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[1] Year-round flooding provides a common land management practice to reestablish the
natural carbon dioxide (CO2) sink function of drained peatlands. Here we present eddy
covariance measurements of net CO2 exchange from a temperate fen during three
consecutive growing seasons (May–October) that span a period of conversion from
moderately rewetting to flooding. When we started our measurements in 2009, the
hydrological conditions were representative for the preceding 20 years with a mean growing
season water level (MWGL) of 0 cm but considerably lower water levels in summer.
Flooding began in 2010 with an MWGL of 36 cm above the surface. The fen was a net CO2

sink throughout all growing seasons (2009: �333.3� 12.3, 2010: �294.1� 8.4, 2011:
�352.4� 5.1 g C m�2), but magnitudes of canopy photosynthesis (CP) and ecosystem
respiration (Reco) differed distinctively. Rates of CP and Reco were high before flooding,
dropped by 46% and 61%, respectively, in 2010, but increased again during the beginning
of growing season 2011 until the water level started to rise further due to strong rainfalls
during June and July. We assume that flooding decreases not only the CO2 release due to
inhibited Reco under anaerobic conditions but also CO2 sequestration rates are constricted
due to decreased CP. We conclude that rewetting might act as a disturbance for a plant
community that has adapted to drier conditions after decades of drainage. However, if the
recent species are still abundant, a rise in CP and autotrophic Reco can be expected after
plants have developed plastic response strategies to wetter conditions.
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1. Introduction

[2] Although peatlands cover only 3% of the terrestrial sur-
face [Frolking et al., 2011, and references therein], they store
about 20%–25% of the global organic soil carbon (C)
[Gorham, 1995]. The function of peatlands to act as a sink
or a source for C is mainly controlled by their hydrology
[Sirin and Laine, 2008; Zauft et al., 2010]. Under wet condi-
tions, the carbon dioxide (CO2) release by ecosystem respira-
tion (Reco) is lower than the CO2 sequestration by canopy
photosynthesis (CP), thus resulting in a net storage of C
[Joosten and Clarke, 2002; Joosten, 2010]. Peatlands have
shown to be surprisingly resilient to some level of disturbance
but can rapidly shift to new states when disturbance exceeds a
certain threshold [Dise, 2009]. Water table drawdown for peat
extraction, forestry, or agriculture affects a variety of ecosys-
tem functions [Turetsky and St. Louis, 2006, and references

therein]. When exposed to air, peat is decomposed rapidly;
Reco exceeds CP, and the peat switches from being a net
CO2 sink to being a net CO2 source [Joosten, 2010]. In densely
populated areas such as Germany or the Netherlands, 85% of
the total peatland area is drained for agricultural use [Silvius
et al., 2008], acting as hot spots for biological greenhouse gas
emissions [Drösler et al., 2008]. To stop this continuous C loss
and as a first step to reestablish near-natural conditions of C ac-
cumulation, extensive rewetting projects are currently being
carried out in drained peatlands across Europe and North
America [Höper et al., 2008; Erwin, 2009].
[3] The practical implementation of a projected water level

throughout the year is complicated since the water retention
capacity of degraded peat is low [Schwaerzel et al., 2002].
As a result, rewetted sites often suffer peat loss when water
levels decrease considerably below the surface during sum-
mer months [Aurela et al., 2007; Saarnio et al., 2007]. For
peatland sites with sufficient water supply, inundation
throughout the year is assumed to be a robust management
practice to prevent continuing degradation of the remaining
peat during periods of drought and to initiate the accumula-
tion of new organic matter [Asada et al., 2009; Euliss et al.,
2006]. However, as Dise [2009] pointed out, peatlands af-
fected by disturbance can shift to a new state of organization,
i.e., after decades of drainage, the biocenosis might have
adapted to drier conditions. A sudden and distinct rise in wa-
ter level might then cause a perturbation to this new level of
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organization [Coops et al., 2003]. Primary effects of flooding
that occur on the cell scale of the plants include oxygen
deprivation up to anoxia and propagate to secondary effects
on plant scale, such as stomatal closure, or reduced metabolic
activity [Kozlowski, 1984; Taiz and Zeiger, 2010] with
apparent consequences for photosynthesis as well as for
autotrophic respiration.
[4] Studies addressing the state conversion of peatlands

from drainage to rewetting, including its implications on eco-
system functionings, are sparse. Most of the available
research is concerned with the recreation of former peat
extraction sites [e.g., Bortoluzzi et al., 2006; Glatzel et al.,
2004; Waddington et al., 2010]. Since the harvest of peat is
associated with a total damage of ecosystem functioning,
such sites’ response to rewetting might not be comparable
with that of less altered, i.e., drained peatland sites [Höper
et al., 2008]. Komulainen et al. [1999] found two drained
peatland sites (a minerotrophic fen and an ombrotrophic
bog) to turn from CO2 neutrality to a net CO2 sink within
2 years after rewetting and stressed the importance of vital
vegetation as a precondition for organic matter accumulation.
Höper et al. [2008] reported an initially low net CO2 uptake
from a flooded fen site in northeastern Germany (water level
20–100 cm above surface), which was associated with the
submergence of the plant community. The integrated investi-
gation of peatland response to rewetting beyond the apparent
effect of oxygen deprivation on organic matter decomposi-
tion is crucial to promote our understanding of ecosystem
processes taking place during the conversion from drainage
to rewetting. A comprehensive understanding of this conver-
sion is required to advance ecosystem management toward a
fast succession and the persistent reestablishment of the CO2

sink function of peatlands.
[5] Rewetting of peatlands is known to stimulate emissions

of methane (CH4) [Hahn-Schöfl et al., 2011; Wilson et al.,
2008], a potent greenhouse gas with a 25 times higher net
radiative forcing on climate than that of CO2 on a 100 year
horizon [Forster et al., 2007]. However, on a long-term per-
spective, pristine mires exhibit a net radiative cooling effect
on the atmosphere, because the carbon fixation in peat over
millennia by far exceeds the release of comparably short-lived
CH4 molecules into the atmosphere [Frolking et al., 2011].
Therefore, the restoration of peatlands’ effective CO2 sink is
essential to reestablish their natural net cooling effect.
[6] We monitored CO2 exchange in a degraded coastal fen

during the conversion from moderate rewetting to perma-
nent, shallow inundation with the eddy covariance (EC) ap-
proach. The obtained data encompass the growing seasons
of three consecutive years, with 2009 being the reference
year before flooding (hence, years 2010–2011 are post
flooding). In 2009, the fen had been moderately rewetted
for 19 years (mean growing season water level (MGWL):
0 cm) and exhibited an established macrophytic community.
At that time, the site was mowed annually for nature conser-
vation purposes. The growing season spans the period from
May to October, which coincides with the period from the
emergence of young shoots to the senescence of plants.
[7] The eddy covariance approach provides a quasi-

continuous net flux of CO2 at the ecosystem scale
[Baldocchi, 2003]. Using partitioning approaches, the net flux
can be separated into its components Reco and CP, both
presenting potentially flooding-sensitive ecosystem processes.

Considering the role of plants for CO2 storage, we used the en-
hanced vegetation index (EVI) from Moderate Resolution
Imaging Spectroradiometer (MODIS) remote sensing data
[Earth Observing System (EOS), 2013] as a proxy for vegeta-
tion response at our site. EVI is derived using the reflectance
properties of plant leaf tissue in the red and near-infrared spec-
tra [Carter, 1993;Huete et al., 2002] and is therefore sensitive
to spatiotemporal changes in plant canopy [Li et al., 2007;
Sakamoto et al., 2007]. It is available in 8 day frequency on
a spatial resolution up to 250m, which corresponds well with
the quasi-continuous character and the ecosystem scale focus
of the eddy covariance approach. Therefore, EVI has been
established as a model parameter to predict net ecosystem ex-
change (NEE) and CP across a variety of biomes [e.g., Peng
et al., 2013; Xiao et al., 2010, 2011]. We expect EVI to pro-
vide a reliable proxy for phenological changes within the
growing season as well as for differences in plant vitality
across different years and, hence, to be a good predictor for
intra-annual and interannual variations in CP.
[8] We hypothesize that the peatland switches from a net

CO2 source to a net CO2 sink after flooding due to a severe de-
crease in Reco, primarily caused by the reduction of heterotro-
phic respiration under anaerobic conditions. Further, we
hypothesize that vegetation suffers from inundation, leading
to decreased plant vitality and a decline in CP, resulting in a
low net CO2 sink potential in the initial phase of rewetting.

2. Site Description

[9] Measurements were conducted at the “Rodewiese,” an
anthropogenically disturbed fen, which is part of the nature re-
serve “Heiligensee und Hütelmoor.” The site is located in
northeastern Germany (latitude 54�120, longitude 12�100,
Figure 1) on a transition zone between Atlantic maritime cli-
mate from the west and more continental climate effects from
the east [Voigtländer et al., 1996] (Table 1). The fen extends
1.59 km in the north-south direction and 1.38 km in the east-
west direction. Since the northern and western parts of the
fen adjoin the Baltic Sea, it had been episodically flooded with
brackishwaters. However, a dune dike was installed in 1963 to
cut the fen off from the Sea [Voigtländer et al., 1996].
According to the general attempt to intensify agricultural pro-
duction in mid-Europe [van Diggelen et al., 2006], the fen had
been drained in the 1970s and was used as a meadow, i.e., it
was mowed twice a year for hay production. As a result, the
mean annual water level dropped down to 1.60m below the
ground surface. Peat decomposed rapidly and was identified
as sapric histosol in 2010. In the 1990s, decreasing yields
due to proceeding peat degradation promoted the shift to a
more ecological focus on peatland use across mid-Europe
[van Diggelen et al., 2006]. Correspondingly, the study site
was moderately rewetted and mown once per year to keep
the vegetation relatively open. Extensive mowing supports
the aims of nature conservation to preserve a resting site for
migratory birds while allowing the restoration of the typical
fen vegetation. The mean growing season water level
(MWGL) during this time was close to the surface.
However, the water level dropped down to 70 cm below the
surface during summer, which raised suspicion about ongoing
peat decomposition. Therefore, a ground sill was installed in
the outflow of the catchment in winter 2009/2010 to initiate
year-round shallow flooding of the site.
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[10] Currently, the vegetation at the fen is dominated by a
patchy pattern of dense Common reed stands (Phragmites
australis (Cav.) Trin. ex Steud., leaf area index at peak growing
season in August (LAIpeak): 3.9) that colonized around the
drainage ditches and bulks of Lesser Pond sedge (Carex
acutiformis Ehrh., LAIpeak: 6.9), which occur at drier areas.
These species are typical for secondary succession in species-
poor, rewetted fen sites of this region [Timmermann et al.,
2006]. Additionally, mixed stands of Sea and Grey Club-
rush (Bolboschoenus maritimus (L.), Palla Schoenoplectus
tabernaemontani (C. C. Gmel.) Palla, LAIpeak: 2.2) present
relics of former brackish conditions.

3. Methods

3.1. EC and Supporting Meteorological Measurements

[11] We mounted our EC instrumentation at a height of
3.15m above the ground surface in an accessible area which
is representative for vegetation and hydrology of the fen. EC
instrumentation comprised (1) an open-path infrared gas
analyzer (IRGA, LI-7500, LI-COR, Lincoln, NE, USA) to
measure fast fluctuations of CO2 molar density and (2) a
three-dimensional sonic anemometer (CSAT3, Campbell
Scientific, Logan, UT, USA) to measure wind velocities
and sonic temperature. Supporting meteorological measure-
ments were conducted at the tower or in close proximity.
These included (1) global radiation (Rg), measured with a
pyranometer (CMP 3; Kipp & Zonen, Delft, the Netherlands);

(2) relative humidity, and (3) air temperature, which were both
measuredwith an aspirated, shielded thermistor and capacitance
sensor (HMP45C, Vaisala, Vantaa, Finland). All signals were
recorded by a CR3000 Micrologger (Campbell Scientific,
Logan, Utah) and a flash memory storage card with a scan rate
of 10Hz. The supporting meteorological variables were then
averaged over 30min to correspond to the flux averaging
interval (see below).
[12] Data gaps of 30–60min in the 30 min time series of

the supporting meteorological variables were filled by linear
interpolation. Longer periods with missing data were filled
using data from a nearby meteorological station of the
German Weather Service.

3.2. Flux Calculations and Footprint Climatology

[13] We used the EddyPro 3.0 software (LI-COR, Lincoln,
Nebraska) to calculate half-hourly mean fluxes from the high-
frequency data. The effect of humidity on sonic temperature
was corrected by the method of van Dijk et al. [2004]. Spikes
in the high-frequency data were removed by the method of
Vickers and Mahrt [1997]. Canopy height in our site is com-
plex, composed of patches of high reed stands, medium rushes,
and open water surface. Hence, in order to minimize flow
distortion effects and to align the sonic coordinate system
with the mean streamline [Finnigan et al., 2003], we used
sector-wise [Siebicke et al., 2011] planar-fit rotation follow-
ing Wilczak et al. [2001]. Time lags of measurements
resulting from the spatial distance of IRGA and anemometer

Figure 1. Location of the study site. (a) The Rodewiese is situated in northeastern Germany. (b) Due to its
vicinity to the Baltic Sea, the fen had been periodically flooded in the past. Nowadays, the nature reserve is
cut off from the Sea by a dike. (c) The source area consists of a patchy pattern of macrophyte species
representative for the fen. Lines indicate the isopleths of the cumulative growing season footprint climatology,
i.e., the area within the 0.9 contour contributes 90% to the growing season flux.

Table 1. Climate Characteristics of the Fen Site Rodewiesea

Precipitation Sum (mm) Mean Air Temperature (�C) Sunshine Duration Sum (h)

30 Year Statistics Investigation Period 30 Year Statistics Investigation Period 30 Year Statistics Investigation Period

Min Mean Max 2009 2010 2011 Min Mean Max 2009 2010 2011 Min Mean Max 2009 2010 2011

Annual basis 428 645 955 540 706 955* 7.4 9.2 10.4 9.6 8.1 9.8 1457 1740 2029 1897 1673 1802
Growing season 188 358 770 328 392 770* 13.0 14.7 16.6 14.9 14.6 15.2 971 1224 1464 1320 1192 1164

aClimate variables are given as 30 year statistics (1982–2011) and specified for our investigation period. Data were provided by the German Weather
Service. Growing season encompasses the months May–October of 1 year. Maxima of the 30 year statistics that occurred within our investigation period
are marked with an asterisk.

KOEBSCH ET AL.: CO2 EXCHANGE OF AN INITIALLY FLOODED FEN

942



were compensated by cross correlation. Spectral attenuations
in the low- and high-frequency ranges were compensated by
the method of Moncrieff et al. [1997]. Air density fluctua-
tions were removed according to the correction of Webb
et al. [1980].
[14] The planar-fit method requires long averaging inter-

vals with a stable position of the anemometer relative to the
surface [Siebicke et al., 2011]. However, above-surface fluc-
tuations of water level and seasonal changes of vegetation
height induce changes in the effective measurement height
(zm). Therefore, averaging intervals were arranged in a
way to minimize within-changes of zm and cover periods of
4–8weeks. The study site was mowed successively over sev-
eral weeks during July 2009. Because this period was associ-
ated with strong temporal and spatial changes in vegetation
height, we performed a double coordinate rotation [Lee
et al., 2004] for data from July 2009.
[15] In order to define the area within the fen that contrib-

utes most to the measured fluxes, we computed a footprint
climatology [Amiro, 1998]. The shape of the footprint clima-
tologies was similar throughout all the years. As an example,
we projected the isopleths from the footprint climatology of
2011 on an aerial photograph that was taken in June of the
same year (Figure 1c). The 30min source weight functions
were computed with the analytical footprint model of
Kormann and Meixner [2001] including an iterative estima-
tion of vegetation height and roughness length as proposed
byGöckede et al. [2004] for heterogeneous terrain. This foot-
print model assumes a variety of preconditions, such as sta-
tionary conditions, horizontally homogeneous turbulent
flow, and homogeneous terrain. However, their relatively
easy implementation justifies the application of analytical
footprint models as a routine analysis tool for long-term mea-
surements [Rannik et al., 2012]. The footprint analysis and
all following computing steps were performed with the free
software environment R [R Core Team, 2012].

3.3. Quality Assurance, Gap Filling, and Budgeting of
Growing Season NEE

[16] Fluxes were quality flagged to rate stationarity and the
development of the turbulent flow field [Foken et al., 2004].
Quality criteria (qc) range from 1 (good quality) to 9 (bad
quality). Fluxes were rejected if qc> 5. The remaining data
were cross checked against low turbulence conditions based
on thresholds of friction velocity (u*) assigned individually
for each growing season following the method of Aubinet
et al. [2012]. We observed high negative NEE fluxes associ-
ated with large u* values. Assuming that negative NEE
fluxes (meaning CO2 uptake by the ecosystem) during night-
time conditions are rather physically determined than having
any ecological cause, we also applied maximum u* thresh-
olds. To minimize the effect of perturbed fluxes, filtering
criteria for modeling and gap filling were even more strict,
rejecting fluxes with qc> 3 and statistical flags of their inher-
ent high-frequency data [Vickers and Mahrt, 1997]. In the
end, the remaining data cover 53%, 83%, and 77% of the
growing seasons 2009, 2010, and 2011, respectively. Gaps
are due to instrument failure and data rejection and are in
accordance with the average coverage for EC time series of
65% [Falge et al., 2001]. Gap filling was performed with
an enhanced lookup table approach, taking into account the
temporal autocorrelation of NEE fluxes [Reichstein et al.,

2005; Moffat et al., 2007]. The filled NEE values were de-
rived from the average of fluxes measured under similar
meteorological conditions within a time window centered�7
days around the gap. If there were no fluxes associated with
similar meteorological conditions within the time window,
the constraints were gradually relaxed, i.e., the time window
was increased, and the classes of meteorological conditions
were determined with broader definitions.
[17] The NEE seasonal budgets for each growing season

were derived from the quality-checked and gap-filled data
set integrated from 1 May to 31 October of the respective
year. Uncertainty of NEE budgets is composed of (1) the
measurement uncertainty and (2) the uncertainty associated
with gap filling [Dragoni et al., 2007]. Measurement uncer-
tainty was estimated using a modified successive-day ap-
proach [Dragoni et al., 2007] adapted to fit the assumption
of Reichstein et al. [2005], according to which, within a �7
day window, the same meteorological conditions cause the
same fluxes. Air temperature, global radiation, and water
vapor pressure deficit are used as parameters to bin fluxes,
the uncertainty of which is then computed from the standard
deviation of the binned fluxes. We expect larger flux devia-
tions caused by surface heterogeneity within our source area
(Figure 1c) to contribute to uncertainty [Richardson et al.,
2012]. Gap-filling uncertainty was estimated congruently
for each missing value. However, if the initial gap-filling
constraints do not provide any results, averaging intervals
are extended [Reichstein et al., 2005], which increases the
risk of nonstationarity [Hollinger and Richardson, 2005].

3.4. NEE Partitioning

[18] The half-hourly averaged net CO2 fluxes are the sum
of two opposed fluxes that originate from two major ecosys-
tem processes: ecosystem respiration (Reco), representing
the release of CO2 into the atmosphere, and canopy photo-
synthesis (CP), representing the uptake of atmospheric CO2

in the plant biomass, (equation (1)). According to the meteo-
rological convention, a negative NEE flux indicates net CO2
uptake into the ecosystem.

NEE ¼ Reco� CP (1)

According to the meteorological convention, a negative NEE
flux indicates a net CO2 uptake into the ecosystem.
[19] At first, we tried a functional modeling approach fol-

lowing Lasslop et al. [2010] that is based on the partitioning
of the daytime NEE flux into a hyperbolic light-response
curve, representing CP, and an exponential temperature
response term, representing Reco. With this approach, we
could not predict fluxes properly during growing season
2010. Therefore, we used a more robust NEE partitioning
approach for all 3 years, This approach assumes Reco to be
constant throughout a �2 day moving window and CP to
be constant during daytime conditions (Rg> 20Wm�2) of
the same time window. Mean Reco for a certain date was de-
rived by averaging the quality-filtered, measured nighttime
NEE fluxes within the �2 day moving window. For mean
CP, we averaged the quality-filtered, measured daytime
NEE fluxes within the same time window and subtracted
the averaged Reco value. If data gaps exhibited a skewed dis-
tribution throughout daytime conditions, we could not iden-
tify a representative mean CP value. Then, the CP flux was
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derived by linear interpolation from the CP fluxes of the pre-
vious and successive days. Reco fluxes were scaled on a daily
basis by multiplying the mean half-hourly flux with 48
(equation (2)). For daily CP, multiplication of the mean
half-hourly CP flux was performed with the number of half
hours with Rg> 20Wm�2 (nRg>20) per day (equation (3)).

Recodaily ¼ 48� nighttimeNEEhalf-hourly (2)

CPdaily ¼ nRg>20 � daytimeNEEhalf-hourly� nighttimeNEEhalf-hourly
� �

(3)

3.5. Additional Parameters

[20] From 2009 to 2010, we measured water levels within
nine wells distributed over the study site in biweekly intervals.
Data were interpolated linearly between measurement dates.
From 2011, water levels were recorded hourly with two
HOBO U20 Water Level Data Loggers (Onset, Bourne, MA,
USA) installed in wells at positions representing the condi-
tions at the study site. Water level measurements were spa-
tially extrapolated with a digital elevation model, derived
from 64 spots of a 25m raster within our area of interest using
a Leica RTK GPS 2 1200 (Leica Geosystems AG, Heerbrugg,
Switzerland). We report spatially averaged water level relative
to ground surface, with positive values indicating inundation.
To assess a potential impact of water level on CP and Reco, re-
spectively, we sought the line of best fit from a scatterplot, in-
cluding all growing seasons. In advance, we processed our
variables as biweekly averages, which minimizes scatter and
corresponds to the biweekly measurement frequency of water
level in 2009 and 2010. Hourly water levels from growing sea-
son 2011 were selected accordingly to fit these measurement
intervals, and Reco and CP values were averaged over the cor-
responding 14 day periods.
[21] MODIS EVI data for use as a proxy for plant phenol-

ogy and vitality were obtained from the Land Processes
Distributed Active Archive Center (https://lpdaac.usgs.gov/),
which is part of NASA’s Earth Observing System Data and
Information System [EOS, 2013]. Among a 16 day interval
set of atmospherically corrected, surface-gridded reflectance
data, the MODIS maximum value compositing approach
provides the reflectance value with the view angle closest to
nadir [Huete et al., 2011]. According to a rule of thumb, the
extent of the footprint approximates 100 times the measurement
height [Businger, 1986], which corresponds to an area within
315m distance to our tower. Thus, from a 1200� 1200km tile
unit, we selected four 250� 250m pixels which were congru-
ent to this area. EVI values of these pixels were filtered
according to pixel reliability and pixel-wise quality assessment.
We chose EVI data from the Aqua satellite since these provided
a better data coverage after quality filtering. The relationship
between EVI and CP was assessed using linear regression for
each growing season separately. To do so, daily CP values were
averaged over the corresponding 16day intervals.

4. Results

4.1. Meteorological, Hydrological, and Remote
Sensing Variables

[22] The years 2009–2011 were similar to the 30 year
climate statistics (Table 1 and Figure 2) in terms of air

temperature and sunshine duration. In contrast, growing sea-
son 2011 was extraordinarily wet with precipitation totalling
770mm, 550mm of which fell during July and August,
which is nearly the long-term annual average at the study site.
These rainfalls exceeded all records within the last 30 years
on a yearly as well as on a growing season reference period.
[23] In 2009, hydrological conditions were representative

for the Rodewiese during the last decade with an MGWL
of 6 cm (Table 2). The driest conditions occurred in June with
a spatially averaged water level of 11 cm below surface.
However, terrain elevation in the study site has high spatial
variability due to former use of heavy machinery and the de-
position of excavated material from the ditches. Hence, there
were spots with water levels down to 60 cm below surface.
The MGWL of 2010 was considerably higher (Table 2),
causing inundation for most parts of the study site throughout
the year, which resulted from the installation of the ground
sill at the outflow of the catchment and not from the relatively
slight change in precipitation rates (Table 1). Following the
strong precipitation events in summer 2011, the fen experi-
enced a further rise in water level. At this time, the fen was
completely inundated with water levels up to 120 cm at
some spots.
[24] EVI showed a clear seasonal pattern with peaks be-

tween July and late August throughout all growing seasons
(Figures 2g–2j). EVI was highest in 2009, which applies
for the start of the growing season in May (0.39) and for
the peak value in mid-August (0.67), and decreased consider-
ably in the first year of flooding. At the start of growing sea-
son 2010, the EVI was lowest among all EVI data (0.21) and
increased slowly up to a maximum of 0.54 at the end of
August. In contrast, EVI started with higher values in May
2011 (0.31) but stopped increasing after the further rise in
water level in July (0.46).

4.2. Seasonal Development of CO2 Fluxes

[25] Daily NEE and its components Reco and CP showed a
similar seasonal development during all growing seasons
(Figures 2j–2l). Fluxes increased during spring, peaked in
summer, and decreased during autumn. Reco and CP were
highest in 2009, and Reco peaked in July and August, coinci-
dent with peaks in CP. During spring, the increase of CP
exceeded the increase of Reco, resulting in a consistently neg-
ative NEE until August. Afterward, there were periods with
Reco>CP, resulting in more frequent occurrences of positive
NEE values, despite high CPmagnitudes. The seasonal pattern
of NEE and its components was severely dampened through-
out growing season 2010. Peaks of Reco and GEP both oc-
curred in mid-July. For most days, CP exceeded Reco,
resulting in a negligible number of days with positive NEE.
Growing season 2011 was split into a period with moderately
high rates of CP and Reco associated with negative NEE
fluxes until mid-July and a period governed by reduction of
CP and Reco afterward (Figure 2l). Up to September, there
were single days with low positive NEE fluxes.

4.3. Growing Season NEE, Reco, and CP Budgets

[26] The Rodewiese was a net CO2 sink throughout all three
growing seasons (Table 2). Uncertainties of the annual bud-
gets were low (<4%) and mostly dominated by gap-filling un-
certainty (2009: 2.4%, 2010: 1.6%, and 2011: 0.1%). Higher
gap-filling uncertainties in 2009 are due to lower data
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Table 2. Mean Water Level, Enhanced Vegetation Index, and CO2 Fluxes of the Fen Site Rodewiese During Growing Seasons 2009–2011
a

MGWL (cm) EVI NEE (g CO2-C m�2) CP (g CO2-C m�2) Reco (g CO2-C m-2)

Min Mean Max Min Mean Max Min Mean Max Sum Min Mean Max Sum Min Mean Max Sum

2009 �11 6 24 0.27 0.50 00.0.67 �7.3 �1.8 3.1 �333.3 (3.6%) 1.2 8.5 16.8 1572.1 1.3 6.9 16.8 1273.4
2010 24 37 51 0.21 0.39 0.54 �4.3 �1.6 0.8 �294.1 (2.9%) 0.7 4.6 8.4 841.9 0.3 2.7 5.5 500.5
2011 47 57 79 0.23 0.35 0.46 �7.2 �1.9 1.1 �352.4 (1.4%) 0.3 4.6 9.9 827.9 0.6 2.6 5.0 477.1

aMean growing season water level (MWGL), presented as spatial average, negative MWGLs, indicates water tables below the surface. The enhanced veg-
etation index (EVI) is derived from MODIS remote sensing data. CO2 flux minima, means, and maxima are presented as daily fluxes, while sums refer to the
growing season (May–October). Fluxes of net ecosystem exchange (NEE) indicate measured values, while canopy photosynthesis (CP) and ecosystem res-
piration (Reco) are derived from NEE partitioning approaches. Following the metereological sign convention, a negative NEE indicates a net CO2 uptake into
the ecosystem. Percentages in parentheses provide the uncertainty associated with the NEE budget, composited by measurement and gap-filling uncertainty.
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Figure 2. Seasonal development of environmental parameters and daily CO2 fluxes. (a–f) Cumulative
meteorological variables are presented as grey bars. In Figures 2d-2f, water level is depicted by a solid line
(spatially averaged water level) and two dashed lines (corresponding minimum and maximum of water
level due to spatially variable terrain elevation). Water level was measured in biweekly intervals in 2009
and 2010 and logged in 1 h frequency in 2011. Missing values were filled by linear interpolation. (g–i)
Error bars of the enhanced vegetation indices (EVIs) indicate the standard deviation of n = 4 EVI pixel
values. Values in the top right from Figures 2a–2f represent the total growing season sums of sunshine
duration or precipitation, respectively. Values in the bottom right represent growing season averages for
air temperature or water level. (j–l) CO2 fluxes are represented on a daily basis. Daily net ecosystem
exchange (NEE) was derived from the gap-filled data set. Ecosystem respiration (Reco) and canopy
photosynthesis (CP) were modeled with the robust partitioning approach, assuming constant Reco and
CP fluxes during a �2 day moving window.
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coverage. Budgets of Reco and CP were high during growing
season 2009, but both decreased markedly in 2010 and
remained low in growing season 2011, respectively.

4.4. Controls on CP and Reco

[27] There was a strong, significant (r2 = 0.61, p< 0.05) re-
lation between CP and EVI during growing season 2009
(Figure 3). The relation was even stronger in 2010 (r2 = 0.72,
p< 0.001) but could only be identified as a vague trend in
2011 (r2 = 0.21, p=0.13). When aggregated over all three
growing seasons, Reco and absolute values of CP were de-
creasing exponentially with increasing water levels (Figure 4).

5. Discussion

5.1. CO2 Fluxes Associated With 20Years of Stable,
Moderate Rewetting

[28] From May to June 2009, the Rodewiese was highly
productive. CP and Reco fluxes developed parallel throughout
most parts of the growing season and followed a seasonal
pattern, interrupted from a mowing event in June. Both plant
phenology and mowing impact were well represented by the
EVI, which, therefore, was a good predictor for CP
(Figure 3). High rates of CO2 sequestration in spring and sum-
mer compensated for periods of net CO2 release during senes-
cence (Figure 2). Therefore, the site was a net CO2 sink
throughout growing season 2009. Growing season budgets
of the NEE components were close to those of other rewetted,
productive wetlands. Rocha and Goulden [2008] reported
Reco sums of 1090–1639 g CO2-C m�2 a�1 and CP sums of
1313–1632 g CO2-C m�2 a�1 from a restored cattail (Typha)
marsh. A grazed, restored peatland exhibited rates of 1493–
1765 g CO2-C m�2 a�1 for Reco and 1182–1557 CO2-C
m�2 a�1 for CP [Hatala et al., 2012]. Note that these budgets
are on a yearly basis, while our budgets refer to the growing
season only (183 days from 1 May to 31 October).
[29] Mowing in June interrupted the springtime increase of

Reco and CP. During the following 2 weeks, the Rodewiese
remained a net CO2 sink with constant CO2 sequestration
rates. Contrastingly, many studies report that the loss of
leaf area associated with mowing causes a decrease of CP
and thus turns the respective ecosystems to net CO2 sources
[e.g., Veenendal et al., 2007; Schmitt et al., 2010]. In our case,
EVI did not decrease, but levelled off. Since the cut biomass
was left on site, there was no sudden net loss of plant tissue
contributing to the infrared reflectance band. This suggests that

the cut biomass had contributed to CP for some more days.
Moreover, the decomposition of dead plant material left on site
likely provides a substantial source for Reco [Waddington
et al., 2010]. CP and Reco started to increase a few days after
mowing, indicating the regrowth of vegetation [Veenendal
et al., 2007]. If mowing is conducted early in the growing sea-
son, it can extend the growing season into periods with optimal
growth conditions (radiation, temperature) and consequently
increase CO2 sequestration [Sonnentag et al., 2011].
[30] Management practices at the Rodewiese in 2009 were

representative for the land use and hydrological conditions of
the last 20 years. Therefore, our first measurement year pro-
vides the reference state for a moderately rewetted fen with
an established macrophyte community that is mowed once
a year with water levels fluctuating around the surface, but
being distinctively lower (down to 60 cm below surface) dur-
ing the summer months. Extensive mowing is a common
land management strategy for moderately rewetted fens in
Europe [Mälson et al., 2010]. Therefore, these values are
representative for other fens in this region.

5.2. Effects of Inundation

[31] In 2010, the water level was raised to reinitiate peat
growth at the Rodewiese. This had little effect on the total
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growing season net CO2 storage that was only slightly lower
compared to the 2009 budget (Table 2). However, compared
to 2009, CP and Reco decreased by 46% and 61%, respec-
tively. A drop of Reco due to more anaerobic conditions has
been shown by many studies [Komulainen et al., 1999;
Waddington et al., 2010; Hatala et al., 2012]. However, in
contrast to our results, these studies either report no
change [Hatala et al., 2012] or even an increase in CP
[Komulainen et al., 1999; Waddington et al., 2010]. This dis-
crepancy might be explainable by the high range of water
levels in our site which exceeded those reported in these stud-
ies by far. Flooding can cause considerable stress to plants, and
we assume that this was one reason for the decreased CP and
Reco rates. Decreased plant vitality was reflected by lower
EVI throughout growing season 2010 when compared to
prior-flooding EVI. On the one hand, most of the dominant
species at our study site have been shown to be resistant to
flooding [e.g., Clevering and Hundscheid, 1998; Vretare
et al., 2001]. On the other hand, all of our dominant species
are perennials that might suffer from flooding if they had spent
the beginning of their life cycle under drier conditions
[Zákravský and Hroudová, 1994; Clevering et al., 1995;
Coops et al., 2003]. The variability of a phenotype in response
to environmental factors is known as phenotypic plasticity
[Sultan, 2000]. To nonadapted individuals, submergence
triggers a variety of stress factors like oxygen deprivation up
to anoxia, which is reflected in stomata closure and decreased
metabolic activity, and might thus lead to decreased rates of
CP and Reco.
[32] Further, low diffusion rates of CO2 and O2 in water

and submergence of plant tissue might have acted as physical
constraints for CO2 exchange [Clevering et al., 1995]. Plant
tissue that has not yet grown out of the water surface might
not be included in the EVI [Sakamoto et al., 2007]. The slow
increase in EVI during the first half of growing season 2010
suggests evidence for the submergence of plant tissue that
“gets visible” and can effectively contribute to metabolism
first after it has overgrown the water surface.
[33] Although CP and Reco rates at the beginning of grow-

ing season 2011 were still below those of 2009, cumulated
fluxes of both Reco and CP doubled in comparison to the first
year of inundation. This is consistent with a recent study of
Schedlbauer et al. [2012], where CP fluxes of a seasonally
flooded marsh were half of the CP fluxes from a year-round
flooded marsh. Both sites shared the same dominant species,
but only the plant community at the year-round flooded marsh
had acclimatized to flooding. Again, phenotypic plasticity of
the plants seems to cause this pattern. For perennials, it may
take several months to 1 year to establish a flooding-resistant
phenotype [Keeley, 1979]. The aboveground plant parts of
most of the dominant species in our study site die back for win-
ter. The amount of reserve carbohydrates in the rhizomes is
then decisive for the maximum water depth that shoots can
overgrow at the beginning of the next growing season [Blom,
1999]. Tubers of the Grey Club-rush (synonymous Scirpus
lacustris L. ssp. tabernaemontani C. C. Gmel.) can survive 3
months of anoxia [Crawford, 1982]. Sea Club-rush (synony-
mous Scirpus maritimus L. Palla) and Common reed both have
developed interesting response strategies to flooding, compris-
ing the production of fewer, but taller culms associated with the
accumulation of stem dry matter [Clevering and Hundscheid,
1998; Vretare et al., 2001]. The buildup of aerenchyma for

enhanced oxygen transport into the rhizosphere represents a
common plant response to flooding [Blom, 1999].
[34] When the water level reached values up to 120 cm due

to extraordinary strong rainfalls in July 2011, daily fluxes of
Reco and CP decreased by 55% and 32%, on average,
respectively. Although net CO2 storage rates were consider-
ably lower, the site remained a net CO2 sink. We assume that
the plants that had adapted to the flooding with water levels
around 30–45 cm above surface were again exposed to
increased flooding stress, causing the metabolic activity to
decrease. This corresponds well with the response of EVI,
which levelled off in July 2011, thereby confirming the effect
of additional plant tissue submergence and decreased plant
vitality after the water level rise.
[35] The budgets of Reco and CP integrated over the grow-

ing season were similar to those of 2010, resulting in a net
CO2 storage that was slightly higher than those of the previ-
ous growing seasons. However, the period from 1 May to 12
July (i.e., during 72 of 183 total measurement days) that was
characterized by stable, shallow flooding contributed more
than half of the total growing season budgets (59% for CP
and 50% for Reco).

5.3. Implications for Net CO2 Exchange of a Temperate
Fen During the Transition Phase From Moderately
Rewetting to Flooding

[36] Despite different water regimes, the fen acted as a net
CO2 sink throughout all growing seasons. Indeed, low, but
persistent Reco during winter might potentially offset the
net CO2 sink [Alm et al., 1999] and cause more distinct
differences between NEE budgets on a yearly basis.
Nevertheless, this study spans the period of the year which co-
incides with the highest ecosystem activity and is therefore
best suited to present ecosystem response to flooding.
Indeed, rates of net CO2 sequestration were similar during all
growing seasons, but the values of CP and Reco differed con-
siderably. Prior to flooding, the established macrophyte com-
munity was highly productive, and therefore, high CP rates
were offsetting high Reco fluxes that were caused by low sum-
mer water levels. However, both NEE component fluxes de-
creased exponentially with rising water levels (Figure 4,
p< 0.001). The drop of heterotrophic Reco under anaerobic
conditions is a well-known effect [Komulainen et al., 1999;
Waddington et al., 2010; Hatala et al., 2012]. Here we show
that CP can also decrease considerably after flooding.
Although we cannot distinguish between autotrophic and het-
erotrophic Reco, the drop in CP suggests that the decrease in
Reco is—at least in part—caused by a decrease in autotrophic
Reco. Our results refer to a period immediately after flooding,
which is characterized by plant stress response and the devel-
opment of initial acclimatization strategies. Such transition
phases are associated with changes in plant metabolic activity
that might not be transferable to periods when plants have al-
ready acclimatized. As a consequence, ecosystem models that
presume a certain response under rather stable conditions
might not work properly under such transient conditions, i.e.,
the application of a functional NEE partitioning approach
[Lasslop et al., 2010] worked well prior to flooding, but the
model performance decreased considerably in the first year
of flooding (data not shown). Increasing CP and Reco fluxes
in the beginning of growing season 2011 suggest that plants
will acclimatize to flooding conditions in the long term.
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6. Conclusions

[37] The fast rise of the water level posed an extraordinary
disturbance to the vegetation that had been adapted to drier
conditions after the drainage of the site. The term “distur-
bance” has been mainly considered for anthropogenic
impacts on pristine ecosystems. However, since secondary
ecosystems shift toward a new state of organization, the
reestablishment of former conditions within the scope of
revitalization operations also acts as a disturbance to the cur-
rent biocenosis. Our results suggest that even plant individ-
uals that belong to species that generally are well adapted
to water-logged conditions might suffer when water levels
increase rapidly since the tolerance spectrum of individuals
is usually narrower than on the species level. As a conse-
quence, revitalization measures that tempt to mitigate CO2

emissions from drained peatlands have to consider a transi-
tion phase that is associated with the impairment of the
CO2 sequestration potential due to decreased CP. This is also
valid when the plant community does not change abundance
in reaction to flooding. At our site, the plants showed plastic
response after 1 year of stable flooding, which was reflected
in the increasing rates of CP and Reco. This relatively fast ad-
aptation was not sufficient to get along with a further increase
of the water level. Further research is needed to address the
response capabilities of plants and plant species to long-term
inundation and its implications for the net CO2 balance of
flooded peatlands.
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