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The quality of genetically encoded calcium indicators (GECIs) has improved dramatically 

in recent years, but high-performing ratiometric indicators are still rare. Here we describe 

a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a 

reduced number of calcium binding sites per sensor. These ‘Twitch’ sensors are based on 

the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a 

large-scale functional screen in bacterial colonies, refined by a secondary screen in rat 

hippocampal neuron cultures. We tested the in vivo performance of the most sensitive 

variants in the brain and lymph nodes of mice. The sensitivity of the “Twitch” sensors 

matched that of synthetic calcium dyes and allowed visualization of tonic action potential 

firing in neurons and high resolution functional tracking of T lymphocytes. Given their 

ratiometric readout, their brightness, large dynamic range and linear response properties, 

Twitch sensors represent versatile tools for neuroscience and immunology. 

Imaging with GECIs has become a widely used method in physiology and neuroscience1–3. 

According to readout mode, the design of the sensors has followed two different pathways, 

leading to single-wavelength sensors and FRET-based ratiometric sensors4–8. Among the most 

popular single-wavelength sensors are the G-CaMPs9–13, R-CaMPs14 and GECOs15. FRET 

sensors include yellow cameleon 3.60 (refs. 16,17), D3cpv18, yellow cameleon Nano19 and TN-

XXL20. 

Ratiometric FRET imaging is more quantitative than single-channel measurements and 

may be more suitable for long-term functional imaging studies, as it is less influenced by 

changes in optical path length, excitation light intensity, indicator expression level and by tissue 

movement and growth during development. In addition, FRET indicators are substantially 

brighter than single-wavelength sensors at rest, allowing better identification of expressing cells 

and their subcellular structures. Another practical feature of FRET-based indicators is their 

ability to measure basal Ca2+ levels within cells, for example, to distinguish between resting and 

continuously spiking neurons—something that cannot easily be achieved with single-wavelength 

indicators21. Increased basal Ca2+ levels within the brain are also observed at the onset of 

neurodegenerative processes, and ratiometric FRET calcium imaging has been used in these 

conditions to monitor disease progression22,23. Moreover, ratiometric indicators are advantageous 

for monitoring calcium in motile cells. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Woods Hole Open Access Server

https://core.ac.uk/display/222883772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:griesbeck@neuro.mpg.de


2 
 

Both calmodulin and Troponin C (TnC), the calcium binding proteins within the various 

GECIs, consist of two globular domains connected by a central linker24,25. Each domain 

possesses two calcium binding EF-hand motifs. Thus, currently available GECIs are highly 

nonlinear sensors binding up to four calcium ions per sensor. Identification of a smaller calcium-

binding domain with fewer binding sites could help to reduce buffering during long-term chronic 

GECI expression26, make the sensor smaller and further minimize the risk of cytotoxicity. It may 

also help to simplify response properties and facilitate the biophysical modeling of sensor 

behavior. 

Here we report several improvements of FRET-based calcium sensors for in vivo 

imaging. First, we identified a minimal calcium binding motif based on the C-terminal domain of 

TnC with only two or one remaining calcium binding sites per sensor molecule, thus reducing 

the overall calcium buffering of the sensors. Second, by sampling TnCs from various species we 

identified a new TnC variant from the toadfish Opsanus tau, which offered the possibility of 

generating minimal domains with high-affinity calcium binding. Third, we used a large-scale, 

two-step functional screen to optimize the FRET changes in the sensor by linker diversification. 

This approach allowed us to identify Twitch sensors with a superior FRET change and may 

become useful for optimizing other types of FRET sensors. Finally, we improved brightness and 

photostability of the sensors by incorporating enhanced donor and acceptor fluorescent protein 

variants. Taken together, these improvements resulted in FRET-based calcium sensors that have 

sensitivities similar to synthetic calcium indicators and modern single-wavelength GECIs but 

that allow the valuable possibility of ratiometric imaging. 

RESULTS 

Design of minimal domains for calcium sensing 

Calmodulin and TnC both consist of two globular domains that have different calcium binding 

properties and distinct biological function24,25,27. The dual-domain organization suggested to us 

that it might be feasible to generate sensors consisting of single domains instead of the full 

calcium-binding protein. The overall strategy that we followed to reduce GECI calcium binding 

sites is depicted in Figure 1. We found that the N-terminal regulatory domain of TnC resulted in 

sensors that showed only small FRET changes in response to calcium. Therefore we focused on 

the C-terminal domains, which in our hands were responsible for almost all the conformational 

changes seen in the native protein in response to calcium. Domains isolated from the chicken 

skeletal muscle troponin C20 did not show sufficiently high affinity for calcium. We thus 

sampled the sequence diversity of TnC genes from various species and found that TnC derived 

from swim bladder and white muscle of O. tau (tsTnC) (Supplementary Figs. 1 and 2) allowed 

constructing minimal domain sensors with high-affinity calcium binding (Kd = 140–400 nM). We 

tested a series of truncations to the C-terminal domain, searching for variants that would 

optimally fit the calcium binding domain into the FRET sensor. The fragment we chose ranged 

from Ser93 to Gln161. We subsequently changed the residue numbering of wild-type tsTnC in 

our constructs for simplicity, renumbering Ser93 as Ser1. Additional point mutations into the 

original EF hands 3 (N15D, D17N) and 4 (N51D, D53N) were introduced to minimize 

magnesium binding28 (Fig. 1 a,b). To generate lower-affinity sensors such as Twitch-4 and 

Twitch-5, we created a small library of sensors with amino acid insertions into EF hand 3 or 4 

(Figs. 1a and 2). These mutants possessed only one functional EF hand with calcium affinities of 

Kd 2.8 µM to 250 µM (Fig. 1c). FRET signal change was initially improved by screening a small 

library of sensors with polyproline linkers inserted at the N and C termini of the domain 
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(Supplementary Fig. 3). A minimal domain with a flanking proline on each side and a 

serendipitous beneficial mutation M65V that increased fluorescence ratio change led to the first 

prototypical minimal domain sensor, which we called Twitch-1.Twitch-1 had a maximal ratio 

change of ~400% and a Kd of 250 nM (Fig. 1c). 

Structural basis of Twitch calcium sensors 

For the development of Twitch sensors, we investigated the properties of different prototypes by 

solution NMR spectroscopy and small-angle X-ray scattering (SAXS). The solution NMR 

structural characterization was performed with the minimal C-terminal lobe domain of tsTnC in 

the calcium-loaded and calcium-free forms (the latter in presence of magnesium) 

(Supplementary Fig. 4). When calcium was present, tsTnC showed well-dispersed resonances 

in its 1H-15N HSQC spectra (Supplementary Fig. 4). A nearly complete assignment of backbone 

and C chemical shifts was obtained by using standard triple-resonance experiments. Secondary 

structure elements were initially identified by the analysis of the chemical shift index29, and then 

confirmed by 3JHNH coupling values (Supplementary Fig. 4). The structure calculation for the 

protein was performed using a considerable number of structural restraints (Supplementary 

Table 1). A high-quality structure was obtained (Fig. 2a–c) consisting of a well-defined globular 

domain (r.m.s. deviationbb
2–65 = 0.90 Å)with the typical topology known from the C-terminal 

domain of chicken skeletal TnC30 (Supplementary Fig. 5) with four helices (1, Glu2–Phe12; 

2, Arg22–Thr32; 3, Asp38–Ser48; 4, Phe58–Val68) and the two calcium binding EF hands 

3 and 4 connected by a short antiparallel -sheet (1, Phe19-Ile20-Asp21; 2, Arg55-Ile56-

Val57). The N and the C terminus are close together, at a distance of only 15 Å. By contrast, the 

magnesium-loaded form in the absence of calcium is fully unfolded, which places the N and C 

termini at a distance of 5.2 nm, on average, assuming a random coil distribution of 

conformations similar to ubiquitin31. 

SAXS allowed us to monitor the shape and conformational change of the biosensor 

Twitch-1 including the attached fluorescent proteins CFP and cpCitrine (Fig. 2d,e). We obtained 

results on molecular geometry parameters such as radius of gyration (Rg), and maximum particle 

diameter (Dmax), of the proteins, with approximations of folding status and conformation 

(Supplementary Table 2 and Supplementary Fig. 6). Algorithms for multidomain modeling32 

using the high-resolution structures of the calcium-loaded minimal domain (Fig. 2a) and 

available structures for the fluorescent proteins permitted us to generate speculative fits of the 

probable localization of the proteins within the SAXS structure (Fig. 2d and Supplementary 

Fig. 7). At the given resolution, there will be an ensemble of possible orientations for the 

fluorescent proteins with respect to each other, and only one structure is represented here. In the 

absence of calcium, Twitch-1 forms an elongated structure, with the two fluorescent proteins 

located at the respective ends. Upon calcium saturation, the protein shortens and becomes more 

compact, increasing the proximity of the fluorophores. The fits allow ambiguities about the 

precise distance between the fluorophores in the calcium-bound form, so we did not try to further 

relate the changes in geometry to changes in FRET. Overall, the shape changes detected here 

grossly resemble the shape changes reported for the biosensor TN-XXL33. Thus, this analysis 

shows that a minimal TnC domain of 68 amino acids is sufficient to initiate a strong calcium-

induced conformational change and can be useful for the construction of FRET biosensors. 
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Screening of diversified FRET calcium-sensor libraries 

We then created a large library of sensors with diversified linkers between the minimal calcium 

binding domain and the adjacent fluorophores (Fig. 1b and Supplementary Fig. 8). 

Additionally, we selected several residues as hotspots for mutagenesis by examining the solved 

NMR structure (Figs. 1b and 2a), focusing on potential hinge regions where helices interact and 

nonchelating residues within the binding loops (Fig. 2 and Supplementary Fig. 8). To identify 

sensors with large responses, we implemented a two-step screening strategy (Fig. 3a). A 

functional bacterial colony prescreening assay was developed that allowed us to sample up to 

1,000 colonies per plate, each expressing a diversified minimal domain sensor variant. As FRET 

sensors were not efficiently exported to the periplasmic space15, we developed a 

permeabilization protocol that allowed us to efficiently introduce calcium into the bacterial 

cytosol while collecting Rmin and Rmax values of the sensors (Online Methods). FRET changes 

were monitored by wide-field imaging with a charge-coupled device (CCD) camera 

(Supplementary Fig. 9).Overall, we screened about 100,000 bacterial colonies for optimal 

linker configurations and initially purified about 1,000 of those (Fig. 3a,b). We selected the best-

performing linker configurations and then performed additional hotspot mutagenesis within the 

minimal domain, thereby screening another 70,000 colonies and purifying another 1,000 proteins 

for further improvements in ratio change on a smaller scale (Fig. 3a,b). Notably, we were able to 

find minimal domain sensor variants that showed ration changes of up to or more than 1,000%, 

from no calcium to calcium saturation. We selected approximately 120 variants that showed the 

highest maximal ratio change as well as a small number of sensors with lower affinity and 

undertook a secondary screen in primary hippocampal neurons (Fig. 3c–e). Neurons expressing 

the variants were exposed to electrical field stimulation consisting of 1–160 individual pulses 

(Fig. 3c–e). Two variants showed strong improvements over TN-XXL and Twitch-1 in detecting 

subtle elevations in the cytosolic free calcium concentration and were named Twitch-2 and 

Twitch-3 sensors (Fig. 3d). The maximal response of Twitch-2 and Twitch-3 was also improved 

compared to TN-XXL. We also found two sensors, Twitch-4 and Twitch-5, that showed lower 

affinity and sensitivity for calcium in the neurons, but that had faster response kinetics (Fig. 3e). 

These sensors may be useful for quantifying larger calcium fluxes in cells. In a separate set of 

neuronal screening experiments, Twitch-3 was compared to other known FRET-based calcium 

sensors (Supplementary Fig. 10). The core in vitro characteristics of selected Twitch indicators 

are summarized in Supplementary Table 3. 

Imaging neuronal activity in vivo with Twitch sensors 

To test the performance of Twitch sensors in vivo, we first expressed Twitch-3 in mouse primary 

visual cortex (V1) using adeno-associated virus (AAV) vector–mediated gene transfer11 and 

monitored calcium changes of neurons in V1 in response to presentation of moving gratings of 

differing orientations (Fig. 4a–e and Supplementary Figs. 11 and 12). We compared the in vivo 

properties of Twitch-3 to that of the established FRET based GECI YC3.60 (ref. 16). At 

comparable average laser powers Twitch-3 was brighter than YC3.60 (Supplementary Fig. 12). 

The total fraction of V1 neurons that responded to visual stimuli was larger in experiments 

usingTwitch-3 (34.8 ± 8.6% mean ± weighted s.d.) than in those using YC3.60 (ref. 16) (19.2 ± 

9.4% weighted s.d.), and the number of responding cells expressing Twitch-3 equaled the 

numbers of the synthetic fluorescent calcium indicator OGB-1 (36 ± 4% weighted s.d.) (Fig. 4e, 

note that OGB-1 data were acquired with slower acquisition rate and presumably higher signal-

to-noise ratio (details in Online Methods). 
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New variants of cyan fluorescent protein such as mCerulean3 (ref. 34) or mTurquoise2 

(ref. 35) have recently been generated. Both proteins have high quantum yields and improved 

photostability. We sought to improve the brightness of the Twitch sensors further by exchanging 

ECFP with these brighter donors and cpCitrine with cpVenusCD (ref. 36), a codon-diversified 

variant of the YFP variant Venus37. Although the proteins were almost identical, the exchange 

had a surprisingly negative impact on the FRET changes observed in the sensors (data not 

shown).We overcame this by screening additional libraries of extended linkers. In this way, we 

developed Twitch-2B, which retained the high FRET change of its precursor but was 

approximately twofold brighter in the donor emission channel than the previous Twitch sensors 

(Twitch-2B has cpVenusCD and mCerulean3 as a FRET pair; Supplementary Fig. 13).Twitch-

2B had a Hill coefficient of 1.3 and reported action potentials (APs) in cortical neurons in acute 

tissue slices in a fairly linear manner (Fig. 4f,g). In this preparation, the mean change in 

fluorescence ratio (R/R) in response to a single action potential stimulation was 26.5 ± 3.8% 

(s.e.m., n = 11; Fig. 4g) and the increase in the amplitude of the signal with increasing numbers 

of action potentials was well approximated by a linear fit with the slope of 12.5% ratio 

change/AP. 

We further investigated the properties of Twitch-2B and Twitch-3 in vivo by imaging 

sensory-evoked calcium signals in adult-born juxtaglomerular neurons of the mouse olfactory 

bulb21 after lentiviral-mediated gene transfer. The amplitude of Twitch-3 signals was comparable 

to that of signals reported by the synthetic calcium indicator dye Fura PE-3 (Fig. 4h), whereas 

Twitch-2B signals were stronger than those of both Twitch-3 and Fura PE-3. Signal-to-noise 

ratios were calculated for Twitch-2B and Twitch-3 as well as Fura PE-3 and OGB-1 in the 

labeled neurons and in response to two different odorant concentrations (Fig. 4i). In both 

conditions, Twitch-2B showed higher signal-to-noise ratios than synthetic indicators whereas the 

signal-to-noise ratios obtained using Twitch-3 were comparable to those of Fura PE-3 and OGB-

1. 

One of the main advantages of Twitch sensors compared to other GECIs is their potential 

for use in long-term imaging experiments. To assess this, we compared the responses of Twitch-

2B in adult-born olfactory neurons to the same odorant stimuli at two different time points in 

vivo. We observed that the quality of Twitch-2B–mediated responses did not change over time 

(Fig. 4i), suggesting that this indicator is well suited for long-term chronic imaging (Fig. 4i). In 

addition, we looked for signs of toxicity in these mice, and at 141 d after infection, we found that 

only 2 out of 63 juxtaglomerular neurons analyzed had filled nuclei, a potential morphological 

indication of unhealthy cells. In addition, owing to its high dynamic range, Twitch-2B allowed 

visualization of neurons with different levels of basal activity (Fig. 4j–l). Out of two cells shown 

in Figure 4j, cell 1 shows low cpVenusCD/mCerulean3 ratio (1.9), whereas cell 2 shows high 

cpVenusCD/mCerulean3 ratio (4.6), presumably because of the high basal firing rate of the 

neuron21. In response to the same sensory stimulus, cell 1 responded with an increase in calcium 

signal (Fig. 4k), and cell 2 responded with a decrease (Fig. 4l) in the intracellular free calcium 

concentration. Cells with decreased responses were encountered five times during this study. In 

total, such cells comprise 12% of the odor-responsive population of juxtaglomerular neurons21. 

Imaging T lymphocyte activation in vivo using Twitch-2B 

Autoreactive T lymphocytes cause autoimmune diseases and are highly motile cells. As such, 

they offer an ideal platform to test the usefulness of ratiometric calcium indicators for functional 

imaging in moving samples38. Because T cells are highly motile and quickly change their 
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location within the inhomogeneous tissue environment, their brightness will continuously vary 

over time. To normalize for this effect, only ratiometric calcium indicators are suitable. We 

previously worked out parameters to express FRET calcium indicators in auto-antigen specific T 

cells and protocols to image them36. To test the performance of the advanced Twitch variants, we 

imaged immune cells during antigen recognition in vivo. Antigen recognition by T cells triggers 

a swift rise of the intracellular free calcium concentration, which can be used as an indication of 

T cell activation39. We transduced antigen-specific T cells from OT-II mice40 with retroviruses 

expressing Twitch-1 or Twitch-2B and compared the antigen-dependent activation of these T 

cells by dendritic cells (DC) in in vivo mouse lymph nodes. In the absence of antigen, both cell 

lines showed comparable motility and displacement and had low intracellular free Ca2+ 

concentration (Fig. 5a,d). After intravenous (i.v.) injection of the cognate OVA peptide antigen, 

both cell lines reduced their motility and displayed elevated calcium levels (Fig. 5a,b,d). Cells 

expressing Twitch-2B displayed a ratio change of  >300% in vivo and showed a higher dynamic 

range of the sensor output than cells expressing Twitch-3 (Fig. 5b,d). The latter cells showed 

clear fluctuations from green to yellow fluorescence, allowing visual estimation of changes in 

calcium level without the need for pseudocoloring (Fig. 5b,c). The increased dynamic range of 

Twitch-2B improved the resolution of the calcium oscillation events in T cells (Fig. 5c,e). 

DISCUSSION 

Here we describe a series of optimized FRET-based calcium indicators for ratiometric in vivo 

imaging. We based our work on previous sensors based on TnC—the calcium sensor from 

skeletal and cardiac muscle —as calcium-binding moiety6,20. We illustrate the usefulness of 

optimized Twitch variants by monitoring neuronal activity and studying activation patterns of T 

lymphocytes in vivo with high sensitivity. This approach may be easily extended to other motile 

cell types such as B lymphocytes or thrombocytes and could become very valuable for studying 

the interactions that these cells encounter as they move through tissue microenvironments within 

the body. 

We identified the C-terminal lobe domain of TnC as the smallest possible domain for 

generating GECIs that exhibits a large conformational change upon calcium binding. Sensors 

based on this domain are smaller, can lead to reduced sensor-induced buffering during long-term 

chronic expression and minimize the risk of cytotoxicity. Reducing the size of the calcium-

binding domain may also help to simplify response properties compared to other sensors. In vitro 

titrations of Twitch-2B, for example, showed improved Hill coefficient values compared, for 

example, to recent G-CaMP5 variants11. As with other GECIs, a trade-off can be seen in Twitch 

sensors between high-affinity binding and fast response kinetics. Whereas sensors with 

somewhat lower affinity such as Twitch-5 (Kd = 9.25 µM,  = 0.16 s) show relatively fast 

kinetics, the most sensitive variants, such as Twitch-3 (Kd = 250 nM,  = 1.5 s), are relatively 

slow. Although slow kinetics may increase sensitivity, as more signal photons are generated, 

sensitive indicators with brisker responses are also required and will need to be developed. 

Finally, to optimize the FRET change of the sensors, we developed a strategy for sensor 

prescreening in bacterial colonies that allowed us to assay a relatively large number of modified 

sensors and identify interesting candidates for further analysis. In this way we improved the 

overall FRET change of Twitch sensors upon calcium binding, from 10–20% ratio change 

initially to >1,000%. Similar screening techniques might be useful to improve some of the 

existing FRET biosensors for other signal molecules, many of which currently show modest 

maximal ratio changes. 
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METHODS 

Methods and any associated references are available in the online version of the paper. 

Accession codes. Biological Magnetic Resonance Data Bank: chemical shift assignments are 

available under accession number 19285. Protein Data Bank: the final atomic coordinates are 

available under accession number 2m97. Twitch-2B (in pcDNA3) is available at Addgene under 

accession number48203. GenBank: the Twitch-2B sequence has been deposited under the 

accession number KF843821 

Note: Any Supplementary Information and Source Data files are available in the online version of the paper. 

 

ACKNOWLEDGMENTS 

This work was funded by the Max Planck Society, the Howard Hughes Medical Institute, DFG (Deutsche 

Forschungsgemeinschaft, German Research Foundation) grant SFB 870 (to O. Griesbeck), DFG grant GRK1721 (to 

G.W.), EU FP7 EuroV1sion  grant (to O. Griesbeck), US National Science Foundation grant IBN-9985315 (to T. 

A.), US National Science Foundation grant IOS 1145981 (to L.C.R.) and the DFG Center for Integrative 

Neuroscience (to O. Garaschuk). 

AUTHOR CONTRIBUTIONS 

T.T. characterized the minimal domain, cloned constructs and performed protein purifications and in vitro 

spectroscopic characterizations; J.L. established the bacterial colony screen and performed colony screening and 

further protein purifications; M.M. and I.B. performed in vivo imaging of T lymphocytes; L.R., S.B., Y.Laukat and 

C.G. performed NMR structure determination and interpreted results; T.A. and L.C.R. cloned toadfish TnC; A.G. 

and T.T. collected SAXS data; G.W. calculated SAXS models; H.D. performed in vivo characterization in mouse 

visual cortex; Y.K., Y.Liang, G.K. and O. Garaschuk planned, performed and interpreted characterization of the 

sensors in cortical slices in situ and mouse olfactory bulb in vivo; T.T., T.W.C., H.D. and D.S.K. planned, performed 

and interpreted neuronal screening results.  

COMPETING FINANCIAL INTERESTS 

The authors declare no competing financial interests. 

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html. 

 

1. Palmer, A.E., Quin, Y., Park, J.G. & McCombs, J.E. Design and application of 

genetically encoded biosensors. Trends Biotechnol. 29, 144–152 (2011).  

2. Looger, L.L. & Griesbeck, O. Genetically encoded neural activity indicators. Curr. 

Opin. Neurobiol. 22, 18–23 (2012).  

3. Knöpfel, T. Genetically encoded optical indicators for the analysis of neuronal circuits. 

Nat. Rev. Neurosci. 13, 687–700 (2012). 

4. Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 

1550–1564 (2008).  

5. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins 

and calmodulin. Nature 388, 882–887 (1997).  

6. Heim, N. & Griesbeck, O. Genetically encoded indicators of cellular calcium dynamics 

based on troponin C and green fluorescent protein. J. Biol. Chem. 279, 14280–14286 

(2004).  

http://nature.com/doifinder/10.1038/nmeth.2773
http://www.bmrb.wisc.edu/data_library/generate_summary.php?chooseAccOrDep=useAcc&bmrbId=19285
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=2m97
http://www.ncbi.nlm.nih.gov/nuccore/KF843821
http://www.nature.com/doifinder/10.1038/nmeth.2773
http://www.nature.com/reprints/index.html


8 
 

7. Wang, Q., Shui, B., Kotlikoff, M.I. & Sondermann, H. Structural basis for calcium 

sensing by GCaMP2. Structure 16, 1817–1827 (2008).  

8. Akerboom, J. et al. Crystal structures of the GCaMP calcium sensor reveal the 

mechanism of fluorescence signal change and aid rational design. J. Biol. Chem. 284, 

6455–6464 (2009).  

9. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a 

single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).  

10. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP 

calcium indicators. Nat. Methods 6, 875–881 (2009).  

11. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity 

imaging. J. Neurosci. 32, 13819–13840 (2012).  

12. Zariwala, H.A. et al. A Cre-cependent GCaMP3 reporter mouse for neuronal imaging in 

vivo. J. Neurosci. 32, 3131–3141 (2012).  

13. Ohkura, M. et al. Genetically encoded green fluorescent Ca2+ indicators with improved 

detectability for neuronal Ca2+ signals. PLoS ONE 7, e51286 (2012).  

14. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural 

activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).  

15. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 

1888–1891 (2011).  

16. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. Expanded dynamic 

range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent 

proteins. Proc. Natl. Acad. Sci. USA 101, 10554–10559 (2004).  

17. Lütcke, H. et al. Optical recording of neuronal activity with a genetically-encoded 

calcium indicator in anesthetized and freely moving mice. Front. Neural Circuits 4, 9 

(2010). 

18. Palmer, A.E. et al. Ca2+ indicators based on computationally redesigned calmodulin-

peptide pairs. Chem. Biol. 13, 521–530 (2006).  

19. Horikawa, K. et al. Spontaneous network activity visualized by ultrasensitive Ca2+ 

indicators, yellow Cameleon-Nano. Nat. Methods 7, 729–732 (2010).  

20. Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon 

imaging. Nat. Methods 5, 805–811 (2008).  

21. Homma, R. et al. In vivo functional properties of juxtaglomerular neurons in the mouse 

olfactory bulb. Front. Neural Circuits 7, 23 (2013).  

22. Kuchibhotla, K.V. et al. A plaques lead to aberrant regulation of calcium homeostasis 

in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59, 

214–225 (2008).  

23. Siffrin, V. et al. In vivo imaging of partially reversible Th17 cell-induced neuronal 

dysfunction in the course of encephalomyelitis. Immunity 33, 424–436 (2010).  

24. Vassylyev, D.G. et al. Crystal structure of troponin C in complex with troponin I 

fragment at 2.3-angstrom resolution. Proc. Natl. Acad. Sci. USA 95, 4847–4852 (1998).  



9 
 

25. Gordon, A.M., Homsher, E. & Regnier, M. Regulation of contraction in striated muscle. 

Physiol. Rev. 80, 853–924 (2000). 

26. Direnberger, S. et al. Biocompatibility of a genetically encoded calcium indicator in a 

transgenic mouse model. Nat. Commun. 3, 1031 (2012).  

27. DeMaria, C.D., Soong, T.W., Alseikhan, B.A., Alvania, R.S. & Yue, D.T. Calmodulin 

bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411, 484–

489 (2001).  

28. Mank, M. et al. A FRET-based calcium biosensor with fast signal kinetics and high 

fluorescence change. Biophys. J. 90, 1790–1796 (2006).  

29. Wishart, D.S. & Case, D.A. Use of chemical shifts in macromolecular structure 

determination. Methods Enzymol. 338, 3–34 (2001).[AU: Reference details correct as 

added?]  ok 

30. Slupsky, C.M. & Sykes, B.D. NMR solution structure of calcium-saturated skeletal 

muscle troponin C. Biochemistry 34, 15953–15964 (1995).  

31. Huang, J.R. & Grzesiek, S. Ensemble calculations of unstructured proteins constrained 

by RDC and PRE data: a case study of urea-denatured ubiquitin. J. Am. Chem. Soc. 132, 

694–705 (2010).  

32. Petoukhov, M.V. et al. New developments in the ATSAS program package for small-

angle scattering data analysis. J. Appl. Cryst. 45, 342–350 (2012).  

33. Geiger, A. et al. Correlating calcium binding, Förster resonance energy transfer, and 

conformational change in the biosensor TN-XXL. Biophys. J. 102, 2401–2410 (2012).  

34. Markwardt, M.L. et al. An improved cerulean fluorescent protein with enhanced 

brightness and reduced reversible photoswitching. PLoS ONE 6, e17896 (2011).  

35. Goedhart, J. et al. Bright cyan fluorescent protein variants identified by fluorescence 

lifetime screening. Nat. Methods 7, 137–139 (2010).  

36. Mues, M. et al. Real-time in vivo analysis of T cell activation in the central nervous 

system using a genetically encoded calcium indicator. Nat. Med. 19, 778–783 (2013).  

37. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation 

for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).  

38. Bousso, P. & Moreau, H.D. Functional immunoimaging: the revolution continues. Nat. 

Rev. Immunol. 12, 858–864 (2012).  

39. Feske, S., Skolnik, E.Y. & Prakriya, M. Ion channels and transporters in lymphocyte 

function and immunity. Nat. Rev. Immunol. 12, 532–547 (2012).  

40. Barnden, M.J. et al. Defective TCR expression in transgenic mice constructed using 

cDNA-based - and -chain genes under the control of heterologous regulatory 

elements. Immunol. Cell Biol. 76, 34–40 (1998).  

 

 



10 
 

Figure 1 | Minimizing the calcium-binding domain in Twitch sensors. (a) Schematic 

representation of TnC as a serial arrangement of four calcium-binding EF hands, depicted as 

loops (1–4). Removal of the N-terminal domain (green) creates a minimal calcium-binding 

domain (blue). Mutations (indicated by small ‘x’) are introduced into the EF hands to render 

them specific for calcium over magnesium. Within the minimal domain, one of the remaining EF 

hands can be crippled by mutagenesis to generate ‘single-hand’ sensors in which response 

properties are dominated by calcium binding to the remaining binding site. (b) Schematic 

representation of Twitch calcium sensors. The minimal domain is sandwiched between a donor 

and an acceptor fluorescent protein connected by amino acid linkers. Linker sequences can be 

randomized and screened for optimal calcium-induced FRET change. In addition, other sites 

within the minimal domain are targeted by site-directed mutagenesis to optimize sensor 

properties. (c) Calcium-affinity titrations of selected Twitch calcium biosensors (Supplementary 

Table 3). 

Figure 2 | Structural characterization of Twitch calcium sensors. (a) High-resolution NMR 

structure of the minimal calcium-binding domain based on the C-terminal lobe of TnC from O. 

tau. (b) Close-up view of the calcium binding EF hand 3 and short -sheet stretches. Sites of 

mutated residues within the calcium chelating loop to block magnesium binding (N17D, D15N) 

are indicated, as well as the position of another residue flanking EF hand 3 mutated to enhance 

FRET change (K14F) in some Twitch variants. (c) Close-up view of helices H and G with the 

indication of two other sites mutated to enhance FRET change (M65V, V41P). (d) Shape 

reconstruction of two Twitch sensors by SAXS. Shown are Twitch-1and, for comparison, 

Twitch-0, an early construct with high basal FRET and small calcium-induced ratio change, at 

zero calcium (calcium free) and calcium saturation (calcium loaded). Multi-domain modeling in 

CORAL using high resolution structures of the calcium-loaded minimal domain as well as CFP 

(PDB 2WSN) and citrine (PDB 3DPX) were used to localize the proteins within the SAXS 

structures. Shown are views from three angles. Twitch-1 changes from an extended structure, in 

which the fluorescent proteins are best fitted to scale to the opposite ends, to a compact structure 

upon calcium binding, thereby reorienting the fluorescent protein moieties for increased FRET. 

(e) Corresponding emission spectra of Twitch-0 and Twitch-1 at zero calcium and calcium 

saturation. 

Figure 3 | Functional screening of large FRET calcium-sensor libraries. (a) Schema of the two-

step screen consisting of a large-scale bacterial colony prescreening and a refining secondary 

screening in primary neurons used to select Twitch calcium-sensor variants. (b) Basal 

fluorescence ratios at zero calcium plotted versus calcium-induced ratio changes for >2,000 

recombinant Twitch sensors. As a reference, the values for TN-XXL and the prototypical 

minimal domain sensor Twitch-1 are indicated. In small-scale purifications, low amounts of 

contaminating calcium are still present; thus the values for maximal calcium-induced ratio 

changes are slightly lower, and the values for basal starting ratios, slightly higher than when the 

proteins are purified stringently. (c) FRET ratio image of hippocampal neurons expressing 

Twitch-3 at onset (0.06 s) and after a field stimulus evoking ten action potentials (1.83 s). (d) 

Changes in fluorescence ratio of selected Twitch variants in response to short-field stimuli 

eliciting 1–160 action potentials. For comparison, responses of TN-XXL and G-CaMP5G taken 

side by side are plotted. Error bars, mean ± s.e.m. (n = 60–204). (e) Changes in fluorescence 

ratio of the low-affinity sensors Twitch-4 (n = 29) to Twitch-5 (n = 6) to 1–160 action potentials. 

Error bars, mean ± s.e.m. 

http://www.rcsb.org/pdb/explore/explore.do?structureId=2WSN
http://www.rcsb.org/pdb/explore/explore.do?structureId=3DPX
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Figure 4 | Use of Twitch-3 and Twitch-2B for high-resolution in vivo imaging in the mouse 

brain. (a) Schematic showing experimental setup for recording visually evoked calcium signals. 

(b) Twitch-3 cpCitrine fluorescence in layer 2/3 neurons 4 weeks after AAV injection (left) and 

ratio cpCitrine/CFP image (right). Scale bars, 50 µm. (c) Measured cpCitrine (top) and CFP 

(middle) channels for five repetitions of visual stimuli consisting of moving gratings. Bottom, 

the ratio between these two channels. Gray, single trials; red, trial average; vertical lines show 

the preferred stimulus start time. (d) Responses of three cells to eight different moving grating 

stimuli. (e) Fraction of visually responsive neurons in in vivo experiments when using three 

different calcium indicators (OGB-1, 36 ± 4%; YC3.60, 19.2 ± 9.4%; Twitch-3, 34.8 ± 8.6%; 

mean ± weighted s.d.; neuropil compensation factor = 0.7, data for OGB-1 from ref. 11). 

Significances were determined according to Mann-Whitney test. YC3.6, Twitch-3 P = 0.052; 

OGB-1, YC3.6 P = 0.143; OGB-1, Twitch-3 P = 0.548; data for YC3.6, Twitch-3 and OGB-1 

are from five, six and three animals, respectively (Online Methods). (f) Single trial example (of a 

total of 11 cells) of the relationship between the emission-ratio change of Twitch-2B and the 

number of underlying action potentials recorded from a layer 2/3 pyramidal neuron in a cortical 

slice at 35 °C. (g) Relationship between the mean amplitude of Twitch-2B–mediated calcium 

transients as well as mean signal-to-noise ratio (SNR, see Online Methods) and the number of 

underlying action potentials in a cortical slice (n = 11, data from four animals, mean ± s.e.m.). 

(h) Representative (from between 10 and 40 experiments each) sensory-evoked calcium 

transientsin juxtaglomerular neurons of the in vivo olfactory bulb recorded with three different 

calcium sensors, as indicated. At this low concentration, odorants evoke calcium transients in 

cells labeled both with synthetic (for example, Fura-PE-3) and with genetically encoded (Twitch-

2B and Twitch-3) indicators. (i) Representative box plots showing SNRs measured in vivo in 

olfactory bulb neurons labeled with four different indicators in response to two odorant 

concentrations, as indicated (from left to right, n = 15, 38, 7, 12, 15, 32, 9, 15, 11 cells, 

respectively; data from 10 mice). For all data sets involving GECIs, recordings were conducted 

at 35–37 d after infection (d.p.i.). The last box plot shows data obtained at 141 d.p.i. from one 

mouse also imaged at 35–37 d.p.i. The significances for differences in SNR values were 

determined according to Mann-Whitney test (for 0.3% saturated vapor, Twitch-2B, Fura PE3 P = 

0.005; Twitch-2B, OGB-1 P = 0.0016; Twitch-2B, Twitch-3 P = 0.015; for 1.7% saturated 

vapor, Twitch-2B, Fura PE3 P = 0.003; Twitch-2B, OGB-1 P = 0.0045; Twitch-2B, Twitch-3 P 

= 0.156; Twitch-2B, Twitch-2B 141 d.p.i. P = 0.54). P > 0.05 for all other possible comparisons. 

Boxes drawn from 75th percentile (top) to 25th percentile (bottom); whiskers, 85th percentile to 

10th percentile. (j) Image of two adult-born juxtaglomerular neurons taken 37 d after the injection 

of lentiviral vectors encoding Twitch-2B. Scale bar, 10 µm. (k,l) On application of the odorant 

(ethyl tiglate), cell 1 (k) shows an increased calcium response, whereas cell 2 (l) shows a 

decreased response. 

Figure | 5 In vivo calcium imaging of T lymphocytes with Twitch-1 and Twitch-2B. (a) 

Quantification of T lymphocyte locomotion within the popliteal lymph node before and after i.v. 

injection of 100 µg of OVA peptide antigen. Average velocities and the mean squared 

displacement (m.s.d. ± s.e.m.) for Twitch-1– and Twitch-2B–expressing T lymphocytes. n = 68 

and 94 cells (Twitch-1) and 37 and 80 cells (Twitch-2B) for control and antigen-supplemented 

conditions, respectively. For every condition, data were obtained from three animals. ***P < 

0.0001 (Mann-Whitney U test). Red lines in the left two graphs indicate mean values. (b) Sample 

images from in vivo calcium imaging of OT-II T lymphocytes in the popliteal lymph node after 

antigen injection. Overlay of donor and acceptor fluorescence shown. Scale bar, 30 µm. (c) 

Selected time-lapse series of individual cells expressing Twitch-1 or Twitch-2B, oscillating 
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through minimal and maximal ∆R/R. Numbers indicate time points in e. Scale bar, 10 µm. Data 

are representative traces of experiments done in three animals. (d) Scatter plots of cell velocity 

versus calcium-indicator ratio change for each time point analyzed before (top) and after 

(bottom) antigen injection. Mean values for ∆R/R and velocity (v) are indicated along with a 

two-dimensional box plot. Box plot indicates the 25th and 75th percentile, and the whiskers 

represent the 5th and 95th percentiles. (e) Sample tracks of intracellular calcium levels (red) and T 

cell velocities (black) after the application of antigen. Top, the two cells from c. Dots in (e) 

depict zero levels for ratio (red) and velocity (black). ***P < 0.001. Results from three animals 

before and after antigen exposure are shown. 

ONLINE METHODS 

[AU: Information from reporting checklist (included with email) is to be added to the 
manuscript, not just the checklist itself. Add all statements about sample size, exclusion 
criteria, blinding, animal sex/age/species (for all animals used),  randomization, etc to 
Online Methods.] 

[AU: References in this section were renumbered to be continuous with those in the 
main section. Please check all references and citations carefully to ensure that they are 
correct.] 

Gene construction and biosensor library design. 

cDNA of toadfish troponin C (tsTnC) retrieved from white muscle and swim bladder was used as 

starting material for designing the new minimal domain calcium indicators. To generate the 

Twitch single C-terminal domain the region from amino acid Ser93 to Gln161 of tsTnC was 

amplified and cloned in between the FRET fluorescent protein variants. Point mutations were 

introduced by site-directed mutagenesis using the primer extension method similar to the 

QuickChange method (Stratagene) and by error-prone PCR (Jena Error-Prone Kit). Proline and 

random linkers were introduced via PCR using primer extensions fused to tsTnC at the 5and 3 

ends of the C-terminal domain. The general structure of the calcium biosensors described herein 

is as follows: ECFP/Cer3/mTurquoise2-SphI-linker-minimal calcium binding domain-linker-

SacI-Met cpCitrine174/cpVenusCD-Stop (Fig. 1). For specific point mutations and linkers of 

Twitch variants, see Supplementary Figure 8 and Supplementary Table 3.  Addgene: 

constructs encoding Twitch calcium sensors can be viewed at 

www.addgene.org/Oliver_Griesbeck/ 

Cloning of toadfish troponin C. 

Total RNA was isolated from 0.1 g toadfish swim bladder muscle following homogenization in 

presence of 0.9 ml TRIzol in accordance with accompanying instructions (Invitrogen, 

California). From an aliquot of total RNA, a lambda gt11 cDNA library was constructed with the 

CapSwitch Kit (ClonTech, California). The library was amplified once, and aliquots of the 

amplified library were screened by PCR for TnC sequences. The same was done for construction 

of a toadfish white muscle cDNA library. 

For screening, a degenerate primer for TnC was paired with a primer specific to the lambda 

vector. The degenerate primer was designed with the help of the Blocks and CODEHOP 

algorithms (blocks.fhcrc.org/blocks/codehop.html), and the oligonucleotide recognized a distinct, 

highly conserved motif of the TnC protein: 5-

http://www.addgene.org/Oliver_Griesbeck/
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CGACTTCGACGAGTTCCTGGTNATGATGGT-3, recognizing the motif DFEEFLVMM at 

the start of helix D, after the second calcium-binding loop in the N-terminal half of TnC. 

Sequence information obtained from this amplification allowed design of primers specific for 

toadfish TnC. These primers were subsequently paired with lambda-specific primers to amplify 

the remainder of the full-length cDNA. As a verification of the sequence data, full-length cDNA 

was then amplified from total RNA following reverse transcription, and the amplified product 

was sequenced. 

NMR spectroscopy. 

The expression of the uniformly 15N- and 13C-labeled histidine-tagged minimal C-terminal lobe 

domain of Opsanus TnC (tsTnC), comprising EF hands 3 and 4, was performed at 37 °C in 

minimal medium with 15N-ammonium chloride and 13C6-D-glucose as the sole nitrogen and 

carbon sources. The fusion protein was purified by immobilized metal affinity chromatography 

on Ni-NTA agarose (Qiagen, Venlo, The Netherlands) and subsequently cleaved with TEV 

protease. The released tsTnC was further purified by reverse-phase HPLC. 

NMR samples for structure determination of tsTnC were prepared at a final concentration of 

1mM in 20 mM Bis-Tris (pH 7.0), 100 mM KCl, 10 mM DTT, 10 mM CaCl2 and 10% 2H2O.The 

calcium-free sample in presence of magnesium contained 10 M tsTnC, 100 M EGTA and 1 

mM MgCl2. 

NMR experiments were carried out at 303 K on a 700-MHz Bruker DRX spectrometer equipped 

with a z-gradient cryoprobe and 900-MHz spectrometer with a triple resonance 5-mm cryoprobe 

with a z-axis pulsed field gradient. Triple resonance NMR experiments including 3D HNCA 

(refs. 41,42), 3D CBCANH (ref. 43) and 3D CBCA(CO)NH (ref. 42) were collected to obtain 

sequence-specific backbone and C resonances assignment. Vicinal (three-bond) HN-H 

coupling constants (3JHNH) were evaluated from cross-peak intensities in quantitative J-

correlation (HNHA) spectra44. Residual dipolar couplings 1DNH RDCs were measured by taking 

the difference in the one-bond 1H-15N splittings (1JNH + 1DNH) in aligned (~20 mg/ml) phage pf1 

(ref. 45) and isotropic media using an in-phase/anti-phase (IPAP) HSQC experiment46.The 

spectra were processed using NMRpipe47 and analyzed by SPARKY 

(http://www.cgl.ucsf.edu/home/sparky/) and CARA48.1H, 13C and 15N chemical shifts were 

calibrated indirectly by external DSS references. 

The structure calculation was performed with CS-RDC-Rosetta49,50 using as structural restraints 

the residual dipolar couplings, torsion angles / derived from TALOS+ database and the 

complete backbone and C chemical shifts of those residues indicated by TALOS+ to be rigid in 

picosecond timescale with an order parameter S2> 0.7. A set of 200 fragment candidates 

matching these chemical shifts was used to calculate 3,000 structures in Rosetta. The energy of 

these Rosetta structures was then rescored against the observed chemical shifts and the 20 

conformers with the lowest rescored energy were selected for the ensemble. The structures were 

visualized and evaluated using PyMOL ((http://www.pymol.org/), MOLMOL51, CHIMERA52, 

PROCHECK-NMR53 and MolProbity54.The chemical shift assignments are available from the 

Biological Magnetic Resonance Data Bank (accession number 19285), and the final atomic 

coordinates are available from the Protein Data Bank (2m97). The distance between the N and C 

terminus was measured to be 14.7 Å for the calcium-loaded globular conformation. For the 

calcium-free form, average distances between N and C terminus of 50 Å were extrapolated 

from urea-disordered ubiquitin, which has a similar amino acid number as TnC31. 

http://www.cgl.ucsf.edu/home/sparky/
http://www.pymol.org/
http://www.bmrb.wisc.edu/data_library/generate_summary.php?chooseAccOrDep=useAcc&bmrbId=19285
http://www.pdb.org/pdb/search/structidSearch.do?structureId=2m97
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The GFP molecule is ~4 nm in length and ~2 nm wide. Depending on how the two -barrels 

encounter each other, dchromophore is~2–4 nm. The Förster radius is normally around R0 = 5 nm for 

GFP variants. Thus, in the calcium-free form, a distance of (5.2 + dchromophore + 5) nm would be 

expected for the FRET effect, and in the calcium-loaded form (1.5 + dchromophore + 5) nm is 

expected. This distance change provides a ratio of 4–6 between the FRET effects, which agrees 

reasonably well with the observed FRET changes for Twitch-1. Owing to the r–6 averaging of 

FRET, only the closest 20% of the conformations are taken into account: 

 

SAXS. 

Small-angle-scattering data were collected on the ID14-3 beamline of the European Synchrotron 

Radiation Facility ESRF (Grenoble, France). Twitch samples were purified by size exclusion 

chromatography in buffer A (30 mM MOPS, 100 mM KCl, 100 mM EDTA and 100 mM EGTA, 

pH 7.5) then taken up either in buffer containing EGTA (2 mM, Ca2+ free) or 10 mM CaCl2 (10 

mM high Ca2+) and centrifuged before the SAXS measurements. Samples were measured at 

concentrations of 1, 5, 10 and 20 mg/ml, with the running buffer of the size exclusion 

chromatography used as reference for buffer correction. No particle interactions or radiation 

damage could be observed for the used data. Raw data processing was performed using the 

ATSAS package55 as described in ref. 56, for example. Sets of independent ab initio models 

were calculated using GASBOR57, and DAMAVER58 was used for alignment and averaging. 

Modeling of the calcium-bound state of Twitch-0 and Twitch-1 was done using CORAL59 with 

ECFP (PDB: 2WSN), Citrine (PDB: 3DPX), the minimal domain structure described here and 

the respective SAXS data. To avoid clashes, we allowed up to five linker residues between the 

rigid bodies to account for the fact that the termini of the respective crystal structures might be 

flexible or change their conformation if the minimal domain folds upon Ca2+ binding and, thus, 

might also influence the conformation of the directly neighboring residues of the fluorescent 

proteins. Figures were prepared using USCF Chimera60. 

Bacterial plate pre-screening of FRET calcium sensors. 

Libraries of biosensor mutants were subcloned into pRSETB (Invitrogen) and transformed into 

E. coli XL-1 Blue cells. The cells were plated on LB agar plates containing 50 µg/ml ampicillin 

with an average colony density of approximately 800–1,000 colonies per plate and incubated 

overnight at 37 °C. After 1 d at 4 °C, the biosensor mutants were fully mature and could be 

analyzed. For this purpose, colonies were blotted onto Whatman filter paper and imaged using a 

Lambda LS/30 Stand Alone Xenon Arc Lamp and Power Supply, a Lambda 10-2 Optical Filter 

Changer (both Sutter Instrument), and a CoolSNAP ES2 CCD Camera. The excitation filter used 

was D 436/40, and the emission filters were D 480/40 (CFP, Cerulean3 and mTurquoise2) and 

HQ 535/30 (cpCitrine 174) (all from Chroma). Cell Profiler version 10415 Cell Image Analysis 

Software was used for automated region of interest (ROI) selection, and the acquired data was 

processed with MetaFluor version 7.7.0. The Whatman paper containing the colonies was 

sprayed with a solution of polylysine (50 µg/ml) and ionomycin (50 µg/ml) in a buffer of 30 mM 

MOPS, 100 mM KCl, pH 7.5, to open the bacterial cell membrane. The whole membrane was 

dampened with the solution by spraying 4–5 times using 30-ml plastic spray bottles (Rotert, 

Germany). After 5 min of incubation and acquisition of baseline fluorescence, a solution of 100 

mM CaCl2 was sprayed on the cells. The change in FRET was acquired for 5 min. Data from the 

http://www.pdb.org/pdb/explore/explore.do?structureId=2WSN
http://www.pdb.org/pdb/explore/explore.do?structureId=3DPX
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plate screening were analyzed in MatLab R2011b, 10–20 of the best-performing colonies were 

picked, and plasmids were isolated for further analysis. Our selection criteria were lowest basal 

starting ratio, highest calcium-induced ratio change and the intersection of variants that ranked 

high in both categories. We identified the best-performing variants (top 1% fraction per plate) 

using as selection criteria a starting ratio R0 of ~1 under basal conditions and increased FRET 

change (∆R/R) upon calcium addition. 

Expression and purification of proteins. 

For protein expression and purification, genes encoding the Twitch biosensors were subcloned 

into pRSETb (Invitrogen) and transformed in E. coli BL21 cells. Purification of the protein of 

interest was achieved by using either His Mag Sepharose Ni magnetic beads (GE Healthcare) for 

small-scale purification, or Ni-NTA 30 polypropylene columns (Qiagen), both capable of 

chelating the His6 tag. The suspension was washed with column-washing buffer containing 20 

mM imidazole. Proteins were eluted by replacement of the bound protein with imidazole using 

column-elution buffer containing 250 mM imidazole. 

Calcium titration. 

To determine the Kd value, purified protein was used and a pre-warmed (room temperature) 

titration kit was applied as follows. Two stock solutions were prepared in accordance with 

previous literature61: (i) for zero calcium, a solution of 1 ml of zero-calcium buffer with one 

volume of protein solution (~0.2–1 M protein, directly in cuvette); (ii) for high calcium, a 

solution of 6 ml of 39.8 M free calcium buffer with six volumes of protein solution. A spectral 

baseline was recorded using a fluorescence spectrophotometer (Varian Cary Eclipse). The 

excitation wavelength for the CFP/YFP-FRET pair was 432 nm. The emission was determined in 

the range from 450 nm to 600 nm (all bandwidths 5 nm). The Kd value was calculated by fitting a 

sigmoidal dose response curve to the plotted log10 values of the free calcium points (in M) versus 

the normalized signal (normalized to 39.8 M free calcium). Ratio changes (R/R) were 

calculated according to the formula 

 

Stopped-flow measurements. 

To determine the kinetics (Koff and Kon) of the calcium indicators, a Varian Cary Eclipse 

fluorescence spectrophotometer fitted with an Applied Photophysics RX pneumatic drive unit 

was used. Two stock solutions were prepared as follows: calcium-saturated indicator (5 ml), 10 

mM MOPS, 4 mM CaCl2, 2 mM MgCl2, 50 mM KCl, ~0.2–1 M indicator (pH 7.5); BAPTA 

solution (5 ml), 10 mM MOPS, 50 mM KCl, 20 mM BAPTA (pH 7.5). The stopped-flow 

experiment was carried out at room temperature (~23 °C) and the two solutions were mixed with 

an injection pressure of 3.5 bar. Excitation was set to 432 nm (bandwidth 5 nm) for CFP. 

Emission spectra of the two individual channels were taken in an alternated manner at 475 nm 

(for CFP, bandwidth 10 nm) and 527 nm (for YFP, bandwidth 10 nm) respectively. Acquisition 

time was set to 12.5 ms, duration to >10 s and mixing volume to 400 l with a mixing dead time 

of the instrument of 8 ms. An average of the individual channels and the acceptor/donor ratio 

was calculated. The decay time (, sec) was determined by fitting with a single- or double-

exponential curve to the acceptor/donor ratio using OriginLab 7.5. 
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Screening of calcium biosensors in neonatal cultured primary rat hippocampal 
neurons. 

Neuronal screening was performed essentially as reported previously11,62, with minor adaptations 

for FRET ratiometric imaging. Genes encoding Twitch biosensors were subcloned into a 

hippocampal neuron screening vector pGP-SIV-hsyn1-IRES-nls-mCherry-WPRE-SV40 (hsyn1: 

human synapsin-1 promoter) using blunt-end cloning. Cultures of primary hippocampal neurons 

were obtained from P0 rat pups by dissection, papain-based dissociation and plating onto 

Matrigel-coated (BD Biosciences), 24-well glass-bottom plates (MatTek) and then cultured in 

DMEM/B27 medium (Invitrogen). The SIV-based lentiviral vectors containing Twitch 

biosensors were produced through transfection of HEK293T packaging cells in 10-cm plates. On 

day 3 in vitro the hippocampal neuronal cultures were infected in vitro for 16 h using newly 

harvested lentiviral particles, and medium was replaced with DMEM/B27 with 4 mM AraC 

(Invitrogen and Sigma). On day 16–18 in vitro infected neurons were stimulated using a custom-

built, 24-well multiplexed field stimulator with platinum wires and imaged using an Olympus 

IX81 motorized, inverted microscope (10 objective, 0.4 NA with optical filters 436/20 for CFP 

excitation, 455 longpass (LP), 520 LP dichroic, 485/30 emission for CFP and FITC-TxRed 

emission for YFP; all optical filters and dichroic mirrors by Semrock); Prior Scientific H117 

ProScanII motorized stage; a cyan (505 nm) LED illumination source (Cairn); and an EMCCD 

camera (AndoriXon 897, 34.8 frames per second). Field stimuli were delivered in 40-V, 83-Hz, 

1-ms pulses for the following trains: 1, 2, 3, 5, 10, 20, 40, 80 and 160 field stimuli. The whole 

system was automated using MetaMorph (MM; Molecular Devices) and MATLAB 

(MathWorks) software. Imaging buffer included the following (in mM): 145 NaCl, 2.5 KCl, 10 

glucose, 10 HEPES (pH 7.4), 2 CaCl2, 1 MgCl2, 0.01 3-(2-carboxypiperazin-4-yl)-propyl-1-

phosphonic acid (cPP, Tocris Bioscience), 0.01 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 

Tocris Bioscience), 0.01 gabazine (Tocris Bioscience) and 1-methyl-4-carboxyphenylglycine 

(MCPG, TocrisBioscience). Images were processed and analyzed using custom software. 

Field stimulation of cultured embryonic primary rat hippocampal neurons. 

Primary hippocampal neurons from rat were obtained from E18 pups by dissection and trypsin-

based dissociation. The neurons were plated onto polylysine-coated µ-Dish (3.5 mm, high) plates 

(ibidi GmbH) and cultured for one week in DMEM (supplemented with FCS and penicillin and 

streptomycin (Pen/Strep)) before use. For imaging, the hippocampal neurons were transfected 

with the Twitch biosensor of choice using Lipofectamine as described below. On the day of 

imaging (1 d after transfection) DMEM (FCS, Pen/Strep) was replaced with 1 ml of FCS buffer 

(washed once with 1 ml of FCS). The neurons were stimulated using a custom-built field 

stimulator (Agilent E3631A DC power supply, Agilent 33220A 20 MHz Function/Arbitrary 

Waveform Generator) with platinum wires fitted to the ibidi µ-Dish plates and imaged using a 

TILL Photonics setup (iMIC digital microscope, ICU, Polychrome V and Live Acquisition 

software). Field stimuli were delivered in 30-V, 100-Hz, 1-ms pulses (100 µs stimulation pulse-

width) for the following trains: 1–160 field stimuli and images were acquired at an acquisition 

time of 100–200 ms and exposure time of 10 ms. 

Transfection of primary cultured cells and dissociated neurons. 

Twitch indicators were delivered to primary cell cultures using Lipofectamine. 2–3 g of 

plasmid DNA were added to 250 l of Opti-MEM I. In parallel, 10 l of Lipofectamine 2000 

were mixed with 250 l of Opti-MEM I and incubated for 5 min at room temperature. The two 
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separate solutions containing DNA and Lipofectamine were mixed and incubated for an 

additional 20 min at room temperature to form vesicles of DNA. The DNA-Lipofectamine 

solution was added to cells growing in 30-mm glass bottom dishes, and the transfection was 

allowed to proceed for 3 h incubating at 37 °C with 5% CO2. After a 3 h of incubation, cells 

were washed with 1 ml PBS and 2 ml of DMEM (10% FCS, 1% PenStrep) were added. Cells 

were allowed to recover from the treatment and to express the Twitch indicators overnight and 

were ready to use the next day. 

Mouse preparation for in vivo imaging. 

All procedures were in accordance with protocols approved by the Janelia Farm Research 

Campus Institutional Animal Care and Use Committee and by the state government of Baden-

Württemberg, Germany. Mice were anesthetized either with isoflurane (2.5% for induction, 

1.25–1.75% during surgery) or by intraperitoneal injection of a mixture of ketamine and xylazine 

(80 g and 8 g per gram of body weight, respectively In all cases an animal was excluded if the 

cranial window quality was low.   

For data shown in Figure 4a–e and Supplementary Fig. 11, after skin removal and thinning of 

the skull, AAV encoding Twitch-3 or YC3.60 was injected through the thinned bone to the left 

visual cortex (2.5 and 2.9 mm lateral and 0.2 anterior to lambda, 250 m deep, 25 nl per 

injection site). 3–4 weeks following injections, a circular craniotomy (2–3 mm diameter) was 

placed above the injection site. A custom titanium head post was fixed to the skull using black 

dental cement (Contemporary Ortho-Jet). The craniotomy was covered with 1% agarose and a 

round glass coverslip (Warner Instrument, 3 mm diameter, number 1 thickness) was cemented to 

the skull to reduce motion of the exposed brain. The animal was then transferred to the imaging 

setup, where it was placed on a warm blanket (37 °C) and kept anesthetized using 0.25–0.5% 

isoflurane and sedated with chlorprothixene (20–40 l at 0.33 mg/ml, i.m.)63.   

For data shown in Fig. 4h–i: the HIV-based lentiviruses (FUGW as the backbone, Addgene 

plasmid number 14883; virus titer 108 colony-forming units per ml) containing Twitch-2B or 

Twitch-3 biosensors were stereotactically injected (3.0 mm anterior to bregma, 0.84 mm lateral, 

2.9 mm deep, 1 µl) into the rostral migratory stream of C57BL/6 mice for transduction of adult-

born cells moving toward the olfactory bulb. The transduced juxtaglomerular neurons in the 

olfactory bulb were imaged after their arrival to and settling in the glomerular layer of the 

olfactory bulb, at 35–37 d after infection. To study sensor function after long-term chronic 

expression, mice expressing Twitch-2B were imaged again at 141 d after infection. On the day of 

imaging, a mouse was anesthetized by intraperitoneal injection of a mixture of ketamine and 

xylazine (80 g and 8 g, respectively, per gram of body weight), for induction; 40 g and 4 g, 

respectively, per gram of body weight for maintenance). A custom-made recording chamber was 

glued to the skull. The mouse was transferred to the imaging setup, where it was placed on a 

warm blanket (37 °C). The chamber was fixed in an xy table and perfused with warm (38 °C) 

standard extracellular solution containing (in mM): 125 NaCl, 4.5 KCl, 26 NaHCO3, 1.25 

NaH2PO4, 2 CaCl2, 1 MgCl2 and 20 glucose (pH 7.4) when bubbled with 95% O2 and 5% CO2). 

A craniotomy (typical size about 1 mm  0.5 mm) was made using a 30-gauge syringe needle; 

the dura was left intact (see reference 21 for details). To reduce the movement artifacts, the 

craniotomy was filled with 2% agarose. 

http://www.addgene.org/14883/


18 
 

In a separate set of experiments, the area under the cranial window (prepared as described above) 

was stained either with Oregon Green 488 BAPTA-1 a.m. (OGB-1, Invitrogen, Carlsbad, CA) or 

Fura PE-3 a.m. (TEFLAB, Austin, TX) using multicell bolus loading technique64. 

Odorants were applied for 4 s through a custom-made flow-dilution olfactometer positioned in 

front of the snout of freely breathing mice as described previously21. 

In vivo mouse imaging. 

For data shown in Figure 4a–e and Supplementary Figure 11, a custom-built two-photon 

microscope with a resonant galvanometric scanner was used for imaging (designs available at 

http://research.janelia.org/Svoboda/). The light source was a Mai Tai HP 100-fs pulsed laser 

(Spectra-Physics) running at 860 nm for Twitch-3 and at 870 nm for YC 3.60 imaging. The 

objective was a 16 0.8 NA (Nikon). Image acquisition was performed using ScanImage 4 

(http://www.scanimage.org)65. Images (512 pixels  512 pixels, 250 m  250 m) were 

collected at 15 Hz from two channels (using 505-nm longpass dichroic mirror, 480/40 filter for 

CFP channel, and 535/50 filter for cpCitrine channel, Chroma). Mice were randomly chosen to 

be injected with Twitch-3 or YC3.60.  The investigator was blinded to the groups allocation for 

injection of the given AAV.   Functional imaging experiments were performed 21–30 d after 

viral injection. Moving gratings in eight different orientations were displayed to the right eye of 

lightly anesthetized mice11,63,66. Simultaneous two-photon imaging in the contralateral layer 2/3 

neurons of V1 revealed bright cellular fluorescence expression as well as neuropil staining. 

Notably, Twitch-3 imaging required lower excitation intensity than YC 3.60 (20 mW versus 45 

mW average laser power for depth of 150 m under the brain surface) to maintain a similar 

SNR. Ratio images exhibit robustness to small sample movements; moreover, pixel values were 

more uniformly distributed than the corresponding fluorescence images pixel values. Therefore, 

ratio images emphasize regions with lower fluorescence signal. The fraction of responsive cells 

was larger for Twitch-3 than for YC 3.60 (1,264/3,633 from six animals for Twitch-3, 414/2,149 

from 5 animals for YC 3.60). The majority of the responsive cells had a preferred stimulus 

orientation (856/1,264 for Twitch-3, 258/414 for YC 3.60; Fig. 4 and Supplementary Fig. 11) 

in agreement with previous studies11,63. Data for OGB-1 were obtained from three animals 

(fraction of responsive cells was 1,297/3,606). 

For data shown in Fig. 4h,i, imaging was performed with a customized two-photon microscope 

based on Olympus FV1000 system (Olympus, Tokyo, Japan) and MaiTai Deep See Laser 

(Spectra Physics, Mountain View, CA). In this case the experimenter was not blinded to the type 

of GECI injected. 10 mice in total were used for this analysis with between 10 and 40 

experiments performed for each indicator. The emitted light was collected with the Zeiss 20 

water immersion objective (NA 1.00), and separated with a 515 LP dichroic mirror and two 

band-pass filters: 475/64 and 500LP for CFP and YFP channels respectively. Images were 

collected at 7–20 Hz (depending on the size of the imaging frame). 

Mouse visual stimuli. 

Moving grating stimuli were shown to mice from the Psychophysics Toolbox67,68 generated in 

MATLAB. Each trial consisted of a 4-s blank stimulus period (uniform gray at mean luminance) 

followed by 4 s of drifting sinusoidal grating stimulus (0.05 cycles per degree, 1 Hz temporal 

frequency). The visual stimuli were synchronized to individual image frames using frame-start 

pulses provided by ScanImage 4. The gratings were shown on an LCD monitor (30 cm × 40 cm) 
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25 cm in front of the center of the right eye of the mouse. The monitor subtended an angle of 

±38° horizontally and ±31° vertically around the mouse's eye. 

Image analysis. 

Mouse visual cortex. Analyses were performed in MATLAB. ROIs corresponding to cell bodies 

were chosen using a semiautomated algorithm11. Ring-shaped or circular ROIs were placed at 

cell cytosolic regions (excluding the nucleus) or on cell somata, respectively, according to each 

cell’s staining pattern. Fluorescence traces for each cell were measured by averaging all pixels 

within the ROI. The neuropil contamination was corrected as previously described66; briefly, the 

neuropil signal Fneuropil(t) surrounding each cell was measured by averaging the pixel signals 

within a 20-m radius from the cell center (excluding all selected cells). The true fluorescence 

signal of a cell body was then estimated as follows: 

Fcell_ true t( ) = Fcell_measured t( ) -  r ×Fneuropil t( )
 

with r = 0.7 used throughout the study. After neuropil correction, the R/R0 of each trial was 

calculated as (R–R0)/R0, where R0 is the baseline ratio between fluorescence signal from 

cpCitrine and CFP channels, averaged over a 2-s period immediately before the start of sensory 

stimulation, and R is the ratio between these two channels in each time point. Visually 

responsive neurons were defined as cells with R/R0 > 0.05 during at least one stimulus period, 

and using ANOVA across blank and eight direction periods (averaged over 2 s, P < 0.01)69. 

Olfactory bulb. Data inspection during the experiment was carried out using Fluoview (Olympus, 

Tokyo, Japan), and NeuroPlex (RedShirtImaging LLC, Decatur, GA) software. Detailed data 

analysis was performed offline using a combination of Fluoview, NeuroPlex, ImageJ 

(http://rsb.info.nih.gov/ij/) with the WCIF plug-in (Wright Cell Imaging Facility, Toronto, 

Canada), MetaMorph (Molecular Devices, West Chester PA) and Excel (Microsoft, Redmond, 

WA), as well as custom-made programs written for Labview (National Instruments, Austin, TX), 

Igor Pro (WaveMetrics, Portland, OR) or IDL (ITT, Boulder, CO). 

Signal-to-noise ratios were measured as mean peak amplitude of the transients divided by the s.d. 

of the baseline noise. 

Whole-cell recordings. 

Whole-cell recordings were made from layer 2/3 pyramidal cells using an EPC-10 patch-clamp 

amplifier (HEKA, Lambrecht, Germany) as described previously70. The HIV-based lentiviruses 

(FUGW as the backbone, Addgene 14883; virus titer 108 colony forming units/ml) encoding for 

Twitch-2B were stereotactically injected (2 mm posterior to bregma, 1.5 mm lateral, 0.5 mm 

deep, 1 µl) into the cortex. 1–2 weeks after viral transfection, animals were decapitated, and 

coronal cortical slices of 300-µm thickness were cut in ice-cold standard extracellular solution. 

Slices were incubated in this solution for at least 1 h before being transferred to the setup. Patch 

pipettes were made from borosilicate glass (Hilgenberg GmbH, Malsfeld, Germany) and had 

resistances of 7–10 MOhm when filled with the intracellular pipette solution containing (in mM): 

140 Potassium gluconate, 12 KCl, 4 NaCl, 4 Mg-ATP, 0.4 Na-GTP and 10 HEPES (pH 7.3). 

Experiments were performed at 35 °C. Membrane potential was held at –70 mV. Single action 

potentials and bursts thereof were evoked by depolarizing current steps of different duration (5–

300 ms). 

http://www.addgene.org/14883/
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Mice for functional imaging of T lymphocytes. 

C57BL/6 and OT-II mice40 were bred in the facilities of the Max Planck Institute of 

Neurobiology. All animal procedures were in accordance with the guidelines of the committee 

on animals of the Max Planck Institute of Neurobiology and were approved by the state 

government of Upper Bavaria, Germany. 

Retrovirus supernatant production. 

The replication-deficient ecotropic retrovirus producer cells (Phoenix) were transfected using the 

calcium-phosphate/chloroquine method with 12 µg of pMSCV retroviral vector and 3.5 µg of 

pCL-Eco packaging plasmid. After 48 h the virus-containing culture supernatant was collected, 

replaced with fresh culture medium and concentrated by centrifugation at 6,000 RCF for 18 h at 

4 °C. Pellets were resuspended in fresh virus supernatant from the transfected Phoenix cells and 

filtered through a 0.45-µm pore-sized filter, and the filtrate was immediately used for the 

retroviral transduction of target cells or snap frozen on dry ice and stored at –80 °C. 

Retroviral transduction of T lymphocytes. 

Single-cell suspensions were prepared from spleens by mechanical disruption by forcing the 

spleen through 40-µm cell strainers (BD Biosciences) followed by erythrocyte lysis using 

hypotonic 0.83% NH4Cl. For the transduction of wild-type T lymphocytes, CD4+ cells were 

purified using the MagCellect CD4+ cell Isolation Kit (R&D) and were stimulated using plate-

bound anti-CD3 and anti-CD28 (BD Biosciences). After 24 h, the T lymphocytes were 

suspended in retrovirus supernatant supplemented with 8 µg/ml polybrene (Sigma-Aldrich) and 

10 ng/ml IL-2 (PeproTech), seeded onto RetroNectin-coated (Takara) wells, and spin-infected by 

centrifugation at 450 RCF for 90 min at room temperature. For the transduction of TCR 

transgenic T lymphocytes, OT-II splenocyte suspensions were cultured in presence of 10 µg/ml 

OVA323–339 peptide. After 48 h, Dynabeads Mouse Pan B (B220) (Invitrogen) were used to 

deplete the cultures of B cells, followed by transduction as described above. 

T lymphocyte transfer for lymph node imaging. 

One day after retroviral transduction, 5 × 106–15 × 106 OT-II T cells were adoptively transferred 

via i.v. injection into the tail vein of mildly irradiated (20 Gy) C57BL/6 mice. The mice were 

allowed to recover for one week before the adoptive transfer of antigen presenting cells. Bone 

marrow dendritic cells (BMDCs) were obtained from the femurs of C57BL/6 mice and were 

cultured in the presence of GM-CSF producing hybridoma-conditioned medium with repeated 

medium exchange to deplete the nonadherent cells. After 8 d in culture, the BMDCs were 

trypsinized and activated overnight in fresh medium supplemented with 1 µg/ml LPS. The 

activated BMDCs were labeled using 4 µM SNARF-1 (Invitrogen), and 2 × 106 BMDCs were 

injected subcutaneously into the lower leg. Imaging of the draining popliteal lymph node was 

performed 1 d later. 

In vivo two-photon microscopy calcium imaging of T lymphocytes. 

Time-lapse two-photon laser-scanning microscopy was performed essentially as reported 

previously36 using an SP2 confocal microscope (Leica) equipped with a 10 W Millenia/Tsunami 

laser (Newport Spectra Physics). The laser wavelength was set to 835 nm for CFP excitation and 

directed through a Leica 25 water immersion objective (NA 0.95). Areas measuring 240 µm  

240 µm were scanned, and z-stacks (25–30 µm) were acquired using a 3- to 4-µm z-step. The 
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acquisition rate was at intervals of 16–20 s, with images averaged twice. The fluorescence 

signals were recorded using non-descanned photomultiplier tube (PMT) detectors (Hamamatsu) 

equipped with 475/50 nm (CFP), 537/26 nm (FRET), and 630/69 nm (SNARF-1, Texas Red) 

band-pass filters (Semrock). The PMT settings for CFP and FRET fluorescence were kept 

identical during all experiments. To estimate FRET ratios, CFP bleed-through was corrected. 

The CFP bleed-through into the FRET channel was determined to 44%. The fraction of cpCitrine 

emission in the CFP channel and direct excitation of cpCitrine at 835 nm was negligible. The 

mice were anaesthetized by i.p. injection with fentanyl, midazolam, medetomidine (50 µg, 50 

mg, and 500 µg per kilogram of body weight, respectively), intubated and ventilated with 1.5% 

isoflurane. To expose the popliteal lymph nodes the skin was cut at the hollow of the knee 

followed by a careful dissection of the adductor musculature. Animals were stabilized in a 

custom-made microscope stage, and the body temperature was regulated using a heat pad (37.5 

°C). Physiological parameters and electrocardiograms were constantly monitored and recorded 

during the imaging. Blood vessels were visualized by the i.v. infusion of Texas Red–conjugated 

dextran (50 µg; 70 kDa; Invitrogen). 

Imaging data analysis (T lymphocytes). 

Images were acquired using Leica LCS software and subsequently processed and analyzed by 

ImageJ (http://rsb.info.nih.gov/ij/). A Gaussian blur filter was applied and maximum intensity z-

projections were made to obtain two-dimensional videos. In the images shown in figure 5,the 

CFP channel is depicted as green and the YFP channel as red. For analysis, cell shapes at each 

time point were manually outlined in the maximum projection picture, and the average signal 

intensities of all pixels for the area were calculated. The calculation of motility and calcium 

signals was done using Excel (Microsoft). The FRET signal was corrected for CFP bleed-

through, cFRET = FRET – 0.44 × CFP, and the ratios of cFRET/CFP were normalized to display 

the fractional ratio change ∆R/R0 (R0 for Twitch-1 = 0.8; Twitch-2B 0.5). Values were 

arbitrarily chosen for Twitch-1 so that only a tiny fraction of cells would be lower than this 

threshold. For Twitch-2B, R0 was adjusted to match the baseline population to the same level 

than Twitch-1). The overlayed box plots on the scatter plots in figure 5  indicate the 25th and 75th 

percentile, and the whiskers represent the 5th and 95th percentiles. All statistical analysis (Mann-

Whitney U test) was performed with GraphPad Prism. 
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