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Are deep-ocean-generated surface-wave microseisms
observed on land?
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[11 Recent studies attribute land double-frequency (DF) microseism observations to deep
water generation. Here we show that near-coastal generation is generally the dominant
source region. This determination is based on observations at land and ocean seismic
stations, buoys, gravity-wave hindcasts, and on beamforming results from continental
seismic arrays. Interactions between opposing ocean wave components generate a pressure
excitation pulse at twice the ocean wave frequency that excites pseudo-Rayleigh (pRg) wave
DF microseisms. pRg generated in shallow coastal waters have most of their energy in the
solid Earth (“elastic” pRg) and are observed by land-based and seafloor seismometers as DF
microseisms. pRg generated in the deep ocean have most of their energy in the ocean
(“acoustic” pRg) and are continuously observed on the ocean bottom, but acoustic pRg does
not efficiently transition onto continents. High-amplitude DF signals over the [0.2, 0.3] Hz
band observed on the deep seafloor are uncorrelated with continental observations and are

not clearly detectable at individual continental stations or by land seismic-array
beamforming. Below 0.2 Hz, modeling and some observations suggest that some deep
water-generated elastic pRg energy can reach continental stations, providing that losses
from scattering and transition across the continental-shelf boundary to the shore are not
substantial. However, most observations indicate that generally little deep-ocean-generated
DF microseism energy reaches continental stations. Effectively, DF land observations are

dominated by near-coastal wave activity.

Citation: Bromirski, P. D., R. A. Stephen, and P. Gerstoft (2013), Are deep-ocean-generated surface-wave microseisms
observed on land?, J. Geophys. Res. Solid Earth, 118, 3610-3629, doi:10.1002/jgrb.50268.

1. Introduction

[2] Multiple storms often occur concurrently across the
North Pacific. Cyclonic storm systems can result in high waves
propagating in multiple directions, and waves from different
storm systems regularly interact. The interaction of opposing
wave components having nearly the same wave number
produces a pressure excitation pulse at double the gravity-wave
frequency (DF) that propagates to the seafloor, where it is
converted into various phases, including acoustic-gravity waves
[Ardhuin and Herbers, 2013; Cox and Jacobs, 1989], Rayleigh
and Love surface waves [Latham and Sutton, 1966; Fukao
et al., 2010], sediment shear modes [Schreiner and Dorman,
1990], and compressional and shear body waves [Gerstoft
et al., 2008; Haubrich and McCamy, 1969; Zhang et al., 2010].

[3] The wave-wave interaction mechanism that produces
the DF pressure signal has been described in numerous studies
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[e.g., Longuet-Higgins, 1950; Hasselmann, 1963]. The ampli-
tude of the DF pressure excitation signal depends on the ampli-
tude of the opposing wave components and the area over which
the interaction occurs. Thus, intermediate amplitude opposing
waves could produce higher amplitude pressure fluctuations
than the interaction of very high with very low amplitude
opposing components. Similarly, interactions of low-amplitude
waves over a large area could produce higher DF pressure
fluctuations than very high-amplitude waves interacting over a
small area. Identification of microseism source areas is compli-
cated because the spectral characteristics of the forcing function
(ocean gravity waves) are not stationary in either time or
location. The combination of added wind energy imparted to
the waves over time, and/or dispersion and dissipation under
propagation away from the wave generation region, further
complicate source function characteristics.

[4] Numerous ocean bottom seismometer (OBS) studies
have described seafloor DF signal variability [e.g., Bradner
and Dodds, 1964; McCreery et al., 1993; Babcock et al.,
1994]. High-amplitude DF signals observed on the seafloor
in the deep ocean result from local wave activity associated
with nearby storms [Babcock et al., 1994; Bromirski et al.,
2005, Harmon et al., 2007]. Additionally, a significant
portion of longer-period DF energy observed on the deep
seafloor at frequencies between 0.1 and 0.15 Hz is generated
by wave activity along distant coastlines [Bromirski et al.,
2005]. The deep-ocean DF noise spectrum typically shows
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Figure 1. Median vertical component displacement spectra

over the January—June 2002 time period at deep-ocean
bottom site H20, Hawaiian Island stations KIP (Oahu) and
POHA (the Big Island of Hawaii), and near-coastal continental
land stations BKS (Berkeley, CA) and JCC north of Cape
Mendocino (Arcata, CA). See Figure 4 for locations. Note the
absence of the 0.2-0.3 Hz peak at the continental stations.
The rapid rise in H20 Guralp sensor levels (blue line) below
about 0.065 Hz (indicated by the black vertical line) is tilt
induced noise, a common feature of seafloor broadband spectra
[Crawford et al., 2006].

two peaks (H20, Figure 1), with the higher-frequency peak
between 0.2 and 0.3 Hz generated both locally and at
relatively distant deep-ocean source regions [Babcock et al.,
1994; Bromirski et al., 2005].

[s] Many analyses of land-based seismic-array data and in-
dividual seismic station data have identified coastal regions
as the source area of DF Rayleigh microseisms [e.g.,
Bradner and Dodds, 1964; Haubrich and McCamy, 1969;
Bromirski et al., 1999; Bromirski, 2001; Bromirski and
Duennebier, 2002; Rhie and Romanowicz, 2006; Tanimoto,
2007; Gerstoft and Tanimoto, 2007; Traer et al., 2008;
Zhang et al., 2010; Traer et al., 2012]. The DF peak at con-
tinental stations is generally at lower frequencies and with
lower amplitude than at ocean bottom or deep-ocean island
stations, with the oceanic spectral peak above 0.2 Hz absent
at continental stations (Figure 1). Note that the DF spectral
levels at island stations KIP and POHA are substantially
higher than at continental stations BKS and JCC. A possible
explanation for the island/continental differences is that en-
ergy losses from scattering and transitioning from deep water
across the continent shelf boundary to the shore are substan-
tial, while the Hawaiian Islands share common oceanic basal-
tic crust with deep-ocean source areas. The lower-frequency
DF peak near 0.16 Hz has higher amplitude at KIP than at
POHA as a result of generally higher wave energy at the
northern Hawaiian Islands, which are nearer the dominant
wave generation region in the North Pacific [Wang and
Swail, 2001; Bromirski et al., 2012]. Additionally, the
Hawaiian Island stations detect microseism signals from all
directions continuously, thus providing a relatively large
source area for wave interactions by local short-period trade

wind-generated seas and contributing to the spectral peak
above 0.2 Hz.

[6] That seismic noise levels observed by land-based stations
are dominated by coastally generated DF microseisms associ-
ated with near-coastal wave activity has been demonstrated
using array analyses [Haubrich and McCamy, 1969; Gerstoft
and Tanimoto, 2007; Zhang et al., 2010] and has been clearly
shown by comparison of nearby simultaneous wave spectra
and microseism spectra measurements [Haubrich et al., 1963;
Bromirski et al., 1999; Bromirski and Duennebier, 2002]. In
this paper, we consider near-coastal or shallow water as those
coastal regions where water depth is less than one half the deep
water gravity-wave wavelength, the depth at which ocean grav-
ity waves begin to interact appreciably with the seafloor and
thus where single-frequency (SF) microseisms are generated.
Most of the energy in the DF spectrum is above 0.11-0.12 Hz
(Figure 1), resulting from wave interactions between gravity
waves having about 18 s periods (with wavelengths about 500
m) and shorter. We thus define water depths less than about
250 m as near-coastal, shallow water, covering most of the con-
tinental shelf and a portion of the continental slope. This defini-
tion of shallow water also demarcates the zone where the
evanescent portion of the DF pressure spectrum [Cox and
Jacobs, 1989; Bromirski and Duennebier, 2002] can provide
an additional contribution to DF levels observed on land.

[7] DF microseisms observed at land seismic stations show
a nearly one-to-one correspondence with nearby near-coastal
wave activity [Bromirski et al., 1999; Bromirski and
Duennebier, 2002], indicating that DF microseism signals
observed on land are dominated by coastal generation
resulting from interactions between incoming and shore-
reflected/scattered wave energy. While the preponderance
of observational evidence indicates that deep water open-
ocean generated DF microseisms do not propagate onto conti-
nents, some recent studies suggest that deep-ocean-generated
DF microseisms in the North Pacific and North Atlantic are
observed on land, including Cessaro [1994], Kedar et al.
[2008], and most recently Obrebski et al. [2012]. The question
is not whether high-amplitude DF pressure signals are generated
in the deep ocean, which has been demonstrated by the various
OBS studies previously mentioned, but whether these surface
wave signals propagate efficiently from deep water onto land,
i.e., without substantial energy losses.

[8] It is common in earthquake surface wave studies at
frequencies below 0.1 Hz to ignore the water layer and to
treat the seafloor as an elastic free surface [e.g., Zhang and
Lay, 1995]. In this case, the surface wave problem is the same
for oceanic crust as continental crust, and the surface waves
are properly called Rayleigh waves (Rg) [4ki and Richards,
2002; Ewing et al., 1957; Kennett, 2001]. At DF microseism
frequencies from 0.1 to 0.4 Hz, the ocean can have significant
thickness in terms of acoustic wavelengths. For pressure
sources (as from wave-wave interaction), much of the DF
energy propagates in the water column (not in the solid
seafloor as is the case for Rg) [Latham and Sutton, 1966;
Harmon et al., 2007, Ardhuin and Herbers, 2013].
Following a long tradition, we refer to the surface waves
under the oceans at DF microseism frequencies as “pseudo-
Rayleigh waves” (pRg) [Roever et al., 1959; Strick, 1959a,
1959b; Ewing et al., 1957; Brekhovskikh, 1960; Biot, 1952;
Cagniard, 1962; Scholte, 1948, 1949; Tolstoy, 1954;
Bradley, 1994; Okal, 1988]. When the water-layer depth
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approaches zero, pRg becomes indistinguishable from the
free-surface Rayleigh wave (FSRW). For deep water and
high frequencies, the pRg propagation speed diverges from
the FSRW speed and approaches the water sound speed.

[¢9] The pRg energy distribution between the solid and
fluid depends on the water depth where the wave interactions
occur, with the proportion of pRg energy in the water layer
increasing with water depth. When pRg has the characteris-
tics of Rg, DF signals propagate as “elastic pRg.” When
pRg has most of its energy in the water column, DF signals
propagate as “acoustic pRg.” Since elastic pRg will transition
to continental crust (i.e., to land seismometers) more readily
than acoustic pRg, these distinctions are important in
identifying potential DF microseism source areas.

[10] We present observations that indicate that near-coastal
gravity-wave activity can explain the DF microseisms
observed on land that have been attributed to deep-ocean
sources during the observational period of the Cessaro
[1994], Kedar et al. [2008], and Obrebski et al. [2012]
studies. Gravity-wave dispersion and coincident primary
microseism generation are used to help identify probable
source areas, key factors not directly considered by the
previous studies mentioned. The time-history relationships
between wave climate variability and DF signals observed
at land stations are investigated. Beamforming of array seismic
data is used to determine the dominant source directions during
the Obrebski et al. [2012] event. Model studies are used to
describe the partition of energy between elastic and acoustic
pRg as a function of both water-layer thickness and pressure
excitation frequency.

[11] There are two methods to detect weak wave-generated
signals using seismic arrays, cross correlation, and
beamforming. Long-term noise cross correlation would show
the potential for coherent propagation between two stations.
Although Lin et al. [2006] found generally good coherence
between widely separated stations using cross correlation at
frequencies less than 0.1 Hz, scattering losses at higher fre-
quencies identified by Harmon et al. [2007] could preclude
adequate signal-to-noise (S/N) in the DF microseism band.
To investigate the potential for DF signal coherence, we have
attempted similar cross-correlation studies focused on time pe-
riods when very high-amplitude DF signals were detected on
the deep seafloor and obtained negative results, suggesting that
scattering losses may be significant at higher frequencies.

[12] Beamforming is needed to detect weak signals in
noise. This method gives sufficient time resolution to detect
localized microseism sources. Beamforming was employed
extensively in attempts to detect localized deep-ocean micro-
seism surface-wave sources [Gerstoft et al., 2006, 2008;
Gerstoft and Tanimoto, 2007; Zhang et al., 2010; Traer
et al., 2012]. While deep water P-wave microseism source
regions were identified, none of these investigations detected
Rayleigh waves incident from the regions corresponding to P
wave microseism back azimuths. Our conclusion from these
studies is that coastal microseisms are dominant, which we
justify here with detailed analyses of a variety of observations.

[13] In this study, wave climate relationships with DF
microseism variability are established using a combination
of (i) global wave model significant wave height (Hs)
hindcasts (WAVEWATCH III ver 3.14, WW3; Tolman
[2009]) forced by National Oceanic and Atmospheric
Administration (NOAA) National Center for Environmental

Prediction (NCEP) reanalysis project near-surface winds
(NRA-1; Kalnay et al. [1996]) for pre-1992 comparisons,
(1) NOAA buoy wave spectra, and (iii) hindcast WW3 Hs
since 1992 obtained from http://polar.ncep.noaa.gov.

2. Source Area Identification Factors

[14] SF (also called “primary”) microseisms are generated
only in shallow water at gravity-wave frequencies by direct-
pressure oscillations forced by waves impacting the nearshore
sloping seafloor [Hasselmann, 1963]. Thus, because SF micro-
seisms can be generated only in shallow water, the concurrent
observation of SF and associated DF microseisms having
similar time histories indicates coincident nearshore generation
of both of these signals. In general, it is unlikely that SF and
DF microseisms with the same temporal behavior and relative
power characteristics, consistent with dispersed gravity-wave
arrivals at coasts, would occur in different locations.

[15] An important discriminator of DF generation location
is gravity-wave dispersion. While spectral levels over DF
bands can be useful for identifying signals from common
events at widely separated stations [Bromirski, 2001;
Bromirski et al., 2005; Kedar et al., 2008; Obrebski et al.,
2012], differences in spectral patterns and their dispersion
at multiple stations are useful for identifying progressive
changes in DF generation location associated with swell
propagation [Bromirski and Duennebier, 2002], particularly
at coastal continental stations.

[16] Recent significant advances in wave interaction DF
modeling efforts by Ardhuin et al. [2011] have resulted from
improved modeled wave directional spectral estimates and
also include coastal reflection. These improvements have
spurred attempts to identify deep-ocean sources of DF micro-
seisms observed on continents. Along coasts, shore reflection
plays a critical role in providing the opposing wavefield, par-
ticularly at wave periods greater than 12 s. Wave reflection
from coasts is complicated and depends on several factors,
including deep water approach angle, wave transformation
from deep water to the shore (shallow water bathymetry),
wave amplitude and frequency, and beach slope and
composition [Elgar et al., 1994]. Model DF estimates that
incorporate wave reflection from coastlines generally track
observations [Ardhuin et al., 2011; Bromirski et al., 1999],
although it is unclear to what degree discrepancies between
modeled DF amplitudes and seismic observations result from
incorrect estimates of wave reflection, contributions from
nonlocal sources, or DF propagation issues. Potentially, DF
levels observed on land are dominated by wave interaction
nearshore in shallow water where reflected (opposing)
amplitudes may be greater, and where DF energy generated
produces mostly elastic pRg that easily propagates inland.

3. Identification of Deep-Ocean DF
Source Locations

[17] Deep-ocean sources of DF microseisms observed by
continental seismic stations have been determined for a few
isolated cases, both by array studies [Cessaro, 1994] and
hindcast wave-wave interaction modeling to explain seis-
mometer observations [Kedar et al., 2008; Ardhuin et al.,
2011; Obrebski et al., 2012]. Here we investigate wave con-
ditions with WW3 hindcast Hs (see Supplement S1 for WW3
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Hs time-history validation) and (when available) buoy wave
spectra and contemporaneous vertical seismometer observa-
tions, to examine the time histories of spectral variability dur-
ing key events, with our primary focus on the exceptional
event identified by Obrebski et al. [2012], discussed in detail
in section 3.1. Because band-limited Hs over the dominant
portion of the ocean wave spectrum and the corresponding
DF microseism spectrum are well correlated [Bromirski
et al., 1999], model Hs spatial patterns are a satisfactory
proxy for estimating the potential for DF-generating wave in-
teractions. However, it is important to note that there can be
considerable uncertainty in both regional and remote wind
fields that force wave models, particularly for small short-
duration storms.

3.1. Midlatitude Eastern North Pacific

[18] Recently, Obrebski et al. [2012] identified a strong DF
event observed at several continental and island seismic sta-
tions during 29 May to 1 June 2002. They attributed these
DF signals to deep-ocean wave interactions between south-
ward propagating swell and northward propagating waves
from Hurricane Alma, which reached peak wind speeds on
30 May, 0600-1200 h near 16°N, 245°E (Figure 2a). The
spatiotemporal variability of eastern North Pacific Hs, grav-
ity-wave spectra, and microseism spectra during this excep-
tional event provide an opportunity to investigate factors
that both help constrain potential DF generation locations
and their ambiguity.

[19] Important for confirming a model-estimated deep-
ocean DF source location observed by continental and island
stations is the time history of spectral variability over a suffi-
ciently wide frequency band that encompasses most of the
wave energy for that event. The strong extratropical cyclone
(ETC) that forced the dominant wavefield spanned a large
area over the eastern North Pacific (Figure 2a), producing
long-period broad-wavefront swell propagating east-south-
eastward along the Pacific coast of North America, generat-
ing SF and DF microseisms (Figures 2c—2h). The
characteristics of this wave event were such that a long
stretch of coast was nearly simultaneously illuminated by rel-
atively high-amplitude (about 4 m Hs) waves having very
similar wave spectra (Figure 3). The large coastal region of
wave-wave interaction contributed to the high-amplitude
DF event observed. Differences between the wave and asso-
ciated DF spectra at progressively southward locations are
explained by small differences in wavefront propagation di-
rection and gravity-wave dispersion, most clearly evidenced
by the time delay of the onset of high spectral levels and elon-
gation of the peak DF energy band over time (compare
Figures 2d and 2h). The higher DF levels along the Baja,
Mexico coast at NE74 (Figure 2g) likely result from elevated
opposing wave energy due to the geometry of Bahia de
Sebastian Vizcaino, emphasizing both the importance of
coastal reflection for opposing wave components and the
dominance of near-coastal generation of DF microseisms
for this event. The wave spectrum at buoy 46001 near
Alaska (Figure 3a) is similar to the other buoys, showing
the broad spatial extent of waves from this storm. The lower
wave energy at 46001 is consistent with the lower DF energy
at Alaskan seismic station KDAK shown by Obrebski et al.
[2012], and also consistent with DF levels at near-coastal

seismic stations being dominated by local waves [Bromirski
and Duennebier, 2002] (compare Figures 2 and 3).

[20] SF microseisms in the [0.05, 0.08] Hz band have ap-
proximately the same time history (and associated dispersion
trends) as the DF signals along the California coast
(Figures 2d-2f). The slope of the gravity-wave spectra dis-
persion trends (Figures 3¢—3f; white lines) is consistent with
the DF spectral energy trends in Figure 2. This consistent pat-
tern of associated spectral viability for both SF and DF mi-
croseisms is indicative of coastal DF generation.

[21] DF energy preceding the swell arrival at more south-
ern land seismic stations (Figures 2g and 2h, the spectral re-
gion between the black and white lines) likely results from
Rayleigh wave arrivals from DF generation along the coast
at more northern locations. Relative-amplitude comparisons
suggest that DF energy preceding the initial DF signal from
this event (i.e., preceding the black lines in Figure 2) results
from interaction of waves from Hurricane Alma along the
Baja, Mexico coast, on 28-29 May. These signals propagate
to the other stations as Rayleigh waves, with the more south-
ern coastal source region evidenced by their general decrease
in amplitude with distance northward. It should be noted that
the somewhat higher frequency of these DF signals is more
consistent with wave periods associated with small, short-du-
ration hurricanes such as Alma than the 20 s period waves
needed to produce the 0.1 Hz DF microseisms during 30
May in Figure 2 and the wave energy below 0.06 Hz in
Figure 3. Note that the peak in the ocean wave spectrum at
southernmost buoy 46047 (Figure 3f) trails the more northern
buoys, indicative of north-to-south swell propagation.

3.1.1. Variable DF Source Directions From Beamforming

[22] The beamforming methodology of Gerstoft and
Tanimoto [2007] was applied to seismic-array data from both
Southern California Seismic Network (SCSN) and the
Northern California Earthquake Data Center (NCEDC) BK
networks (Figure 4a) to obtain estimates of the dominant
DF microseism source directions during the Obrebski et al.
[2012] wave event. Beamforming of vertical component data
from these arrays was performed over three frequency bands
in an effort to determine whether multiple DF source regions
could be identified, potentially associated with either changes
in the gravity wavefield resulting from dispersion or the
presence of waves from Hurricane Alma. The less dense
BK network shows a relatively consistent dominant source
direction at about 265° azimuth during 30-31 May, consis-
tent with DF levels being dominated by wave activity at the
nearby coast [Bromirski and Duennebier, 2002]. There is
no clear indication of significant DF energy arriving from
the Obrebski et al. [2012] deep-ocean source locations. The
low density and spatial configuration of the BK network
did not allow investigation of source directions of DF signals
above 0.115 Hz and caused the beam-power artifacts near
azimuths 175° and 300°.

[23] The higher density SCSN network allows a more thor-
ough investigation of the dominant beam-power directions
during 27 May to 1 June, showing a considerably different
pattern of DF source azimuths for different frequency bands.
At lower frequencies, SCSN shows a general north-to-south
temporal progression in the maximum beam-power azimuths
(Figure 4d), dominated initially at more northern locations
where wave intensity is greater (compare with Figures 3b
and 3e). The beam-power time history is consistent with
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Figure 2. Near-coastal DF microseism generation associated with north-to-south swell propagation. (a)
WW3 Hs snapshot at 30 May 2002 0600 h, showing locations of seismometer stations in Figures 2c—2h.
(b) WW3 snapshot at 31 May 2002 0600 h, showing the change in wave height resulting from southward
propagation of the swell, and the locations of NOAA buoys compared in Figure 5. (¢)—(h) Spectrograms
over the 25 May to 5 June time period spanning the southward propagating swell and Hurricane Alma
(southeast corner in Figures 2a and 2b) storm events. Dispersion trend lines are relative to JCC (d), and
are common in Figures 2c—2h for reference. The scale range applies to all stations.

coincident source locations distributed along much of the [24] The apparent multiple-azimuth strong beam-power
coast, e.g., on 30 May 00 h, but with the general temporal distribution on 29-30 May in Figure 4e (the band used by
trend in the dominant beam-power azimuths also consistent ~ Obrebski et al. [2012] in Figure 1) is consistent with nearly
with north-to-south swell propagation along the coast. simultaneous illumination of a long stretch of coastline by
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Figure 3. Wave spectra from NOAA buoy measurements showing southward propagation of the 29 May
to 1 June swell event along the Pacific coast of North America. The locations of NOAA buoys where the
wave spectra in Figures 3a—3f were measured are shown in Figure 2b. The spectral amplitude scale applies
to all. Temporal locations of dispersion trends (black and white lines) are common with those in Figure 2,

but have half the DF slopes.

swell, producing high-amplitude DF signals at multiple
coastal locations (Figure 2), and also north-to-south swell
propagation. The increased beam power on 31 May at less
than 225° azimuth (Figure 4e) likely results from near-
coastal interactions of southward propagating waves along
the Baja coast, where coastal wave activity intensifies as
swell from the north escapes the shadowing effects of Pt.
Conception [Schulte-Pelkum et al., 2004]. The impact of
gravity waves from Hurricane Alma along the Baja and
California coasts is manifested by the beam-power concentra-
tion on 27-29 May between azimuths 155-215° (Figures 4e
and 4f). The absence of signals from Alma in Figure 4d indi-
cates that this relatively small short-duration hurricane produced
little wave energy in the associated gravity-wave band.

[25] The differences in beam-power distribution between
the bands in Figures 4e and 4f, i.c., increasing energy at
shorter periods at later times at more southerly locations,
are consistent with energy patterns associated with the

north-to-south gravity-wave dispersion in Figures 2 and 3.
Thus, the SCSN beam power has some power in the direction
of the Obrebski et al. [2012] source locations, but the pro-
gressive changes in the spectral energy distribution (and the
presence of associated SF microseisms) are consistent with
wave interaction associated with dispersed ocean waves hit-
ting the coast. We also note that the polarization analysis in
Obrebski et al. appears to be consistent with progressively
southward coastal microseism generation as the swell propa-
gates southward along the coast.

3.2. Deep Seafloor-Continental-Island-Wave
Spectra Comparisons

[26] Critical for confirming a deep-ocean source location
for the land DF observations is their relationship with DF
signals observed at mid-ocean station H20 (Figure 2c).
Based on the spectral characteristics, we define the long-period
double-frequency (LPDF) [0.11, 0.14] Hz band to span most of
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(a) SCSN (blue triangle cluster) and Northern California BK Network (red triangles) station

locations. Beamformer power versus azimuth over 27 May to 1 June determined from vertical component
seismic data at (b—c) the BK network, and (d—f) the SCSN network stations over the frequency bands
indicated (linear power scale, blue (low) to dark red (high)). Dashed lines in Figures 4b—4f show azimuths
corresponding to potential source directions (blue lines) in Figure 4a, north (315°) and south (160°) along
the coast, and toward estimated Obrebski et al. [2012, Figure 3] deep-ocean source locations (red circles) at
220° from the SCSN network and at 200° (red line) from the BK network. Beamformer responses were
median filtered to emphasize the dominant beam-power directions. Horizontal bands in Figures 4b and
4c are processing artifacts resulting from the BK network station distribution.

the dominant spectral band shown in Figure 2, in contrast to the
narrower [0.111, 0.125] Hz band used by Obrebski et al. For
other events, the LPDF band extends to both higher and lower
frequencies, depending on the wave spectral content.
Wavefronts from the ETC reached H20 about a day prior to
the Obrebski et al. modeling focus (their Figure 2) and prior
to swell arrival along the California coastline (Figure 2a). In
fact, some DF energy was likely generated north of H2O,
evidenced by the elevated DF energy levels at H20 prior to
30 May (Figures 2c and 2a). Root mean square (RMS) levels
of the wave spectra (Figure 5b), that correspond to the seismic
LPDF band, show wave energy levels at more northern buoy
46005 rising in consort with DF levels at H20O (compare
Figures 5a and 5b), consistent with some DF energy arriving
from more northern deep-ocean wave activity.

[27] Although long-period gravity waves from both the
extratropical storm and Hurricane Alma could have
interacted south of H20 on 30 May, it seems unlikely that
the seismic trends would then display the same pattern of dis-
persion associated with southeastward travelling swell. The
slopes of these swell-associated dispersion trends are masked
by signals generated at multiple coastal locations, and be-
cause the storm-generated swell approach angle was from a
westward direction, the apparent dispersion is similar along
much of the coast. However, the characteristics of the DF

spectral trend patterns change with station distance north-
to-south from the extratropical wave generation region
(Figure 2), with the onset of the spectral peak progressively
delayed and extended to higher frequencies southward (note
the delay between the elevated spectral levels and the black
reference line from JCC). These lags are not consistent with
northward travelling waves from Alma. Furthermore, the
presence of SF microseisms indicates near-coastal generation.

[28] Coastal buoy RMS levels consistently lag H20, having
time histories similar to DF observations at nearby near-coastal
continental seismic stations, reflecting the variability shown in
Figure 2. Note the good agreement between RMS temporal
variability at Baja station NE74 and southernmost buoy
46047, i.e., both lag their more northern counterparts. Very
similar RMS spectral levels are observed for coastal buoys in
Figure 5b, consistent with high-amplitude DF microseism
generation resulting from wave interactions associated with a
nearly simultaneous illumination of a long stretch of coast by
swell with similar spectral characteristics. Differences between
buoy spectra are affected by their exposure to wave arrivals,
local winds, and bathymetry.

[29] As indicated by WW3 snapshots in Figures 2a and 2b,
wavefronts associated with the ETC event extend to the
Hawaiian Islands, lagging H20, but approximately coincident
with swell arrivals at the northern California coast. LPDF
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Figure 5. Root mean square (RMS) amplitudes of hourly av-
eraged vertical component displacement spectral estimates from
land-based seismic stations in the LPDF [0.11, 0.14] Hz band at
(@) coastal stations, (b) from buoy wave spectra near the seismic
stations in the [0.055, 0.070] Hz band, and (c¢) Hawaiian island
stations KIP on Oahu and POHA on the Big Island of Hawaii.
RMS amplitudes at deep-ocean bottom site H20 are added for
comparison with the land-based stations. A magnitude 6.3
Aleutian Island earthquake signal produces the amplitude spike
on 25 May 2002 that is common to all stations. Smaller earth-
quakes occurred near BKS on 4 June and near SBC on 5 June.

RMS levels at Hawaiian Island stations KIP and POHA
(Figure Sc) show LPDF variability that is consistent with swell
arrivals from the north, i.e., elevated levels at more northern KIP
precede POHA, with higher levels at KIP consistent with more
energetic wave activity farther north.

3.3. North Pacific

[30] The Large Aperture Seismic Array (LASA) in
Montana during the 1960s and 1970s provided an opportu-
nity to identify microseism source regions. Initial studies
with LASA showed that fundamental and higher mode DF
microseism Rayleigh waves were generated only in coastal
regions [Haubrich and McCamy, 1969; Lacoss et al., 1969].
Cessaro [1994] augmented LASA with the Alaskan Long
Period Array (ALPA) and the more distant Norwegian
Seismic Array (NSA), identifying DF source regions using
three-array triangulation and projections of half-beam-power
directions. Attenuation of DF microseism Rayleigh waves can
be appreciable over teleseismic distances, reducing the utility
of NSA for DF source region localizations in the North
Pacific. Cessaro’s localizations appeared to correlate well with
storm intensities from the Mariners Weather Log for 1973.
However, estimating gravity-wave heights and characteristics
are problematic using weather logs alone. Here we have the
advantage of having WW3 hindcast Hs data (that were
unavailable to Cessaro) to investigate gravity-wave conditions,
which allows us to reinterpret his results. The Hs hindcast data
show acceptable correlations with more recent NOAA buoy
Hs data over the eastern North Pacific (see Supplement S2 for
WW3 Hs time-history validation), implying that they give a
reasonably reliable representation of gravity-wave conditions
during 1973.

[31] Snapshots of WW3 Hs over the eastern North Pacific
(Figure 6) show an extreme wave event along the south coast
of Alaska during two time periods from Figure 4 of Cessaro
[1994]. Because the nearest coastline dominates DF
microseism levels [Bromirski and Duennebier, 2002], in
both instances, LASA and ALPA would be expected to point
toward the suggested source regions determined by Cessaro
from the intersection of the array beam-power directions.
However, the WW3 Hs snapshots suggest that source regions
were more likely their respective nearest coastlines. This is
particularly evident in Figure 6b, where Cessaro identified
two source regions for the same time interval that are
consistent with the arrays pointing toward their respective
nearest coastlines where wave activity was high. While the
LASA and ALPA data are not available, coastal source areas
for these two time intervals seem more likely since CI in
Figure 6a and the southern C11 in Figure 6b both occur in
low Hs regions, where significant wave interaction is unlikely.

[32] Recent studies using the larger SCSN array (compared
with arrays used by Cessaro [1994]) have searched for mid-
ocean source locations of DF surface wave microseisms along
the Pacific coast of North America [Gerstoft and Tanimoto,
2007] and under extreme tropical cyclones [Gerstoft et al.,
2006; Zhang et al., 2010]. Gerstofi and Tanimoto determined
only near-coastal source areas for a full year of SCSN data,
while Zhang et al. found only compressional body wave
microseisms emanating from the mid-ocean region near a
western Pacific typhoon. These array studies are consistent with
the hypothesis that only near-coastally generated DF micro-
seisms are observed on continents.

3.4. North Atlantic

[33] Babcock et al. [1994] observed DF microseisms on
the deep-ocean seafloor (depth about 3400 m) off the coast
of North Carolina that correlated well with time histories of
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Figure 6. Wave model significant wave height (Hs)
snapshots over the eastern North Pacific showing the temporal
evolution of the wave climate during November 1973, also
showing the locations of the LASA and ALPA arrays. Also
shown are locations of DF microseism source areas determined
by Cessaro [1994], C1 in Figure 6a and C11 in Figure 6b, with
locations estimated from Figure 6 of Cessaro [1994].

local overhead wave activity during high-amplitude wave
events, indicating that high-amplitude DF microseisms are
commonly generated in deep water in the western North
Atlantic under individual storms. Apparently, there is gener-
ally sufficient wave energy at opposing frequencies to always
generate DF pressure signals under developed or developing
seas. Additionally, Babcock et al. found that teleseismic SF
and DF peaks with the same time history occurred simulta-
neously, suggesting a common near-coastal generation

location for those signals. As observed in the mid-Pacific at
H20 (Figure 1), the western North Atlantic DF spectral peak
is between 0.16 and 0.3 Hz, higher than at land stations
[Babcock et al., 1994; their Figure 10].

[34] That deep-ocean-generated DF microseisms are not
observed on continents is also demonstrated by seismic and
wave observations during the October 1991 Halloween
Storm Bromirski [2001]. During that time period, northward-
propagating high-amplitude waves from northward-travelling
Hurricane Grace must have occurred, providing significant
opposing wave energy to the southward-propagating waves
from the Halloween Storm observed by NOAA buoys off the
U.S. East Coast. The interaction of waves from these two storm
systems must have produced high-amplitude DF pressure fluc-
tuations in the deep ocean. However, strong DF microseisms
were observed at continental seismic stations only when waves
from these storms reached the coast.

[35] Kedar et al. [2008] modeled wave interactions southeast
of Greenland during November 2003 using WW3 wave spectral
estimates and attributed land DF microseism observations to
mid-ocean wave activity. Their model did not include, however,
coastal wave interactions between incident and coastally
reflected wave components. Here we investigate the possibility
that coastal wave activity was responsible for the DF signals
observed at continental stations at that time. The WW3 Hs
distribution over the North Atlantic during 31 October to 2
November at 00 h of each day (Figures 7a—7c) shows the
evolution of the wave climate with spectral levels at three
widely distributed land seismic stations (Figures 7d-7f)
spanning that time period (see Supplement S3 for WW3 Hs
time history). We note that the Hs pattern at 2 November 00 h
(Figure 7c) most closely corresponds to Figure 5 of Kedar et al.
(and not 1 November 00 h). At that time (2 November 00 h),
relatively low DF levels were observed at PAB and SCHQ,
consistent with declining wave energy along coasts near those
stations (Figures 7b and 7c). Figure 7¢ indicates that, although
high gravity-wave amplitudes from the two storm systems sug-
gest high-amplitude DF fluctuations were likely produced over
the deep ocean (as shown by Babcock et al. [1994]), the DF
levels at PAB and SCHQ were decreasing over 2 November
(Figures 7d and 7e), consistent with the hindcast Hs spatial
patterns. Thus, land DF levels are generally not well-correlated
with deep-ocean wave activity and associated deep-ocean DF
microseism levels. Furthermore, the similar amplitudes for most
of the earthquake Rayleigh wave (Rg) arrivals (Figures 7d-7f)
at each of the stations indicate consistent propagation character-
istics for Rg from earthquakes, in contrast to the large
differences in ocean-generated pRg patterns. This suggests that
either pRg levels observed on land are dominated by local
generation, and/or that basin geology has a greater effect on
pRg propagation than on Rg propagation.

[36] The spectral pattern at seismic station PAB (Figure 7d)
shows characteristic patterns of SF and DF microseisms gener-
ated by dispersed swell arrivals impacting the Iberian coast of
Spain, with the relatively low microseism amplitudes resulting
from propagation losses due to its distance from the coast
[Bromirski and Duennebier, 2002]. The spectral pattern at
SCHQ (Figure 7e) is typical for developing seas, with the wave
energy peak shifting to progressively lower frequencies over
time from 31 October 1200 h to 1 November 00 h as the inten-
sifying storm-driven wave field develops. The SF also shows a
corresponding downward trend in peak frequency, indicating
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Figure 7. Wave model significant wave height (Hs) snapshots over the North Atlantic for (a) 31 October,
(b) 1 November, and (c) 2 November 2003. Scaling in Figure 7b is common to Figures 7a and 7c. Vertical
component seismic spectral variability over the 25 October to 5 November time period at land-based
seismic stations in (d) Spain (PAB), (e) Quebec, Canada (SCHQ, data on 3 November not available),
and (e) Iceland (BORG), with their locations shown in Figure 7b. SF (0.05-0.1 Hz) and DF (0.1-0.2 Hz)
microseisms have similar time histories, indicating that both are generated at the same time and place, i.e., at
nearshore locations. Short-duration high-amplitude transients at frequencies < 0.1 Hz are Rayleigh wave (Rg)

earthquake arrivals.

near-coastal generation of both signals. Together, the SF and
DF patterns are consistent with coastal reflection providing the
opposing wave energy for near-coastal generation of the DF mi-
croseisms observed at SCHQ. Thus, deep-ocean sources are not
necessary to explain the variability of land DF microseism
levels surrounding the North Atlantic.

3.4.1. Implications From Other North Atlantic
Observations

[37] Interestingly, inversion for source distance and genera-
tion time of the gravity waves causing the dispersed SF and
DF (in the [0.09, 0.11] Hz band) linear trend patterns at
SCHQ on 25-29 October [Haubrich et al., 1963] indicates that
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the generating swell originated 11,000 km from its coastal inter-
action, placing the wave generation region in the Southern
Hemisphere on 18 October 2003. The much lower levels of
these signals at PAB (barely discernable) suggest SF and DF
microseism generation along either the Atlantic or Pacific coast
of North America. Examination of the WW3 Hs field during 18
October (Supplement Figure S4) shows a strong wave event in
the Southern Ocean southeast of New Zealand. Likely, swell
from this event generated the microseisms along the Pacific
coast, which propagated across North America to SCHQ as
Rayleigh waves.

[38] Swell may travel long distances before interacting with
the coast [Haubrich et al., 1963; Bromirski and Duennebier,
2002]. Since the Hs maps depend mostly on regional winds,
low-amplitude swell events propagating from distant storms
will not appear on the Hs maps nor be detectable by ocean sur-
face buoys. Consequently, there are coastal wave interactions
that are not indicated by the Hs maps. The strong dispersion
event at SCHQ is not observed at PAB and BORG (and the
spectrograms are in general quite different), indicating that
nearby near-coastal wave activity produces the DF signals.
Thus, seismic stations separated by oceanic paths generally have
different microseism patterns, and the microseism time history
will be independent because they result from local-to-regional
near-coastal wave activity.

[39] The spectral levels at BORG (Figure 7f) are similar to
island stations KIP and POHA (Figure 1), i.e., the DF spectral
peak is at a significantly higher frequency than at PAB and
SCHQ. Note that the spectral peaks at PAB and SCHQ near 1
November 00 h correspond to a relative minimum at BORG,
when wave activity along the southern coast of Iceland was
low. These distinctly different spectral time histories are
consistent with the poor correlation of Rg and Lg microseisms
expected between stations separated by oceanic paths
[Kennett, 1986; Cao and Muirhead, 1993; Zhang and Lay,
1995]. The increase in DF levels at BORG on 1 November is
consistent with heightening wave activity along Iceland’s north
coast shown in Figures 7b and 7c. The pattern of DF spectral
variability at BORG is considerably different than at the
continental stations, reflecting both BORG’s proximity to the
Icelandic coast and coastal wave climate variability along its
multiple, irregular, steep, shoreline exposures.

4. Relationships Between Long-Term
Gravity-Wave-Induced Signal Variability at
Mid-Ocean Bottom and Land Stations

[40] Although there is no question that DF pressure fluctua-
tions commonly occur over all ocean regions, there is no unam-
biguous evidence that these generate Rayleigh waves that are
observed on land. It seems likely that if deep-ocean-generated
DF microseisms were observed on land, such observations
would occur more often, i.e., rare, infrequent combinations of
storm events would not be essential for their detection. We next
investigate long-term relationships between mid-ocean wave-
induced seafloor signals and those recorded on land, both on
continents and on islands, over 6 month time periods.

4.1. Mid-Ocean Versus Continental Wave-Generated
Signal Variability

[41] The time histories of LPDF levels at H20 and BKS
are necessarily similar because storm wave events are

generally common to both locations, either nearly simulta-
neously (Figures 2a and 2b) or delayed by west-to-cast storm
and swell propagation times. Comparing RMS spectral levels
between H20 and BKS in the SF and LPDF bands
(Figures 8c and 8d), similar time variability is observed,
clearer and more pronounced for the higher amplitude
[0.11, 0.14] Hz LPDF band. Higher amplitudes at H20 in
the LPDF band may result from ocean bottom site character-
istics, ocean resonance amplification, and/or nonlocally
deep-ocean-generated seismo-acoustic energy. Amplitudes
in the SF band at H20 are strongly affected by tilt noise
(see Figure 1). The time series in Figures 8c and 8d are well
correlated (Figure 8f), suggesting that the SF and LPDF
signals are common to both stations. The much lower SF ampli-
tudes, having low S/N ratios, together with tilt contamination at
H20, explain the somewhat lower R? values. SF signals gener-
ated along the U.S. West Coast closest to H20 likely provide
the dominant contribution, with the Hawaiian Islands another
potentially strong SF source region. The close to zero lag
between the hourly SF RMS levels is attributable to Rayleigh
wave phase speeds.

[42] The higher amplitude LPDF signals have better S/N
and are not significantly affected by instrument tilt, resulting
in significantly higher correlation between the stations.
Interestingly, the signals at H20 lead BKS. This can be
explained by a combination of LPDF microseisms being gener-
ated at locations along the West Coast north of BKS (Figure 2),
and also in the open ocean north (or south) of H20O, that propa-
gate more efficiently to H20. Near-coastal LPDF microseism
generation from later-arriving swell reaching the coast nearest
BKS provides the dominant contribution to signal levels at
BKS [Bromirski and Duennebier, 2002], resulting in the domi-
nant BKS DF signals lagging H20. The broadness of the LPDF
correlation function is likely due to DF levels from larger and/or
nonlocal source areas. That H20 leads BKS also suggests that
LPDF signals generated in the open ocean south of H20 are
generally less significant. The 5 h lag difference is inconsistent
with a common source area. The large difference in spectral
levels between H20 and BKS (>30 dB at the ~0.225 Hz
spectral peak, Figure 1) indicates inefficient propagation from
the deep ocean to continents, which extends down to nearly
0.1 Hz. BKS levels would be much higher if acoustic-to-elastic
pRg conversion while transitioning across the oceanic/continen-
tal shelf boundary to shore was efficient.

[43] In contrast to similar SF and LPDF time histories,
short-period DF (SPDF) signals in the [0.2, 0.3] Hz band at
H20 and BKS (Figure 8¢) appear unrelated, with the near-
zero R? (Figure 8f, red line) consistent with the assessment
that wave-wave interactions in the deep ocean do not
generate DF microseism Rayleigh waves that are observed
on continents. Also, because crustal body waves should not
attenuate appreciably over the relatively short distance be-
tween H20 and BKS, the large difference in amplitude and
lack of correlation between H20 and BKS in the SPDF band
indicates that P wave microseism amplitudes in the SPDF
band are much lower than pRg on the deep seafloor.

4.2. Mid-Ocean Extreme DF Events

[44] The highest amplitude DF signals observed at H20
during the 2001-2002 winter occurred during February and
March 2002 in the [0.2, 0.3] Hz SPDF band (Figure 8a),
characteristic of the oceanic DF peak (Figure 1). This band
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Figure 8. Relationships between (a) mid-ocean (H20) and (b) coastal (BKS) microseism levels during
January—June 2002. To allow identification of the highest amplitude signals, the upper bound in the amplitude
range at H20 is 5 dB higher than at BKS. Root mean square (RMS) amplitudes of hourly averaged vertical
component spectral levels at H20 (blue) and BKS (red) over (¢) LPDF [0.11, 0.14] Hz, (d) primary microseism
[0.045, 0.085] Hz, and (e) SPDF [0.2, 0.3] Hz frequency bands. (f) Correlation between the RMS amplitudes for
the time series shown in Figures 8c—8e. Positive (negative) lags indicate signals at BKS lead (trail) H20. Even
though the longer-period SF signals attenuate less compared to DF, their relatively lower amplitudes result in
stronger domination of locally generated DF signals at BKS, causing the much narrower correlation peak.
The width of the lag-correlation peak is indicative of the amount of nonlocally generated DF energy, i.e., if
all the DF signals were generated in one location, the lag-correlation function would be peaked at zero lag.

at times extends to lower frequencies, approaching 0.15 Hz,
but we restrict the lower bound to 0.2 Hz in these analyses
to avoid potential inclusion of LPDF energy in the SPDF
comparisons. During 5-12 February 2002, multiple strong
storm-forced wave events transited the North Pacific (see
Supplement A2, Hs animation). Spectral levels above 0.3
Hz are generally associated with locally generated wind
waves, either near-overhead in the case of H20 or at nearby
coastal locations for BKS and WHY. Some of the high-am-
plitude DF signals at H20 near 0.25 Hz during 2-7
February likely were generated from wave activity associated
with high waves in the open-ocean north of H20 (Figure 9a).
Dispersed wave arrivals from this event reached the West
Coast during 7-8 February, producing the SF/DF signals

observed at BKS. Only very strong coastal wave activity,
such as on 10 February, produces distinct SF signals identi-
fied at H20.

[45] The highest amplitude DF signals at H2O occurred on
x10 February 2100 h (black dots Figures 9d-9f) when approx-
imately 6 m waves occurred overhead. Examination of the wave
model Hs animation (Supplement A2) suggests that initial wave
activity northwest of H20 from this storm event produced the
DF signals during 8-10 February in the [0.14, 0.2] Hz band
(Figure 9d; the lack of prominent SF signals associated with
these high-amplitude DF signals indicates a deep water source).
Other wave activity at distant open-ocean locations (Figure 9b)
potentially contributed to the extreme DF levels observed at
H20 during 10-13 February. At the same time, high waves
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winter over the North Pacific on (a) 5 February (b) 10 February, and (¢) 19 March, time periods encompassing
the highest amplitude DF microseism events recorded at mid-ocean bottom station H20 (see Figure 8). Vertical
component displacement spectral levels recorded at H20, BKS, and WHY, Whitehorse, Yukon Territory,
Canada [60.6597°N, —134.8806°W, elevation 1292 m] during (d—f) 5-15 February, and (g—i) 15-25 March
2002, respectively. Vertical scale is frequency (Hz). Spectral scales shown apply to BKS and WHY. Note that
H20 levels depicted span the [—160, —95] dB range, so that SF levels near 0.05 Hz at H20 on 10 February are
close to those at WHY (boxed in Figures 9d and 9f), and DF level differences are actually more pronounced.
The peak frequencies for these events at H20 (black dots in all spectrograms) are about 0.22 Hz for both
February and March DF events (—83.86 and —86.33 dB levels, respectively). In comparison, the peak spectral

level for the 30 May 2002 DF event studied by Obrebski et al. [2012] was near 0.12 Hz (—84.93 dB).

were impacting the Gulf of Alaska and Cascadia coasts, produc-
ing the SF (in black box) and DF signals observed at WHY
(Figure 9f). The SF (primary) microseisms indicate that these
signals were generated in shallow near-coastal water, and are
most prominent at WHY, the coastal region where wave heights
are greatest, and are clearly identified at H2O (Figure 9d, black
box). The peak SF and DF near-coastal microseism levels at
WHY from this event occur about a day prior to the stron-
gest DF signals at H20, when the wave amplitudes along
the Cascadia coast were significantly greater than those
shown on 10 February (Supplement A2). Waves from this
event propagated southward along the coast, with gravity-
wave dispersion producing the SF and DF spectral trends
observed at BKS on 10-11 February (Figure 9¢). DF energy
generated near WHY also reached H20 and BKS, likely the

source of at least some of the DF energy near 0.12 Hz on 10
February, indicating that shallow water generated DF micro-
seisms propagate seaward from near-coastal generation regions
[Bromirski et al., 2005]. However, the high-amplitude signals at
H20 above 0.15 Hz on 12—13 February are not observed at
either WHY or BKS (Figures 9¢ and 9f), where regional
near-coastal wave activity can account for the DF signals
observed. Beamforming and cross correlation of SCSN ver-
tical component seismic data spanning this event detected
no signals coming from a deep-ocean source region, consis-
tent with findings of Szelwis [1982]. These observations
demonstrate that, because the highest amplitude DF signals
observed at H20 cannot be identified at continental stations,
it is unlikely that any deep water-generated signals above
0.2 Hz can be detected on land.
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Figure 10. Relationships between microseism levels at seismic stations on (a) Oahu (KIP) and (b) the Big
Island of Hawaii (POHA) with mid-ocean station H20. Note that median spectral levels at KIP and POHA
are about 5 dB lower than those at H20 (Figure 1). Root mean square (RMS) amplitudes of hourly averaged
vertical component spectral levels at KIP (blue) and POHA (red) over (¢c) LPDF [0.11, 0.14] Hz, (d) SF mi-
croseism [0.045, 0.085] Hz, and (e) SPDF [0.2, 0.3] Hz frequency bands. (f) Correlation between the RMS
amplitudes for the time series shown in Figures 10c and 10e, and with H2O. Correlation pairs for the SPDF
band (legend, in red), apply to the LPDF band (black curves). Positive (negative) lags indicate signals at the

first station identified leads (trails) the second.

[46] The wave model snapshot for 19 March 2002
(Figure 9¢) shows low wave heights along the Pacific coast
when an extreme DF event occurred at H20 (Figure 9g). It
seems likely that deep-ocean wave interactions occurred
during March 2002 northwest of H2O, producing the
extreme DF levels at H20 during 18-21 March. At the same
time, DF levels near the peak frequency at BKS and WHY
(Figures 9h and 91) were 30 dB lower and are likely generated
by nearby near-coastal wave activity. Note the significant dif-
ference in the time histories of DF levels (particularly above
0.2 Hz) between H20 and the land stations during both the
events. Although some ambiguity remains due to concurrent
storm systems, the differences between H20 and the land sta-
tions are consistent with other observations showing that lit-
tle, or no, deep-ocean-generated DF surface wave signals
above 0.15 Hz are observed on land.

4.3. Mid-Ocean Versus Hawaiian Island
Signal Comparisons

[47] DF microseism levels at island stations are known to
be typically much higher than continental land stations
(Figures 1 and 2) [Bromirski et al., 2005; Duennebier et al.,
2012]. Elevated island DF levels may be due to (1) island sta-
tions being exposed to near-coastal wave activity generating
DF microseisms from all directions, (2) some DF energy
reaching island stations from the deep ocean. The patterns
of spectral variability at Oahu (KIP) and the Big Island of
Hawaii (POHA) (Figures 10a and 10b) are similar to those
at H20, and to a lesser extent BKS (Figures 8a and 8b).
This suggests that propagation paths that do not traverse oce-
anic/continental crust boundaries may allow more deep wa-
ter-generated DF energy to reach land stations. The spectral
variability follows the pattern of storm wave variability

3623



BROMIRSKI ET AL.: DEEP-OCEAN MICROSEISMS OBSERVED ON LAND?

LPDF and SPDF Correlations

14 P
{---CcoR ——H20

---Jce —e—POHA

0.8 | —e—BKS | —e—KIP

---SBC —COR
NE74 —Jcc
—SBC

NE74

- -

0,
-48 -36 -24 -12 0 12 24 36 48
Lag (hr)
Figure 11. Relationship between coastal and mid-ocean mi-

croseism variability over January—June 2002. Lag-correlation
curves of RMS vertical displacement spectral levels of long-
period double-frequency (LPDF) microseism variability in the
[0.11, 0.14] Hz band between coastal station BKS and other
coastal and island stations. Also shown are lag correlations of
RMS short-period double-frequency (SPDF) variability in the
[0.2, 0.3] Hz band between mid-ocean station H20 with coastal
stations (see Figures 3 and 4 for locations). COR is located in
Corvalis, OR, about 100 km from the coast.

across the eastern North Pacific, with higher amplitudes
during winter months (January—March) when storm activity
is greater. Note that KIP levels are significantly higher than
at POHA (separated by about 318 km), resulting from the
more energetic wave climate at the northern Hawaiian
Islands and/or a coastline configuration/orientation that is
more conducive to producing opposing wave components.
[48] Both KIP and POHA have similar patterns of variability
in both LPDF and SF bands (Figures 10c and 10d), with levels
at KIP somewhat higher for LPDF. Because of the proximity of
island stations to coasts, LPDF and SF microseisms are likely
dominated by local near-coastal generation, although some con-
tribution from the North American coast is likely [Bromirski
et al., 2005]. Not surprisingly, LPDF levels at KIP and POHA
are well-correlated (Figure 10f, black dashed curve), with peak
R? > 0.9. KIP slightly leads POHA, consistent with the initial
arrival of stronger swell at more northern KIP dominating. DF
signals propagating from northern Hawaiian Islands must con-
tribute to DF observations at POHA. Similar to BKS, LPDF
levels at KIP and POHA are well-correlated with H20
(Figure 10f, thick and thin black curves), with both island sta-
tions slightly leading H2O, consistent with dominant swell
propagating from northwest to southeast. The somewhat higher
LPDF R? between POHA and H20 as opposed to between KIP
and POHA may result from the closer proximity of POHA to
H20, suggesting that either some of the LPDF energy reaching
the Hawaiian Islands is generated by deep-ocean wave-wave in-
teractions, or the wave climate near POHA and H2O is more
similar than that between more distant and more northerly
KIP and H20. However, these correlations do not rule out the
possibility that some of the LPDF signals at both island stations

have deep-ocean source contributions, although deep-ocean
contributions are not necessary to explain the LPDF signal
levels observed.

[49] In the SPDF band, KIP shows higher spectral levels
(Figure 10e, blue curves), leads, and is well-correlated with
POHA (Figure 10f, red dashed). These relationships are consis-
tent with dominant storm and wave propagation from the
northwest, first impacting Oahu and then dissipating somewhat
while travelling down the Hawaiian Island chain. While local
geology may be a factor (POHA is at 1990 m elevation on
Mauna Kea and 10 km farther from coasts than KIP), the
slightly longer propagation path would span less than one pRg
wavelength and so would be unlikely to account for the large
differences in spectral levels between KIP and POHA. In
contrast to continental station BKS, both KIP and POHA show
some SPDF correlation with H20. KIP leads POHA, and both
POHA and KIP lead H20 (Figure 8e, red curves). These rela-
tionships are also consistent with storm and wave propagation
from the northwest, first exciting SPDFs at Hawaii and then
over H20. These observations demonstrate that deep-ocean to
island DF signal propagation is not necessary to explain
SPDF signal variability at the Hawaiian Islands.

5. Discussion

5.1.

[50] Studies that attribute continental DF microseism
observations to deep-ocean sources rest on the critical
assumption that ocean wave interactions in the deep ocean
generate seismic surface waves that propagate from the
seafloor to land. For DF signals generated from deep-ocean
sources, three propagation paths across oceanic crust are
possible: (1) complete deep-ocean paths that are recorded by
ocean bottom sensors, (2) deep-ocean paths that reach mid-
ocean island stations, and (3) paths across ocean crust, through
continental margins and on to continental stations. Additionally,
two propagation paths are possible for DF signals generated in
shallow near-coastal zones: (4) paths across oceanic crust to
deep-ocean seafloor and island stations, and (5) the important
path inland to continental stations.

[51] Virtually, all DF microseism studies recognize path (5)
as viable. Paths (1) and (4) were identified by Bromirski et al.
[2005] at H20 and pRg modes 0 and 1 have been observed
on arrays of OBSs in the Pacific by Harmon et al. [2007] and
Yao et al. [2011]. Observations of signals traversing path (2)
were identified by Ardhuin et al. [2011] and Duennebier et al.
[2012], although analyses presented here (section 4.2) are
inconclusive. Path (3), the focus of this study, has been purpor-
tedly identified during particular events [Cessaro, 1994; Kedar
et al., 2008; Obrebski et al., 2012, Stutzmann et al., 2012].
However, most data, particularly [0.2, 0.3] Hz DF signals at
H20, indicate that path (3) rarely, if ever, occurs. Deep-ocean
storm-generated DFs were observed at H20 but not on land
[Bromirski et al., 2005]. RMS amplitudes in the [0.2, 0.3] Hz
SPDF band at H20 are poorly correlated with continental
stations (Figure 11), consistent with little or no deep-ocean DF
energy in this band reaching continents. Weak SPDF band
correlations of H20 with COR and JCC more likely result from
near-coastal wave interactions due to high intensity storm
activity along the nearby coastlines than to common deep-
ocean-generated DF signals. In contrast, the lower-frequency
LPDF band energy at BKS is well correlated with H20, and

DF Propagation Across Ocean Crust
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Figure 12. The magnitude of the wave fields in frequency-
slowness space for a fluid layer (5 km thick with a sound
speed of 1.520 km/s and a density of 1 kg/m®) over (a) a fluid
half-space (acoustic (zero shear modulus), with sound speed
of 4.730 km/s and density of 3 kg/m®), and (b) a solid half-
space (elastic, compressional, and shear speeds of 4.730
and 2.800 km/s, respectively, FSRW wave speed of 2.565
km/s, and a density of 3 kg/m®). The FSRW slowness (0.39
s/km, white line) is the lower slowness bound for pseudo-
Rayleigh wave (pRg) modes. Approximate boundaries where
fundamental pRg mode 0 exhibits predominantly elastic or
acoustic behavior are indicated by vertical black lines, with
a transition region between. Acoustic modes 1, 2, and 3 are
common to Figures 12a and 12b. Although the fluid half-
space in Figure 12a is unrealistic, comparison of these cases
shows the effect of shear. Source and receivers are 0.050 km
above the interface. These plots were computed using a
seismo-acoustic fast-field algorithm [Schmidt, 1988].

also with both other continental and island stations, indicating
that DF energy from common events reaches all stations.

[52] Definitive studies by Lacoss et al. [1969] and
Haubrich and McCamy [1969] using LASA land-based array
data showed that the dominant seismic phase of microseisms
detected by vertical seismometers varies with frequency: (a)
at frequencies below 0.15 Hz, fundamental-mode Rayleigh
waves (Rg) dominate; (b) from 0.15 to 0.3 Hz, microseisms
are a combination of higher-order Rg and shear modes (Lg);
(c) at frequencies higher than 0.15Hz, the DF mechanism
also produces body wave microseisms. Fundamental mode
Love wave energy can be detected at low microseism
frequencies by horizontal seismometers. These observations
have been confirmed in later studies [Zhang et al., 2010;
Brooks et al., 2009; Gerstoft et al., 2008; Tanimoto and
Ishimaru, 2006]. Zhang and Lay [1995] and Kennett and
Furumura [2002] have shown that Lg from earthquakes does
not propagate efficiently through oceanic crust. As little as

100 km of ocean crust is sufficient to attenuate Lg below
detectable levels. Therefore, the Lg microseisms observed
at land stations could not be excited by storms over the deep
ocean and thus must be generated nearshore. Also, although
compressional body wave microseisms are observed by
land seismic arrays, they are much weaker in amplitude than
the Lg and Rg phases [e.g., Gerstofi and Tanimoto, 2007]. The
crucial question we will address is whether pseudo-Rayleigh
waves excited in the deep ocean propagate efficiently to
land stations.

5.2. Solid Earth Seismology and Ocean Acoustics

[53] The physics of wave propagation over the 0.1-0.5 Hz
frequency band for typical ocean depths (100—5500 m) spans
the transition between solid earth seismology and ocean
acoustics. The various types of seismic waves that propagate
in a model consisting of a fluid layer over a homogeneous,
solid half-space are well known: direct acoustic waves, com-
pressional and shear head (body) waves, acoustic modes in
the fluid layer, pseudo-Rayleigh waves (pRg), and Scholte
waves [Roever et al., 1959; Strick, 1959a, 1959b; Ewing
et al., 1957; Brekhovskikh, 1960; Biot, 1952; Cagniard,
1962; Scholte, 1948, 1949; Tolstoy, 1954; Bradley, 1994].
There are two general oceanic crustal cases: “soft”
bottoms with shear speed less than the fluid sound speed,
and “hard” bottoms where the shear speed is greater than
the fluid sound speed. Because the acoustic wavelengths
(A, 3—15 km) at DF microseism frequencies are much lon-
ger than typical thicknesses of seafloor soft-sediment
layers (<500 m), the seafloor sediments can, to first order,
be ignored, and the bottom can be considered to consist of
“hard” rock.

[s4] The wave field for a water layer over a solid (elastic)
hard-rock half-space differs significantly from the wave field
over a fluid (acoustic) half-space (Figure 12). A 5000 m
water layer over an acoustic bottom supports three modes
in the microseism band (Figure 12a). Following convention,
these are acoustic modes 1, 2, and 3 (from low to high fre-
quency) [Jensen et al., 1994]. There is a cutoff frequency, at
about 0.075 Hz, below which no acoustic modes are supported.

[s5] Adding shear properties to the bottom (Figure 12b)
introduces the pseudo-Rayleigh wave (pRg, with slownesses
from 0.39 to 0.66 s/km), which does not have a cutoff
frequency. This is the fundamental pRg mode, mode 0, and
is the highest amplitude mode across the microseism band.
It approaches the FSRW slowness (0.39 s/km) at low fre-
quencies, and transitions from elastic pRg to a predominantly
acoustic mode (with progressively increasing slowness) at
higher frequencies (acoustic pRg). Two higher mode pRg
branches (pRg modes 1 and 2) occur between 0.39 and 0.6
s/km slowness. The three pure-acoustic modes persist at
slownesses below about 0.35 s’km. At some frequencies, both
pure-acoustic and pRg modes are present, albeit with different
slownesses. For example, at 0.25 Hz pure-acoustic mode 2,
pRg mode 1, and the fundamental pRg mode 0 are all supported.
In the limit as the water-layer thickness approaches zero, the
only mode supported for a homogeneous, elastic half-space is
the fundamental Rayleigh wave (mode 0), which is
nondispersive and does not have a cutoff frequency. Note that
because the model elastic half-space is homogeneous, Lg and
“higher-order shear modes” due to layered crustal structure are
not present in this example.
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Figure 13. Time series (left) and the associated horizontal frequency-wave number response (right) from time
domain finite difference model calculations for a point source in a shallow (100 m, top) and deep ocean (5000 m,
bottom). The model consists of a homogenous water layer over a homogeneous solid half-space. The compres-
sional wave, shear wave, free-surface Rayleigh wave (FSRW), and acoustic wave speeds are 4730 (solid), 2740

(not shown), 2518 (dashed) and 1520 (dot-dashed) m/s.

The frequency-wave number contours in Figures 13b

and 13d are relative to the peak amplitude of each plot, with —10 dB (red), —20 dB (blue), and —30 dB (green).

5.3. Rayleigh Waves on Land and on the Seafloor

[s6] It is important to distinguish whether the observations
are made on land or on the seafloor, since simply saying
“Rayleigh wave modes 0 and 1” is ambiguous and can lead
to erroneous interpretations. The simplest land model is the
free surface of a homogeneous solid half-space. In this
model, the fundamental mode (mode 0) is nondispersive
and travels at the FSRW speed (slightly less than the shear
wave speed). For most crustal and mantle rocks, at the scale
lengths appropriate for seismic waves at less than 1 Hz, the
FSRW speed is substantially greater than 2 km/s. Higher-
mode Rayleigh waves on land (e.g., mode 1) are supported
by layered structure in the solid earth. On land, ambient noise
studies rarely extract higher-mode Rg, requiring special
structure and/or proximity to oceans [Brooks et al., 2009;
Yao et al., 2011]. The simplest seafloor model consists of a
homogeneous fluid layer over a homogeneous solid half-
space. In this model, the fundamental mode (mode 0) is strongly
dispersive through the microseism band (Figure 12). The phase
speed varies from the FSRW speed to the water sound speed.
Higher-mode pseudo-Rayleigh waves (modes 1, 2, ...) on the
seafloor are supported by the water layer and exist even when
the solid, subseafloor is homogeneous. Because of the strong
water-layer influence, it would be remarkable “not” to
observe higher-mode pseudo-Rayleigh waves in seafloor
ambient noise studies. The shapes of the fundamental and

higher mode pRg dispersion curves, however, are strongly
modified by layered subseafloor structure [Harmon et al.,
2007; Yao et al., 2011].

[57] Observations using seafloor seismometers indicate that
the fundamental pRg mode at 0.14 Hz (7 s period) is strongly
attenuated with range across the deep water oceanic crust
[Harmon et al., 2007]. Harmon et al. determined that micro-
seisms are primarily excited along coasts thousands of kilome-
ters from their study area, with most of the energy
concentrated in the water column (their Figure 9). These ob-
servations are consistent with LPDF microseisms identified
in Figure 9 and by Bromirski et al. [2005]. Harmon et al. at-
tributed a rapid falloff in pRg energy near 0.14 Hz to the loss
of coherence caused by lateral variations in velocity. Because
the energy at 0.14 Hz is concentrated in the water column, the
velocity is highly sensitive to the water depth. Seamounts, vol-
canic ridges, and other oceanic crustal structures cause large
local variations in velocity that both decrease coherence and
increase scattering. Heterogeneous seafloor structure likely af-
fects pRg propagation across all oceanic paths.

5.4. Excitation of Acoustic and Elastic Energy Versus
Water Depth

[s8] At microseism frequencies, typical ocean depths in A
span the range from thin (100 m water depth is A/30 to A/150)
to near unity (5000 m water depth is 1.67 to 0.333 A). The

3626



BROMIRSKI ET AL.: DEEP-OCEAN MICROSEISMS OBSERVED ON LAND?

Phase Speed versus Water Depth
0.1H7

0.2Hz

3500 3500 1.0
= 3000 3000
E FSRW Speed
N— -
E 2500 2500
N
2000 2000
)
2 1500 | [ 1500
§ Acoustic Speed Acoustic Speed .9
1000 ! 1000 ' |
1 1
500 A/5=3000m 500 A5=1500m _A/2=3750m
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
3500 3500 . <
> 3000 i i 3000 i )
E FSRW Speed FSRW Speed - .8
~ 2500 = 2500 y
3
Q
2000 2000
)
2 1500 1500 ————
§ Acoustic Speed Acoustic Speed
& 1000 ; \ 1000 ; |
AIS= I1000m A2 =2500m A/ L 750m _ A/2=1875m
500 500 .7

0 1000 2000 3000 4000 5000
Water Depth (m)

0 1000 2000 3000 4000 5000
Water Depth (m)

Figure 14. Relative wave field amplitude is shown as functions of phase speed and water depth for four
frequencies (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 Hz. Spectral amplitudes (in dB) of the frequency-wave number
field (as in Figures 13b and 13d) are averaged over a 0.2 Hz band about the nominal frequency, converted to
phase speed and normalized to the peak amplitude on the trace. Acoustic sound speed (1520 m/s) and
free-surface Rayleigh wave speed (FSRW, 2518 m/s) are indicated by horizontal dashed lines. The
spectral peak variation shows that, for frequencies in the microseism band, the dominant energy transitions from
FSRW speeds to acoustic speeds as water depth increases. Phase-speed resolution, indicated by the width of the
spectral peak, improves with increasing frequency. pRg mode 1 (see Figure 12) becomes evident between
FSRW and acoustic phase speeds at deeper water depths as frequency increases.

relative excitation of acoustic and elastic energy versus water
depth was investigated with a series of two-dimensional time
domain finite difference (Stephen [1988, 1990]; Stephen
and Swift [1994]) models for water depths from 100 to
5000 m (Figures 13 and 14). The source spans the 0.1-0.5
Hz band, peaking at 0.25 Hz. The source is identical for all cases
so that the relative strength of the arrivals can be compared
across models. The source and receivers are 50 m (<A/60)
above the seafloor.

[s9] Two types of plots are produced for each model in
Figure 13: (1) time series showing the amplitude variability
as a function of range and time, and (2) frequency-horizontal
wave number (f-k) diagrams to compare the energy distribution
of phases excited by the acoustic source. These demonstrate the
significant differences in pRg excited in the microseism band
due solely to the thickness of the water layer, with phase speeds
indicative of either predominantly elastic pRg or acoustic pRg
energy. For the 100 m water-depth case (Figure 13, top), the
water is sufficiently thin with respect to any A at the source
frequencies that this is effectively a free-surface problem,
resulting in most of the energy transformed into FSRW in the
elastic bottom. The arrivals in the time series are the same shape
as the source waveform (no dispersion) and move out at the
FSRW phase speed (dashed lines). In shallow water, the ocean

layer is too thin to support much acoustic energy. This causes
most of the source energy to be imparted into the solid half-
space, elastic pRg, with the strength of the pressure field in
the ocean quite weak.

[60] At5000 m water depth (Figure 13, bottom), most of the
source energy stays in the water layer as acoustic pRg and
moves out at the water-wave speed (dot-dashed lines). Two
dominant modes are observed (corresponding to the red bands
in Figure 13d). The low-velocity (upper) mode conforms to
the acoustic branch of pRg mode 0 and propagates at the
water sound speed (1.52 km/s). (In contrast to the thin water-
layer (FSRW) case, pRg mode 0 is strongly dispersive in the
microseism band.) The higher velocity mode, with the steeper
slope indicating a group speed less than the acoustic pRg
speed but having a phase speed greater than the acoustic
speed, is pRg mode 1 (refer to Figure 12b). Both of these
modes have most of their energy in the fluid layer.

[61] The transition from elastic to acoustic pRg as a function
of water depth is demonstrated for four frequencies spanning
the microseism band (Figure 14). The relative wave field
magnitude at four nominal microseism frequencies is plotted
versus phase speed (a vertical trace on frequency-wave number
plots in Figures 13b and 13d) and water depth. In shallow water,
the dominant energy has a phase speed near the FSRW speed,
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characteristic of elastic pRg waves. In deep water, the phase
speed approaches the water sound speed, indicating acoustic
pRg waves.

[62] Gravity-wave physics is well understood at the fre-
quencies of interest, and if the amplitudes of the opposing
waves are correct, the second-order wave-induced pressure
will be well estimated in the deep ocean. However, there will
always be some uncertainty in wind fields, so there will always
be uncertainty in the waves. As discussed previously, the data
indicate that most events observed at H20 above 0.2 Hz result
from deep water wave interactions. These are not detectable
on continents (Figures 8 and 11). The co-occurrence of SF
and DF microseisms for lower-frequency events (<0.15 Hz)
with the same spectral time history argues for coastal generation
being dominant, although at these lower frequencies, pRg phase
speed-water depth relationships in Figure 14 indicate that deep
water sources might contribute to the noise levels observed,
assuming that losses from scattering under propagation and
transitioning across the continental shelf boundary to the shore
are not substantial. Much of the continental shelf and portions
of the continental shelf boundary satisfy our shallow water
criterion (<250 m) and could have been source areas during
the Obrebski et al. event. However, if SF microseisms can be
detected, it seems probable that near-coastal DF generation
also occurs.

[63] As indicated by phase-speed relative-amplitude peak
locations (Figure 14), acoustic sources in shallow water put
most of their energy into the elastic pRg, but the same source
in deep water puts the dominant portion of its energy into
acoustic pRg. As frequency increases, acoustic pRg is
excited at progressively shallower water depths. As the water
layer thins, only elastic pRg can propagate efficiently.
Because most of the pRg energy generated in shallow water
propagates as an evanescent field in the solid (elastic pRg),
it can transition from the deep ocean to land, and vice versa,
at continental margins where the water-layer depth changes
appreciably. Thus, wave interactions over shallow-water
continental shelves excite predominantly elastic pRg that
propagate easily into ocean basins and onto continents
because they are supported by the rigidity of the solid earth.
In general, elastic pRg wave behavior occurs at water depths
less than 0.2 A, while acoustic pRg wave behavior occurs at
water depths greater than 0.5 A. The intervening water depths
are a transition region with mixed-mode behavior.

[64] Areas in the modeling that need to be better accounted
for include propagation from deep water to land and shore
reflection. There is uncertainty in: (1) how much opposing
wave energy is present along coasts versus in the open ocean,
(2) how much microseism energy in the deep ocean results
from near-coastal wave activity that propagates into the
ocean basins (not addressed in this paper or by Obrebski et al.
[2012], Ardhuin et al. [2012], and others, but is seemingly
significant, e.g., Bromirski et al. [2005]), (3) whether there are
always DFs generated when waves reach the shore (the depth
questions mentioned below), i.e., can there be primary micro-
seisms without DF microseisms?, and (4) whether the full
wave-wave interaction pressure field has been accounted for
in shallow water. Currently, modeling of microseisms is based
just on the 180° opposing wave-wave interaction. In deep water,
this is fine. However, all components of the wave field interact,
and this creates an important evanescent component in shallow
water [Cox and Jacobs, 1989; Bromirski and Duennebier,

2002]. This enhances shallow-water DF generation and would
further add to the dominance of near-coastal wave activity
generating the DF microseisms observed on land.

6. Conclusions

[65] Because high-amplitude waves from concurrent large
storms potentially impact multiple coastal locations simulta-
neously, identification of deep-ocean sources is difficult.
Without simultaneously measured ocean-wave and seismic
spectra in the deep-ocean and at coastal locations near seismic
stations, either deep-ocean or near-coastal sources can poten-
tially explain the seismic observations. While wave interaction
modeling is useful, it is not sufficient to confirm an open-ocean
location using a single deep-ocean station and land-based data
alone. Making multiple concurrent widely separated observa-
tions on the seafloor as well as on land are essential to resolve
this issue. Because of these uncertainties and our investigation
of ocean wave and microseism variability, we conclude that
there is no unambiguous evidence that deep-ocean-generated
microseisms are observed on land. Land seismic-array analyses
have been unable to detect coherent microseism signals
propagating from the deep ocean. Near-coastal shallow-water
DF generation dominates land observations.

[66] Modeling indicates that elastic pseudo-Rayleigh wave
(pRg) energy is not efficiently excited by acoustic sources in
the deep (~5000 m) ocean, but is predominantly excited in
shallow (<250 m) water. Recognizing that acoustic pRg does
not propagate efficiently across deep-ocean/continental
boundaries indicates that DF microseisms observed on land
are primarily generated as fundamental elastic pRg by wave
interaction in shallow near-coastal water. These constraints
on DF source regions might improve imaging earth structure
from surface wave tomography and are important consider-
ations in reconstructing historical wave records using micro-
seism data recorded at continental seismic stations.
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