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ABSTRACT

This study examines the dispersal of dense water formed in an idealized coastal polynya on a sloping shelf

in the absence of ambient circulation and stratification. Both numerical and laboratory experiments reveal

two separate bottom pathways for the dense water: an offshore plume moving downslope into deeper

ambient water and a coastal current flowing in the direction of Kelvin wave propagation. Scaling analysis

shows that the velocity of the offshore plume is proportional not only to the reduced gravity, bottom slope,

and inverse of the Coriolis parameter, but also to the ratio of the dense water depth to total water depth. The

dense water coastal current is generated by the along-shelf baroclinic pressure gradient. Its dynamics can be

separated into two stages: (i) near the source region, where viscous terms are negligible, its speed is pro-

portional to the reduced gravity wave speed and (ii) in the far field, where bottom drag becomes important

and balances the pressure gradient, the velocity is proportional to Hc[g
0/(LCd)]

1/2 in which Hc is the water

depth at the coast, g 0 the reduced gravity, Cd the quadratic bottom drag coefficient, and L the along-shelf

span of the baroclinic pressure gradient. The velocity scalings are verified using numerical and laboratory

sensitivity experiments. The numerical simulations suggest that only 3%–23% of the dense water enters the

coastal pathway, and the percentage depends highly on the ratio of the velocities of the offshore and coastal

plumes. This makes the velocity ratio potentially useful for observational studies to assess the amount of

dense water formed in coastal polynyas.

1. Introduction

Coastal polynyas are an important component of the

Arctic climate system as they enhance the fluxes of

momentum, heat, moisture, and biogeochemical tracers

across the air–sea interface and affect local biological

communities (Morales Maqueda et al. 2004). Coastal

polynyas can also affect the Arctic Ocean circulation in

the deep basins through the supply of dense waters to

theArctic halocline that separates the cold, fresh surface

mixed layer from the subsurface warm Atlantic water

and, therefore, shields sea ice from the heat stored at

depth (Aagaard et al. 1981). Owing to the constant heat

loss to the atmosphere, ice is continually generated in

the polynya region and pushed away by offshore winds.

The associated brine rejection forms dense water, which

is reported to be a potentially major source of Arctic

halocline water (Cavalieri and Martin 1994; Winsor and

Bj€ork 2000).

To supply the Arctic halocline in the deep basins,

dense water that forms in coastal polynyas must travel

across the shallow continental shelves, from the source

regions to the shelf edges, to reach the open ocean. The

transport and dispersal of the dense waters on the sloping

continental shelves and the mechanisms responsible for

the dispersal are therefore worth investigating. Few di-

rect observations of dense water dispersal are available

due to the difficulties of taking measurements in the

ice-covered winter season, and most prior studies on the

subject are either analytical or numerical (Chapman
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1999, 2000; Chapman and Gawarkiewicz 1995, 1997;

Gawarkiewicz 2000; Gawarkiewicz and Chapman 1995;

Wilchinsky and Feltham 2008; Winsor and Chapman

2002). These studies have shown that (i) much of the

offshore dispersal of the dense water generated in

a coastal polynya occurs in the form of eddies, (ii) ir-

regular topography on the shelf (e.g., canyons) tends to

facilitate the dispersal, and (iii) ambient currents and

meteorological forcing can also influence the offshore

transport of the dense water. In this work, we will focus

on the dynamics of two separate dispersal pathways of

the dense water formed in an idealized coastal polynya

on a shallow shelf.

Dispersal of the dense water generated in a coastal

polynya on a sloping bottom differs from that of the

dense water injected horizontally into the ocean from

a coast [e.g., a hyperpycnal river outflow (Chen et al.

2013)] in that the former has no initial horizontal mo-

mentum when it first enters the ocean and can therefore

remain in the volume underneath the polynya for a rel-

atively long period of time. Over that period, the dy-

namical evolution of the dense water is not only

controlled by the gravitational force down the sloping

bottom, the Coriolis force, and the horizontal baroclinic

pressure gradient, but also constrained by the presence

of the coastal boundary (the coastline or edge of land-

fast ice). Our numerical and laboratory experiments

show two separate bottom pathways of dense water

dispersal: (i) a relatively well-known offshore pathway

in which dense water moves initially down the slope and

then turns to the right (looking downslope in the

Northern Hemisphere) and (ii) a coastal pathway in the

form of a dense water bottom coastal current flowing in

the direction of Kelvin wave propagation.

The offshore pathway (hereafter referred to as off-

shore plume) has been investigated in numerous theo-

retical, numerical, and laboratory studies focusing on

the dynamics of dense water overflows (e.g., Cenedese

et al. 2004; Etling et al. 2000; Jiang and Garwood 1996;

Lane-Serff and Baines 1998; Price and Baringer 1994;

Wobus et al. 2011). The dense water coastal current on

the bottom (hereafter referred to as the bottom coastal

current) has been examined by Wilchinsky and Feltham

(2008) in an idealized Antarctic polynya on a deep shelf

(400m) and also appeared in figures of other numerical

[Fig. 2 in Chapman (2000)] and laboratory [Fig. 5 in

Etling et al. (2000)] studies. The bottom coastal current

bears some similarity to a surface buoyant gravity cur-

rent flowing along the coast (e.g., Griffiths and Hopfinger

1983; Hacker and Linden 2002; Lentz and Helfrich

2002; Stern et al. 1982; Yankovsky and Chapman 1997)

where the main dynamical balance is between the non-

linear terms and the along-shelf baroclinic pressure

gradient. However, as will be shown in this study, bottom

friction can exert a profound influence on the bottom

coastal current after an initial period of time.

The main goal of this study is to provide a dynamical

description of both dense water dispersal pathways

formed in a coastal polynya on a shallow sloping shelf. In

particular, we investigate the dependence of the veloc-

ities of the offshore plume and bottom coastal currents

on external parameters (i.e., bottom slope, buoyancy

forcing, bottom friction, Coriolis parameter, and water

depth at the coast). Velocity scalings are derived from

momentum balances in the pathways and compared

with results from the numerical and laboratory sensi-

tivity experiments. Here, we neglect the influences of

ambient currents and stratification, irregular topogra-

phy, and external forces on the dense water dispersal

and simplify the ice edge as a coastal wall. Although our

analysis focuses on the dispersal pattern of dense water

as it forms in shallow coastal polynyas, the results

obtained are relevant for the dispersal of dense water

released into an ocean over a sloping bottom near

a coastline or steep topography, provided the assump-

tions made in our analysis are valid.

2. Methods

a. Numerical model setup

The hydrostatic Regional Ocean Modeling System

(ROMS) (Haidvogel et al. 2008; Shchepetkin and

McWilliams 2008) is used to simulate the dense water

formation and dispersal. The coordinates are defined as

follows: positive x is directed along shelf (east) with the

coast on the right, positive y points offshore (north), and

positive z points upward with z 5 0 defined at the free

surface. The model has a rectangular domain (Fig. 1a)

with edge lengths of Lx 5 300 km and Ly 5 150 km and

a uniform horizontal resolution of 500m. The bathym-

etry deepens toward the north with a constant slope a5
tanb, where b is the angle between the slope and the

horizontal, and the bathymetry is uniform in the east–

west direction (i.e., along shelf). The model has 60 ver-

tical layers with high vertical resolution toward the

bottom. The northern and southern boundaries are

closed. All variables on the western boundary are fixed

at their initial values. Chapman (1985), Flather (1976),

and Orlanski-type radiation (Orlanski 1976) conditions

are used on the eastern boundary for surface elevation,

barotropic velocity, and baroclinic variables, respec-

tively. A uniform Coriolis parameter f is used for the

entire domain. A quadratic bottom friction parame-

terization with drag coefficient Cd is implemented. A

generic length-scale turbulence closure k–kl scheme
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(Warner et al. 2005) is used to parameterize vertical

mixing associated with subgrid-scale processes, in-

cluding unresolved nonhydrostatic processes. We will

discuss the implication of the hydrostatic approximation

in section 3c.

To simplify the computation, the temperature equa-

tion of the model is neglected and only the salinity

equation is considered. A linear equation of state with

a saline contraction coefficient of 7.9 3 1024 psu21 is

used. The initial density is uniform in the entire model

domain. Brine rejection in the polynya is simulated with

a steady and uniform salt flux into the ocean (equivalent

to a negative surface buoyancy fluxQ) over a prescribed

half-elliptic area next to the southern coast with semi-

major and semiminor axes of a 5 25 km and b 5 10 km,

respectively (gray area in Fig. 1a). There is no surface

salt exchange outside of the polynya area, and no surface

momentum exchange is applied anywhere in the do-

main. Previous studies of coastal polynyas often used

a forcing decay region to represent the variation of po-

lynya size on time scales smaller than that of ocean re-

sponses (Chapman 1999). In the present study, to avoid

ambiguities in calculations of the distances the dense

plumes have traveled, we neglect the forcing decay re-

gion, as simulations with and without the decay region

show almost no difference in the two-pathway pattern of

the densewater dispersal away from the polynya after an

initial period of adjustment.

Values of the key parameters in the control simulation

are given in Table 1. For the sensitivity analysis, we

conduct a series of simulations for each target parameter

(a,Q,Cd, f, and the water depth at the coast,Hc).Within

each series, only the value of the target parameter is

altered (see Table 1 for the range of values), and the

values of all other parameters are kept the same as in the

control simulation. There are a total of 33 simulations,

including the control simulation.

b. Laboratory setup

The laboratory experiments are conducted in a glass

tank of depth 60 cm and length and width Lx 5 Ly 5
60 cm. The tank is mounted on a 1-m diameter rotating

turntable with a vertical axis of rotation.A square tank is

used to avoid optical distortion from side views associ-

ated with a circular tank. The bottom of the tank has

a constant slope a. The tank is filled with freshwater of

density r1, which is initially in solid-body rotation. A

reservoir of salted and dyed water of density r2 . r1 is

placed on the rotating table and connected to a source

on the sloping bottom, via a pump and a plastic tube.

The source is positioned on the left-hand side (looking

downslope) of the shallowest part of the tank (Fig. 1a,

green dashed rectangle) and consists of a plastic rect-

angular box with side lengths of 2a 5 6.7 cm and b 5
6 cm and with the wall looking downslope, 0.5 cm in

height, removed. The plastic tube from the pump is

connected to an opening made on top of the source, and

the dense water fills the entire source box and then exits

on the downslope side. The dense source was designed

to give no horizontal momentum to the dense water and

to allow the accumulation of dense water near the source

region as in a coastal polynya. The experimental appa-

ratus is similar to that used in Cenedese and Adduce

(2008) with the addition of a vertical wall positioned

along shelf at the depth of the dense water source. The

introduction of the vertical wall is dictated by the ob-

servation that in coastal polynyas dense water is gener-

ated near a vertical boundary, that is, the coastline or

edge of land-fast ice. Although the mechanism of dense

FIG. 1. (a) Plan, (b) side, and (c) front view of the numerical and

laboratory domains. Sketches of the dense water dispersal path-

ways and dominant force balances [red arrows in (a) and (c)]. The

blue and green symbols are for the numerical and laboratory ex-

periments, respectively, and black symbols are for both.
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water generation is different than in a coastal polynya,

the dense water source provides a more controllable

setup in the laboratory.

A total of 22 experiments were conducted, including

the control experiment which was repeated twice. After

the ambient fluid is spun up, the experiment starts by

turning on the pump. At the end of each experiment, the

water in the tank is mixed and a new ambient density is

measured for the next experiment using a DMA58 Anton

Paar densitometer with an accuracy of 1022 kgm23. A

video camera is mounted above the tank and fixed to

the turntable so that measurements are obtained in the

rotating frame. The dense current is made visible by

dyeing the fluid with food coloring and is observed both

from the top and the side. The depth of the ambient

freshwater at the ‘‘coast,’’ Hc, is kept constant at 0.10m

for every slope inclination. Depth Hc is always greater

than the thickness of the dense water near the source,

hc0, which is measured by eye, with an error of approxi-

mately 65 3 1024m, looking at the side of the tank

where a ruler, attached to the sidewall, is placed or-

thogonal to the sloping bottom. Values of the key pa-

rameters in the control experiment are given in Table 2.

The sensitivity experiments for each of the target pa-

rameters (a, f, the reduced gravity g 0, and the densewater
flow rateQV) are conducted by varying only the value of

the target parameter, while keeping the other parameters

the same as in the control experiment (Table 2). Here

g 0 5 gDr/r0, where g is the gravitational acceleration, Dr

is the density difference between the dense and ambient

waters, and r0 is the reference density.

Differences in the target parameter sets in the nu-

merical and laboratory sensitivity experiments result

mostly from the different methods used to supply the

dense water. The constant dense water supply at the

base of the ‘‘coastal wall’’ in the laboratory allows g 0 to
be treated as an external control variable with the sen-

sitivity analysis conducted directly against it. Because in

the laboratory hc0 and the representative thickness of

the bottom coastal current hc (hc is assumed to be hc0/2;

see section 3d) are independent ofHc, it is more relevant

to investigate the sensitivity of the velocities of the dense

currents to hc0 or hc rather than Hc. The sensitivity

analysis to hc is carried out by varyingQV, as hc is not an

external control variable in the laboratory but is directly

affected by QV. Larger values of QV are observed to

generate thicker dense currents, that is, larger values of

hc. In the numerical simulations, the prescribed surface

buoyancy flux Q is an external control variable and,

together withHc, determines the value of g 0 (section 3b).
Hence, sensitivities to both Q and Hc are sought in the

numerical simulations. Another difference in the target

parameters is the bottom drag coefficient Cd, which is

a control variable in the numerical model, but not in the

laboratory experiments. The bottom boundary layer is

inherently present in the laboratory experiments, and

we do not examine the sensitivity of the current veloci-

ties to bottom friction in that setting.

TABLE 1. Parameters of the numerical model sensitivity experiments.

Parameter Symbol Unit

Control

value

Min

value

Max

value

Range of

Frd

Range of

Ekd

Range of

Frc

Bottom slope a 1023 1 0.25 3 0.054 ; 0.12 0.013; 0.086 0.091 ; 0.15

Surface buoyancy flux Q 1027m2 s23 4a 2 16 0.055 ; 0.14 0.025 ; 0.13 0.11; 0.20

Quadratic bottom drag Cd 1023 3 0.3 30 0.068; 0.095 0.0026 ; 2.9 0.079 ; 0.24

Coriolis parameter f 1024 s21 1.3b 0.5 3 0.059 ; 0.10 0.0021 ; 0.44 0.13; 0.14

Water depth at the coast Hc m 30c 10 50 0.061 ; 0.18 0.020; 0.067 0.11; 0.14

aQ 5 4 3 1027m2 s23 is a typical surface buoyancy flux for coastal polynyas in the Chukchi Sea area (Winsor and Chapman 2002).
b f 5 1.3 3 1024 s21 corresponds to the latitude of 638N.
cHc 5 30m is a typical water depth at the seaward land-fast ice edge off the north coast of Alaska in winter (Mahoney et al. 2007).

TABLE 2. Parameters of the laboratory sensitivity experiments.

Parameter Symbol Unit

Control

value

Min

value

Max

value

Range of

Frd

Range of Ekd
(31023)

Range of

Frc

Bottom slope a — 0.21 0.05 0.31 0.039 ; 0.090 0.12 ; 0.26 0.18 ; 0.27

Reduced gravity g0 ms22 0.012 0.001 0.051 0.063 ; 0.10 0.050 ; 0.78 0.23 ; 0.35

Coriolis parameter f s21 4.0 2.0 4.0 0.083 ; 0.090 0.17 ; 0.43 0.26 ; 0.30

Volume flux QV 1026m3 s21 3.3 0.92 5.3 0.049 ; 0.11 0.11 ; 0.62 0.10 ; 0.33

Water depth at the coast* hc0 m 0.05 0.025 0.099 — — —

*Depth hc0 is not an external control variable in the laboratory experiments, but closely related toQV. Its control value and range are

provided here for reference.
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3. Results

a. General pattern

The numerical and laboratory experiments consis-

tently show two separate pathways of the bottom dis-

persal of the dense water (Figs. 2 and 3, left columns):

(i) in the offshore plume, the dense water flows initially

downslope after approximately five and one inertial

periods in the numerical and laboratory experiments,

respectively, and then turns gradually to the right

(looking downslope in the Northern Hemisphere);

(ii) the other branch of the dense water, the bottom

coastal current, travels on the bottom along the vertical

wall in the direction of Kelvin wave propagation. The

difference in the time taken by the dense water to first

leave the forcing area in the numerical and laboratory

experiments could be caused by the differentmethods of

supplying the dense water. The dense water supply at

the base of the ‘‘coastal wall’’ in the laboratory setup

allows the dense water to undergo lateral transitions

immediately after entering the ‘‘ocean,’’ whereas in the

numerical setup dense water must first mix through the

entire water column gradually before reaching the bot-

tom and spreading laterally.

The dynamical regime of the offshore plume can be

characterized by the values of the Froude and Ekman

numbers (Cenedese et al. 2004) defined respectively as

Frd 5
judjffiffiffiffiffiffiffiffiffi
g 0hd

p (1)

and

Ekd 5

�
d

hd

�2

. (2)

Here judj and hd are the mean velocity and depth of the

offshore plume, respectively (subscript d indicates

properties of the offshore plume), and d is the thickness

of the bottom Ekman layer. In the laboratory settings,

because the flows are laminar and kinematic viscosity

is constant, n 5 1026m2 s21, d can be estimated as d2 ’
2n/f, so (2) becomes

Ekd ’
2n

fh2d
. (3)

In the laboratory control experiment (Figs. 3a–c) judj ’
0.002m s21, g 0 ’ 0.01m s22, hd ’ hc0 ’ 0.05m, and f 5
4 s21. Substituting these values into (1) and (3) gives

Frd ’ 0.09 and Ekd ’ 23 1024, satisfying the condition

of the eddy regime category (Frd , 1 and Ekd , 0.1)

suggested by Cenedese et al. (2004).

In the numerical settings, n in the turbulent bottom

boundary layers (BBL) varies with depth, and the

FIG. 2. Modeled (color) salinity anomaly and (white vectors) velocity vectors (left) near the bottom and (right) at

25m below the surface at days (top) 5 (inertial period 9), (middle) 15 (inertial period 26), and (bottom) 25 (inertial

period 44). Velocity vectors of speed less than 0.015m s21 are omitted for clarity. The velocity scale is shown at the

top left. Black solid lines outline the polynya-forcing area, dashed yellow lines indicate isobath contours, and ma-

genta solid lines are the salinity anomaly contour of 0.2 psu.
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aforementioned method of estimating Ekd cannot be

applied. Here, we assume d is equal to the thickness of

the stably stratified BBL and therefore it satisfies the

formula (Killworth and Edwards 1999; Zilitinkevich

and Mironov 1996):

�
d

Cnu*/f

�2

1
d

Ciu*/Nb

5 1, (4)

where u* and Nb are the friction velocity and buoyancy

frequency in the BBL, respectively, and Cn and Ci are

constants with Cn 5 0.5 and Ci 5 20. Using a quadratic

drag formula, u* can be expressed as u*5
ffiffiffiffiffiffiffiffiffiffiffi
tb/r0

p
’

C1/2
d judj. Here, tb is the bottom stress, and we assume the

near bottom velocity jubj’ judj. In the numerical control

simulation (Fig. 2), judj ’ 0.03m s21, g 0 ’ 0.01m s22,

hd’ 10m,Nb’ 0.012 s21, f5 1.33 1024 s21,Cd5 0.003,

and, according to (4), d’ 2m. Substituting these values

into (1) and (2) gives Frd ’ 0.09 and Ekd ’ 0.04, also

satisfying the condition of the eddy regime category.

Consistent with Cenedese et al. (2004), the offshore

transport of dense water in both numerical and labora-

tory experiments is primarily in the form of eddies

(Figs. 2 and 3). In the numerical model, the dense water

eddies have radii of about 10 km; above the dense water

eddies, cyclonic vortices with similar radii (Fig. 2, right)

are generated in the upper water column by conserva-

tion of potential vorticity (see below for more discus-

sion). In the laboratory, the dense water eddies have a

radius of approximately 0.03–0.04m (Fig. 3c), and cy-

clonic velocities over them are also observed (not

shown). This pattern of dense water offshore transport is

very similar to that observed in a number of earlier

studies (e.g., Chapman and Gawarkiewicz 1997; Etling

et al. 2000).

The small Ekd in both setups indicates that the BBL is

much thinner than the descending dense water layer and

the bottom friction is small in the momentum balance

of the offshore plume. The baroclinic Rossby radius of

deformation for the dense water RD 5 (g 0hd)
1/2/f is

FIG. 3. Time series of dense water (dyed blue) flowing down a slope in the (left) presence and (right) absence of

a vertical ‘‘southern’’ wall: (a),(d) taken after 9T, (b),(e) after 24T, and (c),(f) after 44T, where T is the rotation

period. Black dashed lines in (d)–(f) outline the position of the vertical wall in (a)–(c); white dashed arrows indicate

the downslope movement of the dense fluid, while the white solid arrow indicates the dense current traveling along

the vertical wall in the direction of Kelvin wave propagation; and the green dashed box in (a) and (d) indicates the

source box.
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’2 km and 5.53 1023m in the numerical and laboratory

control experiments, respectively, and, since it is smaller

than the width of the source in both setups,RD is used to

compute the Rossby number Rod 5 judj/(fRD), which is

equivalent to the Frd. In our study, Rod � 1, indicating

that nonlinear momentum advection is much smaller

than the Coriolis force in the offshore plume. The radii

of the dense eddies appear somewhat larger than RD,

suggesting that ageostrophic processes may be involved

in shaping the eddies. The downslope gravitational force

is likely the cause, as it could pull the dense water off-

shore from the dense eddy cores initially trapped under

the upper-layer cyclonic vortices, and this process tends

to widen the dense eddies. The formation of the eddies

will be discussed in section 3b.

The bottom coastal current flows along the coast with

meanders and eddies trailing behind, and some of the

eddies flow downslope connecting the bottom coastal

current to the offshore plume (Figs. 2 and 3). The width

of the bottom coastal current decreases almost linearly

from the point where the two pathways separate to its

nose. The height of the dense water current also varies

along the coast and decreases gradually from the sepa-

ration point toward the nose (Figs. 4d–f). This wedge

shape is similar to that of buoyant gravity currents

moving along a vertical wall in a rotating fluid [Fig. 3 in

Griffiths and Hopfinger (1983)]. Figures 4d–f show that

the length of the wedge in the numerical model increases

with time, from about 10 km at day 5 to about 100 km at

day 25.

For polynyas on a 400-m-deep shelf, the Wilchinsky

and Feltham (2008) results suggest that the presence of

a neighboring coastal wall is necessary for the formation

of the bottom coastal current. To extend this to polynyas

on a shallow shelf, we compare two pairs of experiments,

one numerical and the other laboratory, with and with-

out the southern coastal wall. The setup of the first

simulation in the numerical pair is the same as that of the

control simulation, except that now Hc 5 50m (Fig. 5,

left); in the second simulation, the southern wall is

moved to the south by 45 km while a 5 0.001 is pre-

served (Fig. 5, right). The laboratory pair consists of the

laboratory control experiment (Fig. 3, left) and another

experiment with the southern wall removed (Fig. 3,

right). The buoyancy forcing or dense water source is

the same in each experiment pair. Comparison of

the dense water pathways in Figs. 3 and 5 confirms

the role of the coastal wall in forming the bottom

coastal current. In particular, without the vertical wall

next to the buoyancy forcing region, the dense water

tends to first accumulate around the forcing area,

then to move gradually downslope, and finally to turn

to the right when looking downslope (Figs. 3 and

5, right).

FIG. 4. Offshore and along-shelf sections of salinity anomaly at days (top) 5 (inertial period 9), (middle) 15 (inertial

period 26), and (bottom) 25 (inertial period 44). The offshore section is taken at the along-shelf distance x 5 70 km

(see Fig. 2), and the along-shelf section is taken at the southern wall. Black dashed lines indicate the polynya-forcing

region, and white solid lines are the salinity anomaly contour of 0.2 psu.
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Close examination of the model results reveals the

following picture of the initial evolution of the flow

structure around the perimeter of the forcing area: the

near-bottom horizontal density gradient generates an

anticyclonic flow presumably through the thermal wind

balance; the flow develops meanders that then pinch off

forming eddies that transport dense water offshore

across isobaths (Fig. 2). At the eastern end of the forcing

region, the bottom anticyclonic flow hits the wall, ac-

cumulating dense water there, and the increased along-

shelf baroclinic pressure gradient drives the bottom

coastal current. The Froude number of the bottom

coastal current is defined as

Frc 5
jucjffiffiffiffiffiffiffiffiffi
g 0hc

p , (5)

where jucj is the speed of the bottom coastal current.

In the numerical control simulation, jucj ’ 0.05m s21

(Fig. 2), g 0 ’ 0.01m s22, and hc 5 15m, giving a value of

Frc ’ 0.13, while in the laboratory control simulation

jucj ’ 0.004m s21, g 0 ’ 0.01m s22, and hc 5 0.025m,

giving a value of Frc ’ 0.25.

b. Scaling of the velocities

To provide scalings for the velocities of the offshore

plume and bottom coastal current, we neglect the in-

teraction between the two transport pathways and as-

sume that both currents reach quasi steady states or

states in which flow acceleration is negligible compared

to the dominant terms in the momentum balances.

For the offshore plume, we take an integrated approach,

considering the motion of the whole plume instead of the

motions of the individual eddies that are internal to the

plume. In the vertically integrated horizontal momentum

equations of the whole plume, we assume the dominant

balance to be between the gravitational force Fg and the

Coriolis force FC, and all other terms, including the bot-

tom drag and momentum advection, are neglected. The

bottom drag has a minor influence as indicated by the

small values of Ekd in both the numerical and laboratory

experiments (Tables 1 and 2). The advection terms are

FIG. 5. Modeled bottom salinity anomaly for a polynya (left) next to and (right) away from the southern wall at

days (top) 8 (inertial period 14), (middle) 15 (inertial period 26), and (bottom) 25 (inertial period 44). Black solid

lines outline the polynya-forcing area; dashed yellow lines are isobath contours; white solid lines are the salinity

anomaly contour of 0.2 psu.
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also negligible because Rod � 1 indicates that they are

much smaller than the Coriolis force. Thereby, we obtain

the vertically integrated horizontal momentum balance:

fHijudj’ g 0ahd , (6)

whereHi is the thickness of the water column thatmoves

downslope, not only the dense layer (see below).

Equation (6) represents the steady-state limit of the

offshore plume when the flow is along isobaths. During

an initial ‘‘transitional’’ time, the descending dense water

on the bottom carries the overlying column of ambient

freshwater downslope crossing isobaths. Consequently,

the upper layer develops positive vorticity due to vortex

stretching and potential vorticity conservation, and the

freshwater column above the dense layer starts spinning

cyclonically (Fig. 2, right). This behavior of cross-isobath

motion and the associated generation of cyclonic eddies

has been observed in numerous studies (e.g., Etling et al.

2000; Lane-Serff and Baines 1998, 2000; Spall and Price

1998;Whitehead et al. 1990). After this initial transitional

period the overlying eddies continue traveling with the

dense current, consistent with the findings of previous

laboratory and numerical studies on dense currents on

sloping bottoms (Reszka et al. 2002; Sutherland et al.

2004). Hence, the Coriolis force acts not only over the

thin layer of dense water near the bottom, but also over

the water column above it that moves offshore with the

dense water, and Hi is the thickness of the entire water

column.

From (6), we obtain the average along-stream velocity

of the offshore plume:

judj’
g 0a
f

hd
Hi

. (7)

Equation (7) is consistent with the long topographic

Rossby wave speed on a sloping bottom with Hi being

the total water depth. Equation (7) differs from the

theoretical along-shelf velocity of a dense water core on

a sloping bottom derived by Nof (1983), ug 5 g 0a/f, by
a factor of hd/Hi. Presumably, this difference stems from

the infinitely deep upper layer at rest used byNof (1983).

In our laboratory experiments, both hd andHi are finite,

and we assume hd ’ hc0 and Hi to be the average am-

bient depth experienced by the offshore plume, while

estimating the along-stream speed of the offshore plume

using (7). In the numerical simulations, the slopes are

gentle,O(1023), and a good scale forHi isHc, the water

depth on the coast. Because the dense water in the

coastal polynya initially occupies the entire water col-

umn, we assume the thickness of the offshore plume to

be proportional to Hc, that is, hd 5 cHc, where c is

a constant. Therefore, hd andHi are closely related, and

(7) becomes

judj’ c
g 0a
f

5 cug , (8)

which is used to estimate the along-stream speed of the

offshore plume in the numerical experiments.

We now seek to derive a scale for the speed of the

bottom coastal current jucj. Although the coastal current

described earlier appears similar to a two-dimensional

exchange flow, the three-dimensionality of the problem

and rotation make the dynamics fundamentally differ-

ent. Moreover, bottom friction on the length scale of

primary interest makes the analytical derivation of jucj
from mass, momentum, and energy conservations, as

done for gravity currents in previous studies (Hacker

and Linden 2002; Linden 2012), very difficult in this case.

Here, we take a momentum-balance approach and ne-

glect the influences of coastal current cross-shelf varia-

tion, cross-shelf momentum balance, and the sloping

bottom on the along-shelf momentum balance.

In a turbulent environment, Linden and Simpson

(1986) showed that a lock-release gravity current can

transition from an initial inviscid state to a viscous state

as it proceeds in distance. Based on that finding, we

separate the bottom coastal current into two stages.

1) Close to the dense water source region, viscosity ef-

fects are assumed to be small, and the steadymomentum

balance is between the nonlinear terms and the along-

shelf baroclinic pressure gradient:

u � $u’2
1

r0

›p

›x
. (9)

Equation (9) leads to a scale for the velocity of the

bottom coastal current:

jucj’
ffiffiffiffiffiffiffiffiffi
g 0hc

q
, (10)

which is a suitable scale for the laboratory experiments

(see below). Equation (10) is essentially the speed of the

interfacial gravity wave, a natural scale for velocities of

Boussinesq gravity currents after their initial acceleration

(Linden 2012). 2) Far away from the dense water source

region, the steady momentum balance is assumed to be

between the along-shelf baroclinic pressure gradient

force FP and the force exerted by the bottom stress FD:

1

r0

›p

›x
’

1

r0

›t

›z
. (11)

For simplicity, we assume ›r/›x to be independent of z

and define L as the along-shelf span of the baroclinic
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pressure gradient. Integrating (11) over hc and applying

the quadratic bottom drag gives

jucj’ hc

ffiffiffiffiffiffiffiffiffiffiffiffi
g 0

2LCd

s
. (12)

Here, the near-bottom velocity is assumed to be ap-

proximately equal to jucj. Equation (12) is a suitable

scale for the numerical experiments (see below). In the

parameter space of interest (Hc# 50m), hc is constrained

by Hc, and the modeled bottom coastal current extends

over the lower half of the water column (Figs. 4 and 6,

right columns). Hence, we assume that the depth of the

bottom coastal current is half of the depth at the coast,

that is, hc ’ Hc/2, as is the case for energy-conserving

lock-release gravity currents (Linden 2012). The bottom

coastal current velocity in the numerical setup becomes

jucj’
Hc

2

ffiffiffiffiffiffiffiffiffiffiffiffi
g 0

2LCd

s
. (13)

To determine the along-shelf distance beyond which

the momentum balance will be between the baroclinic

pressure gradient and the bottom stress (hereafter re-

ferred to as transitional length), we equate (10) to (12)

and obtain a length scale:

Lc’
hc
2Cd

, (14)

or equivalently for the laboratory setup:

Lc ’

ffiffiffiffiffiffiffiffiffi
g 0hc

p
h2c

4n
. (15)

Note that the derivation of (15) is based on a relation-

shipCd’ 2n/(hcjucj), obtained by expressing the bottom

stress both in terms of velocity shear and by a quadratic

drag formula; that is, tb ’ 2r0njucj/hc ’ r0Cdjucj2.
Substituting hc 5 0.025m, g 0 ’ 0.01m s22, and n 5
1026m2 s21 into (15) gives Lc ’ 2.5m for the laboratory

experiments; substituting hc 5 15m and Cd 5 0.003 into

(14) gives Lc ’ 2.5 km for the numerical simulations. In

the laboratory experiments, the width of the tank is less

than Lc. Therefore, the bottom coastal current is still in

the initial inviscid stage and (10) is the appropriate scale

for jucj in the laboratory. However, the associated

FIG. 6. Salinity anomaly (left) near the bottom and (right) along the southern wall at day 25 (inertial period 44) from

simulations having different Hc. Black dashed lines in the right column indicate the polynya-forcing region; dashed

yellow lines in the left column are isobath contours; white solid lines are the salinity anomaly contour of 0.2 psu.
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Froude number Frc (Table 2) is somewhat smaller than

the Froude number observed for energy-conserving

lock-release gravity currents, 0.4 (Linden 2012). Possi-

ble explanations for this discrepancy include the differ-

ent methods of generating the dense gravity current and

the sloping bottom in the tank. Few studies have in-

vestigated constant flux dense gravity currents, and this

result calls for future investigations. In the numerical

simulations, because the extent of the modeled bottom

coastal current, O(100 km), is much larger than Lc, the

modeled bottom coastal current is in the viscous stage

and bottom stress plays a dominant role, as also sug-

gested by the small values of Frc (Table 1). Hence, (13) is

the appropriate scale for modeled jucj.
The velocity scales in (8) and (13) depend on g 0 and

L, neither of which are external control variables in

the numerical simulations. The reduced gravity depends

onQ andHc, and the numerical simulations suggest that

L is related to the distance traveled by the bottom

coastal current and influenced by a variety of parame-

ters. Here, we seek to replace g 0 and L with external

control variables of the idealized polynya system to

compare the velocity scalings with results from the nu-

merical sensitivity analysis. Based on the balance be-

tween the lateral and surface buoyancy fluxes, Chapman

and Gawarkiewicz (1997) derived the equilibrium den-

sity anomaly underneath a coastal polynya:

Dre 5Cc

r0
gHc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fQRDcb

q
. (16)

Here Cc 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p/[2gE(12 b2/a2)]

p
is a nondimensional

function of the geometry of the forcing region, g5 0.043

is a proportionality constant, and E(�) is the complete

elliptic integral of the second kind. Substituting the fixed

values of a and b, we obtain Cc ’ 5.63. Note that in (16)

we replace the width of the forcing decay region in the

original formula in Chapman and Gawarkiewicz (1997)

with the Rossby radiusRDc5 (g 0hc)
1/2/f. We assume Dre

to be the density anomaly of both plumes. Because g 0 5
gDre/r0, we obtain

g 0 ’
C4/3
c b2/3

21/3
Q2/3

Hc

. (17)

The bottom coastal current forms a wedge shape with

its height decreasing gradually toward the nose and its

length increasing with time as the bottom coastal current

flows along the wall (Figs. 4d–f). We assume that the

along-shelf pressure gradient spans over the length of

the wedge and, therefore, L scales with the travel dis-

tance of the bottom coastal current; that is,

L’ jucjt . (18)

Substituting (17) and (18) into (8) and (13), we obtain

judj’
cC4/3

c b2/3

21/3
aQ2/3

fHc

}
b2/3aQ2/3

fHc

(19)

and

jucj’
C4/9
c b2/9

210/9
Q2/9H1/3

c

C1/3
d t1/3

}
b2/9Q2/9H1/3

c

C1/3
d t1/3

, (20)

respectively. The ratio of judj and jucj is therefore

judj
jucj

}
b4/9aQ4/9C1/3

d t1/3

fH4/3
c

. (21)

The time-dependent scaling of jucj in (20) indicates

that the momentum balance the scaling analysis is based

on does not allow a steady-state coastal current. The

scaled weak time dependence of t21/3 is the same as the

time dependence in the scaled speed of a ‘‘similarity

phase’’ gravity current resulting from a finite volume

lock release (Linden 2012). By comparing the acceler-

ation term, ›jucj/›t, to the viscous terms (equivalently,

the pressure gradient term) in (11) and applying (17),

(18), and (20), we obtain a characteristic time scale of

frictional adjustment,

Ta5
21/6Hc

33/2C2/3
c b1/3Q1/3Cd

, (22)

that provides a measure of the importance of ›jucj/›t:
when t � Ta, ›jucj/›t is negligible relative to the two

terms in (11). Substituting the parameters of the control

simulation (Table 1) into (22) gives Ta ’ 0.05 day, and

among all the simulations, the maximum Ta is 0.5 days

(when Cd 5 0.3 3 1023). The analysis of the numerical

experiments focuses on the period after day 25; thus, it is

reasonable to neglect the acceleration of the bottom

coastal current even with a time-dependent velocity

scaling.

In the next two subsections, we will compare the de-

rived velocity scalings with numerical and laboratory

sensitivity experiments conducted with different values

of a, Q, Cd, f, and Hc for the numerical simulations and

a, QV (hc), f, and g 0 for the laboratory experiments.

c. Numerical sensitivity tests

The bottom and along-shelf salinity anomalies at day

25 (inertial period 44) from simulations with different

depths on the coast, Hc, (Fig. 6) show that within the

same time period the distance the offshore plume travels

decreases with increasing Hc, especially for Hc increas-

ing from 10 to 30m, and the distance the bottom coastal
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current travels increases dramatically with increasing

Hc. These results suggest that Hc exerts a profound in-

fluence on velocities of both the offshore plume and the

bottom coastal current.

To illustrate the effect of all the control parameters on

dense water dispersal, the vertically integrated normal-

ized salinity anomaly at day 25 from two selected sen-

sitivity simulations of each series are shown in Fig. 7.

The distance the offshore plume travels in 25 days in-

creases with increasing a and Q and decreases with in-

creasing f and Hc; the distance the bottom coastal

current travels increases with increasing Q and Hc and

decreases with increasing Cd. This dependence on Cd

confirms that the modeled bottom coastal current is in

the viscous stage and its velocity should scale with (13).

For a more quantitative comparison of the parameter

dependences, in the numerical solutions we compute jucj
and judj from the distances the heads of the dense water

plumes travel away from the polynya region in the first

25 days. The general pattern of the modeled velocities

versus the control parameters in Fig. 8 is consistent with

the scaled relationships in (19) and (20). Moreover, judj

is not dependent on Cd, and jucj is not dependent on f.

Figure 8f shows a weak dependence of jucj on a, with jucj
decreasing for increasing a. We will discuss this de-

pendence below.

In Fig. 9, modeled judj, jucj and judj/jucj are compared

to the scalings in (19), (20), and (21) of the corre-

sponding simulations, respectively. The constant factor

c in the scalings is neglected. The results fall around

straight lines in all comparisons, suggesting that, in the

parameter space we have investigated, the scaling anal-

yses are largely consistent with the numerically modeled

dynamics. Slight differences in the comparisons, includ-

ing a small amount of scatter and the nonzero intercepts,

are presumably caused by the assumptions or missing

dynamics in the scaling analyses.

Although the numerical simulations agree with the

scaled relationships between the velocities and the con-

trol parameters, the reduction of jucj when a increases

(Fig. 8f) is unexplained. Possible causes include the in-

teractions between the two pathways and the cross-shelf

momentum balance in the bottom coastal current. In

particular, when a increases, more dense water moves

FIG. 7. Vertically integrated salinity anomaly at day 25 (inertial period 17 and 68 for left and right in the fourth row,

respectively, and 44 for all others) normalized by the total salinity anomaly in the domain. Black solid lines indicate

the polynya region; dashed yellow lines are isobath contours; white solid lines are the contour of 0.2 3 1024 km22

normalized salinity anomaly.
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FIG. 8. Variation of modeled (left) judj and (right) jucj with respect to different parameters. The open symbols

represent the control simulation. The black lines represent the relationships of judj and jucj with each parameter as

described by (19) and (20) and with the coefficients obtained from least squares fits to all the modeled vs scaled

velocities (the black lines in Figs. 9a and 9b).
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offshore and less water accumulates at the eastern end of

the polynya forcing region, reducing the amount of dense

water available for generating the bottom coastal current.

In addition, the downslope component of gravity may

force some of the dense water already in the bottom

coastal current to move offshore, generating the dense

water eddies near the tail of the bottom coastal current

(Fig. 7, top-right). These dynamics are neglected in the

scaling analysis, but capable of reducing the strength of

the along-shelf pressure gradient and consequently the

velocity of the bottom coastal current.

Finally, the numerical simulations do not resolve

nonhydrostatic processes in the system, including con-

vection within the polynya, strong vertical motions at

the noses of the dense currents, and Kelvin–Helmholtz

instabilities at the interface between the dense and

ambient waters. As the nonhydrostatic processes gen-

erally take place on the scale of tens of meters, our

model with a horizontal resolution of 500m is not ca-

pable of resolving them, and the associated mixing can

only be included through turbulence parameterization.

Because this study focuses on the transport of dense

water occurring over horizontal scales of tens of kilo-

meters, we believe that the nonhydrostatic processes

do not influence the momentum balance at first order

or fundamentally change the results. However, it is

possible that the parameterized entrainment of ambi-

ent water into the plume is inadequate and may affect

details of the plumes.

d. Laboratory sensitivity tests

Figures 10 and 11 show the dependence of the time-

averaged velocities, judj and jucj, on the control pa-

rameters varied in the laboratory. The velocities are

calculated from the distances that the heads of the dense

water plumes travel in the time it takes the bottom

coastal current to first reach the downstream edge of the

tank. The bottom coastal current forms a wedge shape,

as observed in the numerical simulations, and we assume

hc 5 hc0/2. The patterns in Fig. 10 are generally consis-

tent with the parameter dependence described in (7) and

(10); judj increases with a, hc, and g 0 and jucj increases
with hc and g 0. Note that in the laboratory experiments

hc is not a control variable, but it varies with the control

FIG. 9. Modeled (a) judj, (b) jucj, and (c) judj/jucj vs scalings in (19), (20), and (21), respectively. Note that each type

of symbol represents comparisons obtained through varying one parameter as shown in the legend. Solid lines are

least squares fits to all points; the slope, intercept, and R2 of the fits are given.
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variables, including g 0. This deteriorates the compari-

sons of the scaled and computed trends in Figs. 10b and

10f, and the actual trend comparisons are better when

both hc and g 0 are considered (Fig. 11). We find no de-

pendence of judj on f (Fig. 10c) as (7) would suggest.

Furthermore, Figs. 10e and 10g show a weak de-

pendence of jucj on a and f with jucj increasing when a

and f increase, which is not described in (10). Figure 11

shows that the measured judj and jucj are consistent with
the scalings proposed in (7) and (10), albeit the results

present some scatter around the least squares fit of the

data. Overall, the laboratory results largely confirm the

findings of the numerical experiments and the validity of

the scaling analyses in the parameter space that we have

tested.

The exact cause of the lack of dependence of judj on f

remains unclear. One possible reason is that, in the

laboratory, theRossby numberRod (equivalent to Frd in

this study) is much smaller than in the numerical simu-

lations (Tables 1 and 2), and the numerical simulations

indicate that the dependence of judj with respect to f

decreases with increasing f (Fig. 7d). Thus, it is possible

FIG. 10. Variation of measured (left) judj and (right) jucj with respect to different parameters varied in the labo-

ratory experiments. Open symbols represent the control experiment. The black lines represent the relationships of

judj and jucj with each parameters as described by (7) and (10) and with the coefficients obtained from least squares

fits to all the measured vs scaled velocities (the black lines in Fig. 11).
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that f in the laboratory is too large to influence judj.
Furthermore, it is worth noticing that in the laboratory

hc (equivalently, hc0) is not an external control param-

eter and slightly varies with varying target parameters,

including a and f. This may cause the weak dependence

of jucj on a and f (Figs. 10e,g).

e. Volume transport of the salinity anomaly

Results of the numerical simulations are used to in-

vestigate the fate of the dense water formed in a coastal

polynya on a shallow sloping shelf. To avoid the ambi-

guity associated with dense water exchange between the

two pathways, we choose to compute the volume-

integrated salinity anomaly in the offshore plume and

bottom coastal current at day 40 (Fig. 12) and use their

ratio to represent the relative amount of dense water in

the two pathways. The bottom coastal current is defined

as the region within 12 km offshore from the coast east

of the polynya, while all salinity anomalies outside of the

12-km-wide coastal band region and also outside of the

polynya-forcing region are considered to be in the off-

shore pathway.

As observed for the velocity ratio, the fraction of

salinity anomaly in the bottom coastal current [Vc/

(Vc 1 Vd), where Vc and Vd are the amount of salinity

anomaly in the bottom coastal current and offshore

plume, respectively] varies with the parameters in-

vestigated in the numerical sensitivity analysis. In gen-

eral, there is a tendency for Vc/(Vc1Vd) to decrease

with increasing a, Q, and Cd and increase with in-

creasing f and Hc (Fig. 12). Overall, about 3%–23% of

the dense water generated in the coastal polynya flows

in the bottom coastal current, and this percentage cor-

relates inversely with the velocity ratio in (21) (Fig. 13a).

Even though only a relatively small fraction of the dense

water moves along the coast, it is important to recognize

the existence of the dense water bottom coastal current

generated by the polynya processes. The predicted

percentage may also be helpful for indirectly estimating

from observations the total amount of dense water

formed by a particular polynya event or the total off-

shore dense water transport. Figure 13b illustrates the

clear dependence of the ratio of the offshore and coastal

dense waters transport (Vd/Vc) to the ratio of the plume

velocities. Presumably, the transport in the narrow

bottom coastal current can bemeasuredmore easily and

reliably than the transport in the broad offshore dense

water plume. Therefore, given the ratio of the velocity

scalings and the empirical relationships in Fig. 13b, in

situ measurements of Vc could be used to assess the

amount of dense water in the offshore plume, Vd. Of

course, because of the uncertainties embedded in the

empirical relationship between Vd/Vc and judj/jucj, any
percentage error in the in situ Vc measurements would

be magnified in the Vd estimate, and the absolute error

range would be even larger since Vd � Vc. For instance,

for the scenario of Vd/Vc ’ 10, a 10% uncertainty in the

Vc measurement would lead to an uncertainty of about

39% in the Vd estimate if the empirical relationship

obtained from the quadratic fit (Fig. 13b) is used with

the assumed error bar of one rms error (RMSE).

4. Summary

This study combines analytical scaling analyses, nu-

merical simulations, and laboratory experiments to in-

vestigate the dispersal and fate of dense water formed in

a coastal polynya on a shallow continental shelf in the

FIG. 11. (a) judj and (b) jucjmeasured in the laboratory vs scalings in (7) and (10), respectively. Each type of symbol

represents comparisons obtained through varying one parameter as shown in the legend.Open symbols represent the

control experiments; gray lines are estimated error bars; solid lines are least squares fits to all points, and the slope,

intercept, and R2 of the fits are given.
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absence of ambient circulation, ambient stratification,

and surface stress forcing. Overall, the results of the

different methodologies largely agree with each other,

suggesting that the fundamental physics of the dense

water dispersal processes are captured by the scaling

analyses.

Both numerical and laboratory experiments show two

separate pathways for the bottom dispersal of the dense

water: a fraction of the dense water moves initially off-

shore down the slope and then turns right (looking

downslope), while another fraction flows along the coast

in the direction of Kelvin wave propagation. The forma-

tion of this latter transport pathway in a coastal polynya

environment has been seldom studied, and its dynamics

and significance are overlooked in the literature.

Scaling analysis based on the momentum balance in

the offshore dense water pathway shows that the ve-

locity of the offshore plume is proportional not only to

g 0a/f, the characteristic speed of a dense water current

on a sloping bottom derived by previous studies of dense

water overflows, but also to the ratio of the dense water

depth to total water depth, hd/Hi. The laboratory

sensitivity experiments confirm this relationship (Figs.

10 and 11). In the numerical setup, since the bottom

slope is very gentle as on most of the continental shelves

in the Arctic Ocean,Hi in the scaling can be replaced by

the water depth at the coastHc. Because the dense water

initially occupies the entire water column, we assume

the thickness of the offshore plume, hd, to be propor-

tional toHc. Hence, the velocity depends solely on g 0a/f,
which translates to a scale of b2/3aQ2/3/(fHc) using the

external control parameters of the polynya. This re-

lationship agrees with results of the numerical sensitivity

experiments (Figs. 8 and 9).

The dense water bottom coastal current is generated by

the baroclinic pressure gradient along the coastal wall and

can be described by two dynamical stages separated by the

transitional length scale: Lc ’ hc/(2Cd)5
ffiffiffiffiffiffiffiffiffi
g 0hc

p
h2c /(4n).

Before the current reaches the distance Lc (in the near

field of the source region), the viscous terms are small

and the nonlinear advection terms balance the pressure

gradient force. The speed of the bottom coastal current in

this stage is proportional to the reduced gravity wave

speed
ffiffiffiffiffiffiffiffiffi
g 0hc

p
. Limited by the size of the tank, bottom

FIG. 12. Variation of the fraction of salinity anomaly in the coastal current [Vc/(Vc 1 Vd)] at day 40 with respect to

different parameters. The open symbols represent the control simulation.

JUNE 2014 ZHANG AND CENEDESE 1579



coastal currents in the laboratory experiments all fall into

this category, and the sensitivity experiments confirm the

velocity scaling. In the far field, after the current passes

Lc, bottom drag becomes the dominant force to balance

the pressure gradient, and the speed is proportional to

b2/9Q2/9H1/3
c /(C1/3

d t1/3). The numerically modeled bottom

coastal currents reflect this second stage dynamics, and

the results of the sensitivity simulations verify the velocity

scaling. As expected, some details in the scaling, numer-

ical, and laboratory results are different, which could be

caused by a number of factors, including the assumptions

made in the scaling analyses and the different methods of

supplying the dense water in the numerical and labora-

tory experiments.

The numerical simulations also suggest that the dense

water transport in the coastal pathway is relatively low,

3%–23% of the total transport, and that the percentage

depends strongly on the ratio of the offshore and coastal

plume velocities given by (21) (Fig. 13). Therefore, the

velocity ratio could be used to indirectly estimate the

total amount of dense water formed in a coastal polynya

from in situ measurements of the relatively narrow

bottom coastal current. Of course, considerable un-

certainties will be associated with this type of estimate

because of the large ratio of the offshore to coastal

transports and uncertainties in the empirical relation-

ship between transport and velocity ratios and also in the

measurements. Moreover, a number of factors, for ex-

ample, winds, irregular topography, ambient current,

ambient stratification, and the vertical shape of the ice

edge (floating land-fasted ice instead of grounding ice

edge), which are all neglected in this study, can influence

the dynamics and the relationship between the transport

and velocity ratio. To what extent these factors will

change the scaled relationships remains to be studied.
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