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ABSTRACT

The representation of the El Nino-Southern Oscillation (ENSO) under historical forcing and future pro-
jections is analyzed in 34 models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Most
models realistically simulate the observed intensity and location of maximum sea surface temperature (SST)
anomalies during ENSO events. However, there exist systematic biases in the westward extent of ENSO-
related SST anomalies, driven by unrealistic westward displacement and enhancement of the equatorial wind
stress in the western Pacific. Almost all CMIP5 models capture the observed asymmetry in magnitude be-
tween the warm and cold events (i.e., El Ninos are stronger than La Ninas) and between the two types of
El Nifios: that is, cold tongue (CT) El Ninos are stronger than warm pool (WP) El Ninos. However, most
models fail to reproduce the asymmetry between the two types of La Ninas, with CT stronger than WP events,
which is opposite to observations. Most models capture the observed peak in ENSO amplitude around
December; however, the seasonal evolution of ENSO has a large range of behavior across the models. The
CMIP5 models generally reproduce the duration of CT El Ninos but have biases in the evolution of the other
types of events. The evolution of WP El Ninos suggests that the decay of this event occurs through heat
content discharge in the models rather than the advection of SST via anomalous zonal currents, as seems to
occur in observations. No consistent changes are seen across the models in the location and magnitude of
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maximum SST anomalies, frequency, or temporal evolution of these events in a warmer world.

1. Introduction

The environmental and societal impacts of the El Nino—
Southern Oscillation (ENSO) set against a gradual
warming of the background climate has prompted con-
certed efforts to improve our understanding of ENSO
behavior. Our capacity to predict the onset and dura-
tion of ENSO events has benefitted from sustained
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observing systems (e.g., McPhaden et al. 1998) coupled
with developments in ENSO theories (e.g., Jin 1997), as
well as ongoing improvements of climate models such
as those facilitated by the Climate Model Intercomparison
Project (CMIP). In the present study, we assess the fi-
delity of climate models submitted to CMIP phase 5
(CMIP5) in simulating the interannual SST variability
in the tropical Pacific that is largely associated with
ENSO and examine how this variability is projected to
change in the future.

Previous studies have shown that both atmospheric
and oceanic signatures of ENSO events are asymmetric
in intensity, frequency, duration, spatial distribution,
and in their large-scale atmospheric responses. For
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example, Hoerling et al. (1997) noted that the nonlinear
response in Northern Hemisphere precipitation and
atmospheric circulation to the warm and cold phases
of the Southern Oscillation can be attributed to non-
linearities in deep convection to SST. Burgers and
Stephenson (1999) reported a skewness in equatorial
eastern Pacific SST anomalies that has shown to be
related to the different air-sea feedback interactions
during the warm and cold ENSO phases (Kang and
Kug 2002; Frauen and Dommenget 2010). Other stud-
ies, on the other hand, attribute ENSO asymmetry to
nonlinear oceanic processes (e.g., An and Jin 2004; Su
et al. 2010). For instance, An and Jin attributed the
warm-cold amplitude asymmetry to a strong nonlinear
dynamic heating that enhances the warm events, as oc-
curred in the 1982/83 and 1997/98 events, and weakens
subsequent cold events.

The asymmetric characteristics of ENSO also mani-
fest in the location of the associated maximum SST
anomalies. Canonical El Nino events generally show
largest SST anomalies in the eastern Nino-3 region. In
contrast, La Nina anomalies tend to peak in the central
Pacific, within the Nino-4 region (e.g., Schopf and
Burgman 2006; Sun and Yu 2009). This spatial asym-
metry may be partly related to the nonlinear wind stress
response to SST anomalies associated with opposite
phases of ENSO (e.g., Kang and Kug 2002; Frauen and
Dommenget 2010; Dommenget et al. 2013).

The transition between ENSO phases occurs via a
negative feedback involving ocean wave dynamics (e.g.,
Battisti and Hirst 1989; Suarez and Schopf 1988; Jin
1997). In a zonally integrated sense, the action of in-
ternal waves leads to a buildup of ocean heat content in
the equatorial Pacific as El Nino develops and is sub-
sequently drained off the equator, leading to a delayed
negative feedback and phase reversal to La Nina con-
ditions (Jin 1997). This so-called recharge-oscillator
paradigm has been confirmed by observations (Meinen
and McPhaden 2000) but can only explain the linear
component of ENSO transitions (McGregor et al. 2013).
In reality, the warm and cold event transition is not
regular and ENSO events are also asymmetric in dura-
tion (e.g., Larkin and Harrison 2002; McPhaden and
Zhang 2009; Okumura and Deser 2010; Ohba and Ueda
2009; Ohba et al. 2010; Okumura et al. 2011). Warm SST
anomalies associated with strong El Nino events tend to
decay relatively quickly after their peak in December
and are followed by cold SST anomalies in the equato-
rial Pacific. On the other hand, strong La Nina events
often persist through the following year.

In addition to the nonlinear duration between the
Pacific warm and cold events, asymmetric behavior is
also observed between strong and weak events of the
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same ENSO phase. Previous studies have identified
inter-El Nino variations when the maximum SST
anomalies concentrate in the central rather than the
eastern Pacific. This central warming pattern appears as
the second mode of tropical Pacific SST variability in an
empirical orthogonal function (EOF) or rotated-EOF
analysis (Lian and Chen 2012). Some studies have pos-
tulated that the first two modes of variability in tropical
Pacific SST anomalies represent dynamically indepen-
dent processes (e.g., Ashok et al. 2007). Others, however,
argue that the central Pacific events can be considered
as a nonlinear manifestation of the canonical ENSO
(e.g., Trenberth and Smith 2009; Takahashi et al. 2011,
Dommenget et al. 2013; Johnson 2013). Whether or not
a separate mode to canonical ENSOs, these central Pa-
cific events have drawn considerable attention as they
have occurred more frequently in the past few decades
(e.g., Ashok et al. 2007; Lee and McPhaden 2010; Na et al.
2011).

The mechanisms that give rise to enhanced central
Pacific anomalies are still not fully understood. Ashok
et al. (2007) proposed that the recent weakening of
equatorial easterlies in the central Pacific and enhanced
easterlies to the east have decreased the zonal SST
gradient and flattened the thermocline, resulting in
a climate state more favorable for the evolution of the
central Pacific events. Choi et al. (2011, 2012) suggested
that decadal changes in climate can play an important
role in modulating the occurrence of El Nino with dif-
ferent warming signatures. It has been proposed that the
asymmetries between the cold and warm phases of the
Southern Oscillation may produce a nonzero residual
effect on the time-mean state of the tropical Pacific that
in turn modulates ENSO amplitudes (Yeh and Kirtman
2004; Rodgers et al. 2004). Sun and Yu (2009) suggested
that the spatial asymmetries between El Nino and
La Nina lead to an ENSO cycle that shifts the tropical
Pacific mean climate from a state favorable for strong
ENSO activity to a state that sustains weak ENSO ac-
tivity, a mechanism that has been reproduced by 3 of 19
CMIP3 models according to Yu and Kim (2011).

Different names have been ascribed to central Pacific
ENSO events, despite referring to essentially the same
SST structure. We adopt the ““cold tongue” (CT) and
“warm pool” (WP) terminologies to refer to ENSO
events with maximum SST anomalies located in the
eastern and central equatorial Pacific, respectively: CT
El Nino, CT La Nina, WP El Nino, and WP La Nina.
Regardless of whether the CT and WP events are in-
dependent modes of variability or a manifestation of
ENSO nonlinearity, observations demonstrate that
such spatial asymmetries are part of the interannual
variability of the region and that distinct atmospheric
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teleconnections and associated climate impacts arise
when SST peaks in the central or eastern Pacific (e.g.,
Ashok et al. 2007; Weng et al. 2007; Taschetto and
England 2009; Taschetto et al. 2009, 2010). As such, it is
important that climate models simulate the character-
istics of these different ENSO flavors.

Despite significant advances in climate models, sim-
ulating realistic ENSO characteristics is still a major
challenge (Guilyardi et al. 2009b), largely associated
with the difficulty in representing multiple competing
feedback processes (e.g., Collins et al. 2010; Kim and
Jin 2011; Bellenger et al. 2013). Leloup et al. (2008)
assessed 23 CMIP3 models and concluded that the
majority of the models are not able to simulate
the location of maximum amplitude of warm and cold
events; only half can properly simulate ENSO onset,
and none can represent the correct termination phases
of either El Nino or La Nina. Nevertheless, climate
models have shown some improvements in simulating
ENSO-related SST variability and trends since CMIP3
(e.g., Yu and Kim 2010; Kim and Yu 2012; Bellenger
et al. 2013; Guilyardi et al. 2012; Yeh et al. 2012;
Jourdain et al. 2013).

The relatively short observational record available to
date means that understanding the dynamics behind WP
ENSO events, which have become more frequent in
recent decades, relies more on the use of climate models
(e.g., Dewitte et al. 2012). Sparse observational records
and the lack of a dynamical theory also imply uncer-
tainty in determining whether the recent increase in the
frequency of WP relative to CT El Nino can be attributed
to greenhouse warming (Wittenberg 2009; McPhaden
etal.2011; Newman et al. 2011; Yeh et al. 2011; Kim et al.
2012). Assessing how well the CMIP models capture
the observed temporal and spatial characteristics of
ENSO may help to clarify the dynamics underlying the
two types of ENSO as well as their future projections.
Here we use a large pool of available CMIP5 models
to provide a comprehensive assessment on their perfor-
mance in representing the two types of ENSO regarding
1) their spatial characteristics; 2) their associated atmo-
spheric, ocean surface, and subsurface properties; 3) their
evolution and seasonality; and 4) their projections in
a warmer climate scenario.

2. Models and methods
a. Observations and reanalysis data

The SST dataset used here is the Hadley Centre Sea
Ice and Sea Surface Temperature dataset version 1
(HadISST1) (Rayner et al. 2003). Wind stress data
are from the National Centers for Environmental
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Prediction—National Center for Atmospheric Research
(NCEP-NCAR) reanalysis (Kalnay et al. 1996). In this
study, we consider the period from December 1949 to
November 2012 for the SST and wind stress fields.
Subsurface ocean temperature data is from the Sim-
ple Ocean Data Assimilation (SODA version 2.1.6) re-
analysis (Carton and Giese 2008), covering the period
from December 1958 to November 2008. The upper-
ocean heat content accumulated in the top 300 m av-
eraged between 3°S and 3°N is used as a proxy for the
equatorial Pacific thermocline depth (Zebiak 1989).

b. CMIP5 models

We analyze outputs from 34 climate models taking part
in CMIPS that were used to inform the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment
Report (ARS). A summary of the climate models is
shown in Table 1.

We examine two scenarios in this study: 1) historical
simulations, which are integrations from around 1850 to
at least 2005 using realistic natural and anthropogenic
forcings, and 2) representative concentration pathway
8.5 (RCP8.5) simulations, which are subject to increas-
ing radiative forcing from the end of the historical sim-
ulation to 2100 when the radiative forcing reaches
~8.5Wm 2 The last 50 years of the twenty-first century
are analyzed in the RCP8.5 simulations. A description of
the CMIPS5 experiment design can be found in Taylor
et al. (2012).

¢. Methodology

For all variables, anomalies are calculated by removing
the long-term monthly climatology over the entire period
analyzed here. Time series of observations and sim-
ulations are then linearly detrended. When required,
3-month averages are calculated for the examination of
particular seasons: namely, December-February (DJF),
March-May (MAM), June-August (JJA), and September—
November (SON).

When a mean across all CMIP5 models is consid-
ered, the spatial fields are interpolated onto a common
1° X 1° grid for comparison with observations. Ensemble
members for individual models are averaged prior to
computing multimodel mean.

Where necessary, the estimate of the confidence levels
or spread across CMIP5 models is calculated via the
standard deviation among the models. The estimate of
significance levels is computed via null hypothesis using
a Student’s ¢ test at the 0.05 significance level.

The selection of ENSO years is based on the DJF
season, when observed events typically peak. Classi-
fying ENSO events in models can be challenging, as
models contain spatial SST biases. However, defining
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TABLE 1. (Continued)

Variables

Wind Subsurface

SST
HIST RCPS8.5 stress temperature Thermocline

Model

Institute, country

Model

acronym
NorESM1-M

Norwegian Climate Centre (NCC), Norway

Norwegian Earth System Model, version 1

(intermediate resolution)
Norwegian Earth System Model, version 1

NCC, Norway

NorESM1-ME

(intermediate resolution) with

interactive carbon cycle
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model-specific ENSO classifications to take into ac-
count model biases introduces subjective decisions. In
addition, allowing multiple ENSO classifications would
make model-observation intercomparison more diffi-
cult. As such, we adopt one common classification
based on the state of equatorial Pacific SST anomalies.
Even for observations, there is still no single method to
classify two types of the El Nino pattern (e.g., Ashok
et al. 2007; Yeh et al. 2009).

Here we adopt the method of Ham and Kug (2012) to
classify ENSO events. The normalized DJF-averaged
Nino indices are used as follows: An event is considered
a CT EI Nino if the Nino-3 index is greater than one
standard deviation and the averaged SST anomaly in the
Nino-3 region has a larger magnitude than the Nino-4
SST anomaly. An event is classified as WP El Nino if the
Nino-4 index is above one standard deviation and the
magnitude of the SST anomaly in the Nino-4 region is
larger than in Nino-3. The opposite is used for La Nina
events. Table 2 summarizes the ENSO classification for
the purpose of this paper and shows the years of dif-
ferent types of ENSO events from the observations.
ENSO events are selected for individual members of
each CMIP5 model when more than one ensemble
simulation is available.

Our analysis simplifies ENSO spatial pattern into CT
and WP categories. This does not imply that these dif-
ferent ENSO flavors are related to distinct dynamical
modes or that ENSO patterns are strictly bimodal. This
is just a convenient way to examine differences in sim-
ulated ENSO characteristics (compared to the obser-
vations) when the primary variability is shifted more to
the east or west.

To provide quantitative measures of the spatial struc-
ture of different ENSO flavors, we calculate the magni-
tude and location of the maximum SST anomaly (SSTA)
along the equator, as well as the westward extent of the
warm or cold anomalies. A model is considered to over-
estimate or underestimate the magnitude of El Nino or
La Nina events if [SSTA|noy, exceeds (|SSTA| i veq T

model

oSSTA ), where [SSTA[R® | and [SSTA| e veq are the
maximum magnitude of the SST anomaly composites
along the equator (meridionally averaged between 5°S
and 5°N) for the models and observations, respectively,
and oS3TA is the standard deviation of the maximum
SST anomaly over all events included in the observa-
tional composite. Similarly, a model is considered to
have a “‘realistic’ representation of the ENSO position
if the longitude of the maximum SST anomaly falls
within one standard deviation of the mean longitude of
the observed composite events. The metric for the
westward extent of the SST anomalies is defined as the

most westward longitude where SSTA drops to half of
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TABLE 2. Summary of criteria employed for the ENSO classification for observations and CMIP5 models, using the standardized DJF
Nino-3 and Nino-4 indices. Years refer to January—February. For further details see text.

Event Criteria Years selected in observations
Cold tongue El Nino Nino-3 > 1.0 and Nino-3 > Nino-4 1966, 1973, 1983, 1987, 1992, and 1998
Warm pool El Nino Nino-4 > 1.0 and Nino-4 > Nino-3 1958, 1969, 1988, 1995, 2003, and 2010
Cold tongue La Nina Nino-3 < —1.0 and Nino-3 < Nino-4 1950 and 1985

Warm pool La Nina Nino-4 < —1.0 and Nino-4 < Nino-3

1956, 1971, 1974, 1976, 1989, 1999, 2000, 2001, 2008, 2011, and 2012

its maximum value. Note that, although this metric can
be subjective, it is not restrictive in the sense that it
accounts for spatial biases in each model in terms of the
magnitude of ENSO SST.

3. Results
a. Number of ENSO events

Figure 1 shows the number of events for each ENSO
type based on the historical simulations for each model,

the multimodel mean, and observations. To facilitate
comparison between models and with observations, the
number of events are shown per 100 years. For most of
the models, the number of El Nino events is comparable
to the observations. For instance, there is a median of 11
CT EI Nino events (100yr) " in historical simulations
versus approximately 10 events (100yr) ' in observa-
tions. There are 10 WP El Nifio (100yr) ! in both sim-
ulations and observations. The number of La Nina
events is not as well captured as for El Nino: there are 12
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FIG. 1. Number of ENSO events (100yr) ! in the historical simulations for each model, multimodel mean, and
observations. Number of events is averaged for models containing more than one member. (top) Warm events: CT
El Nino (CTEN) represented by black circles and WP El Nino (WPEN) by white squares. (bottom) Cold events: CT
La Nina (CTLN) represented as black circles and WP La Nina (WPLN) as white squares. Bars in the multimodel

mean indicate the interquartile range.
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FIG. 2. Composite of SST anomalies (°C) during the December—February season for ENSO events. (left) Observations from HadISST
based on the period December 1949-November 2012. (center) Multimodel mean based on 34 CMIPS models. Areas within the thin gray
line are statistically significant across the observed events and the composited events of CMIP5 models at the 0.05 significance level based
on a Student’s ¢ test. (right) The December-February SST anomalies averaged over 5°S-5°N. The brown line represents the multimodel
mean, while the green line represents observations. The light brown shading indicates the standard deviation of simulated composites, an

estimate of the spread among CMIP5 models.

WP La Niiia events (100yr) " in simulations versus 17
events (100yr)~' in observations, and the median
number of simulated CT La Nina events (100yr) " is 8,
while the observed number is only 3 events (100yr) ..
Despite overestimating the number of CT La Ninas and
underestimating the number of WP La Ninas, the ob-
served asymmetry in the number of cold events is rep-
resented in most of the models, with more WP than CT
La Nina events.

The number of observed ENSO events shown in Fig. 1
suggests that the separation of cold events into CT and
WP La Ninas is more difficult than for warm events,
agreeing with previous studies (e.g., Kug and Ham
2011). However, while there is a clear preference for WP
to CT La Nina occurrence in observations, some CMIP5
models simulate similar numbers of the two types of cold
events (e.g., CSIRO Mk3.6.0, CanESM2, HadCM3, the
HadGEM?2 models, the IPSL models, and MIROC-
ESM). Only approximately one-third of the CMIPS
models simulate the observed preference for WP La Nina
events: that is, CCSM4, the CESM models, CMCC-CM,
CNRM-CMS, the FGOALS models, FIO-ESM, GFDL
CM3, GFDL-ESM2M, GISS-E2-R, and MIROCS.

b. Spatial pattern of ENSO

The multimodel composite of simulated SST anoma-
lies during austral summer (DJF) for both El Nino and
La Nina events (Fig. 2, center) shows a number of fea-
tures in common with the observations (Fig. 2, left). A
quantification of the magnitude and location of the
maximum SST anomaly as well as the westward extent
of the ENSO pattern are presented in Fig. 3 for each
model, the multimodel mean, and observations. The
numbers of models that underestimate, overestimate, or
“realistically”’ (see methods) represent the ENSO types
are summarized in Table 3.

Most of the models simulate the magnitude of CT El
Nino anomalies in the equatorial Pacific within the ob-
servational range. The magnitude of CT El Nino events
is overestimated in only two models and underestimated
in 11 models. This does not necessarily imply biases in
the location or extension of SST anomalies during CT El
Nino. In fact, the majority of the models (29 out of 34
models), regardless of the magnitude of maximum SST
anomalies, simulate a realistic maximum SST anomaly
position during CT El Nino events between 112° and
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FIG. 3. (a) Magnitude and (b) location of the maximum SST anomaly for each ENSO type. (c) Westward
extension of SST anomaly estimated as the location of half of the simulated maximum SST anomaly. Error bars
(also represented as dashed lines) in HadISST show the 90% confidence interval for the mean of observed
events. Error bars in the multimodel mean (MMM) represent the 90% confidence intervals for the mean of
composited events across the CMIP5 models. The mean and associated error of each type of ENSO event are
specified with the same color as in the legend for the MMM and observations. Models within the dashed lines are
considered to have a realistic simulation of the metric.
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TABLE 3. Number of models out of 34 that underestimate (] ), overestimate (1), and reproduce “realistic” (') types of ENSO. Largest
numbers are in boldface. See methodology for explanation.

CT El Nino WP EI Nino CT La Nina WP La Nina
! ! 1 1 ! T | 4 1 ! ’ 1
Magnitude of max SST anomaly 11 21 2 10 18 6 0 23 11 8 26 0
Location of max SST anomaly 0 29 5 10 6 18 0 34 0 4 30 0
Extension of the western 16 14 4 24 9 1 0 34 0 28 2 4

0.5 times max magnitude

146°W (Table 3). However, the majority of the models
have an extension bias with the warm pattern extending
too far to the west. On the other hand, only four models
reveal a CT El Nino pattern with an eastward bias:
namely, FIO-ESM and the HadGEM2 models.

The bias in the westward extension and magnitude of
SST anomalies is more severe for WP El Nino com-
posites. In the observations the core of the warming is
relatively narrow in the zonal direction (Fig. 2b), while
the simulations reveal an elongated pattern with stron-
ger anomalies (Fig. 2j). Only nine CMIP5 models can
represent the relatively confined warming in the central
Pacific (Figs. 2f,b, 3c) and only six of the models are able
to simulate the maximum SST anomalies within the
observed range (159°-165°W). Despite this, 18 out of 34

NCEP/NCAR Reanalysis

Multi-Model Mean (CMIP5) ——

CMIP5 models simulate the magnitude of WP El Nino
events within the observational range.

Despite biases in the magnitude and spatial extent
of SST anomalies, all of the models (except CSIRO
Mk3.6.0) reproduce the observed asymmetry between
CT and WP warm events: they simulate relatively strong
warm events in the east and relatively weak warm events
in the west (Fig. 3a). The exception is the CSIRO
Mk3.6.0 model that fails to capture the location and
magnitude of maximum SST anomalies during WP EI
Nino events and simulates weaker SST conditions dur-
ing CT instead of WP El Nino (i.e., the asymmetry is in
the opposite sense to the observations).

While CMIP5 models simulate the observed asym-
metry in magnitude between the two types of warm
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F1G. 4. Composite of wind stress anomalies (zonal component shaded) during the December—February season for ENSO events.
Maximum vector length is 0.08 Pa. (left) NCEP-NCAR reanalysis. (center) Multimodel mean based on 20 CMIP5 models. Areas within
the thin gray line are statistically significant across the observed events and the composited events of CMIP5 models at the 0.05 significance
level based on a Student’s ¢ test. (right) The December-February zonal wind stress anomalies averaged over 3°S-3°N. The red (blue) line
represents the multimodel mean (reanalysis). A 15° window running mean was applied to the curves. The light red shade indicates the
standard deviation of simulated composites, an estimate of the spread among CMIP5 models.
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FIG. 5. Multimodel-mean ocean temperature anomalies (°C, shaded) averaged across
3°S-3°N along the Pacific during the December—February season for ENSO events: (a) cold
tongue El Nino, (b) warm pool El Nino, (c) cold tongue La Nina, and (d) warm pool La Nina.
The difference between the multimodel mean and observations are contoured in 0.3°C in-
tervals. Red (blue) contours are positive (negative) differences. The multimodel mean is based

on 23 CMIPS5 models.

events, this is not the case for the cold events. In contrast
to the observations, 22 out of 34 models simulate
stronger CT events than WP La Nina (Figs. 2g,h, 3a).
Nevertheless, the majority of the models (23 out of 34)
are able to simulate CT La Ninas with a similar magni-
tude as in the observations (Fig. 2k). In addition, the
location and westward extension of CT La Nina events
are within the observational range for most CMIPS5
models. It is important to note that, due to the small
sample of observed CT La Nina events, the comparison
with observations is limited.

There is a systematic bias in the extension of WP La
Nina events, with 28 out of 34 models having cold
anomalies that extend farther west than in the obser-
vations. The bias in intensity and spatial structure of cold
events is reflected in the multimodel mean with mini-
mum SST anomaly of —1.4°C at 122°W for CT La Nina
(Figs. 2g,k) and —1.3°C at 153°W for WP La Nina (Figs.
2h,l) compared with —1.1°C at 132°W (Figs. 2c,k) and
—1.5°C at 152°W (Figs. 2d.1) for observed CT La Nina
and WP La Nina, respectively.

The pattern of SST changes during ENSO events is
intimately tied to the changes in surface wind stress. As
a result we examine the composite DJF wind stress
anomalies for the different categories of ENSO (Fig. 4).
The maximum westerly (easterly) wind stress anomalies in

the central South Pacific during CT El Nino (La Nina)
events are reproduced in the multimodel mean (Figs. 4a.e,i
and 4c,g k, respectively). Notable biases are, however,
apparent. For instance, the CT ENSO in the models is
associated with overall weaker than observed zonal
wind stress anomalies (Figs. 4a,e,i and 4c,g k), consistent
with the weaker subsurface temperature and heat con-
tent anomalies in Figs. 5a,c and 6a,c. Large biases are
found during WP ENSO, where zonal wind stress
anomalies extend and peak in the far western Pacific
just to the east of Papua New Guinea with a larger
magnitude compared to reanalysis (Figs. 4b,f and 4d,h).
The maximum wind stress anomalies are located around
145°E (multimodel mean) in the WP ENSO compared to
180° in the reanalysis (Figs. 4j and 41).

The overestimated zonal wind stress anomalies over
the western Pacific would generate excessive upwelling
(downwelling) during WP El Nino (WP La Nina). This
is consistent with the composites of subsurface temper-
ature anomalies along the equator shown in Fig. 5b
(Fig. 5d), which indicate colder (warmer) subsurface
temperature in the western Pacific at the depth of the
thermocline compared to reanalysis. Concurrently, the
overly strong westerly (easterly) wind anomalies tend
to excessively suppress (enhance) the climatological
equatorial upwelling during WP El Nino (WP La Nina),
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FI1G. 6. Composite of ocean heat content anomalies averaged across 3°S-3°N along the Pacific
and accumulated in the top 300 m during the December-February season for ENSO events:
(a) cold tongue El Nino, (b) warm pool El Nino, (c) cold tongue La Nina, and (d) warm pool La
Nina. The light gray curve is the multimodel mean heat content and the dark gray curve rep-
resents the SODA reanalysis. Light gray shade indicates the standard deviation of simulated
composites, an estimate of the spread among CMIPS5 models. The curves were smoothed with
an 11° longitude point running mean. The multimodel mean is based on 23 CMIP5 models.

resulting in stronger warming (cooling) of the mixed
layer over the west-central Pacific (Figs. 5b,d). The dy-
namical effect of the winds associated with WP El Nino
is to shoal the thermocline, which in turn enhances
stratification over the central Pacific, leading to cold
subsurface and warm mixed layer biases (Fig. 6b). The
reverse holds for WP La Nina (Fig. 6d). The over-
estimated wind stress in the western Pacific can also
lead to a strengthened zonal current during WP events.
Although the thermocline in the western Pacific is rel-
atively deep, the zonal temperature gradients are gen-
erally strong, which could generate an efficient zonal
advective feedback to produce excessive warming (or
cooling) in that region during WP El Ninos (La Ninas).

These wind stress biases allow the warm water to
spread from the far west to the eastern equatorial Pacific
during WP El Nino, as shown in the composite of sub-
surface temperature in Fig. 5b. In addition, the oppo-
site pattern is seen for WP La Nina events (Fig. 5d)
when biases in zonal wind stress anomalies intensify
the easterlies too far west in the equatorial Pacific, al-
lowing an unrealistic extension of cold waters in the
equatorial Pacific. The response in the ocean surface is

such that the associated SST anomaly is too intense in
the western Pacific during WP La Nina events (Fig. 21).

c. Temporal evolution of ENSO

The temporal evolution of SST, wind stress, and heat
content anomalies associated with the four categories of
ENSO are shown in Figs. 7-9 for the observations, re-
analysis, and CMIP5 multimodel mean. The evolution
of SST anomalies during ENSO events for individual
models is presented in Fig. 10, where SST anomalies are
averaged across the equatorial Pacific from 5°S to 5°N
and from 150°E to 80°W. In Fig. 10, the evolution pat-
terns are ordered according to the models that exhibit
the highest to lowest correlations with the observed SST
evolution.

In general the CMIPS models correctly reproduce the
timing of seasonal peaks in SST anomalies for all ENSO
types (Figs. 9 and 10). However, there is a range of be-
havior in terms of duration of ENSO events and tran-
sition from warm to cold or neutral SST conditions
(and vice versa). Here we describe the features associ-
ated with ENSO evolution separately for each type of
event.
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F1G. 7. Hovmoeller diagram of the SST (°C, shaded) and wind stress (Pa, vectors) anomalies
averaged between 5°S and 5°N across the Pacific Ocean during ENSO events. Maximum vector
length is 0.05Pa. (left) Observations from HadISST dataset and reanalysis from NCEP-
NCAR. (center) Multimodel mean of 20 CMIP5 models. (right) Evolution of zonal wind stress
anomalies (Pa) averaged between 5°S and 5°N, 120°E and 110°W. The red (blue) line is the
multimodel mean (NCEP-NCAR reanalysis), lines smoothed with an 11-month running mean.
The light red area represents the standard deviation of the multimodel mean as an estimate of
the spread across the models. (a),(e),(i) Cold tongue El Nino; (b),(f),(j) warm pool El Nino;
(¢),(g),(k) cold tongue La Nina; and (d),(h),(1) warm pool La Nina.

1) CoLD TONGUE EL NINO positive in February—March, peak in December, and
vanish in October of the following year (Fig. 9a). As

Overall, the multimodel mean evolution of CT EINino  previously documented in the literature (e.g., Okumura
events is well represented compared to observations. and Deser 2010), CT El Nino events are generally fol-
The SST anomalies in the equatorial Pacific become lowed by a La Nina event that starts in the following
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FIG. 8. Hovmoeller diagram of the ocean heat content (°C,
shaded) and zonal wind stress (Pa, contours) anomalies averaged
between 3°S and 3°N across the equatorial Pacific Ocean during
ENSO events: (a),(e) cold tongue El Nino; (b),(f) warm pool El
Nino; (c),(g) cold tongue La Nifia; and (d),(h) warm pool La Nina.
Brown (green) contours are westerly (easterly) anomalies, plotted
at 0.003-Pa intervals. Multimodel mean of 16 CMIPS models. An
11-month window running mean was applied to the data.

year but peaks in December, 2yr after the maximum
warming (Figs. 7a, 9a). CT El Ninos are also generally
preceded by cold anomalies 1 yr earlier. The evolution
of observed CT El Nino events shown here is consistent
with previous results based on the extended recon-
structed SST, version 3 (ERSST.v3) data (Hu et al. 2012,
their Fig. 3). The models exhibit this observed evolution
with a wide range of fidelity. While some of the models
tend to simulate CT El Nino events that are too long
(lasting longer than 2 yr; e.g., GFDL-ESM2M, MIROCS,
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and MPI-ESM-LR), some exhibit a rapid transition to a
strong La Nina with a seasonal cycle that is more ex-
treme than in the observations [CCSM4, CESM1
(CAMS5), CESM1 (FASTCHEM), CESM1 (WACCM),
FIO-ESM, GFDL CM3, GFDL-ESM2M, and MIROCS;
Fig. 10a]. Conversely, some models fail to simulate
the transition from warm to cold events altogether
(ACCESS1.0, IPSL-CM5A-LR, MIROC-ESM, MPI-
ESM-MR, HadGEM2-AO, and INM-CM4.0).

The simulated CT EI Ninos are preceded and fol-
lowed by much weaker than observed La Ninas (Figs. 7e
and 7a). That the weak La Nina following a CT El Nino
occurs 1yr earlier than observed is apparently associ-
ated with the more rapid thermocline adjustment in the
CMIP5 models (Figs. 8a,e), as indicated by the more
rapid transition of the basinwide wind anomalies from
westerly to easterly at the peak of El Nino (Fig. 7i), as
well as the narrower meridional extent of the zonal
winds compared to NCEP reanalysis (Figs. 4a,e). A
narrower meridional extent of ENSO-related zonal wind
anomalies would tend to generate faster off-equatorial
Rossby waves, thus a more rapid phase transition
(Kirtman 1997), which is a bias also seen in CMIP3
models (Capotondi et al. 20006).

2) WARM POOL EL NINO

The multimodel mean for the WP EI Nino evolution
captures the correct initiation and peak of SST anoma-
lies in the central-western equatorial Pacific (Fig. 7f),
with SST anomalies becoming positive around October
and peaking in December of the following year (Fig. 9b).
However, in most of the models, the SST anomalies
associated with the simulated WP El Nino last longer
(4 months longer in the multimodel mean, Fig. 9b) than
observed events (Figs. 7b,f,j). For example, CanESM2
and HadCM3 simulate overly strong and prolonged WP
El Nino events, followed by slightly cold anomalies in
the following year (Fig. 10b). CCSM4, CESM1 (CAMS),
CESM1 (FASTCHEM), GFDL-ESM2M, IPSL-CM5B-LR,
and MIROCS simulate prolonged warm SST anomalies
in the Pacific, followed by strong cold anomalies 2 yr
after the peak of WP El Nino events (Fig. 10b). A few
models (MIROC-ESM and MPI-ESM-LR) represent
WP EI Nino with a much longer duration compared to
observations and do not show a transition to SST
anomalies of opposite sign either before or after the
peak of the event (Fig. 10b).

Overall, the CMIP5 models simulate similar durations
for WP and CT EIl Nino events. In observations, how-
ever, CT El Ninos tend to last longer than WP El Ninos
(Figs. 7a,b) (Hu et al. 2012). This failure can be related
to biases in the wind stress anomaly field in the western
Pacific. Stronger than observed anomalous zonal wind
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FIG. 9. Evolution of averaged SST anomalies averaged across the equatorial Pacific (5°S-5°N, 150°E-80°W):
observations (black curve); multimodel mean of historical simulations (blue curve); and the multimodel mean of
RCP8.5 scenario (red curve). Shading indicates the standard deviation of the multimodel mean for the historical
(blue) and RCP8.5 (red) simulations. Composite for (a) cold tongue El Nino, (b) warm pool El Nino, (c) cold

tongue La Nina, and (d) warm pool La Nina events.

stress is seen in the western Pacific approximately two
seasons before the peak of the WP El Nino and lasts
a couple of months after its mature phase (Figs. 7b.f).
This results in a shallower than observed thermocline in
the west during the austral summer season (Fig. 8b). It is
currently thought that the spatial structure of WP El
Nino does not favor a discharge process of the equatorial
heat content that is efficient enough to trigger a cold
event (Kug et al. 2009), which contrasts with CT El Nino
events. Instead, the decay of WP El Nino is thought to be
driven by zonal advection of mean SST gradients by
anomalous zonal currents. However, the cold condition
following the warm events and the eastward propagating
negative thermocline anomalies in the multimodel mean
(Fig. 8f) suggest that thermocline-related processes in-
fluence the evolution of WP El Nino in CMIP5 models
to some degree. This is further supported by the south-
ward shift of westerly anomalies at the peak of the simu-
lated WP El Ninos (marked by northerly anomalies across
the equator in Fig. 4f). This feature, which is clear in CT

but not WP El Ninos in observations (Figs. 4a,b), is asso-
ciated with heat content discharge (McGregor et al. 2012).

3) LA NINA

The temporal evolution of La Nina events simulated
by CMIPS is remarkably similar between CT and WP
events (Figs. 9c,d, 10c,d). Overall, the CMIPS5 models
simulate the peak of La Nina events at the correct season;
however, the timing of the start of CT events is biased
compared to observations (Figs. 9c, 10c). The multimodel
mean evolution of CT La Nina shows a negative equa-
torial Pacific SST anomaly starting in April, that is,
7 months later than the observations (Figs. 7g.c, 9c),
peaking correctly around January, and reaching neutral
conditions in April of the following year (Fig. 9c).

In observations, CT La Nina events are preceded by
warm SST conditions in the equatorial Pacific 2 yr be-
fore their peak (Figs. 7c, 9¢c, and 10c). CESM1 (CAMS)
is the only model that correctly simulates the timing and
magnitude of this warm event prior to CT La Nina
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(Fig. 10c). In contrast, the CT La Nina events simulated
by most of the CMIP5 models are preceded by a warm-
ing in the previous year (Figs. 7g, 8¢, and 9c), particu-
larly in CCSM4, CESM1 (FASTCHEM), CESM1
(WACCM), FIO-ESM, GFDL CM3, GFDL-ESM2M,
HadCM3, NorESM1-M, and NorESM1-ME (Fig. 10c).
It is important to note that a comparison of CT La Ninas
between CMIP5 models and observations should be
treated with caution given the small sample of observed
events in the past 50 years.

Most of the models realistically simulate the timing
of the initiation of WP La Nina events, with negative
SST anomalies in the equatorial Pacific starting around
March (Fig. 9d). However, most of the CMIP5 models
do not reproduce the cold SST anomalies that last
throughout the following year as in the observations
(Figs. 7d,h, 8d,h), except CESM-CAMS (Fig. 10d). In-
stead, the simulated multimodel mean WP La Nina
events terminate 6 months earlier (Figs. 7h, 8h). The
peak of observed and simulated WP La Nina events
occurs in December and is preceded only by weak warm
anomalies (Figs. 7d,h). Exceptions are GFDL-ESM2M
and MIROCS that simulate overly strong positive SST
anomalies 2 yr before the peak of the WP cold event in
the central Pacific (Fig. 10d).

The initiation timing of the zonal wind stress anomaly in
the central equatorial Pacific is well captured in the mul-
timodel mean (Fig. 71). Unrealistically strong wind stress

anomalies appear in the western Pacific (Fig. 7h), favoring
a SST pattern that extends westward along the equator, as
previously discussed. Additionally, the simulated wind
stress anomaly persists throughout the year, resulting in
a rapid thermocline adjustment (Fig. 8h) and an early
termination of WP La Nina events in the CMIP5 models.

d. Seasonality of ENSO

Some of the biases seen in the evolution of warm and
cold events may be related to an incorrect simulation of
the seasonality of ENSO. Figure 11 displays the stan-
dard deviation of Nino indices for each model and ob-
servations. In general, most of the models show good
fidelity in the timing and amplitude of SST variability in
the central equatorial Pacific. Twenty-seven out of 34
CMIP5 models realistically represent the maximum
amplitude of ENSO during November—January in the
Nino-3.4 region (Fig. 11b). Greater disagreement is ev-
ident in the seasonality of ENSO in the eastern and
western part of the tropical Pacific Ocean. For instance,
only 13 out of 34 models capture the correct timing
of maximum variability in the Nino-3 region. The dis-
crepancies in the timing of the events among the models
are reflected in the notably weaker multimodel mean
ENSO seasonality compared to observations.

GFDL-ESM2M, GFDL CM3, and ACCESS1.3 ex-
hibit maximum variability that is 2 months late for the
Nino-3.4 region compared to observations, and the
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mate of the spread among CMIP5 models of each scenario. Based on 27 CMIP5 models.

BCC-CSM1.1 is 3 months too early. This phase bias is
even more extreme in some models, in particular IPSL-
CMSA-MR, IPSL-CMSA-LR, and CSIRO Mk3.6.0,
where the maximum variability occurs approximately
6 months after the observed peak of ENSO. In addition
to representing ENSO events in the wrong season, the
IPSL-CMS5A-MR model has very weak seasonality, which
is also true for FIO-ESM, MPI-ESM-LR, MPI-ESM-MR,
IPSL-CM5B-LR, and CMCC-CM, although the ENSO
indices in these models tend to peak in the correct
season. These results are consistent with Bellenger
et al. (2013).

As shown in this analysis, the substantial spread in the
seasonal peak of warm and cold events compared to ob-
servations suggests that ENSO timing is one of the aspects
requiring improvement in future CMIP simulations.

4. Future projections

Here we analyze how the different types of ENSO
events may change in the future as projected by 27

CMIP5 models that had archived RCP8.5 simulations at
the time of writing. Figure 12 shows the multimodel
mean difference in equatorial Pacific SST anomalies
between the RCP8.5 and historical simulations for each
type of event. For the CT El Ninos, the multimodel
mean shows significant cooling in the eastern South
Pacific and western Pacific but a warming in the eastern
North Pacific (Fig. 12a). The WP El Ninos reveal
a slight warming in the central-west equatorial Pacific
and cooling on both sides of the equator, suggesting
a more confined warming in the future scenario than
over the historical period (Fig. 12b). The CT La Nina
changes exhibit cooling in the west and warming in the
east equatorial Pacific (Fig. 12c). The WP La Nina
pattern suggests strengthening of the cold events in a
warmer scenario (Fig. 12d). However, these future
changes in the amplitude of ENSO events are overall
small and not consistent across the models. Analysis of
the spatial metrics shown in Fig. 3 reveals no clear
change in the multimodel mean magnitude or location
of maximum SST anomaly. The westward extent of
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ENSO also does not show significant changes in the
future projections, except for CT La Nina events that
extend 15° westward on average, which is consistent
with the cooling around the date line shown in Fig. 12c.

The change in the amplitude of SST anomalies is also
quantified in Fig. 13 via the difference between the
standard deviation of Nino indices from the historical
period to the RCP8.5 scenario. There is little agreement
in the projections of Nino indices across the models,
indicating that the changes derived for the multimodel
mean (Fig. 12) are not statistically significant. Our
analysis based on 27 CMIP5 models does not reveal any
enhancement of WP to CT ENSO intensity from

historical to RCP8.5 scenario (Fig. 13d). This contradicts
the findings of Kim and Yu (2012), who reported
increased WP to CT intensity ratio from historical to
RCPA4.5 scenario using a smaller set of CMIP5 models. In
particular, the Nino-4 to Nino-3 ratio averaged for 16 out
of 20 models in common with Kim and Yu (2012) exhibits
an 1.3% increase from the historical period to the RCP8.5
simulation; while the ratio averaged for their ‘“7 models
that best represent CT and WP ENSO” (see asterisks in
Fig. 13) reveals a decrease of 0.9%; however, both
numbers are nonsignificant. It is also important to note
that Kim and Yu (2012) analyze RCP4.5 simulations
while we have assessed the RCP8.5 scenario.
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When individual models are considered, the WP to CT
ENSO asymmetry in regard to intensity can show signifi-
cant changes: for instance, there is a robust increase in the
Nino-4/Nino-3 ratio for all 10 members of the CSIRO
MKk3.6.0 model, 5 members of the CanESM2 model, and 3
members of the MIROCS model. Our results support the
findings of Stevenson (2012), who found no robust change
in the multimodel mean SST difference between the Nino-
4 and Nino-3.4 regions from twentieth century to RCP4.5,
except when individual models are examined: that is, 4 of
the 11 CMIP5 models containing more than three mem-
bers reveal statistically significant changes. This shows
the importance of considering large ensembles when ex-
amining the robustness of ENSO projections.

An evaluation of the frequency of ENSO events from
historical to RCP8.5 scenarios shows no significant result
(Fig. 14). The evolution of ENSO events also exhibits
little change in the future. On average, the timing of the
initiation, peak, and termination of the Pacific events
show similar behavior in the RCP8.5 scenario compared
to the historical period (Fig. 9b, red and blue curves).

5. Discussion and conclusions

Now as in the past there remain substantial problems
in the realistic simulation of ENSO in climate models,
despite good progress over the past decade. Of partic-
ular importance for ENSO teleconnections is the correct
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FIG. 15. Scatterplot of averaged DJF Nino-4 X Nino-3 indices for
each model and each ENSO category: CT El Ninos (red dots), WP
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(green dots); squares represent HadISST data and diamonds are
the multimodel mean. Dashed lines represent the spread across
CMIP5 models and observed events.

simulation of the characteristics of different ENSO fla-
vors, classified here into cold tongue and warm pool
El Ninos and La Ninas. This study assesses ENSO in 34
CMIP5 models and finds that, while most models do
simulate events that can be classed as either CT or WP,
there is varying fidelity across the models.

Similar to observations, the CT and WP El Ninos are
easily distinguishable in most CMIP5 models; however,
the two types of La Nina are much less so. The scatter
diagram of Nino indices in Fig. 15 illustrates this re-
lationship in the CMIPS models: the larger the linearity
between Nino-3 and Nino-4 indices, the less indepen-
dent the events. This result corroborates the findings of
Kug and Ham (2011), who reported that CMIP3 models
simulate more distinct types of El Nino than La Nina.
However, when looking at individual models, over one-
third of CMIP5 models represent the two types of La
Nina events (see models with similar numbers of CT and
WP La Ninas in Fig. 1); for this reason we have assessed
La Ninas separately in this study.

The CMIPS models can simulate the intensity and
location of maximum SST anomalies during ENSO
events within the observational bounds. This result
is consistent with the findings by Kim and Yu (2012),
who reported a good representation of WP ENSO in-
tensity, with relatively more biases for CT ENSOs. Our
assessment of 34 CMIP5 models indicates that, while the
intensity of the four ENSO types is in general re-
alistically represented, the spatial pattern of warm and
cold events (particularly WP events) extend farther west
in the simulations compared to observations (Table 3).
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The observed asymmetries in the intensity between
warm and cold events (i.e., El Ninos stronger than La
Ninas) and between warm events (i.e., CT stronger than
WP El Ninos) are captured in most of the CMIP5
models analyzed here. However, most of the models fail
to reproduce the observed asymmetry between the cold
events: that is, simulated CT La Ninas are stronger than
WP La Ninas (note the limitation due to the small ob-
served number of CT La Ninas).

Most CMIP5 models can simulate an evolution of CT
El Nino events that is similar to that observed, with cor-
rect time of initiation, duration, and peak in December.
The simulated CT El Ninos are often followed by cold
events one year after the peak of the warm event in
most of the models, while cold events more commonly
occur two years after in observations. The duration of
WP El Ninos is overestimated for most of the models,
a bias related to the simulated wind stress anomalies in
the central to western equatorial Pacific being too strong
and persistent. In general, the evolution of cold events
also exhibits biases, with the simulated CT La Ninas
starting about two seasons later than observed and WP
La Ninas ending approximately six months earlier than
observed. It is important to note, however, that a fair
amount of variability exists in the life cycle of individual
events: that is, not all E1 Ninos and La Ninas exhibit equal
duration. Thus, one should be cautious given the small
sample size of observed events (especially for CT La
Ninas) and the different duration of individual events.

The seasonality of ENSO shows varying degrees of
fidelity depending on the Nino region. Better agreement
in the timing of ENSO peak among CMIPS models is
seen in the Nino-3.4 region (27 of 34 models peak in the
correct season) while a large spread occurs in the Nino-3
region (only ~'3 of the models peak in the correct sea-
son). Even in models where the peak of the Pacific SST
variability is simulated in December, good skill in
simulating other aspects of ENSO seasonality is not
guaranteed. Several models show an overly weak sea-
sonality, suggesting that many ENSO events are also
occurring at the wrong time of year. Particularly in the
Nino-3 and Nino-4 regions, ENSO events in many
CMIPS5 models peak in the wrong seasons.

The seasonality of ENSO is an important feature that
determines the timing of the evolution of warm and cold
events. Lengaine and Vecchi (2010) showed that the
seasonality has been linked to the termination of strong
El Nino events in CMIP3 models. This also seems to be
the case for CMIP5 models; that is, the larger the ENSO
seasonality, the better the timing of the termination,
particularly for CT and WP warm events (not shown). The
substantial spread in the seasonal peak and termination
timing of ENSO events in CMIPS5 models compared to
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observations suggests that ENSO seasonality is still an
aspect that needs to be improved in models.

Most of the biases in the ENSO SST anomalies can be
linked to biases in the wind stress anomalies, which are
likely in turn related to mean state biases in the SST. For
all ENSO flavors the wind stress extends too far west-
ward, particularly during WP events. These biases in the
wind stress anomalies generate spurious thermocline
anomalies that propagate eastward as upwelling and
downwelling Kelvin waves, which can in turn influence
the evolution of ENSO events. It is noted here that
spurious thermocline anomalies over the central Pacific
may influence the evolution of warm pool events in the
models. Furthermore, the narrower meridional extent
of the CT ENSO wind stress anomalies seen in the
multimodel mean likely contributes to the more rapid
and somewhat more regular ENSO phase transition.
This systematic bias was also seen in CMIP3 models
(Capotondi et al. 2006), which is likely to be associated
with the classical cold tongue problem, requiring im-
provements in the representation of the physics of the
coupled climate system (e.g., Guilyardi et al. 2009a).
Lengaigne and Vecchi (2010) found that only four CMIP3
models are able to represent the observed termination of
moderate and extreme El Nino events, with the westward
and eastward propagation of the SST anomalies, re-
spectively. In this study, all of the analyzed CMIP5 models
exhibit an eastward propagation of SST anomalies in the
termination phase of WP El Ninos (not shown). Although
we have not explicitly separated each type of event into
strong or weak, our ENSO classification into WP and CT
ElNinos also acts to differentiate events by strength in the
observations. In the CMIP5 models, however, the WP El
Ninos are generally stronger than observed, and the dis-
sipation of the anomalies occurs through similar processes
in both events.

Ham and Kug (2012) and Kug et al. (2012) showed
that the representation of ENSO into CT and WP events
in climate models is sensitive to the atmospheric re-
sponse, in particular to the location of convection, to the
underlying SST anomaly patterns. Bellenger et al. (2013)
also demonstrated that convection parameterization in
climate models can strongly affect the seasonal phase
locking of ENSO. Watanabe et al. (2012) reported that
a wetter mean state with higher precipitation in the east-
ern Pacific leads to a larger ENSO amplitude as a result of
a stronger positive coupled feedback. In our analysis, the
biases in wind stress anomalies (also related to pre-
cipitation) may act to enhance the coupling between the
atmosphere and the SST in the CMIPS5 models, resulting
in a larger than observed WP El Nino amplitude in
western Pacific. As a consequence, the dissipation of the
WP events seems to occur via ocean heat discharge, in
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a similar way to CT events, rather than via advection of
mean SST gradients by anomalous zonal currents as seen
in observations.

Recent studies have also attributed biases in ENSO
simulations to remote influences, particularly climate
over the Indian Ocean basin (Du et al. 2013; Santoso
et al. 2012, and references therein). Okumura and Deser
(2010) suggest that remote forcing from the Indian
Ocean can influence the asymmetry in the duration of
El Nino and La Nina. Thus, some of the modeled ENSO
biases reported here could relate to how CMIP5 models
simulate Indian Ocean climate and its variability.

The different types of ENSO do not show robust
changes in the spatial pattern, even when subject to
large changes in radiative forcing. In addition, no con-
sistent changes are seen in the WP-CT ratio or in the
frequency of ENSO events. This result is consistent with
previous studies based on CMIP3 that concluded there is
little agreement among the models for projected ENSO
changes (e.g., van Oldenborgh et al. 2005; Guilyardi
2006; Collins et al. 2010; Stevenson 2012) and is also
consistent with the idea that changes in ENSO ampli-
tude and frequency can be hard to detect given the level
of natural variability present in the climate system (e.g.,
Wittenberg 2009; Aiken et al. 2013).

In summary, our study suggests that CMIP5 models
can simulate the two types of ENSO with varying de-
grees of fidelity. The features that models represent well
include (i) stronger El Ninos than La Ninas; (ii) stronger
CT El Ninos than WP El Ninos; (iii) the location of
maximum SST anomaly for all events; (iv) the magni-
tude of CT and WP events; (v) the ENSO peak around
December; and (vi) the time evolution of CT El Nino
events. On the other hand, the majority of models
(i) cannot simulate the asymmetry between cold events
(stronger CT than WP La Ninas); (ii) overestimate wind
stress in the western Pacific; (iii) simulate SST anomalies
extending too far west in the equatorial Pacific; (iv) agree
poorly on the ENSO seasonal evolution; and (v) over-
estimate the termination duration of WP El Nino and
underestimate for WP La Nina. Finally, there are no ro-
bust changes in the future projections of the magnitude or
location of maximum SST anomalies, nor the frequency
of ENSO events. This study motivates further analyses to
understand the disagreement among models and pro-
jections, via assessments of climate simulations remote
from the tropical Pacific, as well as understanding the
feedback mechanisms operating in the Pacific region in
CMIPS5 models.
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