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A significant amount of research effort has been made to understand the
boundary layer instability and the generation and evolution of turbulence subject to
periodic/oscillatory flows. However, little is known about bottom boundary layers
driven by highly transient and intermittent free-stream flow forcing, such as solitary
wave motion. To better understand the nature of the instability mechanisms and
turbulent flow characteristics subject to solitary wave motion, a large number of direct
numerical simulations are conducted. Different amplitudes of random initial fluctuating
velocity field are imposed. Two different instability mechanisms are observed within
the range of Reynolds number studied. The first is a short-lived, nonlinear, long-
wave instability which is observed during the acceleration phase, and the second is
a broadband instability that occurs during the deceleration phase. Transition from a
laminar to turbulent state is observed to follow two different breakdown pathways: the
first follows the sequence of K-type secondary instability of a near-wall boundary layer
at comparatively lower Reynolds number and the second one follows a breakdown
path similar to that of free shear layers. Overall characteristics of the flow are
categorized into four regimes as: (i) laminar; (ii) disturbed laminar; (iii) transitional;
and (iv) turbulent. Our categorization into four regimes is consistent with earlier works.
However, this study is able to provide more specific definitions through the instability
characteristics and the turbulence breakdown process.
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1. Introduction
Fluid motion of highly transient and skewed characteristics is ubiquitous in nature.

Internal waves due to strong tides in the vicinity of complex submarine terrains
(Stastna & Lamb 2002; Bogucki, Rodekopp & Barth 2005; Diamessis & Rodekopp
2006) are striking examples of this kind. Tsunami waves (e.g. Voit 1987) and
skewed waves in shallow waters are other examples with many coastal engineering
applications. Though highly idealized, many studies approximate such transient flow
motion using solitary waves (Vittori & Blondeaux 2011). Much of the literature on
solitary wave motion is devoted to the dynamics of internal solitary wave motion in a
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stratified fluid environment (see for example Apel et al. 1975). In the past, tsunami-
related research has mostly focused on the tsunami wave generation, propagation,
inundation, and optimum emergency plan development (Synolakis et al. 2008). Recent
devastating tsunami events, such as the 2004 Indian Ocean tsunami and the 2011 Great
Tohoku tsunami, have motivated researchers to further study the tsunami hazard in
the built environment and the drastic change in the landform (Dawson & Shi 2000).
For example, to evaluate the structural stability of critical infrastructures, it becomes
necessary to understand how the tsunami-induced nearbed/seabed processes can cause
liquefaction, scour and deposition of sediment (e.g. Tonkin et al. 2003). Only recently
has the boundary layer structure and turbulence under solitary wave motion been
studied in detail (Liu & Orfilia 2004; Liu, Park & Cowen 2007; Sumer et al. 2010;
Vittori & Blondeaux 2008, 2011; Lin & Rodekopp 2011; Blondeaux & Vittori 2012).
Moreover, the formation of coherent vortices close to the seabed and their dissipation
may play an important role in the fate of the two-dimensional vortices shed from
nearshore structures (e.g. Negretti & Socolofsky 2005; Seol & Jirka 2010; Son, Lynett
& Kim 2011). With these motivations, our aim is to augment our understanding of
solitary-wave-driven bottom boundary layer turbulence.

Wave-induced motion of fluid in general, and that due to solitary waves in
particular, is rich and complicated due to its time-dependent nature. Much of the
complexity stems from the fact that the flow contains an isolated pair of acceleration
and deceleration phases. While at acceleration a possible viscous instability might
generate turbulence, more favourable conditions for turbulence generation are present
at deceleration due to the adverse pressure gradient (Vittori & Blondeaux 2008; Sumer
et al. 2010). The adverse pressure gradient during the decelerating phase gives rise
to the formation of an inflection point in the velocity profile, which is a necessary
condition for the inviscid instability formation (Drazin & Reid 1981). This can
clearly be seen in figure 1(a), where the laminar non-dimensionalized velocity profiles
(reproduced from Liu & Orfilia 2004) of a wall-bounded solitary wave before, at, and
after the peak far-stream velocity is shown. The wave starts at φ = −180◦, ends at
φ = 180◦, and the peak far-stream velocity occurs at φ = 0◦, and the pressure gradient
is positive, zero, and negative, respectively. Shortly after the peak velocity (see φ = 6◦

in figure 1), the shear gradient (d2U/dy2) within a thin layer close to the bottom
boundary, y = [0, 0.3], is of opposite sign compared to the layer above y = [0.3, 4]
(see figure 1b). This gives rise to a favourable condition for instability growth in the
form of two counter-rotating vortices located above and below the velocity extremum.

Additional supporting evidence on turbulence generation at deceleration in the case
of solitary wave motion over a wall boundary comes from the studies of Sumer et al.
(2010), Vittori & Blondeaux (2008, 2011), and Blondeaux, Pralits & Vittori (2012)
who observed turbulence only in the decelerating phase. Sumer et al. (2010) conducted
a series of experiments in a U-tube for a range of Reynolds number. Based on their
observations, they categorized the flow into four different regimes. In the laminar
regime, the flow shows no sign of instability and turbulence. This regime is observed
for Reδ (see (2.14) in § 2 for definition) less than 632. Between Reδ = 632 and
Reδ = 1000, Sumer et al. (2010) categorized the flow as a laminar regime with vortex
tubes and formation of spanwise rollers is observed. The third regime is categorized
as the transitional regime for Reδ greater than 1000, where the flow becomes turbulent
over a portion of the wave period during deceleration, but remains laminar otherwise.
Although not directly observed in their study due to limitations of the experimental
facility, a plausible fourth regime was conjectured, where the flow is turbulent through
the whole wave period. One point to note in the study of Sumer et al. (2010) is that
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FIGURE 1. (a) Laminar velocity profiles of a solitary wave (Liu & Orfilia 2004) at phases
φ =−6◦, 0◦ and 6◦. (b) Shear gradient profiles at phases φ =−6◦, 0◦ and 6◦.

the experiments were designed such that the solitary wave is realized only between
φ = −100◦ and φ = 100◦ and the rollers observed in the laminar regime with vortex
tubes are formed at around φ = 100◦. Therefore, the fate of the rollers in the laminar
regime with vortex tubes, whether they decay, are sustained or grow through the whole
wave period, remains an open question.

Vittori & Blondeaux (2008, 2011) performed direct numerical simulations to
understand the boundary layer turbulence under a solitary wave. They investigated
boundary layer characteristics in a two-dimensional parametric space defined by the
ratio of the viscous length scale to the flow depth and the ratio of free-surface wave
amplitude to flow depth, defined by ao. They categorized the flow into three regimes:
(i) laminar; (ii) transitional; and (iii) turbulent.

In the recent theoretical study by Blondeaux et al. (2012), linear hydrodynamic
stability analysis is performed for a single solitary wave of elevation. In this study,
a momentary criterion for the onset of instability is introduced. The streamwise
wavelength of maximum growth rate and the instant when the instability is initiated
are compared with the experimental observations by Sumer et al. (2010) with very
good agreement.

In the light of preceding studies, we are motivated to further study boundary layer
instability and turbulence driven by solitary wave motion with specific emphasis on
the initiation of instability, its dependence on initial perturbation and the pathway
from initial instability to turbulence breakdown and dissipation. We conduct 70 direct
numerical simulations at different levels of initial fluctuating velocity amplitude and
Reynolds number but focus our investigation in this study on the limit of ao = 0.
Hence, our numerical domain is similar to the experimental settings of Sumer
et al. (2010). Although our domain is highly idealized and simulation conditions
are only a subset of the full two-dimensional parametric space of Vittori & Blondeaux
(2008, 2011), special attention is given to instability mechanisms and the evolution
of the transitional flow. The main findings are summarized here for the reader’s
convenience. We observed two possible instability mechanisms that might be present
within a wave period. One is a nonlinear, viscous, long-wave instability that takes
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place at the acceleration phase if the background disturbance is of sufficient amplitude.
This instability is observed to be short-lived and does not lead to chaotic motion at
the Reynolds numbers considered. The second one is a broadband, linear instability at
deceleration, which is responsible for the chaotic motion and transition to turbulence
observed in this study. We also observed that the transition from laminar to nonlinear
chaotic motion follows two different paths. The first path is similar to the K-type
secondary instability of a boundary layer and it is observed at relatively lower Reδ.
The second one is similar to the transition route observed in free shear layers. Through
comprehensive analyses, we can rigorously define and categorize the boundary layer
flow driven by a solitary wave motion into four regimes: (i) laminar; (ii) disturbed
laminar; (iii) transitional; and (iv) turbulent.

The rest of the paper is structured as follows. Section 2 gives the problem
formulation and a brief description of numerical implementation. In § 3, we present
the qualitative and quantitative observations. Discussions on the instability mechanisms
and the flow characteristics are presented in § 4. In § 5 findings are summarized and
conclusions are presented.

2. Problem formulation and numerical methodology
2.1. Problem formulation

Before presenting the formulation of the present problem, it will be instructive to
revisit the inviscid solution by Grimshaw (1971) and the viscous boundary layer
solution of Liu & Orfilia (2004) in the case of a flow driven by a solitary wave
of elevation. The solitary wave solution of the Korteweg–deVries (KdV) equation
is applicable to weakly nonlinear shallow flows. The weak nonlinearity is due to
the solitary wave amplitude. Therefore, by using the perturbation approach with the
Boussinesq approximation, Grimshaw (1971) was able to obtain the velocity profile of
an inviscid flow driven by a solitary wave of elevation as an expansion in the small
parameter ao, which is the ratio of the wave amplitude, H̃, to the flow depth, h̃, as:
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ỹ

h̃

)2(
−3

2
s2 − 15

4
s4 + 15

2
s6

)

−
(

ỹ
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The tilde in the above equation and henceforth shows that the variable is dimensional.
Ũ∞o is the maximum wave velocity and can be given as:

Ũ∞o = H̃

h̃

√
gh̃= ao

√
gh̃, . (2.2)

where g is the acceleration due to gravity. The term s in (2.1) is given as follows:

s= sech[β̃(x̃− c̃t̃)], (2.3)

where x̃ is the spatial location in the flow direction, c̃ is the wave speed of the solitary
wave, and β̃ is the wavenumber. In other words, the velocity of the solitary wave
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is given in the moving reference (i.e. in terms of x̃ − c̃t̃). The wave speed and the
wavenumber are given in terms of the wave amplitude as:
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Here we will consider the orbital wavelength of the solitary wave to be much larger
than the layer depth. Furthermore, we will investigate the behaviour of transition
to turbulence locally within the boundary layer on a streamwise length scale much
shorter than the length scale (orbital length) of the solitary wave. Thus, by setting
x̃= 0, (2.3) becomes:

s= sech(−β̃ c̃t̃)= sech(−ω̃ t̃), (2.6)

where ω̃ is the wave frequency. A positive (or negative) frequency corresponds to a
right (or left) moving solitary wave, with corresponding positive (or negative) Ũ∞o.
The leading-order wave frequency is given as follows:

ω̃ = 1

h̃

√
3ao

4
gh̃. (2.7)

In a sufficiently deep layer of fluid, if the thickness of the bottom boundary layer
can be considered to be small compared to the length scale of vertical variation of the
inviscid solution of the solitary wave given in (2.1), we can take the limit ỹ/h̃→ 0 and
obtain:
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It is clear that even sufficiently close to the bottom boundary, the velocity of the
solitary wave is nonlinearly dependent on the ratio of wave amplitude to the flow
depth, ao. It should also be mentioned that both the maximum free-stream velocity
Ũ∞o and the wave frequency ω̃ are dependent on ao. Consequently, the exact nature
of the bottom boundary layer instability and turbulence driven by the solitary wave is
nonlinearly dependent on the solitary wave height.

The nonlinear effect of wave height was investigated in detail by Vittori &
Blondeaux (2011). The instability and boundary layer turbulence characteristics in U-
tube experiments conducted by Sumer et al. (2010) can be considered to approximate
the limit ao → 0. Good agreement between the U-tube experiments and the direct
numerical simulation results was reported (Vittori & Blondeaux 2011).

A leading-order viscous extension of Grimshaw’s (1971) inviscid solution for the
laminar boundary layer driven by a solitary wave was obtained by Liu & Orfilia
(2004). In the following study of Liu et al. (2007), the second-order terms in the
governing partial differential equation are also included and nearly identical results to
the ones in Liu & Orfilia (2004) are obtained. Figure 2(a) shows the time history
of the wave velocity outside the bottom boundary layer. In the range ao = [0, 0.3] a
deviation in far-field velocity can be observed between φ ≈ −50◦ and φ ≈ 50◦. The
influence of wave height can further be observed in the laminar velocity profiles. The
deviation of the velocity profiles for ao > 0 from those of ao = 0 becomes maximum
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FIGURE 2. (a) Time series of free-stream velocity in a wave period, (b) laminar velocity
profiles (Liu & Orfilia 2004), and (c) laminar shear profiles (Liu & Orfilia 2004), obtained
for the first (solid line) and third order of Grimshaw’s (1971) solution (symbols). On each
plot, open squares (�), plus signs (+), and open circles (©) show ao = 0.1, ao = 0.2, ao = 0.3,
respectively.

at φ = 0◦ and remains noticeable in the range φ = [−50◦, 50◦]. In addition, the peak
deviation is at the top of the boundary layer (figure 2b). Further investigation of shear
profiles for ao > 0 shows that the shear profiles are qualitatively close to those of
ao = 0 and the effect of finite ao is to reduce the shear within the boundary layer
figure 2(c).

The direct numerical simulations of Vittori & Blondeaux (2011) considered the
influence of both ao and the non-dimensional boundary layer thickness (δ∗) normalized
by the layer depth. In this study, we simplify the problem by considering the limit
of ao→ 0 and consider variations in boundary layer thickness, specified in terms of
boundary layer Reynolds number (to be defined below). However, for each Reynolds
number we consider various initial disturbance amplitudes to investigate possible
nonlinear instability. Thus the present study complements the investigation of Vittori &
Blondeaux (2011).
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We assume that the flow is incompressible and hence the velocity vector is
divergence free:

∇̃ · Ũ = 0. (2.9)

We assume a solitary wave boundary layer driven by the following free-stream
velocity:

Ũ∞ = Ũ∞osech2
(−ω̃ t̃

)
, −π=−180◦ 6 ω̃ t̃ 6 π= 180◦. (2.10)

Here, φ = −180◦ corresponds to the start and φ = 180◦ corresponds to the end of the
solitary wave. Above the boundary layer, the viscous stress becomes unimportant in
the streamwise (x̃) direction and hence the momentum equation and the time rate of
change in the streamwise velocity gives the streamwise pressure gradient as:

− 1
ρ
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∂ x̃
= 2Ũ∞o ω̃ sech2(−ω̃ t̃) tanh(−ω̃ t̃). (2.11)

After substituting the mean streamwise pressure gradient into the momentum
equation for the bottom boundary layer, the following dimensional form is obtained:
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Ũ, (2.12)

where e1 is the unit vector that points along the positive streamwise flow direction (x
direction), and P′ is the dynamic pressure. The momentum equation given in (2.12)
is further non-dimensionalized by using Ũ∞o as the velocity scale, the Stokes laminar
boundary layer thickness, δ̃ =√2ν/ω̃, as the length scale, and δ̃/Ũ∞o as the time
scale. The resulting non-dimensional momentum equation is written as:

DU
Dt
= 4

Reδ
sech2

(−2t

Reδ

)
tanh

(−2t

Reδ

)
e1 +∇P′ + 1

Reδ
∇2U, (2.13)

in which Reδ is the Reynolds number based on the Stokes thickness and the peak
free-stream velocity:

Reδ = Ũ∞oδ̃

ν
. (2.14)

The above Reynolds number can be expressed in terms of the two parameters
employed by Vittori & Blondeaux (2011) as:

Reδ = a3/4
o h̃
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(
64
3

)1/4

. (2.15)

Note that the definition of dimensional boundary layer thickness used by Vittori &
Blondeaux (2011) differs from δ̃. Also, in this study as ao→ 0 the boundary layer
thickness δ∗→ 0 as well, resulting in finite Reynolds number.

Vittori & Blondeaux (2011) discuss the range of possible values for these
parameters as follows:

0.05< ao < 0.7, (2.16)

2.8× 10−4 <

(
3ao

4

)−1/4
δ̃

h̃
< 1.34× 10−3. (2.17)
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From the above equations the upper limit of Reynolds number for any given ε can
easily be calculated. For example, if ao = 0.3, the peak Reynolds number can be
calculated as 3110, which is acceptably close to the largest of the Reynolds numbers
considered in this study.

2.2. Numerical methodology
The governing equations are solved in a computational domain of a plane channel.
The channel is of 80 × 80 × 40 non-dimensional units along the x, y and z directions,
respectively, where x is the positive flow direction, y is the vertical direction and z is
the spanwise direction. At the top and the bottom planes, no-slip and no-penetration
wall boundary conditions are imposed. In the edge planes in the x and z directions,
periodic boundary conditions are implemented. In this study, we investigate the
instability mechanisms and the characteristics of turbulence due to an isolated solitary
wave motion. Therefore, sensitivity of the flow characteristics to the amplitude of
initial velocity fluctuations must be considered. To carefully investigate the influence
of the initial disturbance, we have implemented five levels of random background
disturbance and its form is given as follows:

U ′(x, y, z, φ =−180◦)= ℘(ε f e1), (2.18a)
ε = {0.01, 0.02, 0.05, 0.10, 0.20}, (2.18b)

where f is a function that generates random numbers with a uniform probability
distribution between −1.0 and 1.0 and ε is the amplitude factor that controls the
magnitude of the random vector field. In the above equation, note that the initial
fluctuation velocity field, f e1, does not satisfy the divergence-free condition, and thus
the operator ℘ projects the initial fluctuations to the divergence-free space. Note that
the projection operator is linear and does not affect the relative amplitude of the
different initial magnitudes of the disturbance. The magnitude of the random initial
background disturbance is chosen to be at five different levels between 1 % and 20 %.
In other words, for a given Reδ, with the same distribution of fluctuating velocity
field, five independent simulations with different magnitudes of initial disturbance are
conducted. At this point, it should be mentioned that a disturbance amplitude of 0.2
may be considered as large when investigating the hydrodynamic instability. On the
other hand, as to be presented in § 3, any disturbance at φ = −180◦ undergoes a
huge decay in the first half of the acceleration. Therefore, the amplitude of ε = 0.2
at φ = −180◦ is equivalent to a much smaller amplitude before any instability is
observed in the simulations conducted.

Highly accurate pseudo-spectral schemes are used to solve the governing equations.
The computational domain is discretized in the x and z directions by equally spaced
grid points and the variables to be solved are expanded in Fourier space. For the
non-homogeneous y direction, non-uniform Chebyshev–Gauss–Lobatto grid points are
employed and the variables are expanded in Chebyshev space (Canuto et al. 1987).
The number of grid points is assigned to be 128, 193, and 128 in the x, y and z
directions, respectively. The time integration is computed through a hybrid method,
where the explicit Crank–Nicolson scheme is used for the diffusion terms and the low-
storage third-order-accurate Runge–Kutta method otherwise (for details see Cortese &
Balachandar 1995 and Cantero et al. 2008).

As to be presented in § 3.1, the domain size is sufficiently large to capture
the largest eddies generated as a result of linear hydrodynamic instabilities. The
computational domain captures six spanwise rollers which is also in accordance with
the previous experimental and numerical observations (see Sumer et al. 2010; Vittori &
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Blondeaux 2011). In the turbulence phase of the flow, when it exists, the streamwise
two-point correlation of velocity was computed and it decayed sufficiently along
the streamwise direction to confirm the adequacy of the computational domain (not
shown). The grid size is chosen to be small enough to resolve the smallest dissipative
scales. In particular, at each Reynolds number, based on the largest wall shear stress,
the grid resolution in each of the three directions can be evaluated in terms of wall
units. The maximum grid spacing (when Reδ = 5000) in the streamwise and spanwise
direction is 1x+ = 30 and 1z+ = 15, respectively. In the inhomogeneous wall-normal
direction, the minimum grid spacing, 1y+min, is about 0.4, and the maximum grid
spacing, 1y+max, is around 40 at the mid-vertical plane. Furthermore, it has been
verified that even for the case of most intense turbulence (case R5000-0.20) five
grid points exist within the viscous sub-layer. These grid spacings are consistent
with the resolution requirements set forth in the turbulent channel flow simulations
under both stationary and oscillatory conditions (Kim, Moin & Moser 1987; Spalart
& Baldwin 1989). Furthermore, from the decay of the energy spectra of the velocity
fluctuations over several decades of dissipation it can be concluded that the resolution
is sufficiently fine to capture the smallest turbulent length scales. More discussion on
the energy spectra of the velocity components for the different Reynolds numbers is
given in § 4.

3. Results
3.1. Vortex structures

To illustrate the different turbulent and transitional characteristics, which lead to our
final remarks on the four flow regimes, we select three representative simulation
results among the 70 simulations performed. A complete list of all the cases simulated
is shown in table 1. The naming convention for the simulated cases is that the letter
‘R’ is followed by Reynolds number, Reδ, which is then followed by the amplitude
factor ε of the initial perturbation. The three cases to be discussed here are R1500-
0.20, R2000-0.20, and R2500-0.01. Along with the complete laminar regime, these
three cases represent typical vortex structures for disturbed laminar, transitional and
turbulent regimes, respectively.

Figure 3 shows the two-dimensional vortex structures at z = 10 for case R1500-
0.20 (i.e. Reδ is equal to 1500 and the amplitude factor ε of the initial fluctuating
velocity is 0.2). Vortex structures are identified by λci, a measure of the local swirling
strength, which is calculated as the imaginary part of the complex eigenvalues of the
velocity gradient tensor (Zhou et al. 1999). We choose to present λci contours on a
selected x–y plane, instead of three-dimensional iso-contours of λci, due to the fact
that λci values over the entire computational domain are comparable in magnitude
during most of the wave period. Therefore, any growth in swirling strength close to
the bottom wall cannot be easily distinguished in the three-dimensional view. The
growth of two-dimensional vortex structures is first observed at around φ = −60◦ (see
figure 3a). Two-dimensional quasi-circular vortices, which are randomly distributed in
the x direction can be observed within y = 0 to 1. The swirling strength of these
vortices is smaller than the ones above y = 1 which are the remnants of the initial
fluctuations. In addition to their random locations, the maximum swirling strength
in the core of these structures also shows variation. From φ = −24◦ to 0◦, these
structures change their location not only in the x direction due to advection, but also
in the vertical (y) direction. Compared to the swirling strength at φ = −60◦, some of
these coherent structures lose their strength, some of them stay the same and others



554 C. E. Ozdemir, T.-J. Hsu and S. Balachandar

Case name Reδ ε Regime

R400-0.01 400 0.01 Laminar
R400-0.02 0.02 Laminar
R400-0.05 0.05 Laminar
R400-0.10 0.10 Laminar
R400-0.20 0.20 Laminar
R500-0.01 500 0.01 Laminar
R500-0.02 0.02 Laminar
R500-0.05 0.05 Laminar
R500-0.10 0.10 Laminar
R500-0.20 0.20 Dist. laminar
R600-0.01 600 0.01 Laminar
R600-0.02 0.02 Laminar
R600-0.05 0.05 Laminar
R600-0.10 0.10 Dist. laminar
R600-0.20 0.20 Dist. laminar
R1000-0.01 1000 0.01 Dist. laminar
R1000-0.02 0.02 Dist. laminar
R1000-0.05 0.05 Dist. laminar
R1000-0.10 0.10 Dist. laminar
R1000-0.20 0.20 Dist. laminar
R1500-0.01 1500 0.01 Dist. laminar
R1500-0.02 0.02 Dist. laminar
R1500-0.05 0.05 Dist. laminar
R1500-0.10 0.10 Dist. laminar
R1500-0.20 0.20 Dist. laminar
R2000-0.01 2000 0.01 Transitional
R2000-0.02 0.02 Transitional
R2000-0.05 0.05 Transitional
R2000-0.10 0.10 Transitional
R2000-0.20 0.20 Transitional
R2100-0.01 2100 0.01 Transitional
R2100-0.02 0.02 Transitional
R2100-0.05 0.05 Transitional
R2100-0.10 0.10 Transitional
R2100-0.20 0.20 Transitional
R2200-0.01 2200 0.01 Transitional
R2200-0.02 0.02 Transitional
R2200-0.05 0.05 Transient
R2200-0.10 0.10 Turbulent
R2200-0.20 0.20 Turbulent
R2400-0.01 2400 0.01 Turbulent
R2400-0.02 0.02 Turbulent
R2400-0.05 0.05 Turbulent
R2400-0.10 0.10 Turbulent
R2400-0.20 0.20 Turbulent
R2500-0.01 2500 0.01 Turbulent
R2500-0.02 0.02 Turbulent
R2500-0.05 0.05 Transitional
R2500-0.10 0.10 Turbulent
R2500-0.20 0.20 Turbulent

TABLE 1. (Continued on next page)
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Case name Reδ ε Regime

R3000-0.01 3000 0.01 Turbulent
R3000-0.02 0.02 Turbulent
R3000-0.05 0.05 Turbulent
R3000-0.10 0.10 Turbulent
R3000-0.20 0.20 Turbulent
R3500-0.01 3500 0.01 Turbulent
R3500-0.02 0.02 Turbulent
R3500-0.05 0.05 Turbulent
R3500-0.10 0.10 Turbulent
R3500-0.20 0.20 Turbulent
R4000-0.01 4000 0.01 Turbulent
R4000-0.02 0.02 Turbulent
R4000-0.05 0.05 Turbulent
R4000-0.10 0.10 Turbulent
R4000-0.20 0.20 Turbulent
R5000-0.01 5000 0.01 Turbulent
R5000-0.02 0.02 Turbulent
R5000-0.05 0.05 Turbulent
R5000-0.10 0.10 Turbulent
R5000-0.20 0.20 Turbulent

TABLE 1. List of all the simulation cases. The nomenclature is as follows: the number
following R indicates the Reynolds number and the number following the hyphen denotes
the amplitude of the initial velocity fluctuations. The regimes observed as a result are also
listed as: (i) laminar, (ii) disturbed laminar, (iii) transitional, and (iv) turbulent (See § 4.4
for details)

increase. The increasing and decreasing swirling strength in these structures seems to
be closely affected by the swirling strength of the vortex structures just above them.
The vortex structures continue to move in the y direction slowly and are located
between y= [1, 3] at φ = 90◦. At this instant, it is important to note that the secondary
rollers are triggered between the bottom wall and y = 1. From φ = 90◦ to φ = 180◦,
the swirling strength of these near-bottom rollers becomes more intense, together with
that of the rollers above them. At φ = 180◦ a pair of rollers in the y-direction, very
organized in shape and distributed almost equally spaced in the streamwise direction
can be observed.

There are two striking observations on the overall vortex formation and evolution.
First, at φ = 90◦ the swirling strength of the upper rollers is one order of magnitude
smaller compared with the ones at φ = 0◦ (notice different levels of contours defined).
However, they are able to trigger vortices at the bottom wall. This observation is
closely related to the temporal change in the location of the inflection and extremum
points in the velocity profile (see figure 1b), which is critical to the generation of
organized flow structures and the sustainability of these structures. This point will be
discussed in more detail in § 3.2. The second observation to be noted is at φ = 120◦

there are six rollers close to the bottom wall, but only four of them grow and remain
at the end of the wave period, i.e. φ = 180◦.

At Reδ = 2000 (case R2000-0.20, shown in figure 4), coherent vortices are first
observed from three-dimensional λ2

ci iso-contours at around φ = 100◦ (not shown). In
figure 4(a), at φ = 114◦ the initial formation of the vortex tubes which are aligned
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in the spanwise direction is clearly observed. There are six spanwise vortex tubes
that can be identified that are equally spaced along the streamwise direction, and
the distance between two consecutive rollers is approximately 13.34. The observed
distance between consecutive rollers is nearly identical to that of Sumer et al. (2010)
at Reδ = 875. However, since initial conditions differ between the simulations and
experiments caution should be exercised. Although there is a slow increase in the
swirling strength starting from the instant they form, the amount of increase is not
sufficient to initiate a nonlinear growth until φ = 144◦ (see figure 4b). At φ = 156◦,
the rollers start to deform into 3-shaped vortices. At φ = 159◦, the 3-shaped vortices
become more distinctive and all of them are aligned both in the flow direction and
the spanwise direction. Especially between z = 25 and z = 35 the heads of the 3-
shaped vortices start to move in the vertical direction and become more like hairpin
vortices. At φ = 162◦, all the vortices become hairpin vortices in shape. Starting from
φ = 165◦, the initially generated hairpin vortices populate the near-wall region, which
can be seen from figure 4(f ). This process continues until φ = 180◦ where the flow
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becomes comparatively chaotic (figure 4h). It should be pointed out that, after the flow
shows transitional characteristics, the flow may become fully turbulent or just remain
transitional, which we shall discuss in more detail in § 3. We use the term ‘chaotic’ to
refer to the flow state that shows transitional characteristics, but has not developed into
a fully turbulent state.

Figure 5 shows the vortex structures at Reδ = 2500 (case R2500-0.01). This case is
selected as the generated vortices distinctly degenerate into turbulence towards the end
of the wave period. At φ = 72◦ and φ = 78◦, we can clearly distinguish five pairs of
rollers, almost equally spaced in the streamwise direction. In each pair, the one with
smaller diameter is located closer to the wall and the other with larger diameter is
located more towards the far stream. At φ = 102◦ (see figure 5c), the rollers are more
energetic with higher λci values. Then at φ = 108◦ (figure 5d), the stretching in the
roller pairs becomes more evident and the upper rollers are lifted up to y = 5 ∼ 10.
At φ = 114◦, the upper rollers which were relatively straight in the spanwise direction
at φ = 108◦ start deforming. At φ = 117◦, the initial formation of rib vortices around
the rollers is observed. This suggests that the rollers become more energized to excite
the surrounding flow to form additional vortex structures. Then, the aforementioned
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rib vortices become more populated. At φ = 120◦, we observe the initial degeneration
of the rollers and the rib vortices into smaller chaotic structures. This degeneration
becomes quite evident at φ = 126◦ and φ = 132◦ (figure 5h,i), which leads to a total
transformation of the coherent vortices into chaotic motion in the remainder of the
wave period (not shown).

At Reδ = 1500, the generation of pairs of rollers near the bottom wall marks a
distinct difference from the complete laminar condition. There are small-amplitude
velocity fluctuations on top of the laminar velocity field as a result of the instability.
As mentioned in Sumer et al. (2010), these fluctuations are observed in time series
of point velocity measurements. However, these fluctuations vanish and the velocity
profiles match the laminar solutions if averaged over a sufficient number of wave
periods or plane-averaged at a fixed vertical point, which is the case in our study.
At Reδ = 2000, the observations of the vortex structures illustrate the initiation of
boundary layer instability. The rollers deform into 3-shaped vortices and then deform
into hairpin vortices. Based on this observation, we can conclude that at Reδ = 2000,
the breakdown process of the spanwise rollers follows the laminar to turbulent
transition sequence in a flat-plate boundary layer. On the other hand, at Reδ = 2500,
the rollers move in the vertical direction, become energized and are surrounded by
rib vortices. Therefore, a different breakdown process is present for Reδ = 2500. The
generation, evolution and fate of these vortex structures for the three cases presented
here mark the main qualitative differences that distinguish these flow regimes. More
quantitative discussions are presented in the next section.

3.2. Mean and root-mean-square (r.m.s.) velocity profiles
The interplay between the flow instability and mean velocity profile, together with
the intensity and spatial characteristics of coherent structures and turbulence, can
also be monitored through plane-averaged mean and r.m.s. velocity profiles. Also,
the transformation from laminar to transitional and transitional to turbulent flow can
be quantitatively diagnosed through these quantities. In this section, we present the
vertical profiles of plane-averaged velocity and r.m.s. of velocity fluctuations for the
same cases discussed in § 3.1 and for an additional case of R4000-0.01. Figure 6
shows (a) the plane-averaged velocity profiles and (b) r.m.s. velocity fluctuations
for case R1500-0.20 (solid curves). For reference, the solution of laminar velocity
profiles (Liu & Orfilia 2004) is shown with symbols in figure 6(a). The velocity
profiles closely agree with the laminar velocity profiles through the whole wave period.
As discussed in § 3.1 (see figure 3), although the instability takes place between
φ = 90◦ and φ = 180◦, the generated fluctuations are not sufficient to alter the mean
velocity profile. Another interesting observation is that at φ = 90◦, the velocity profile
has the sharpest variation (largest vertical shear) below the maximum velocity. This
is also the phase when the coherent vortices appear between y = 0 and 1. More
detailed information on the growth of velocity fluctuations can be identified via plane-
averaged r.m.s. velocity profiles (see figure 6b). At φ = −90◦, Urms values in the
boundary layer, i.e. y = [0, 3], are smaller than those outside. Above the boundary
layer, the fluctuations are reminiscent of the initial velocity fluctuations. As expected,
these initially prescribed velocity fluctuations decay in time at later phases. Between
φ = −60◦ and φ = −30◦, a slight increase in Urms at y = 1 can be observed in the
form of a subtle peak. From φ = −60◦ to φ = 90◦, the growth continues and after
φ = 90◦, the peak value in Urms decreases slightly (not shown). The layer where the
growth in Urms is observed extends in time and closely correlates with the boundary
layer thickness (see also figure 6a). It is also noted here that the growth of velocity



560 C. E. Ozdemir, T.-J. Hsu and S. Balachandar

R
15

00
-0

.2
0

L
am

in
ar

2468

246810

246810

246810

246810

0246810

0.
1

0.
2

0.
2

0.
4

0.
4

0.
8

0.
4

0.
8

0.
4

0.
8

–0
.4

–0
.2

0
0.

2

5101520

5101520

5101520

5101520

5101520

5101520

0.
00

2
0.

00
4

0.
00

2
0.

00
4

0.
00

2
0.

00
4

0.
00

2
0.

00
4

0.
00

2
0.

00
4

0.
00

2

10

yy

U
U

U
U

U
0.

3

0.
00

4

U

U
rm

s
V

rm
s

W
rm

s

(a
)

(b
)

0
0

0
0

0 0
0

0
0

0
0

F
IG

U
R

E
6.

(a
)

Pl
an

e-
av

er
ag

ed
ve

lo
ci

ty
pr

ofi
le

s
fo

r
R

15
00

-0
.2

0,
at

(f
ro

m
le

ft
to

ri
gh

t)
φ
=
−9

0◦
,
−6

0◦
,
−3

0◦
,

0◦
,

30
◦ a

nd
90
◦ (

so
lid

lin
es

)
ar

e
gi

ve
n

to
ge

th
er

w
ith

th
e

la
m

in
ar

ve
lo

ci
ty

pr
ofi

le
(L

iu
&

O
rfi

lia
20

04
)

(g
re

y
ci

rc
le

s)
.

(b
)

x,
y

an
d

z
co

m
po

ne
nt

s
of

r.m
.s

.
ve

lo
ci

ty
pr

ofi
le

s
at

th
e

sa
m

e
ph

as
es

as
in

(a
).



Simulation of bottom boundary layer turbulence under a solitary wave 561

fluctuations is almost completely in the streamwise direction, i.e. Urms, which is due to
the rollers observed in figure 3.

For case R2000-0.20, the plane-averaged velocity profiles match the laminar flow
solution until between φ = 150◦ and φ = 180◦ (see figure 7a). At φ = 180◦, a
noticeable deviation from the laminar solution can be clearly identified. According to
figure 4(c), the phase of φ = 156◦ corresponds to the instant when the two-dimensional
roller tubes transform into 3-shaped vortices and it is the second stage (nonlinear
stage) in the growth of the boundary layer instability, i.e. the secondary instability,
following the roller pairs. At this second stage, the cascade of the energy from
the leading wavelengths to higher wavelengths takes place through nonlinear growth.
Therefore, the velocity profiles start to deviate from the laminar profile only after
the initiation of the nonlinear growth. More insights can be revealed through r.m.s.
of velocity fluctuations (figure 7b). From φ = 0◦ to φ = 120◦, the behaviour of the
r.m.s. of velocity fluctuations is similar to that of R1500-0.20, i.e. the pronounced
Urms component due to the near-bottom rollers. At φ = 120◦, we observe a subtle
increase in the Urms profile between y = 0 and 1. This is when the vortex tubes
closer to the wall start to energize. Then at φ = 150◦, this increase in Urms becomes
more pronounced and develops into a second extremum, that is located closer to
the wall. In fact, this second extremum in Urms overtakes the local peak located
above it and becomes the stronger one. At this instant, we can also see a noticeable
increase in Vrms and Wrms due to the 3-shaped vortices (see also figure 4c). At
φ = 180◦, all three components of velocity fluctuations become larger (Urms remains
the largest) and extend further in the vertical direction up to y = 9 ∼ 10. Only after
the nonlinear growth, which eventually leads to hairpin vortices, do we start to observe
the development of velocity fluctuations in all three directions and a deviation of the
plane-averaged velocity profile from the laminar solution.

Similarly, the first deviation from the laminar profile in case R2500-0.01 takes place
between phases φ = 90◦ and φ = 120◦ where the roller pairs start to stretch and initial
formation of the rib vortices occurs (figure 8a). The first noticeable deviation in the
plane-averaged velocity profile from its laminar counterpart starts at φ = 102◦ (not
shown) where the spanwise rollers are stretched and energized (see figure 5c). From
the profiles of the r.m.s. of velocity components (figure 8b), it can be observed that
the secondary peak of Urms forms between phases φ = 60◦ and φ = 90◦. At φ = 120◦,
velocity fluctuations in the spanwise direction Wrms are sufficiently developed and
their magnitude is comparable to that of Urms. At φ = 150◦ all three components of
velocity fluctuations are of similar magnitude, suggesting the development of more
mature turbulence. Compared to R2000-0.20 the extent of high-velocity fluctuations in
R2500-0.01 is more pronounced and can be observed up to y = 40. The development
into a more three-dimensional chaotic flow towards the end of the wave period is quite
different from that observed in the previous two cases. More detailed discussion on
this issue will be given in § 4.2 through the power spectrum of velocity fluctuations
and turbulent kinetic energy budget.

For R4000-0.01, the deviation from the laminar velocity profile starts even earlier,
falling within the phases φ = 60◦ and φ = 90◦ (figure 9a). Similarly, in the r.m.s.
velocity fluctuations (figure 9b), Urms starts to grow at around φ = −30◦, and the
secondary peak in Urms occurs between φ = 30◦ and φ = 60◦. Starting at φ = 90◦, the
growth can be seen in all the velocity components due to the chaotic nature of the
vortical structures as a result of nonlinear growth of the velocity fluctuations, which
continues till the end of the wave period.
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In all the cases presented in this section, the initiation of the growth in Urms is at
around φ = −60◦ to φ = −30◦. The timing of this initial growth in Urms does not
correlate with the Reynolds number but more with the initial amplitude of the velocity
fluctuations. We shall discuss this issue in detail in § 4. However, the secondary growth
behaves quite differently from the initial growth. The timing of the occurrence of
the second near-bottom maximum in Urms marks the instant when the strength of the
roller pairs becomes significant and the initiation of nonlinear growth. This secondary
peak formation in the Urms profile takes place at earlier phases with increasing
Reynolds number and is nearly insensitive to the initial perturbation amplitude.
Another observation is the near absence of vertical and spanwise components of
the velocity fluctuations in the boundary layer during the initial growth in Urms. The
vertical and spanwise velocity fluctuations start to increase and become significant only
when the secondary peak in Urms appears. This corresponds to the phase when the
rollers deform into three-dimensional structures in the form of 3-shaped vortices or
rib vortices and the increase in Vrms and Wrms becomes significant. Furthermore, when
the flow becomes more chaotic, the magnitudes of Vrms and Wrms become comparable
to that of Urms.

4. Discussion
4.1. Instability mechanisms

In § 3.1, we observed that formation of the spanwise rollers occurs at the deceleration
phase of the solitary wave. The decelerating phase provides the generic conditions for
inviscid instability as it gives rise to the formation of inflection point(s) due to adverse
pressure gradient. On the other hand, at Reδ = 2000, we also observed that transition
from the laminar state to chaotic motion follows a path of secondary instability similar
to the K-type secondary instability of a boundary layer. In this section, we shall
provide more details on the instability mechanisms.

It was observed in the Urms profiles presented in § 3.2 that towards the mid to
late stage of the acceleration phase, there is growth in Urms close to the bottom
boundary in the form of a local peak. To further investigate its origin, a time
series of peak value in Urms profiles, Up

rms, is given in figure 10 for the different ε
values at Reδ = 400, 1500, 2000 and 2500. Recall that unlike Reδ = 2000 and 2500,
at Reδ = 1500 there is no chaotic motion resulting from a breakdown of the two-
dimensional spanwise rollers. On the other hand, for Reδ = 2000 and 2500, nonlinear
growth occurs following the initial development of the spanwise rollers. Initially,
Up

rms occurs at a random location within the computational domain dictated by the
prescribed initial random disturbance as it decays before the onset of initial growth.
At Reδ = 400, where the flow is laminar, Up

rms (and the entire Urms profiles) decays
throughout the whole wave period regardless of the prescribed disturbance amplitude
(see figure 10a). At higher Reδ, starting from Reδ = 500, there is a growth in velocity
fluctuations which can be seen in figure 10(b–d). The period between the start of the
wave (φ = −180◦) and the onset of observed growth is longer for smaller Reδ and ε.
The increase in Up

rms following the initial decay is rather abrupt. In other words, the
time rate of change in Up

rms just before and after the initiation of the aforementioned
growth is different in magnitude. This can be elucidated in more detail. In § 3.2, we
have observed the growth in Urms within the near-wall layer to be in the form of
a local extremum. Therefore, the peak value of Urms within the boundary layer can
easily be traced as long as this extremum exists, and is shown in figure 10 with open
circles. Initially, the maximum Urms value within the boundary layer is smaller than
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FIGURE 10. Time series of maximum Urms,Up
rms, in a wave period for all the levels of initial

fluctuating velocity amplitude for: (a) Reδ = 400; (b) Reδ = 1500; (c) Reδ = 2000; and (d)
Reδ = 2500. Solid lines show Up

rms in the whole computational domain and the open circles
show Up

rms in the boundary layer.

that outside. Outside the boundary layer, the fluctuations continue to decay, whereas
if favourable conditions are present, the fluctuations grow inside the boundary layer.
At a certain phase, the fluctuations inside the boundary layer outgrow the outside
fluctuations and Up

rms is seen to increase in time.
The nonlinear nature of the disturbance evolution can be observed at all the

Reynolds numbers considered. At Reδ = 1500, even though the disturbance continued
to decay, the plots of Up

rms in figure 10(b) cannot be collapsed when scaled with ε.
As shown in figure 11 a plot of Up

rms versus ε at φ = 100◦ shows that the scaling is
linear only for small values of initial disturbance amplitude. With increasing amplitude
of initial disturbance, the decay seems slower, as indicated by the larger value of Up

rms
than would be predicted by linear scaling.

At higher Reynolds numbers the role of nonlinearity is even clearer. From the
time series of Up

rms it can be seen that there exists a viscous instability during the
acceleration phase. The viscous nature of the instability can be conjectured from the
lack of inflection point in the mean velocity profile during the acceleration phase.
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FIGURE 11. (a) Maximum of Up
rms observed at φ = 100◦ for all values of initial amplitude of

velocity fluctuations, ε, at Reδ = 1500. (b) Magnified version of (a) with only ε = 0.01, 0.02
and 0.05. While there is a perfect linear variation in (b), deviation from linear variation is
observed at ε = 0.1 and 0.2 in (a).

The formation and the growth of this instability depend not only on Reδ but also
on the initial disturbance amplitude. The dependence on the amplitude of the initial
background disturbance suggests that the instability is likely to be nonlinear. However,
this instability does not lead to significant growth in velocity fluctuations and hence
breakdown to turbulence. What seems to lead to turbulence, depending on Reδ, is
the stronger instability that occurs during the deceleration phase due to the adverse
pressure gradient.

To further examine the instabilities, we computed the Fourier transform of the
fluctuating streamwise velocity along the streamwise direction. The mean-square
fluctuating streamwise velocity, 〈U′U′〉, was computed by averaging over the spanwise
direction. Contours of the logarithm of this quantity for Reδ = 1500 are plotted in
figure 12 as a function of phase and distance from the bottom boundary. The results
for the first seven streamwise Fourier modes (κx = 1, . . . , 7) are presented for three
different amplitudes of initial disturbance. As can be seen, in all seven wavelengths,
the decay rate close to the bottom wall is larger than those towards the free stream
during the acceleration phase. There is an instantaneous growth in E〈U′U′〉 for κx = 1
within y = [0.5, 2] at around φ = [−100◦,−80◦] which is observed only for ε = 0.2
(see figure 12ci). In the same simulation, the rest of the wavelengths continue to
decay over the entire accelerating phase. It should be noted that for ε = 0.2 the
vertical location and the instant when the growth in E〈U′U′〉 starts correspond to where
and when the maximum Urms is first observed. After φ = −80◦ the growth close to
the bottom wall is followed by decay. But the local disturbance growth due to the
instability migrates rapidly in the vertical direction. But by the end of the acceleration
phase this instability has completely vanished. While the growth is only observed for
ε = 0.2 at Reδ = 1500, it can be observed that the decay rate for ε = 0.1 is smaller
compared to those of ε = 0.01, 0.02, and 0.05.

For Reδ = 2500, similar observations to those for Reδ = 1500 can be made. The only
difference is that the growth during the acceleration phase is clearly observed for both
ε = 0.1 and 0.2 (see figure 13). Similar to Reδ = 1500, the growth is short-lived and
migrates quickly towards the free stream. Again the vertical location and the phase at
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FIGURE 12. Contours of streamwise velocity fluctuation energy in logarithmic scale,
log(E〈U′U′〉), at various wavelengths at Reδ = 1500. Columns (a), (b) and (c) show log(E〈U′U′〉)
of simulations R1500-0.02, R1500-0.1, and R1500-0.2, respectively. Rows i to vii correspond
to the first seven wavelengths of the spectra, κx = 1 to 7, respectively. Dark grey circles
correspond to the locations where mean velocity extrema are observed. Light grey squares
correspond to the inflection points.
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which the growth of the κx = 1 streamwise mode is observed closely match those of
R1500-0.2. Therefore, based on these results the viscous instability can be concluded
to be a long-wave nonlinear instability.

In figure 12 for Reδ = 1500 during the decelerating phase, comparatively low energy
in E〈U′U′〉 can be observed close to the vertical location where the mean streamwise
velocity reaches an extremum. The time evolution of these extremum points is marked
as dark grey circles in figure 12. Both above and below the extremum there is increase
in E〈U′U′〉 for all wavelengths shown. Also shown in figure 12 are the locations of the
inflection points. The first inflection point that is located above the streamwise velocity
extremum starts at around φ = 0◦. Later a second inflection point also appears in the
mean streamwise velocity profile, which stays very close to the bottom boundary. Both
these sets of inflection points are marked as light grey squares in figure 12.

For all the streamwise wavelengths, the maximum of the energy is well correlated
with the location of the inflection points. The increase in E〈U′U′〉 is the strongest for
κx = 4, which in turn corresponds to the shortest distance between two consecutive
rollers that we observe in figure 3. In the case of Reδ = 2500, there is a strong
secondary instability and the nonlinear growth in the fluctuations after φ = 100◦

has already been presented in § 3. In figure 13, this can be observed from the
high energy level of E〈U′U′〉 just after φ = 100◦. Between φ = 0◦ and φ = 100◦, the
growth pattern is quite similar to the one for R1500-0.2 as the minimum of E〈U′U′〉
is around the extremum of the mean streamwise velocity and the peak growth in
E〈U′U′〉 is well correlated with the inflection points. At Reδ = 2500 it is not very
clear which streamwise mode has the highest energy as the fluctuations grow rapidly
and become nonlinear. However, there are close similarities in the variation of the
energy of velocity fluctuations among all the wavelengths. Initially, the level of E〈U′U′〉
ranges between 10−8 and 10−10, which is quite low. During this early deceleration
phase, since the coherent vortex structures are nearly two-dimensional with no sign
of nonlinearity, we conclude that the instability observed before breakdown during
the deceleration phase is linear. Since the growth of E〈U′U′〉 is observed in several
different streamwise modes, this linear instability can be considered to be a broadband
instability.

The initiation of the instability during the deceleration phase is at about φ = 35◦,
which is when the mean velocity extremum and second inflection point, which is
closer to the wall, first emerge. It should be noted that the observed growth in velocity
fluctuations takes place earlier in the deceleration phase and not immediately following
the initial formation of the two-dimensional rollers. It is very likely that the velocity
fluctuations at the initial stage of the linear instability are too small to be visualized as
rollers, which was also mentioned by Blondeaux et al. (2012). Only significant growth
in velocity fluctuations would lead to noticeable two-dimensional vortex structures.
The critical phase when the linear instability is initiated is estimated to be closer
to those found in the theoretical study of Blondeaux et al. (2012). The growth rate
of the disturbance after its initiation is dependent on Reδ, and if Reδ is sufficiently
high, the fluctuations grow rapidly and become nonlinear. Therefore, breakdown of the
two-dimensional rollers and the onset of turbulence discussed in § 3 can be interpreted
to be the result of instability during the deceleration phase.

4.2. Nonlinear growth and turbulence
The different pathways of transition of two-dimensional rollers into a chaotic state
and possibly turbulence also shows variation as was observed in § 3.1. At Reδ = 2000
the rollers are distorted into 3-shaped vortices which are all aligned (see figure 4).
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FIGURE 13. Contours of streamwise velocity fluctuation energy in logarithmic scale,
log(E〈U′U′〉), at various wavelengths at Reδ = 2500. Columns (a), (b) and (c) show log(E〈U′U′〉)
of simulations R2500-0.02, R2500-0.1, and R2500-0.2, respectively. Rows i to vii correspond
to the first seven wavelengths of the spectra, κx = 1 to 7 respectively. Dark grey circles
correspond to the locations where mean velocity extrema are observed. Light grey squares
correspond to the inflection points.
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FIGURE 14. Power spectra of the streamwise velocity fluctuations at y= 1.0 for case R2000-
0.20 at φ = 168◦. This is the phase where spanwise rollers deform into 3-shaped vortices.

This is one of the distinct characteristic of K-type secondary instability (Kachanov,
Kozlov & Levchenko 1977). It should be noted that these rollers are formed from the
bottom wall up to y = 10. By further examining the power spectrum of streamwise
velocity fluctuations at φ = 138◦ calculated over the y = 1 plane, we observe that the
energy is stored in two major wavelengths: κx = 6 and κx = 12 (see figure 14). The
wavenumber κx = 6 corresponds to the shortest distance between two consecutive
rollers. The interaction between these two wavelengths, as the ratio of the first
one to the second is 1/2, clearly characterizes the K-type secondary instability. At
Reδ = 2500, on the other hand, instead of the 3-shaped vortex series, the rollers
are lifted up to y = 20. As these rollers are energized, they distort the flow around
them and then were surrounded by rib vortices (see figure 5). This observation is
similar to the characteristics of instability in free shear layers. It should be emphasized
that the energy in the coherent vortices seems to play an important role in the
breakdown process. For Reδ = 2500, at the moment when the rib vortices occur, the
velocity profile become distinctly different from the laminar profile and r.m.s. velocity
fluctuations become more isotropic. On the other hand, at Reδ = 2000 the velocity
profile follows the laminar profile when the breakdown, or secondary instability, is
initiated. Noticeable deviation from the laminar profile is observed only after the
nonlinear growth is initiated. Although both observations take place at deceleration,
the first path suggests the influence of viscous effects in the breakdown process. In
summary, the generated rollers follow two different paths during their breakdown
into turbulence. The breakdown characteristics of the rollers require more in-depth
hydrodynamic stability analyses.

Regardless of the breakdown process, for a flow to be characterized as turbulent, the
resultant flow structures should display appropriate turbulent structures and statistics.
Most importantly, the cascade of energy from the energy-containing wavelengths of
the linear or weakly nonlinear instabilities to the smaller dissipative scales should be
complete. In other words, the energy spectra from the large energetic scales to the
Kolmogorov scale should follow inertial and dissipative scaling. In our simulations, we
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observe that the nonlinear stage of the instability and the breakdown of the rollers
take place at the deceleration phases. If the breakdown process is complete, flow
remains turbulent until the end of the wave period (φ = 180◦). By making use of
this observation, we examine whether the flow is transitional or fully turbulent by
analysing the power spectrum of the fluctuating velocity components at the end of
the wave period (φ = 180◦). If the energy spectra at the end of the wave period
follow classical turbulent scaling, then the flow is considered to be turbulent. This is
illustrated in figure 15 where the power spectra of selected simulations are shown (for
cases R1500-0.20, R2000-0.20, R2500-0.01, and R4000-0.01).

The spectra of R1500-0.20 and R4000-0.01 are first contrasted here due to the
fact that at Reδ = 1500 only the spanwise rollers are present at the end of the wave
period, while at Reδ = 4000, a developed turbulence is achieved. At Reδ = 1500
(figure 15a), most of the energy in streamwise velocity fluctuations is concentrated in
the κx = 4 mode, which corresponds to the shortest distance between two consecutive
rollers in the streamwise direction. On the other hand, a broad energy spectrum with
a limited inertial range of −5/3 decay rate is observed for R4000-0.01, which is
indicative of fully developed turbulence. At Reδ = 2000 (figure 15b), although we
observe chaotic motion at the end of the wave period after the breakdown of the
coherent spanwise vortices, the wavelength κx = 6 still shows a distinguishable peak
and only a weak cascade of energy to the higher wavenumbers can be observed. Based
on the log–log plot of the spectrum, at Reδ = 2000 inertial and dissipative ranges
cannot be clearly identified. For Reδ = 2500 (figure 15c), we can observe the effect of
the energy transfer of the fluctuating velocities from the smaller wavelengths, where
initial linear or weakly nonlinear instabilities are observed, to dissipative scales of
higher wavenumber. Therefore, we can conclude that cases R2500-0.01 and R4000-
0.01 can be categorized as turbulent, while R2000-0.2 falls into the transitional
regime.

4.3. Turbulent kinetic energy budget
The characteristics of the fluctuating velocity components that we have observed in
the power spectra are consistent with the time series of the turbulent kinetic energy
(TKE) budget. The integral (over the volume of the entire domain, ∀) form of the TKE
budget is given as follows:

∂k

∂t
= P− ε, (4.1a)

where k represents the volume integral of turbulent kinetic energy

k =
∫

1
2

U′iU
′
i d∀, (4.1b)

P represents the production term

P=
∫
−U′iU

′
j

∂〈Ui〉
∂xj

d∀, (4.1c)

where 〈·〉 represents the plane-averaging over x–z planes at each vertical point, and

ε = 1
Reδ

∫
∂U′i
∂xj

∂U′i
∂xj

d∀ (4.1d)

represents dissipation. The time series of the TKE budget terms calculated from
simulations R2000-0.02, R2500-0.01, and R4000-0.01 are given in figure 16. The
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FIGURE 15. Power spectra of the fluctuating velocity component, at y = 0.5, in the flow
direction at: (a) Reδ = 1500 (R1500-0.20); (b) Reδ = 2000 (R2000-0.20); (c) Reδ = 2500
(R2500-0.01); and (d) Reδ = 4000 (R4000-0.01). On the left are linear plots of the
wavelength versus the spectrum in the flow direction to show the energy spectrum distribution
in the leading wavelengths. The plots on the right are log–log versions to show whether
the energy cascade in a developed turbulence is reached. In the log–log plots −5/3 slope is
shown for reference.
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FIGURE 16. Time series of integral production, dissipation and time rate of change in the
integral TKE for the simulations: (a) R2000-0.01; (b) R2500-0.01; and (c) R4000-0.01.

formation of the fully developed turbulent energy cascade from smaller wavelengths
to the dissipative scales that is observed from the power spectra is correlated with
the growth of the volume-integrated turbulent dissipation term given in (4.1d). In
all the three cases shown, with the initiation of the nonlinear growth in velocity
fluctuations, the production term rapidly increases. However, it takes a longer time
for the cascade of fluctuations to be completed, and therefore there exists a time-lag
associated with the increase of the magnitude in the time series of turbulent dissipation.
To balance the budget, the term ∂k/∂t hence first increases together with the increase
in production. The absolute value of ∂k/∂t starts decaying after the magnitude of
turbulent dissipation starts to increase. This is clearly observed from the simulation
results of R2500-0.01 and R4000-0.01 (figure 16b,c). Also, during the later part of
the wave period in the decelerating phase, we observe the classic feature of boundary
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layer turbulence where production is balanced by dissipation. On the other hand, for
R2000-0.20 (see figure 16a), turbulent dissipation does not reach its peak even at the
end of the wave period. Therefore, it can also be concluded from the times series
of TKE budget terms that the flow in case R2000-0.20 remains transitional even at
φ = 180◦.

4.4. Classification of the flow regimes
By making use of the analyses discussed in the previous sections, including coherent
vortical structures, flow statistics, energy spectra of velocity fluctuations and integral
TKE budget, we confirm the following four flow regimes of the bottom boundary layer
under isolated solitary wave motion (see also table 1).

(a) Laminar regime (Reδ < 400): In this regime, there is no sign of instability as there
is no growth of r.m.s. velocity fluctuations within the boundary layer. Prescribed
initial random perturbation always decays and the base flow remains laminar.

(b) Disturbed laminar regime (400 < Reδ < 1500): The linear instability prevails for
a portion of the decelerating phase of the wave period. Formation of roller
pairs is observed as a result of this instability. Depending on the amplitude of
background disturbance and Reynolds number, a weak long wave and viscous
nonlinear instability may be present during the acceleration phase. However,
neither instability mechanisms is strong enough to alter the laminar base flow
and there is no sign of transitional or turbulent fluid motion.

(c) Transitional regime (1500 < Reδ . 2400): In this regime, the formation of the
rollers at deceleration is followed by strong nonlinear growth and breakdown
processes and the base flow deviates from a laminar velocity profile. However, the
breakdown process is not completed and the dissipative scales of turbulence are
not completely formed. In most cases, the short-lived long-wave viscous nonlinear
instability is present; however, this mechanism is not the major one that leads to
turbulence.

(d) Turbulent regime (≈2400 < Reδ): In this regime, the breakdown of the coherent
vortical structures into fully developed turbulence is complete and the dissipative
scales are completely formed within the wave period.

It must be stressed that the ranges of Reynolds numbers given above to differentiate
the flow regimes are somewhat affected by the viscous nonlinear instability that occurs
during the acceleration phase. This instability influences the level of background
velocity fluctuation for the rest of the wave period and thus affects the nonlinear
growth of the velocity fluctuations at deceleration and the formation of fully developed
turbulence. For example, based on the present criterion for the classification of
the flows, at Reδ = 2200, cases R2200-0.01, R2200-0.02 and R2200-0.05 remain
transitional, while cases R2200-0.10 and R2200-0.20 can be categorized as turbulent.
Namely, turbulent regime is reached for higher values of ε at this Reynolds number.
Above Reδ = 2400, all the simulations become turbulent regardless of ε. Therefore, we
set the lower limit of the turbulent regime to be at Reδ = 2400. More details can be
found in table 1.

5. Conclusions
In this study, the instability mechanisms and the characteristics of flow turbulence

under an isolated solitary wave are investigated through 70 direct numerical
simulations. The initial condition for the fluctuating velocity field is specified to
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be random and at each Reynolds number five different levels of initial disturbance
amplitude are considered.

Through a depth- and time-dependent spectral analysis, we have identified two
instability mechanisms to be present. The first one is a viscous, nonlinear, and
long-wave instability that takes place at the acceleration phase, if the background
disturbance is of sufficient amplitude. The second one is a broadband instability that
occurs during the deceleration phase. The second instability is found to be the one that
leads to chaotic motion and eventual transition to turbulence. Although the adverse
pressure gradient and the presence of inflection points in the mean flow suggest a
possible inviscid origin for this instability, caution should be exercised. For example,
in the nonlinear secondary instability at Reδ = 2000, the influence of viscosity is
observed.

The growth of linear instability towards nonlinear chaotic motion and transition
to turbulence follows two different paths: (i) K-type secondary instability which is
characterized by the formation of aligned 3-shaped vortices; and (ii) breakdown
similar to that in free shear layers characterized by the formation of rib vortices
around energized spanwise rollers. While the first one is observed for a narrow range
of Reδ between 1500 and 2000, the second one is observed for Reδ > 2000. The
implication of the two different pathways to chaotic motion is summarized as follows.
K-type secondary instability suggests a viscous origin of the underlying primary linear
instability. With the increase in Reδ, viscosity appears to lose its significance and the
path towards chaotic motion becomes more like the ones observed in free shear layers.
This conjecture requires in-depth hydrodynamic stability analyses.

As a result of these simulations, we confirm the four different flow regimes. The
first regime is the laminar regime where the initial velocity fluctuations continually
decay and no deviation from the laminar mean velocity profile is observed in the
whole wave period. The second regime is the disturbed laminar regime. In this regime,
linear instability, observed at deceleration, is dominant; however the level of the
fluctuations is not strong enough to alter the mean velocity profile. The third regime
is the transitional regime, in which nonlinear growth of the fluctuations is observed.
However, the transition process is not complete within a wave period and a fully
developed turbulent state is not observed. The fourth regime is the turbulent regime in
which the transition process is complete within the wave period and a wide range of
turbulent scales from the largest to the dissipative scales are formed.

Here we follow the work of Grimshaw (1971), Liu & Orfilia (2004) and Vittori &
Blondeaux (2011) to consider transition and turbulence in the bottom boundary layer
of a solitary wave of elevation. A similar investigation of flow and instability due to
a solitary wave of depression can be carried out as well (see Lin & Rodekopp 2011).
Unlike the solitary wave of elevation, the amplitude of the depression waves becomes
wider with the increase in the degree of nonlinearity. Also, with the increase in the
degree of nonlinearity the velocity difference across the boundary layer increases.
Therefore, more favourable conditions for flow instability and turbulence generation
are present for depression waves compared to solitary wave of elevation. However,
here we restrict attention to the limit where the ratio of wave height to layer height
is very small. In this limit, the differences between solitary waves of elevation and
depression can be expected to be small. The instability mechanisms and boundary
layer turbulence for flows driven by solitary wave of depression requires further
investigation.
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