (Franks and Anderson,
1992; Hetland et al., 2003; Anderson et al., 2005a, 2005b). This
shoreward and alongshore transport of established populations of
cells has typically been the role attributed to these large storms,
but the effect of cyst resuspension by strong wind events in the
spring as a means to inoculate or augment motile populations has
not been considered. Butman et al. (2008) show the largest wave
stress events in the western Gulf of Maine are associated with
northeasters, and thus in spring these storms might introduce
cysts into the water column that quickly germinate to produce
motile cells, thereby contributing to the bloom inoculum.

One of the strongest A. fundyense blooms in the Gulf of Maine
occurred in spring 2005 (Anderson et al., 2005; He et al., 2008;
Kleindinst et al., 2014), shortly after and during two of the strongest
nor'easters recorded between 1990 and 2006, ranked by wave bottom
stress calculated at 30 m water depth in Massachusetts Bay (7 May
and 22 May 2005; Butman et al.,, 2008). Indeed, total mass flux (TMF)
to sediment traps at depths of 75 m and 135 m at a 150-m deep site in
the central Maine seed bed increased during the May storms,
attributed to organic particulates from the spring bloom as well as
fine-sediment resuspension input generated by the May storms
(Pilskaln et al,, 2014a). The largest TMF and cyst flux to a trap at
255 m in Jordan Basin at 280 m water depth was in the sampling
interval that included the 7 May storm, possibly reflecting sediment
and cyst resuspension on the shelf and advection to the deep basin
(Pilskaln et al., 2014a). These trap observations are consistent with
model predictions of increased sediment and cyst concentrations in
the water column during major storms. Another major northeast
storm on 23 October 2005 (Butman et al., 2008) occurred between
sediment trap deployments and thus effects are not reflected in the
observations (C. Pilskaln, personal communication). Simulations of the
2005 bloom have been run to test sensitivity to cyst distribution, river
inflow, and winds (He et al, 2008), but did not include cyst
resuspension. Spring 2005 would be a good period to explore the
effect of resuspension events on the progression of the bloom.

The answer to the question ‘can resuspension and transport in
winter reshape the autumn cyst distribution,’ is that episodic resus-
pension of cysts in the upper 1 mm of sediment can occur, and that
the location and frequency depends on the mix of processes causing
resuspension (Figs. 6 and 9). The bed models (Shull et al., 2014; Keafer
et al, 1992) suggest that resuspension events that occur soon after
deposition, when cysts are at the sediment surface, could resuspend
most of the recently-deposited cysts. The concentration of cysts in the
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mobile layer would decrease over time as these cysts are mixed
downward. Cysts with fall velocities similar to the clay particles
modeled here (0.1 mms~!) (Anderson et al., 1985) could remain in
suspension for several days (for example at CMSB, Fig. 8). In simula-
tions of trajectories of resuspended particles at CMSB for 2010-2011,
about 18% of the resuspended material was transported in excess of
20 km from the source and about 5% in excess of 50 km from the
source (Aretxabaleta et al., 2014). The effect of resuspension on the
surface distribution over the winter depends on the concentration of
cysts in the mobile layer; mixing in the sediment column; the number,
intensity, and timing of resuspension events; and the distance the
cysts are transported before re-depositing on the sea floor. The effect
of these variables on the cysts in the upper cm, those most likely to
contribute to the spring bloom, cannot be assessed with the data
presented here, but could be investigated using a 3-dimensional
circulation and sediment transport model. However, resuspension
and transport are unlikely to change spatial patterns in the total
inventory of cysts that extends to 15 cm or more below the sediment
surface.

5. Summary

Sediment erodibility observations, simulations of sediment
resuspension, and seasonal calculations of wave-current bottom
stress suggest that sediment and cyst resuspension and subse-
quent transport could be significant for A. fundyense cyst dynamics
in the Gulf of Maine. The observations and model results suggest
that a millimeter or so of sediment and associated cysts may be
mobilized in both winter and spring, and that the frequency of
resuspension will vary interannually. Field observations of sedi-
ment resuspension are needed to further assess model predictions.
Depending on cyst concentration, location in the sediment, and
the resulting vertical distribution in the water column, these
events could result in a concentration of at least 10% cysts m~>.
The effect of resuspension on the distribution of cysts in near-
surface sediment depends on the concentration in the mobile
layer; mixing in the sediment column; the number, intensity, and
timing of resuspension events; and the distance the cysts are
transported before re-depositing on the sea floor. Resuspension
and transport are unlikely to affect spatial patterns in the total
inventory of cysts that extends to at least 15cm below the
sediment surface. In some years, resuspension events could
episodically introduce cysts into the water column in spring,
where germination and growth are likely to be facilitated by light.
In this instance, spring northeasters might contribute to the bloom
inoculum, while also creating down-welling conditions that bring
the resulting motile cell populations to shore. In prior studies, only
the latter effect was attributed to these storms. The sediment
model simulated complex interactions between the time-history
of the stress, properties of the sediment bed (swelling), and water
column (mixing, downwelling) that go beyond the intuitive rela-
tion of larger wave-current stress resulting in larger erosion. The
quantitative effect that resuspension and transport might have on
the growth and spread of the A. fundyense population in a
particular year, which is a complex interaction between biological
and physical processes, remains to be determined.
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