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Can we distinguish canonical El Nifio from Modoki?
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[1] Following the recent discovery of the “Modoki” El Nifio,
a proliferation of studies and debates has ensued concerning
whether Modoki is dynamically distinct from “Canonical” El
Nifio, how Modoki impacts and teleconnections differ, and
whether Modoki events have been increasing in frequency
or amplitude. Three decades of reliable, high temporal-
resolution observations of coupled ocean-atmosphere
variability in the equatorial Pacific reveal a rich diversity
of El Nifios. Although central and eastern Pacific sea
surface temperature (SST) anomalies appear mechanistically
separable in terms of local and remote forcing, their frequent
overlap precludes robust classifications. All observed El
Nifios appear to be a mixture of locally (central Pacific)
and remotely forced (eastern Pacific) SST anomalies.
Submonthly resolution appears essential for this insight and
for the proper dynamical diagnosis of El Nifio evolution;
thus, the use of long-term monthly reconstructions for
classification and trend analysis is strongly cautioned against.
Citation: Karnauskas, K. B. (2013), Can we distinguish canonical
El Nifio from Modoki?, Geophys. Res. Lett., 40, 5246-5251,
doi:10.1002/grl.51007.

1. Introduction

[2] The El Nifio-Southern Oscillation (ENSO) is among
the most intensely studied natural climate phenomena by
meteorologists and oceanographers. The interconnectedness
of global weather patterns owing to ENSO was suspected
as early as the 1830s [Cerveny, 2005] and pieced together
with global weather observations in the 1920s and 1930s
[Walker, 1925; Walker and Bliss, 1932]. The earliest theories
invoking strong ocean-atmosphere coupling to explain
ENSO [Bjerknes, 1969] remain generally accepted and have
been refined throughout recent decades [Jin, 1997; Picaut
et al., 1997; Suarez and Schopf, 1988]. Despite decades of
progress in observing, modeling, and understanding ENSO,
surprises abound. A new type of El Niflo, one in which the
sea surface temperature (SST) warming occurs primarily in
the central rather than eastern equatorial Pacific Ocean, was
first reported in peer-reviewed literature in 2005 [Larkin
and Harrison, 2005]. This phenomenon was coined
“Dateline” El Nifio; some discussion of semantics followed
as the term “Modoki” (a Japanese word meaning “‘similar
but different”) was used one year earlier in the Japanese
Media [Ashok et al., 2007]. (East Pacific (EP) and Central
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Pacific (CP) are used hereafter.) In the five years since these
papers, over 50 studies have been published in the ocean/
atmosphere/climate literature identifying [Ren and Jin, 2011,
Yu et al., 2011], contrasting [Hu et al., 2012; Kao and Yu,
2009; Kug et al., 2009; Ramesh and Murtugudde, 2013;
Shinoda et al., 2011; Singh et al., 2011; Trenberth and Smith,
2009; Yu and Kim, 2011], diagnosing [Kim et al., 2011;
Yu and Kim, 2010], and predicting [Hendon et al., 2009;
Jeong et al.,2012] CP El Nifios and their impacts on monsoons
[Taschetto et al., 2009], Australian rainfall [Cai and Cowan,
2009], tropical cyclones [Kim et al., 2009], ocean biology
[Gierach et al., 2012], Antarctic climate [Ding et al., 2011],
and stratospheric variability [Zubiaurre and Calvo, 2012].
Furthermore, several studies have investigated whether CP
El Niflos are becoming more frequent and/or stronger
[L’Heureux et al., 2012; Lee and McPhaden, 2010;
McPhaden et al., 2011; Newman et al., 2011; Nicholls,
2008; Yeh et al., 2009], while others have questioned
whether EP and CP El Nifios are in fact distinct phenomena
[Kug and Ham, 2011; Takahashi et al., 2011]. This paper is
concerned primarily with the latter question.

[3] Patterns of SST during 1997-1998 and 2002-2003
illustrate key spatial similarities and differences between EP
and CP El Nifios, respectively (Figure 1). The commonly
cited distinction is the location of maximum SST anomaly
(Figures la and 1b). However, in terms of total SST, both
events featured similar equatorward contractions and east-
ward expansions of the Indo-Pacific warm pool, while a sup-
pression of the eastern Pacific cold tongue occurred only in
the EP El Nifio (Figures 1d and le). It may therefore be
hypothesized that EP El Nifios are fundamentally related to
CP El Nifios except that a Bjerknes-like thermocline feedback
progresses and leads to a suppression of the cold tongue. It is
also interesting to contrast either El Nifio pattern with that of
the linear trend over the period 19822011 (Figures 1c and
1f). The trend is characterized by a meridional expansion
(but no zonal translation) of the warm pool edge and a small
but significant westward extension of the cold tongue, there-
fore resembling neither the warm nor cold form of an EP or
CP event. The response of the mean state of the tropical
Pacific to the anthropogenic rise in atmospheric CO, concen-
tration is a subject debated with equal vigor [Collins et al.,
2010]; note that the trend over the most recent 30 years—a
period during which the mean annual growth rate of atmo-
spheric CO, (1.73 ppm/year [Tans, 2012]) was greater than
at any point in modern recorded history—offers no evidence
of the strong warming in the central and eastern equatorial
Pacific Ocean predicted by global models.

[4] Common diagnostic methods in climate research such as
simple box averaging, threshold-based compositing, linear
regression, and principal component analysis ask phenomena
to fit a mold that is linear, stationary, and/or symmetric.
ENSO is known to defy all of these assumptions [4n and Jin,
2004; Boucharel et al., 2009; Okumura and Deser, 2010].
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(a) SST anomalies (°C) averaged from 27 April 1997 through 7 June 1998, widely considered a “canonical” or

East Pacific El Nifio. (b) As in Figure la but for 8 September 2002 through 2 February 2003, widely considered a
“Modoki” or Central Pacific El Nifio. (¢) Linear trend in SST (°C per 30 years) computed over the period January 1982
through December 2011. The El Nifios shown in Figures la and 1b correspond to events #6 and #7, respectively, in
Figure 2. (d—f) As in Figures 1a—1c but displaying the 26°C and 29°C isotherms averaged over the same periods (thin black lines)

and the mean climatology for those periods (heavy gray lines).

Further, such methods are necessary for generalizing large
numbers of realizations. Within the satellite era, the expected
number of El Nifios that have been adequately and consistently
sampled (record length x frequency ~10) does not generally
meet this criterion. The challenge of studying ENSO diversity
should therefore begin with a minimum of assumptions.
It follows that data sets relying heavily on such assumptions
to reconstruct past spatiotemporal variability from ship mea-
surements with uneven sampling in space and time, such as
gridded SST reconstructions spanning the instrumental era
(beginning ~1850), may require caution in this regard.

2. Data and Methods

[5] To identify El Nifios (and La Nifas) of any origin, a
simple index is defined that does not assume a priori the
geographic region where SST anomalies are most important
or distinguishing of different types of events (e.g., the Nifios
index, which is a measure of the equatorial SST anomaly
averaged between 150°W and 90°W). Indices for warm and
cold events are calculated separately to allow the possibility
of concurrent events of opposite sign in the equatorial Pacific:

Nifiow () = T peo (4, 1) for T >0
Nifia,, (1) = T oo (4, 1) for T < 0

where T represents the SST anomaly with respect to the
mean climatology (base period 1982-2011), overbars indi-
cate the zonal mean 120°E <A<80°W, and subscripts ¢ =0
indicate meridional averaging 1°S<@<1°N. The Niflo,
index is thus simply the average of all positive SST anomalies
along the Pacific equator at a given time 7. A widely used
and well validated gridded SST product with weekly temporal
resolution (and 1° spatial resolution) that blends satellite and

in situ observations is used [Reynolds et al., 2002]. ENSO
events are transient departures from a baseline climatology.
Given the cooling trend observed across much of the equatorial
Pacific Ocean over the analysis period (Figure lc), the SST
data were first detrended by removing the linear trend over
1982-2011. This step ensures meaningful comparison of
anomalous events at opposing temporal ends of the record
in the presence of a trending baseline and does not alter
the results of this paper. The Niflo,, and Nifia,, indices, along
with numeric identifiers for each of the 11 events in which
the weekly Niflo,, value exceeded 2 standard deviations, are
shown in Figures 2a and Sla, respectively.

[6] Analysis of SST variability is complemented by pentad/
0.25° wind stress measurements from the Cross-Calibrated
Multi-Platform (CCMP) Ocean Surface Wind Components
[Atlas et al., 2011], daily/1° surface heat flux measurements
from the Objectively Analyzed air-sea Fluxes (OAFlux) prod-
uct [Yu and Weller, 2007], pentad/1° surface ocean currents
estimated by the Ocean Surface Current Analyses Real-time
(OSCAR) product [Bonjean and Lagerloef, 2002], weekly/
0.33° sea surface height measurements from the Archiving,
Validation, and Interpretation of Satellite define Oceanographic
data (AVISO) product (see Acknowledgments), and pentad
thermocline depth observations from the Tropical Atmosphere-
Ocean (TAO) array of moorings [McPhaden et al., 1998].

3. Results

[7] The evolution of warm equatorial SST anomalies
through time-longitude space at weekly temporal resolution
reveals a surprising diversity of anomaly patterns (Figure 2b).
The prevalence of anomalies developing in different regions
simultaneously and propagating zonally in different directions
clearly renders objective classification schemes limited in

5247



KARNAUSKAS: DISTINGUISHING EL NINOS

O
S
4
2 ey 4 - s
1987 A 1993 1999 2005 8 2011
| 2
1986 1992 3 s’ 19981 2004 2010111 s& 1
> o 1
- S
@ -
£ 1985 1991 1997 2003 7 h a 2009 0
[ o
10 =3
3 B -1
1984 1990 1996 2002 2008
-2
198311 1989 1995 —— 2001 2007 |
5 } 9 > - -3
1982 1988 1994 2000 2006 -4
150 200 250 150 200 250 150 200 250 150 200 250 150 200 250
Longitude (°E) Longitude (°E) Longitude (°E) Longitude (°E) Longitude (°E)

Figure 2. (a) The weekly Nifio,, index (°C) as described in the main text. Also shown is a 13 week (roughly 3 month) run-
ning mean (heavy line). Event numbers are assigned for each El Niflo, where the weekly Niflo,, value exceeded 2 standard
deviations of the Nifio,, index (dashed line). (b) Weekly SST anomalies along the equator as a function of longitude and time
(°C; averaged 2°S—2°N; positive only for clarity and consistency with the Nifio,, index definition). Black numbers correspond
to event numbers indicated in Figure 2a. The Nifia,, index and negative SST anomalies are provided in Figure S1.

universal applicability. Some El Nifios are, however, observed
to include warm anomalies west of the dateline (i.e., an cast-
ward expanded warm pool), which propagate eastward several
thousands of kilometers—but not to the eastern boundary—
and then retreat westward (e.g., #5). Furthermore, all obvious
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instances of such evolution did so within a multiyear setting
of an anomalously eastward position of the warm pool edge.
In this view, it may be tempting to use such evolution as a
characteristic fingerprint of CP El Nifio. It will be shown in
the following paragraphs that this is an oversimplification and
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Figure 3. Weekly SST anomalies along the equator as a function of longitude and time for all 11 events indicated in Figure 2
(°C; averaged 2°S—2°N). Results computed from a coarser-resolution monthly SST product [Smith et al., 2008] are provided
in Figure S2. Note that the color scales are adjusted appropriately for each event. Also note that the events are not ordered
chronologically (a—k) from left to right; they are ordered based on an initial, subjective judgment of the extent to which the
event appears dominated by SST anomalies in the central (left) or eastern (right) Pacific. Three events from across this spec-
trum (Figures 3b, 3g, and 3j) are chosen for deeper analysis in Figure 4.
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Figure 4. Time-longitude plots of weekly anomalies of surface zonal wind stress (z,; m?s~2), surface latent heat flux (Qj,g;
W m™?), surface ocean zonal velocity (uss; ms™"), sea surface height (SSH; cm), thermocline depth (Z»o; m), and SST (°C)
averaged 2°S—2°N for the (a) 1994-1995 El Nifio (Figures 2 (event #5) and 3b), (b) 2006-2007 El Nifio (Figures 2 (event #9)
and 3g), and (c) 1997-1998 El Nifo (Figures 2 (event #6) and Figure 3j). Heavy lines are based on inspection of the fields on
which they are overlaid, while thin lines are transposed from a different field (e.g., ovals encircling westerly wind bursts are
based on the 7, field but are also transposed to each subsequent field across that event for convenience).

not a useful distinction. La Nifias, on the other hand, appear
entirely dominated by westward propagating EP-type events
(Figure S1b) consistent with Kug and Ham [2011].

[8] A closer examination of the spatiotemporal evolution
of SST anomalies during the 11 warm events noted in
Figure 2 is provided in Figure 3. Rather than ordering chro-
nologically and using a consistent color scale for each event,
the events are displayed from left to right based on an initial,
subjective judgment of the extent to which each El Nifio
appears dominated by SST anomalies in the central or eastern
Pacific. What is immediately clear that was less obvious in
Figure 2b and all but hopeless in coarser monthly observations
(Figure S2) is the fact that every El Nifio—even the most
notoriously “EP” events (1982—1983 or 1997-1998)—involves
a distinct and geographically separated SST anomaly that

develops and evolves in the central Pacific as described
above. Likewise, El Nifios that might be judged “CP” by
various objective or subjective criteria (e.g., 1994—-1995)
involve clear and separate SST anomaly development in the
eastern Pacific. It is more often the case, and well illustrated
by the 20062007 event, that a given El Nifio is a mixture
of SST anomalies developing (and likely interacting
through large-scale coupled processes) in both the central
and eastern equatorial Pacific. The remaining analysis is
aimed at understanding whether the geographically separable
SST anomalies appearing in all El Nifios, which seem to vary
by event only in their magnitude relative to each other, are also
mechanistically separable.

[o] Three cases spanning the range of events shown in
Figure 3 are selected for further mechanistic analysis using
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Society (used with permission). (b) A modified diagram based on the findings herein. SST anomalies geographically located in the
central and eastern equatorial Pacific Ocean (and potentially the observed diversity of El Nifio events) are better understood when
the dynamics governing them (i.e., local versus remote processes) are considered separately.

a broad suite of fields documenting the state and evolution of the
coupled system (1994-1995, 20062007, and 1997-1998;
Figure 4). The following analysis procedure was adhered
to for each event: (1) identify and mark Kelvin waves as
coherent, positive, eastward propagating SSH anomalies;
(2) identify and mark westerly wind bursts as positive 7,
anomalies found near the leading edge of each Kelvin wave;
and (3) identify and mark coherent warm SST anomalies
that develop during the first year and persist into the second.
Upon completion of each step, all markings resulting
from that step are replicated and translated to all other fields
for comparison.

[10] Despite large differences in the timing and spatial
distribution of the peak warm anomalies, each event unfolded
in a remarkably similar way. Intermittent westerly wind
bursts occurring at the beginning of the first year (or end of
the previous year) either drove or reinforced an anomalously
eastward position of the warm pool edge through a combination
of (reduced) latent heat flux and zonal temperature advection.
Simultaneously, the westerly wind bursts initiated positive
(downwelling) Kelvin waves propagating eastward, where
they eventually depressed the thermocline in the far eastern
Pacific. Hence, both local and remote SST anomalies can be
identified in each event. In all three cases, latent heat flux
was a positive feedback on both the locally and remotely
driven SST anomalies.

[11] What made these three events different was the
strength (and likely timing) of the westerly wind bursts.
The wind bursts at the beginning of the 1997-1998 El Nifio
were earlier and roughly twice as strong as those associated
with 1994-1995 and 2006-2007, and so were the Kelvin
waves and thermocline depth anomalies. As the strong
Kelvin waves reached the eastern Pacific in early 1997 and
began depressing the thermocline by up to 100 m, SST anom-
alies in excess of 5°C developed, initiating a strong Bjerknes
feedback which led the patch of westerly wind anomalies
and thus warm pool edge to continue propagating eastward,
further reinforcing the thermocline and SST anomalies
[see Gebbie et al., 2007, and references therein]. Despite the
overwhelming amplitude of the remotely forced SST anomalies
in the eastern Pacific during 1997-1998, locally forced SST
anomalies associated primarily with anomalous zonal temper-
ature advection remained distinguishable in the central Pacific
well into 1998 (Figure 4c). Likewise, despite the relatively
strong locally driven SST anomalies in the central Pacific

during 1994-1995 (Figure 4a), weaker eastern Pacific SST
anomalies developed during late 1994 in concert with a
~40m deepening of the thermocline—a clearly remote
response to the arrival of Kelvin waves initiated by weaker
and later wind bursts in 1994.

4. Discussion and Conclusions

[12] To summarize, nature exhibits a rich diversity of
El Niflos composed of a mixture of SST anomalies initially
developing in the central and eastern Pacific. The results
presented herein suggest that CP and EP El Nifios are, in
theory, mechanistically distinct (i.e., CP SST anomalies are
a local response to wind forcing, whereas EP SST anomalies
emerge as a remote response). However, the obvious potential
for interaction between wind forcing and SST anomalies
at opposite ends of the basin explains why, upon closer
examination with suitable observations, they occur simulta-
neously more often than not. The usual view of feedbacks
involved in ENSO, summarized in Figure 5a [from Zelle et al.,
2004], contains all of the fundamental dynamics to explain
SST anomalies without geographic variation. Separating the
local from remote processes and explicitly invoking basin-
scale atmospheric feedbacks (a la Bjerknes) enables one to
envision how the known dynamics already account for
simultaneous mixtures of distinctly CP and EP SST anoma-
lies in every El Nifio (Figure 5b). It should not be too
surprising that the observed diversity of La Nifia is different
than that of El Nifio. El Nifio and La Nifia are known to be
asymmetric and so, too, may be aspects of their dynamics
including triggers. Many of these insights would be difficult
to tease from discrete monthly data with limited degrees of
freedom (or empirical modes). Moreover, the often-subtle
zonal propagation and frequent overlap with EP anomalies
would confound stationary box average indices designed
to isolate CP events.

[13] Much of the controversy surrounding Modoki concerns
whether it is a new phenomenon or at least increasing in
frequency and/or amplitude. There is hope for distinguishing
El Nifio blends based on their evolution in time-longitude
space at submonthly temporal resolution, but the amount of
overlap and interaction precludes the clean separation needed
for impact and trend studies as commonly formulated. While
CP SST anomalies appear to be distinguishable from those
in the east, it is unlikely that Modoki is a new phenomenon.
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Rather, its detection is enhanced by observations that are
higher temporal resolution and methods that are unreliant on
assumptions of linearity, stationarity, and symmetry.

[14] Acknowledgments. SST observations were acquired from the
NOAA Earth System Research Laboratory, Physical Sciences Division.
CCMP wind stress and OSCAR surface currents were acquired from the
NASA Physical Oceanography Distributed Active Archive Center. TAO
subsurface observations were acquired from the NOAA Pacific Marine
Environmental Laboratory. The altimeter products were produced by Ssalto/
Duacs and distributed by AVISO, with support from CNES (http:/www.
aviso.oceanobs.com/duacs/). Thanks to Lisan Yu for providing OAFlux.

[15] The Editor thanks two anonymous reviewers for their assistance in
evaluating this paper.

References

An, S. I, and F. F. Jin (2004), Nonlinearity and asymmetry of ENSO,
J. Clim., 17(12), 2399-2412.

Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata (2007),
El Nino Modoki and its possible teleconnection, J. Geophys. Res., 112,
C11007, doi:10.1029/2006JC003798.

Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem,
D. K. Smith, and D. Gombos (2011), A cross-calibrated multiplatform
ocean surface wind velocity product for meteorological and oceano-
graphic applications, Bull. Am. Meteorol. Soc., 92(2), 157-174.

Bjerknes, J. (1969), Atmospheric teleconnections from the equatorial
Pacificl, Mon. Weather Rev., 97(3), 163—172.

Bonjean, F., and G. S. E. Lagerloef (2002), Diagnostic model and analysis of
the surface currents in the tropical Pacific Ocean, J. Phys. Oceanogr.,
32(10), 2938-2954.

Boucharel, J., B. Dewitte, B. Garel, and Y. du Penhoat (2009), ENSO’s
non-stationary and non-Gaussian character: The role of climate shifts,
Nonlin. Processes Geophys., 16(4), 453-473.

Cai, W., and T. Cowan (2009), La Nina Modoki impacts Australia autumn
rainfall variability, Geophys. Res. Lett., 36, L12805, doi:10.1029/
2009GL037885.

Cerveny, R. S. (2005), Charles Darwin’s meteorological observations aboard
the HMS Beagle, Bull. Am. Meteorol. Soc., 86(9), 1295-1301.

Collins, M., et al. (2010), The impact of global warming on the tropical
Pacific Ocean and El Nino, Nat. Geosci., 3(6), 391-397.

Ding, Q. H., E. J. Steig, D. S. Battisti, and M. Kuttel (2011), Winter warming
in West Antarctica caused by central tropical Pacific warming, Nat.
Geosci., 4(6), 398—403.

Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman (2007),
Modulation of westerly wind bursts by sea surface temperature: A
semistochastic feedback for ENSO, J. Atmos. Sci., 64(9), 3281-3295.

Gierach, M. M., T. Lee, D. Turk, and M. J. McPhaden (2012), Biological
response to the 1997-98 and 200910 El Nino events in the equatorial
Pacific Ocean, Geophys. Res. Lett., 39, L10602, doi:10.1029/
2012GL051103.

Hendon, H. H., E. Lim, G. M. Wang, O. Alves, and D. Hudson (2009),
Prospects for predicting two flavors of El Nino, Geophys. Res. Lett., 36,
L19713, doi:10.1029/2009GL040100.

Hu, Z. Z., A. Kumar, B. Jha, W. Q. Wang, B. H. Huang, and B. Y. Huang
(2012), An analysis of warm pool and cold tongue El Nifios: Air-sea cou-
pling processes, global influences, and recent trends, Clim. Dyn.,
38(9-10), 2017-2035.

Jeong, H. I, D. Y. Lee, K. Ashok, J. B. Ahn, J. Y. Lee, J. J. Luo,
J. K. E. Schemm, H. H. Hendon, K. Braganza, and Y. G. Ham (2012),
Assessment of the APCC coupled MME suite in predicting the distinctive
climate impacts of two flavors of ENSO during boreal winter, Clim. Dyn.,
39(1-2), 475-493.

Jin, F. F. (1997), An equatorial ocean recharge paradigm for ENSO.1.
Conceptual model, J. Atmos. Sci., 54(7), 811-829.

Kao, H. Y., and J. Y. Yu (2009), Contrasting eastern-Pacific and central-
Pacific types of ENSO, J. Clim., 22(3), 615-632.

Kim, H. M., P. J. Webster, and J. A. Curry (2009), Impact of shifting patterns
of Pacific Ocean warming on North Atlantic tropical cyclones, Science,
325(5936), 77-80.

Kim, W., S. W. Yeh, J. H. Kim, J. S. Kug, and M. Kwon (2011), The unique
2009-2010 EI Nino event: A fast phase transition of warm pool El Nino to
La Nina, Geophys. Res. Lett., 38, L15809, doi:10.1029/2011GL048521.

Kug, J. S.,and Y. G. Ham (2011), Are there two types of La Nina?, Geophys.
Res. Lett., 38, L16704, doi:10.1029/2011GL048237.

Kug, J. S., F. F. Jin, and S. 1. An (2009), Two types of El Nino events: Cold
tongue El Nino and warm pool El Nino, J. Clim., 22(6), 1499-1515.

L’Heureux, M., D. Collins, and Z.-Z. Hu (2012), Linear trends in sea surface
temperature of the tropical Pacific Ocean and implications for the El Nifio-
Southern Oscillation, Clim. Dyn., 1-14.

Larkin, N. K., and D. E. Harrison (2005), On the definition of EI Nino and
associated seasonal average US weather anomalies, Geophys. Res. Lett.,
32, L13705, doi:10.1029/2005GL022738.

Lee, T., and M. J. McPhaden (2010), Increasing intensity of El Nino in the
central-equatorial Pacific, Geophys. Res. Lett., 37, L14603, doi:10.1029/
2010GL044007.

McPhaden, M. J., et al. (1998), The tropical ocean global atmosphere observ-
ing system: A decade of progress, J. Geophys. Res., 103(C7),
14,169-14,240.

McPhaden, M. J., T. Lee, and D. McClurg (2011), El Nino and its relation-
ship to changing background conditions in the tropical Pacific Ocean,
Geophys. Res. Lett., 38, L15709, doi:10.1029/2011GL048275.

Newman, M., S. I. Shin, and M. A. Alexander (2011), Natural variation in ENSO
flavors, Geophys. Res. Lett., 38, L14705, doi:10.1029/2011GL047658.

Nicholls, N. (2008), Recent trends in the seasonal and temporal behaviour of
the El Nino-Southern Oscillation, Geophys. Res. Lett., 35, L19703, doi:
10.1029/2008GL034499.

Okumura, Y. M., and C. Deser (2010), Asymmetry in the duration of El Nino
and La Nina, J. Clim., 23(21), 5826-5843.

Picaut, J., F. Masia, and Y. duPenhoat (1997), An advective-reflective
conceptual model for the oscillatory nature of the ENSO, Science,
277(5326), 663-666.

Ramesh, N., and R. Murtugudde (2013), All flavours of El Nino have similar
early subsurface origins, Nat. Clim. Change, 3, 42—-46.

Ren, H. L., and F. F. Jin (2011), Nino indices for two types of ENSO,
Geophys. Res. Lett., 38, 1L.04704, doi:10.1029/2010GL04603 1.

Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang
(2002), An improved in situ and satellite SST analysis for climate,
J. Clim., 15(13), 1609-1625.

Shinoda, T., H. E. Hurlburt, and E. J. Metzger (2011), Anomalous tropical
ocean circulation associated with La Nina Modoki, J. Geophys. Res.,
116, C12001, doi:10.1029/2011JC007304.

Singh, A., T. Delcroix, and S. Cravatte (2011), Contrasting the flavors of El
Nino-Southern Oscillation using sea surface salinity observations,
J. Geophys. Res., 116, C06016, doi:10.1029/2010JC006862.

Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore (2008),
Improvements to NOAA’s historical merged land-ocean surface tempera-
ture analysis (1880-2006), J. Clim., 21(10), 2283-2296.

Suarez, M. J., and P. S. Schopf (1988), A delayed action oscillator for ENSO,
J. Atmos. Sci., 45(21), 3283-3287.

Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte (2011),
ENSO regimes: Reinterpreting the canonical and Modoki El Nino,
Geophys. Res. Lett., 38, 110704, doi:10.1029/2011GL047364.

Tans, P. (2012), Annual CO, mole fraction increase (ppm) from Jan 1
through Dec 31, NOAA Earth System Research Laboratory.

Taschetto, A. S., C. C. Ummenhofer, A. Sen Gupta, and M. H. England
(2009), Effect of anomalous warming in the central Pacific on the
Australian monsoon, Geophys. Res. Lett., 36, 112704, doi:10.1029/
2009GL038416.

Trenberth, K. E., and L. Smith (2009), Variations in the three-dimensional
structure of the atmospheric circulation with different flavors of El Nino,
J. Clim., 22(11), 2978-2991.

Walker, G. T. (1925), Correlation in seasonal variations of weather—A further
study of world weatherl, Mon. Weather Rev., 53(6), 252-254.

Walker, G. T., and E. W. Bliss (1932), World weather V, Mem R. Meteorol.
Soc, 4(36), 53-84.

Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin
(2009), El Nino in a changing climate, Nature, 461(7263), 511-U570.
Yu, J. Y., and S. T. Kim (2010), Three evolution patterns of Central-
Pacific El Nino, Geophys. Res. Lett., 37, 108706, doi:10.1029/

2010GL042810.

Yu, J. Y., and S. T. Kim (2011), Relationships between extratropical sea
level pressure variations and the Central Pacific and Eastern Pacific types
of ENSO, J. Clim., 24(3), 708-720.

Yu, L. S., and R. A. Weller (2007), Objectively analyzed air-sea heat fluxes
for the global ice-free oceans (1981-2005), Bull. Am. Meteorol. Soc.,
88(4), 527-539.

Yu, J. Y., H. Y. Kao, T. Lee, and S. T. Kim (2011), Subsurface ocean
temperature indices for Central-Pacific and Eastern-Pacific types of El Nifio
and La Nifla events, Theor. Appl. Climatol., 103(3-4), 337-344.

Zelle, H., G. Appeldoorn, G. Burgers, and G. J. van Oldenborgh (2004), The
relationship between sea surface temperature and thermocline depth in the
eastern equatorial Pacific, J. Phys. Oceanogr., 34(3), 643—655.

Zubiaurre, 1., and N. Calvo (2012), The El Nino-Southern Oscillation
(ENSO) Modoki signal in the stratosphere, J. Geophys. Res., 117,
D04104, doi:10.1029/2011JD016690.

5251


http://www.aviso.oceanobs.com/duacs/
http://www.aviso.oceanobs.com/duacs/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


