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Abstract 13 

The effect of pre-storm subsurface thermal structure on the intensity of hurricane Katrina (2005) 14 

is examined using a regional coupled model. The Estimating Circulation and Climate of Ocean 15 

(ECCO) ocean state estimate is used to initialize the ocean component of the coupled model, and 16 

the source of deficiencies in the simulation of Katrina intensity is investigated in relation to the 17 

initial depth of 26°C isotherm (D26). The model underestimates the intensity of Katrina partly 18 

due to shallow D26 in ECCO. Sensitivity tests with various ECCO initial fields indicate that the 19 

correct relationship between intensity and D26 cannot be derived because D26 variability is 20 

underestimated in ECCO. A series of idealized experiments is carried out by modifying initial 21 

ECCO D26 to match the observed range. A more reasonable relationship between Katrina’s 22 

intensity and pre-storm D26 emerges: the intensity is much more sensitive to D26 than to sea 23 

surface temperature (SST). Ocean mixed layer process plays a critical role in modulating inner-24 

core SSTs when D26 is deep, reducing mixed layer cooling and lowering the center pressure of 25 

the Katrina. Our result lends strong support to the notion that accurate initialization of pre-storm 26 

subsurface thermal structure in prediction models is critical for a skillful forecast of intensity of 27 

Katrina and likely other intense storms. 28 

 29 

 30 
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1. Introduction 32 

The amount of upper ocean thermal energy, hereafter referred to as the upper ocean heat content 33 

(UOHC, Leipper and Volgenau 1972), is the primary energy source term for the development of 34 

hurricanes. The UOHC is determined by the temperature integrated from the surface to the depth 35 

of the 26°C isotherm (D26), i.e., , where, D26 36 

represents an approximate thickness of the upper ocean warm layer, ρo is the density of seawater 37 

(1025 kg m-3) and Cp is the specific heat at constant pressure (4×103 Jkg-1°C-1). The reference 38 

temperature, 26°C, is the typical near-surface air temperature in the subtropical atmosphere 39 

(Price 2009). Since tropical cyclones mostly form over surface water with temperature of 26°C 40 

or higher, T(sfc)-26°C, the upper bound of the integration, represents a thermal disequilibrium 41 

between the air and sea, resulting in an enthalpy transfer to the hurricane. Consequently, the 42 

higher equivalent potential temperature (θe) in the lower atmosphere reduces the storm’s central 43 

pressure (Kleinschmidt 1951; Riehl and Malkus 1961; Riehl 1963). 44 

 45 

During the typical hurricane seasons in the Gulf of Mexico (GoM), the temperatures at the sea 46 

surface and subsurface are rather distinct, making it difficult to detect the latter from the former 47 

(e.g., Goni and Trianes 2003). As suggested from the recent studies, information on the pre-48 

storm spatial distribution of the subsurface thermal structure has an important implication to the 49 

prediction of storm intensity, whereby in situ ocean mixed layer (OML) dynamics bridge these 50 

two (e.g. Halliwell et al. 2008; Lin et al. 2012). A strengthening storm produces the self-induced 51 

cooling of inner-core sea surface temperature (SST) via turbulent mixing and upwelling (e.g., 52 

Chang and Anthes 1978, 1979; Sutyrin and Khain 1984; Sanford et al. 1987, 2007; Price et al. 53 

1994; Schade and Emanuel 1999; Bender and Ginis 2000; Shay and Uhlhorn 2008), leading to a 54 

negative feedback to the storm intensity (Price 1981; Emanuel 1999; Cione and Uhlhorn 2003). 55 

Here, a pre-existing ocean thermal structure is important for the extent to which OML processes 56 

modulate the amplitude of this negative feedback; when a hurricane propagates over the region 57 

of a deeper D26, the reduced OML cooling further increases θe, allowing the storm to intensify 58 

further. 59 

 60 

The UOHC feedback for storm intensity has been extensively studied in the literature. Shay et al. 61 
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(2000), for example, reported that the observed ocean cooling by the Hurricane Opal (1995) was 62 

only 0.5-1°C over the warm core ring (WCR) with deeper and warmer thermal structure, while 63 

over the ambient Gulf Common Water with the lower heat content, the cooling was greater than 64 

2-3°C. Sensitivity studies with a fully coupled model by Hong et al. (2000) confirmed that the 65 

interaction of Opal with the WCR resulted in an additional 60% of the intensification compared 66 

to the case without such a thermodynamic feature. A similar conclusion was reached for the 67 

typhoon Maemi (2003) in the western Pacific using a simple hurricane-ocean coupled model by 68 

Wu et al. (2007); the transient ocean warm eddy represents ~64% of the intensification (Lin et al. 69 

2005). These studies underscore the importance of the pre-existing subsurface ocean thermal 70 

structure to the storm intensity via in situ OML dynamics. 71 

 72 

Hurricane Katrina (2005) exhibited similar evolution. Scharroo et al. (2005) showed from 73 

satellite altimetry data that Katrina underwent a rapid deepening by >50 hPa in sea level pressure 74 

(SLP) in less than 12 hours over a WCR. Through atmosphere-only sensitivity simulations, by 75 

contrast, Sun et al. (2006) suggested that Katrina would have been intensified by 10 hPa if the 76 

domain-wide SST were raised by 2°C, arguing that SST was more important for the rapid 77 

intensification. Further numerical studies using coupled models are necessary to quantify the 78 

relative importance of ocean subsurface structure and SST in Katrina’s rapid intensification.  79 

 80 

This study assesses the impact of such pre-storm ocean thermal structures on the intensity of 81 

hurricane Katrina in a moderate resolution (0.13°) regional coupled model. The resolution of the 82 

model is not high enough to simulate the true intensity of a tropical cyclone (c.f., Murakami et al. 83 

2012), but it has skills in intensity change in response to environmental parameters as discussed 84 

in a number of studies (e.g., Hong et al. 2000; Knutson et al. 2007; Zhao et al. 2009). Based on a 85 

large number of sensitivity tests, here we attempt to identify the cause for weak intensity 86 

response of Katrina to the subsurface thermal fields in ECCO, and to gain insights into the way 87 

the ECCO ocean state estimation can be improved for the purpose of hurricane simulation. Note 88 

that the effect of spatial variations in subsurface structure has been previously studied (e.g., 89 

Hong et al. 2000; Emanuel et al. 2004; Goni et al. 2009). While the hurricane Katrina is chosen 90 

as the target case, the results of this study, based on the idealized sensitivity experiments, could 91 

be applied to other hurricane case since the OML process is not unique to Katrina. 92 
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 93 

The paper is organized as follows. Section 2 introduces the regional coupled model and discusses 94 

the experimental setup. Section 3 illustrates the evolution of the ocean-atmosphere system to the 95 

hurricane passage. Sections 4 and 5 explore the sensitivity of Katrina’s intensity to the ocean 96 

initial conditions with varying ocean states, yielding the major conclusion of this study. Section 6 97 

is a summary and discusses implications of the results for hurricane prediction.  98 

 99 

2. Model 100 

The Regional coupled model used in this study is the Scripps Coupled Ocean-Atmosphere 101 

Regional (SCOAR) model (Seo et al. 2007). SCOAR couples the two well-known regional 102 

models, the Regional Spectral Model (RSM, Juang and Kanamitsu 1994) for the atmosphere and 103 

the Regional Ocean Modeling System (ROMS, Haidvogel et al. 2000; Shchepetkin and 104 

McWilliams 2005) for the ocean. These RSM and ROMS are coupled at the one-hourly 105 

frequency via the bulk formula for wind stress and heat flux (Fairall et al. 1996). More details 106 

can be found in Seo et al. (2007). The horizontal resolutions of RSM and ROMS are identically 107 

0.13° with the matching land-sea mask and coastline. A model of this resolution would 108 

underestimate the storm intensity. Our question is what affects storm intensity in a relative, not 109 

absolute, sense. ROMS uses 30 vertical layers in this study, with approximately 14 layers in the 110 

upper 100 m and roughly 4-8 layers between the base of the mixed layer and the main 111 

thermocline.  112 

 113 

RSM is initialized from the NCEP/Department of Energy (DOE) Reanalysis 2 (NCEP2, 114 

Kanamitsu et al. 2002) at 00Z 26 August 2005 and is integrated for 5 days until 00Z 31 August 115 

2005 with the NCEP2 lateral boundary conditions for prognostic fields. RSM utilizes the Kain-116 

Fritsch convective parameterization scheme (Kain and Fritsch 1993; Kain 2004). The spectral 117 

nudging technique (Yoshimura and Kanamitsu 2008) is adopted on the zonal scale greater than 118 

3000 km in the atmosphere, comparable to the domain size as shown in Fig. 1. This interior 119 

nudging is essentially the same technique as in Knutson et al. (2007), which is intended to keep 120 

the large-scale environment of the downscaled field consistent with the prescribed background 121 

field, while the small-scale process like tropical cyclones can freely evolve and interact with the 122 

ocean.  123 
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 124 

The initial and boundary conditions for ROMS are derived from the Estimating Circulation and 125 

Climate of Ocean (ECCO) ocean state estimates (kf066b, http://ecco.jpl.nasa.gov) on 1°X1° grid 126 

at a 10-daily interval. ROMS is initialized from the 26 August 2005 ocean condition obtained by 127 

a linear interpolation between 22 August and 1 September. 128 

 129 

For the data analysis and model validation, we will be also using the following datasets. Daily 130 

SST data are obtained from the NOAA Optimum Interpolation (OI) SST Analysis 131 

(http://www.ncdc.noaa.gov/oa/climate/research/sst/oi-daily-information.php), which incorporates 132 

the SSTs measured by the Advanced Very High Resolution Radiometer satellites (Reynolds et al. 133 

2007). Sea surface height (SSH) data are obtained from the Archiving, Validation, and 134 

Interpretation of Satellite Oceanographic (AVISO) merged satellite data 135 

(http://www.aviso.oceanobs.com). We will also use the Simple Ocean Data Assimilation 136 

(SODA) analysis with monthly temporal and 0.5° horizontal resolutions (Carton et al. 2000) to 137 

facilitate the validation of ECCO against the AVISO data.  138 

 139 

Fig. 1 shows the model domain and compares the initial conditions used in the ocean model for 140 

SST, SSH, and D26 estimated from ECCO to those from the NOAA OI SST and the AVISO 141 

SSH. Observations show the uniformly warm SSTs exceeding 31°C over the northern Gulf and 142 

the intrusion of the Loop Current (LC) and the WCR in the central north Gulf (90°W, 27°N). 143 

ECCO does not well represent the intrusion of LC and the presence of WCR. The vertical cross-144 

section of ocean temperature as a function of depth along 26°N across the LC bulge (Fig. 2) 145 

shows that the seasonal (D26) and permanent (D20) thermoclines are generally flatter and 146 

shallower in ECCO compared to the observations (e.g., Shay 2009), leading to a weak spatial 147 

variation in D26 associated with LC/WCR. ECCO SST is generally too warm in GoM except 148 

near the coast (Fig. 1c). This discrepancy in SST may contribute to the errors in hurricane 149 

intensity. 150 

 151 

3. Simulated storm intensity and ocean mixed layer processes 152 

Using the ECCO oceanic state estimates of temperature, salinity, SSH, velocity fields on 26 153 

August 2005 as an initial condition, the SCOAR model has been run for the period of a rapid 154 
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intensification of Katrina. In observations (Fig. 1a,b), Katrina first intensified when it propagated 155 

over the LC at 86°W, 24°N with high SST, deep D26, high UOHC and high SSH on 27 August. 156 

Katrina then moved over the WCR on 28-29 August (Goni and Knaff 2009), and rapidly 157 

intensified into a category 5 hurricane. The simulated hurricane follows this observed rapid 158 

intensity change (Fig. 3), although the simulated intensity is weak compared to the observed one. 159 

The simulated wind speed, for example, does not exceed 40 ms-1, while the NOAA Hurricane 160 

Surface Wind Analysis (H*Wind, Powell et al. 1996) indicates a much wider distribution of 161 

wind speed reaching the maximum value of ~98 ms-1 (not shown). The simulated weak intensity 162 

is somewhat expected since the 0.13° resolution atmospheric model is not sufficient to capture 163 

the hurricane inner-core dynamics and eye-wall processes responsible for dramatic changes in 164 

storm intensity (Willoughby and Black 1996). Weaker simulated intensity is also attributable to 165 

the lack of hurricane initialization scheme in the atmosphere (e.g., Fujihara 1980; Wang 1998). 166 

We note that our goal is to identify, from a number of sensitivity tests, factors in the ECCO 167 

initial ocean state that modulate the storm intensity via the OML dynamics (Sections 4 and 5). 168 

 169 

The simulated intensity of Katrina reaches the maximum intensity 12 hours later than in the 170 

observed data at 12Z 28 August. The center of the storm in this study is detected as the location 171 

of the minimum SLP based on the 1-hourly model outputs, which is compared with the best-172 

track data based on the Atlantic Hurricane Database Re-analysis Project (HURDAT, 173 

http://www.nhc.noaa.gov/pastall.shtml#hurdat). The simulated time of landfall is 06Z 29 August, 174 

roughly the same as in the observed landfall. The best track data show a ~90 hPa deepening of 175 

the center pressure from 26 August until landfall, while the model shows only a ~50 hPa 176 

deepening. The modeled storm dissipates at roughly the same rate upon landfall as in 177 

observations.  178 

 179 

Fig. 4 describes the evolution of the oceanic and atmospheric states associated with the passage 180 

of the simulated Katrina at 12 hourly increments. The heavy precipitation exceeding 1000 mm 181 

day-1 can be seen at 00Z 29 August, which is stronger to the right of the track. The near-surface 182 

wind fields (vectors in the left panel of Fig. 4) also have a highly asymmetric spatial distribution 183 

with the rightward bias. From 00Z 29 August, the simulated Katrina begins to produce a cold 184 

wake in the SST field, which is again more pronounced to the right of the track, where the wind 185 
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speed is greater, and the vertical shear of horizontal currents is stronger (Price 1981). SSH (D26 186 

and UOHC likewise, figures not shown) exhibits a dramatic reduction after the passage of 187 

Katrina. There is a storm surge propagating westward as coastally trapped waves, reaching >2.5 188 

m upon landfall, as shown from the Hurricane Ivan (Zamudio and Hogan 2008). In the trail of 189 

Katrina, large-amplitude (>2 ms-1) clockwise-rotating near-inertial surface currents are excited, 190 

again stronger on the right side of the track (Zedler et al. 2002). 191 

 192 

The rightward biased response of the mixed-layer temperature and currents is due to the 193 

asymmetry in turning direction of the wind stress in the ocean surface in a quiescent ocean (Price 194 

1981; Price et al. 1994). In the LC region where the pre-existing background geostrophic current 195 

is intense (1-2 ms-1), the horizontal advection also significantly affects the upwelling response to 196 

the hurricane (e.g., Jacob et al. 2000). In both cases, to the right of the storm center, the stronger 197 

shear-driven mixing is due to the resonance between wind and current. The stability of water 198 

column in the presence of vertical shear of horizontal current is evaluated by the Richardson 199 

number (Ri), defined as Ri=N2/S2, where N2=-g/ρ (∂ρ/∂z) denotes buoyancy frequency 200 

S2=(∂u/∂z)2+(∂v/∂z)2 represents the vertical shear of horizontal currents. ρ denotes the sea water 201 

density, g the gravitational acceleration, and u and v the zonal and meridional currents. 202 

 203 

Fig. 5 shows the time-series of N2, S2 and Ri at two locations, 86.8°W, 26.5°N, and 89.7°W, 204 

26.5°N, which are located 2Rmax west and east of the reference point, respectively. The center of 205 

Katrina passes this reference point at 18Z 28 August. Rmax denotes the radius of simulated 206 

maximum wind speed (~86 km). Prior to the storm passage, the strongest stratification is found 207 

at 30-50 meter depth in the both east and west. The signal of growing shear (S2) is found nearly 1 208 

IP, where IP stands for the inertial period (26.9 hours at this location), prior to the storm passage. 209 

After the storm passage, both S2 and N2 exhibit oscillations, only in the east, with a periodicity of 210 

1.5 IP, somewhat longer than the typical near-inertial period. The frequency of the inertial waves 211 

in the presence of background geostrophic shear is shifted from f to fe=f+ζ/2, where f is the local 212 

Coriolis frequency, ζ the background geostrophic vorticity and fe the effective Coriolis frequency 213 

(e.g., Weller 1982; Kunze 1985). A slightly longer inertial period in the model compared to the 214 

estimates from the observations thus implies that, at this particular location (89.7°W, 26.5°N), 215 

the pre-storm background vorticity was perhaps more anticyclonic. However, since the ocean 216 
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model simulation integrates only until t<2IP in the post-storm condition, it is difficult to examine 217 

the detailed evolution of near-inertial oscillation in the hurricane wake. During t<2IP in post-218 

storm condition, the depth of the maximum N2 represented in ECCO is located overly shallow 219 

compared to the observations implied from Jaimes and Shay (2009, 2010), while the magnitude 220 

is generally reasonable. Despite the large S2 in the wake due to the storm passage, Ri is never 221 

lowered below the criticality (0.25, black curves) below the 30 m depth. The simulated vertical 222 

velocity is of ~0.1 ms-1 (not shown), an order smaller than the estimate from the observations 223 

(Jaimes and Shay 2009, their Fig. 11). This underestimation of vertical velocity is in part due to 224 

weaker Ekman pumping velocity associated with the weaker simulated storm intensity and the 225 

coarse resolution of the model. 226 

 227 

Overall, while some general features associated with the hurricane passage are qualitatively 228 

realistic, the several deficiencies in ECCO, such as the overly stratified upper ocean and 229 

underestimated spatial structures of D26 associated with LC/WCR, result in a weak mixed layer 230 

process. The subsequent feedback to the intensity of Katrina via altered inner-core SST would 231 

thus be weak with the ECCO ocean initial condition. This is assessed in the following section 232 

with a different set of ocean initial conditions. 233 

 234 

4. Oceanic contribution to the hurricane intensity  235 

In this section, 15 more simulations are performed with different ECCO initial fields to assess 236 

the extent to which the different ocean thermal conditions and stratification are associated with 237 

the intensity response of Katrina. In the ocean component of the coupled model, the initial ocean 238 

state on 26 August 2005 is replaced by that of the same date but in different years from 1993 to 239 

2008 from ECCO. The ocean lateral boundary conditions are also changed accordingly. Since 240 

the identical initial and boundary conditions are used for the atmosphere, the difference in 241 

intensity in hurricane is identified as due to the different oceanic contribution via initial thermal 242 

structure and the in situ OML process that modulates the along-track SSTs as illustrated below. 243 

 244 

The top panel of Fig. 6 shows the SLP difference in select equivalent ocean years (1996, 2000, 245 

2004, and 2008) compared to 2005 [i.e., SLP(year)-SLP(2005)] at 74 hours after the 246 

initialization (02Z 29 August). Also shown in gray curves are the storm tracks in each year. The 247 
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simulated tracks are insensitive to ocean states; they are primarily controlled by the large-scale 248 

atmospheric conditions in the model. However, there are noticeable differences in intensity. All 249 

the experiments show generally weaker intensity (higher SLP) compared to the case of 2005. 250 

The time-series in difference of along-track SLP in these 4 years compared to the 2005 case (Fig. 251 

7a) also suggests that the SLP of all 4 years are higher throughout the integrations with 252 

differences reaching up to +6 hPa. 253 

 254 

Fig. 6 also compares the differences in initial SST (2nd row) and initial D26 (3rd row) of each 255 

year with those in 2005. Figs. 7b-c show the along-track variations in SST and D26. The four 256 

years shown in Fig. 6 exhibit generally lower basin-wide initial SST compared to that in 2005, 257 

with the difference reaching >2 °C. The initially colder SSTs in these years tend to remain colder 258 

during the forced stage (Fig. 7b). Both conditions would favor weaker intensity as seen in these 259 

years. The initial D26s tend to be deeper in those years however, which also remain deeper than 260 

the 2005 case between 00Z 28 August and the landfall (Fig. 7c). Since translation speeds, Uh, of 261 

the simulated storms are not significantly different among the runs (not shown), we hypothesize 262 

that the apparent contradiction of weaker storm in years with deeper D26 when initialized from 263 

ECCO is because D26 and thus upper ocean heat content in ECCO are not large enough to 264 

overcome the impact from the cooler SST. In other words, in the coupled model simulation with 265 

the ECCO initial condition, SST is a better predictor for the storm intensity than D26. This is 266 

further illustrated in Fig. 8 with the scatter plots of the minimum SLP with the area-averaged 267 

SST and D26 values from the initial conditions. The minimum SLP (ordinate) is obtained from 268 

the 36-hour period between 18Z 27 August and 06Z 29 August (see Fig. 3) in each run. The area-269 

averages of SST and D26 (abscissa) are made over the area in the initial conditions that overlaps 270 

the cross-track distance of 2Rmax during this 36-hour period. The initial SSTs have a significant 271 

(95%) negative correlation with the minimum SLP with the slope of the linear fit, s=-3.68 272 

hPa °C-1, while the D26-SLP correlation is positive with an insignificant s=0.14 hPa m-1. 273 

Considering that the along-track SST is a proxy for the OML dynamics and that these along-274 

track SST and D26 variations are positively correlated (See Fig. 12 in Section 5), the origin of 275 

this unphysical relationship in SST/D26 with SLP is possibly due to the under-representation of 276 

mean and variability of D26 in ECCO. 277 

 278 
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To further confirm this, Fig. 9 compares interannual variability of SSH in ECCO with those from 279 

AVISO and SODA. In contrast to SODA and satellite observations, ECCO significantly 280 

underestimates the observed variability of SSH associated with the eddy shedding from the LC in 281 

GoM. D26 in ECCO is likewise much weaker than in SODA over this region. The 282 

underestimation of D26 variability in ECCO would be associated with not only the horizontal 283 

resolution but also the assimilation schemes, which use a Kalman filter based assimilation 284 

procedure (I. Hoteit, pers. comm.). A more detailed examination for the causes of this 285 

underestimation is beyond the scope of the current study. Since SODA features much more 286 

realistic SSH variations compared to the satellite observations (Figs. 9c,e), the observed 287 

amplitudes of D26 variability can be inferred from those of SODA, which is ~20 m along the 288 

observed track of Katrina (88-83°W, 23-26°N). 289 

 290 

5. Sensitivity tests with modified D26 291 

A comparison with observations in the previous sections indicates that ECCO underestimates not 292 

only the spatial structure of D26, but also its variability in GoM. In this section, a series of 293 

idealized experiments is is carried out by modifying initial ECCO D26 to match the observed 294 

range to examine if a more reasonable SLP-D26 relationship can be determined. 295 

 296 

The idealized sensitivity tests initialize the same model with the 16 ECCO initial conditions 297 

described in Section 4, but with the D26 variability increased to match the observed range shown 298 

in Fig. 9. This is done in the following way. The black curve in Fig. 10 denotes the profile of the 299 

temperature averaged over the region where the simulated Katrina reaches the maximum 300 

intensity (90°W-85°W, 24°N-28°N). First we identify the depth of 26°C in each grid point, and 301 

then artificially stretched/shrank the entire water column from the identified D26 to the sea 302 

surface by 10 m and 20 m (colored curves in Fig. 10) over the entire Gulf, while keeping the 303 

surface temperature unchanged. This change in the upper layer thickness will alter the UOHC, 304 

with the difference only in subsurface thermal structure. Then, this procedure is repeated for 15 305 

other years, and the additional sensitivity experiments are performed using them as initial and 306 

boundary conditions. Each year has thus 5 experiments, which are termed D20, D10, CTL, S10 307 

and S20, where “D” (“S”) denotes deepening (shoaling) throughout the study. Such an alteration 308 

of the stratification of the ocean may seem unphysical, as the resultant fields may not necessarily 309 
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satisfy the geostrophy (e.g., Jacob et al. 2000). Since the stretching is applied in the entire Gulf, 310 

it is not either intended to test the impact the realistic structure of the LC eddy on the intensity; 311 

this has been previously studied (e.g, Hong et al. 2000). By removing the limitation in D26 312 

variability in ECCO by expanding its range of D26 variability, we intend to assess a more robust 313 

relationship between SLP and D26, which will suggest ways to improve the ECCO data 314 

assimilation procedures in representing subsurface thermal structure. As in Section 4, hurricane 315 

tracks in each experiment are generally insensitive to the ocean feedback, and hence we only 316 

focus on the intensity change.  317 

 318 

Fig. 11 shows the along-track variation SLP, SST, and θe in 5 experiments for the 2005 case. For 319 

the purpose of illustration, the deviations from the initial values are shown. The black curve is 320 

for the control case with no modification, which shows ~50 hPa reduction during the evolution 321 

(Fig. 11a). SLP sensitivity to a D26 change is >20 hPa, nearly 40% of the total 50 hPa decrease. 322 

The storm intensity is stronger for the deeper D26, as a result of the reduced along-track SST 323 

cooling (Fig. 11b, Lloyd and Vecchi 2011; Scoccimarro et al. 2011). When the initially thicker 324 

D26 is forced with the hurricane of the identical initial intensity, the hurricane-induced mixing 325 

generates less SST reduction since it needs more energy to bring the colder water from the 326 

deeper thermocline. OML dynamics play a key role in SST response under the storm center, 327 

resulting in a positive change in along-track equivalent potential temperature, θe, which is 328 

estimated at 1000 hPa (Fig. 11c). The sign of δθe is directly related to the change in SLP (Malkus 329 

and Riehl 1960). As the hurricane intensifies from August 27 to 29, the difference in SST 330 

between S20 and CTL (S20 and D20) reaches more than 1.5°C (2°C), resulting in a change of 331 

δθe of ~10K (20K). The differences in SST and θe are large enough to impact the energy 332 

production of the hurricane (Riehl 1963) 333 

Fig. 12 further illustrates the link of the altered D26 to the storm intensity, showing the scatter 334 

plots of the aforementioned variables from all 80 runs sampled following the hurricane track and 335 

then time-averaged during the intensification period before landfall. The relationship between the 336 

along-track variations in SST with D26 (Fig. 12a) clearly shows that SST change is a result of 337 

change in the upper ocean thickness of warm layer, namely, deeper the initial D26, the weaker 338 

the negative feedback. The resultant warmer inner-core SSTs over deeper D26 in turn lead to an 339 
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increase in along-track θe (Fig. 12b), which is negatively correlated with the minimum SLP (Fig. 340 

12c). Thus, Figs. 11 and 12 together demonstrate the regime of positive feedback between the 341 

initial thickness of the upper ocean warm layer and the intensity of Katrina via in situ OML 342 

dynamics. 343 

 344 

Finally, Fig. 13 summarizes the relationship of the initial D26 with the intensity of Katrina. For 345 

the unperturbed D26 (black dots in Fig. 13a), initial SST is again negatively correlated with the 346 

minimum SLP with s=-3.68 hPa °C-1 (Table 1). The slope is lower for shallower D26 and greater 347 

for deeper D26, indicating a greater sensitivity of intensity to an SST with a deeper D26. The 348 

range of variation in SLP due to a 1°C change in SST is approximately -2 to -10 hPa from S20 to 349 

D20, the latter number consistent with Sun et al. (2006). It is obvious from Fig. 13a that, for the 350 

same SST, SLP varies much more with D26, by 20 hPa for lower SST and by 30 hPa for higher 351 

SSTs. Fig. 13b illustrates this D26 dependency. Each cluster of D26 of the same color shows an 352 

insignificant, or even positive, correlation with SLP variation, an incorrect relationship discussed 353 

in Section 4. When it is artificially amplified to match that of observations, then D26 has a 354 

significant negative correlation with the minimum SLP, with SLP variations of ~30 hPa and s=-355 

0.68 hPa m-1 (Table 1). This indicates that the intensity of Katrina is determined more critically 356 

by the initial subsurface thermal structure through OML dynamics modulating θe, than by the 357 

initial SST. UOHC reflects both SST and D26; not only does each cluster of UOHC have an 358 

expected positive correlation with SLP with a greater slope for warmer ocean (Table 1), but also 359 

the overall scattering shows that UOHC is negatively correlated with SLP with s=-0.28 hPa 360 

(kJcm-2) -1, in Fig. 13c. Fig. 13 suggests that D26 is the dominant factor for UOHC and hence the 361 

intensity of Katrina.  362 

 363 

6. Summary and discussion 364 

Numerous studies have indicated a positive impact of subsurface thermal structure on hurricanes 365 

intensity (e.g., Schade 1994; Lin et al. 2008, 2009). As such, a more accurate knowledge of the 366 

distribution and variability of ocean thermal structure, OML dynamics, stratification, upper 367 

ocean heat content are of fundamental importance for skillful forecast of intensity change, 368 

especially at a long forecast lead time. The active participation of the OML dynamics under the 369 

strong hurricane forcing in determining change in equivalent potential temperature in the lower 370 
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atmosphere is a crucial ingredient towards improved forecasts. 371 

 372 

This study, employing a moderate-resolution coupled regional ocean-atmosphere model 373 

initialized with the ECCO ocean state estimates for hurricane Katrina, demonstrates that 374 

hurricane-ocean interaction is sensitive to how the oceanic pre-storm subsurface thermal 375 

condition, rather than SST, is represented (Falkovich et al. 2005; Yablonsky and Ginis 2008; 376 

Halliwell et al. 2010). Result shows that the simulated intensity of Katrina is weak partly because 377 

the pre-storm D26 in ECCO is shallow. The subsurface thermal field associated with the Loop 378 

Current (LC) and the Warm Core Rings (WCRs) is underestimated in ECCO having too weak 379 

spatio-temporal variations in D26. Due to this weak variability in D26, the correct relationship 380 

between storm intensity and D26 cannot be determined using initial conditions from ECCO. A 381 

series of idealized experiments indicates that a more reasonable relationship between the pre-382 

storm D26 and the intensity of Katrina is obtained when the pre-storm D26 variability is 383 

modified to match the observed range. D26 variation induces intensity change by 30 hPa, while 384 

SST generates only 12 hPa variation for the deepest D26 case. This suggests that D26 is more 385 

important for the intensification of Katrina via OML dynamics, which is corroborated in a 386 

number of studies (e.g., Shay et al. 2000; Hong et al. 2000; Emanuel et al. 2004; Goni et al. 387 

2009). The initial subsurface fields are of great importance for the intensification in our 120-hour 388 

simulations, supporting the results from the Statistical Hurricane Intensity Prediction Scheme 389 

(SHIPS) that ocean thermal structure provides a longer predictability for storm intensity 390 

(DeMaria and Kaplan 1994; DeMaria et al. 2005; Mainelli et al. 2008).  391 

It remains challenging to accurately initialize the three-dimensional structure of the upper ocean 392 

in the hurricane coupled models. Current assimilated models, including ECCO, may not have 393 

sufficient spatial and temporal resolutions for the important small-scale structures such as the LC 394 

bulge and WCR. The fact that their spatial feature is better represented in SODA with higher 395 

horizontal resolution (0.5 degree) suggests the importance of horizontal resolution. Coarse 396 

temporal resolution in ECCO (10-daily) and SODA (monthly) is however inadequate for the 397 

initialization of the ocean model. It should be noted that the second version of ECCO (ECCO2, 398 

Menemenlis et al. 2008) has enhanced substantially both its spatial (18 km) and temporal (daily) 399 

resolutions, leading to an improved representation of the ocean mesoscale features (e.g., 400 

Ubelmann and Fu 2011; Davis et al. 2011). How this improvement in resolutions will lead to the 401 
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more reasonable relationship in D26-SLP of Katrina and other hurricanes is left as a future work. 402 

The LC variability and the associated eddy-shedding events are also known to be highly irregular 403 

with no apparent annual cycle (e.g., Vukovich 1995; Nowlin et al. 2000; Sturges and Leben 404 

2000; Lugo-Ferandez 2007). The nonlinear nature of variability in GoM subsurface thermal 405 

structure, in part caused by complex local and remote environmental forcings of varying 406 

frequencies, renders the prediction of storm intensity more arduous. 407 

Currently, multiple satellite altimeters are blended with satellite SST measurements and in situ 408 

data to map the eddy fields (e.g., Gilson et al. 1998; Willis et al. 2004) and infer subsurface 409 

thermal structures (Shay and Brewster 2010). This synthetic approach for the real-time 410 

monitoring of D26 and UOHC will improve our understanding of the predictability of the 411 

oceanic thermal structures (Goni et al. 2009). This has important implications as large errors still 412 

remain in hurricane intensity forecasts, and a more accurate ocean initialization can help improve 413 

intensity forecasts at a long lead-time.  414 
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Figure Captions 697 

Table 1. Slopes of linear fit of the minimum sea level pressure (SLP [hPa]) with the initial 698 
oceanic variables, (top) SST [°C], (middle) D26 [m], and (bottom) UOHC [kJcm-2]. See the 699 
captions of Figs. 8 and 13 for detail. The bold faces denote the significant slopes at 95%. 700 

Fig. 1. (Top) (a) Sea surface temperature (SST, [°C]) and (b) sea surface height (SSH, [cm]) on 701 
26 August 2005 derived from the NOAA Optimum Interpolation SST Analysis and the 702 
Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) merged satellite 703 
data. (Bottom) as in (Top) but from (d-f) 10-daily ECCO ocean state estimation, in addition to 704 
(e) the depth of 26°C isotherm (D26, [m]) estimated from ECCO. 10-daily ECCO data are 705 
linearly interpolated to obtain the fields on 26 August 2005. The observed (a-b) and simulated (c-706 
d) tracks of Katrina are overlaid with the color circles indicating the Saffir-Simpson hurricane 707 
scale. While the model output is 1-hourly, the tracks shown are 3-hourly for clarity of 708 
illustration.  709 
 710 
Fig. 2 Temperature cross-sections along 25°N from ECCO on 26 August 2005. The contour 711 
interval is 1°C, with the 26°C and 20°C isotherms indicated as thick curves.  712 
 713 
Fig. 3. Time-series of the minimum sea level pressure in 26-31 August 2005 from the best track 714 
data (blue, 6-hourly) and the model (red, 2-hourly).  715 
 716 
Fig. 4. Evolutions at 12-hourly intervals of (left) SST (shading, [°C]), 10-m wind (vectors, [ms-717 
1]), and rain rate (purple contours, [mm day-1], CI=200 mmday-1), and (right) sea surface height 718 
(shading, [m]), the surface current (vectors, [ms-1]), and 10m wind speed (purple contours, [ms-719 
1], CI=10 ms-1) simulated from SCOAR. (a,e) 00Z 28 August, (b,f) 12Z 28 August, (c,g) 00Z 29 720 
August, (d,h) 12Z 29 August. The reference vectors are shown in the lower-left corner of each 721 
panel. Green curves denote 6-hrourly location of the minimum sea level pressure. Vectors are 722 
plotted every 7 grid points. 723 
 724 
Fig. 5. Depth-time diagrams of (top) N2 [cpd], (middle) S2 [cpd] and (bottom) Ri =N2/S2 at two 725 
locations, (left) 86.8°W, 26.5°N, and (right) 89.7°W, 26.5°N, which are located 2Rmax west and 726 
east of the reference point. The storm center passes this reference point at 18Z 28 August, which 727 
is 66 hrs after the initialization. Rmax denotes the radius of the simulated maximum wind speed 728 
(~86 km). The local inertial period (IP) is 26.9 hrs. 0 IP marks the arrival of storm center.  729 
 730 
Fig. 6. (a-d) Sea level pressure [hPa] in years of 1996, 2000, 2004, and 2008 relative to 2005 at 731 
74 hrs after the initialization (02Z 29 August). (e-h) as in the 1st row, except for the initial SST 732 
(iSST, [°C]) and (i-l) the initial D26 (iD26, [m]) relative to 2005. The gray curves delineate the 733 
simulated tracks of Katrina each year calculated as the location of the 1-hour averaged minimum 734 
SLP, and the black curves mark the coastline of the southern Louisiana. The red (blue) shading 735 
in (a-d) indicates weaker (stronger) storm intensity compared to 2005. The triangles and the 736 
inverted-triangles denote the initial time (00h) and 74 hours after the initial time, respectively. 737 
 738 
Fig. 7. The along-track evolution (1-hourly) of difference (each year - 2005) in (a) SLP [hPa], (b) 739 
SST [°C] and (c) D26 [m] for the yeas of 1996, 2000, 2004, and 2008.  740 
 741 
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Fig. 8. The scatter plots of the minimum SLP [hPa] versus the area-averaged (a) initial SST [°C] 742 
and (b) initial D26 [m]. The minimum SLP (y-axis) is found from the 36 hr. period between 18Z 743 
27 August and 06Z 29 August (see Fig. 3) in each run. The area-averaged initial SST and D26 744 
values (x-axis) are obtained by first sampling the initial conditions over the cross-track distance 745 
of 2Rmax in each run, and then averaging them over the area corresponding to the 36 hr. period. 746 
The straight lines indicate the linear fit with s being the slope of this linear fit in unit of (a) hPa 747 
°C-1 and (b) hPa m-1. The slope in (a) is significant at 95%, while it is no in (b). The different 748 
color dots denote the different years as shown in the legend. The year of the lowest SST (29.6°C) 749 
in (a) is 1996.  750 

Fig. 9. Standard deviation of (left) SSH [cm] and (right) D26 [m] in (top) ECCO, (b) SODA, and 751 
(bottom) altimeter data estimated during the June-November hurricane season. The variability is 752 
estimated for the period of 1993-2008 in ECCO, and 1958-2007 in SODA, and 1993-2008 in 753 
AVISO data. The red (black) curve indicates the observed (simulated) track of hurricane Katrina.  754 

Fig. 10. Initial temperature profile on 26 August 2005 averaged over 90°W-85°W and 24°N-755 
28°N. The black curve is the unaltered profiles and the warm and cold colored curves denote 756 
profiles with modified D26. See the text for detail. 757 

Fig. 11. (a) Time-evolution (1-hourly) of the change (δ) in along-track (a) sea level pressure 758 
(SLP, [mb]), (b) SST (SST, [°C]), and (c) equivalent potential temperature (θe, [K]) at 1000 hPa 759 
from the initial values in the 5 experiments for the case of 2005. Vertical lines denote the timing 760 
of the landfall.  761 

Fig. 12. Scatter plots of the along-track (a) SST [°C] with D26 [m], (b) θe [K] with SST, and (c) 762 
SLP [hPa] with θe from all 80 experiments. The along-track variables are averaged for the 36 hr. 763 
period between 18Z 27 and 06Z 29 August (before landfall). The colored circles indicate the 764 
experiments with different initial D26 with red (blue) being deepening (shoaling) of D26 by 10 765 
and 20 meters. The dark (light) gray lines denote the linear fit of the entire scatters with the 766 
slopes of linear fits displayed in each panel.  767 

Fig. 13. (a-b) As in Fig. 8, except for showing the results from all 80 runs. (c) shows the scatter 768 
plot in minimum SLP with the initial upper ocean heat content (UOHC, [kJcm-2]). The slopes of 769 
linear fit, s, of each cluster are summarized in Table 1. The slope s=-0.68 in (b) and s=-0.28 in 770 
(c) are significant at 99%.  771 
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Slope\Runs S20 S10 CTL D10 D20 Total 
SST 

[hPa °C-1] -2.39 -2.62 -3.68 -7.94 -10.17 684 

D26  
[hPa m-1] -0.05 -0.01 0.14 0.18 0.30 -0.68 

UOHC 
[hPa (kJcm-2) -1] -0.10 -0.07 -0.07 -0.17 -0.24 -0.28 

Table 1. Slopes of linear fit of the minimum sea level pressure (SLP [hPa]) with the initial 779 
oceanic variables, (top) SST [°C], (middle) D26 [m], and (bottom) UOHC [kJcm-2]. See the 780 
captions of Figs. 8 and 13 for detail. The bold faces denote the significant slopes at 95%. 781 
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 793 

Fig. 2. (Top) (a) Sea surface temperature (SST, [°C]) and (b) sea surface height (SSH, [cm]) on 794 
26 August 2005 derived from the NOAA Optimum Interpolation SST Analysis and the 795 
Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) merged satellite 796 
data. (Bottom) as in (Top) but from (d-f) 10-daily ECCO ocean state estimation, in addition to 797 
(e) the depth of 26°C isotherm (D26, [m]) estimated from ECCO. 10-daily ECCO data are 798 
linearly interpolated to obtain the fields on 26 August 2005. The observed (a-b) and simulated (c-799 
d) tracks of Katrina are overlaid with the color circles indicating the Saffir-Simpson hurricane 800 
scale. While the model output is 1-hourly, the tracks shown are 3-hourly for clarity of 801 
illustration. 802 
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 804 
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 805 
Fig. 2 Temperature cross-sections along 25°N from ECCO on 26 August 2005. The contour 806 
interval is 1°C, with the 26°C and 20°C isotherms indicated as thick curves.  807 
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 830 

Fig. 3. Time-series of the minimum sea level pressure in 26-31 August 2005 from the best track 831 
data (blue, 6-hourly) and the model (red, 2-hourly).  832 
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 833 

Fig. 4. Evolutions at 12-hourly intervals of (left) SST (shading, [°C]), 10-m wind (vectors, [ms-834 
1]), and rain rate (purple contours, [mm day-1], CI=200 mmday-1), and (right) sea surface height 835 
(shading, [m]), the surface current (vectors, [ms-1]), and 10m wind speed (purple contours, [ms-836 
1], CI=10 ms-1) simulated from SCOAR. (a,e) 00Z 28 August, (b,f) 12Z 28 August, (c,g) 00Z 29 837 
August, (d,h) 12Z 29 August. The reference vectors are shown in the lower-left corner of each 838 
panel. Green curves denote 6-hrourly location of the minimum sea level pressure. Vectors are 839 
plotted every 7 grid points. 840 
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 841 

Fig. 5. Depth-time diagrams of (top) N2 [cpd], (middle) S2 [cpd] and (bottom) Ri =N2/S2 at two 842 
locations, (left) 86.8°W, 26.5°N, and (right) 89.7°W, 26.5°N, which are located 2Rmax west and 843 
east of the reference point. The storm center passes this reference point at 18Z 28 August, which 844 
is 66 hrs after the initialization. Rmax denotes the radius of the simulated maximum wind speed 845 
(~86 km). The local inertial period (IP) is 26.9 hrs. 0 IP marks the arrival of storm center.  846 
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 847 

Fig. 6. (a-d) Sea level pressure [hPa] in years of 1996, 2000, 2004, and 2008 relative to 2005 at 848 
74 hrs after the initialization (02Z 29 August). (e-h) as in the 1st row, except for the initial SST 849 
(iSST, [°C]) and (i-l) the initial D26 (iD26, [m]) relative to 2005. The gray curves delineate the 850 
simulated tracks of Katrina each year calculated as the location of the 1-hour averaged minimum 851 
SLP, and the black curves mark the coastline of the southern Louisiana. The red (blue) shading 852 
in (a-d) indicates weaker (stronger) storm intensity compared to 2005. The triangles and the 853 
inverted-triangles denote the initial time (00h) and 74 hours after the initial time, respectively. 854 
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 855 

Fig. 7. The along-track evolution (1-hourly) of difference (each year - 2005) in (a) SLP [hPa], (b) 856 
SST [°C] and (c) D26 [m] for the yeas of 1996, 2000, 2004, and 2008.  857 
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 858 

Fig. 8. The scatter plots of the minimum SLP [hPa] versus the area-averaged (a) initial SST [°C] 859 
and (b) initial D26 [m]. The minimum SLP (y-axis) is found from the 36 hr. period between 18Z 860 
27 August and 06Z 29 August (see Fig. 3) in each run. The area-averaged initial SST and D26 861 
values (x-axis) are obtained by first sampling the initial conditions over the cross-track distance 862 
of 2Rmax in each run, and then averaging them over the area corresponding to the 36 hr. period. 863 
The straight lines indicate the linear fit with s being the slope of this linear fit in unit of (a) hPa 864 
°C-1 and (b) hPa m-1. The slope in (a) is significant at 95%, while it is no in (b). The different 865 
color dots denote the different years as shown in the legend. The year of the lowest SST (29.6°C) 866 
in (a) is 1996.  867 
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 868 

Fig. 9. Standard deviation of (left) SSH [cm] and (right) D26 [m] in (top) ECCO, (b) SODA, and 869 
(bottom) altimeter data estimated during the June-November hurricane season. The variability is 870 
estimated for the period of 1993-2008 in ECCO, and 1958-2007 in SODA, and 1993-2008 in 871 
AVISO data. The red (black) curve indicates the observed (simulated) track of hurricane Katrina.  872 
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 873 

Fig. 10. Initial temperature profile on 26 August 2005 averaged over 90°W-85°W and 24°N-874 
28°N. The black curve is the unaltered profiles and the warm and cold colored curves denote 875 
profiles with modified D26. See the text for detail. 876 
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 877 

Fig. 11. (a) Time-evolution (1-hourly) of the change (δ) in along-track (a) sea level pressure 878 
(SLP, [mb]), (b) SST (SST, [°C]), and (c) equivalent potential temperature (θe, [K]) at 1000 hPa 879 
from the initial values in the 5 experiments for the case of 2005. Vertical lines denote the timing 880 
of the landfall.  881 
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 882 

Fig. 12. Scatter plots of the along-track (a) SST [°C] with D26 [m], (b) θe [K] with SST, and (c) 883 
SLP [hPa] with θe from all 80 experiments. The along-track variables are averaged for the 36 hr. 884 
period between 18Z 27 and 06Z 29 August (before landfall). The colored circles indicate the 885 
experiments with different initial D26 with red (blue) being deepening (shoaling) of D26 by 10 886 
and 20 meters. The dark (light) gray lines denote the linear fit of the entire scatters with the 887 
slopes of linear fits displayed in each panel.  888 
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 890 

Fig. 13. (a-b) As in Fig. 8, except for showing the results from all 80 runs. (c) shows the scatter 891 
plot in minimum SLP with the initial upper ocean heat content (UOHC, [kJcm-2]). The slopes of 892 
linear fit, s, of each cluster are summarized in Table 1. The slope s=-0.68 in (b) and s=-0.28 in 893 
(c) are significant at 99%.  894 
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