1	Scavenging, cycling and removal fluxes of ²¹⁰ Po and ²¹⁰ Pb at the Bermuda Time-series Study
2	site
3	
4	
5	G.H. Hong ^{1,4} , M. Baskaran ^{1*} , T.M. Church ² and M. Conte ³
6	
7	*Corresponding Author
8	
9	1: Department of Geology, Wayne State University, Detroit, MI-48202;
10	Baskaran@wayne.edu; 313-577-3262
11	2. School of Marine Science and Policy, University of Delaware, Newark, DE-19716
12	3: Marine Biological Laboratory, Woods Hole, MA-02543
13	4: On sabbatical leave from Korea Institute of Ocean Science and Technology, Ansan, South
14	Korea
15	
16	
17	
18	
19	
20	
21	Deep-Sea Research – II
22	Special Volume
23	14 November 2012
24	
25	
26	

27 Abstract

Quantifying relative affinities of Po and Pb in different populations of marine particu-28 late matter is of great importance in utilizing ²¹⁰Po as a tracer for carbon cycling. We col-29 lected and analyzed water samples for the concentrations of dissolved and total ²¹⁰Po and 30 ²¹⁰Pb from the upper 600 m of the water column at Bermuda Time-series Study site (Septem-31 ber 1999 to September 2000) to investigate their seasonality of concentrations and their activ-32 ity ratio (²¹⁰Po/²¹⁰Pb activity ratio, AR). Sinking particles collected in sediment traps at 33 depths of 500 m, 1500 m, and 3200 m from the Oceanic Flux Program (OFP) time-series sed-34 iment traps were analyzed over a period of 12 months (May 1999 to May 2000). The objec-35 tive was to compare the deficiencies of ²¹⁰Po with respect to ²¹⁰Pb in the water column to that 36 measured in the sediment traps and to assess the relative affinities of Po and Pb with different 37 particle pools. 38

Inventories of ²¹⁰Po in the upper 500 m water column varied by a factor of 2, indicat-39 ing seasonal variations of particulate flux dominated the removal of ²¹⁰Po. The ²¹⁰Po/²¹⁰Pb 40 ARs in the dissolved phase were generally less than the secular equilibrium value (1.0) in the 41 upper 600 m, while were generally greater than 1.0 in the particulate phase, indicating higher 42 removal rates of ²¹⁰Po relative to ²¹⁰Pb by particulate matter. The measured fluxes of ²¹⁰Po 43 and ²¹⁰Pb in the 500 m, 1500 m, and 3200 m traps increased with depth, while the ²¹⁰Po/²¹⁰Pb 44 ARs decreased with depth except from May-August 1999. From the measured fluxes of ²¹⁰Po 45 and ²¹⁰Pb at these three traps and the concentrations of ²¹⁰Po and ²¹⁰Pb in the water column, 46 this region appears to be a sink for ²¹⁰Pb which is likely brought-in by lateral advection. 47 48

49 **1. Introduction**

The ²¹⁰Po/²¹⁰Pb pair in the ²²²Rn decay chain can provide wealth of information on 50 rates of diverse oceanic processes at ocean boundaries integrated over time scales of a few 51 days to the mean-life of ²¹⁰Po (199.7 days). The pair was extensively studied during 52 GEOSECS by several research groups (e.g., Cochran et al., 1983; Chung and Finkel, 1988) in 53 1970s and the pair was again selected as one of the priority tracers for the GEOTRACES 54 program from 2008 onwards with the mission of assessing their sources, sinks and internal 55 cycling and to characterize the physical, chemical and biological processes that regulate their 56 57 distribution, in particular across major ocean boundaries (Church et al., 2012). This includes export fluxes of POC, lithogenic and sulfur-group elements from the euphotic zone, rates of 58 remineralization of ²¹⁰Po and other sulfur-group organic material, residence times and remov-59 al rates of Po and Pb and other lithogenic and biogenic proxy elements. For example, the dis-60 tribution of particulate and dissolved ²¹⁰Po and ²¹⁰Pb in surface water has aided to constrain 61 the new production rates (e.g., Sarin, et al., 1994). 62

The concentration of ²¹⁰Pb in the surface waters primarily depends temporally and ge-63 ographically on the varying inputs of atmospheric deposition and removal on to particles, and 64 secondarily on the redistribution by advection and diffusion. Most of the dissolved ²¹⁰Po in 65 the upper water column is produced during the decay of ²¹⁰Pb via ²¹⁰Bi ultimately derived 66 from the atmospheric fallout and it is usually depleted with respect to ²¹⁰Pb because the 67 ²¹⁰Po/²¹⁰Pb activity ratio (AR) in the atmospheric deposition (both dry and wet deposition) is 68 usually < 0.1 (e.g., Hussain et al., 1998; Sarin et al., 1999; McNeary and Baskaran, 2007; 69 Church and Sarin, 2008; Baskaran, 2011). Though the global average of ²¹⁰Po/²¹⁰Pb AR in 70 precipitation and atmospheric aerosols is < 0.1, and most of the ²¹⁰Po in the upper waters are 71 derived from the decay of dissolved and particulate ²¹⁰Pb, the areas that are affected by vol-72 canic emissions have high amounts of volcanic-eruption-derived ²¹⁰Po in the atmosphere 73 74 (Baskaran, 2011).

Laboratory studies have demonstrated a distinct biological enrichment of ²¹⁰Po in phytoplankton as enrichment factor is in the order of ²¹⁰Po >>²¹⁰Pb ~ Th> Ra > U (Fisher et al., 1983, 1987). The fractionation factor calculated from the distribution of these nuclides in the water column agrees with that reported to be ²³⁴Th >²¹⁰Po >²¹⁰Pb (Shannon et al., 1970; Tsunogai and Nozaki, 1971; Kharkar et al., 1976; Heyraud and Cherry, 1979; Cochran et al., 1983; Kadko, 1993). Due to stronger bioaccumulation of Po in organic tissues relative to Pb, 81 Po is more efficiently recycled during particle remineralization and thus has a longer residence time in the water column than Pb (e.g., Stewart et al., 2005). This implies that organ-82 ic-rich suspended particles in the upper water column will tend to have higher specific ²¹⁰Po 83 activity as well as ²¹⁰Po/²¹⁰Pb activity ratios. However, in some regions, the specific circula-84 tion patterns in a given area can lead to total ²¹⁰Po/²¹⁰Pb ratios of about unity, for instance in 85 the center of gyres or as a consequence of upwelling (Nozaki et al., 1976; Thomson and 86 Turekian, 1976; Kadko, 1993; Masqué et al., 2002). The oceanic distribution of ²¹⁰Po has also 87 88 direct relevance to global biogeochemical cycling of other sulfur group elements (e.g., S, Se, and Te) and their utility as a tracer for nitrogen fixation (Kim and Church, 2001). 89

In deep waters below 1000 m, secular equilibrium between ²¹⁰Po and ²¹⁰Pb 90 (²¹⁰Po/²¹⁰Pb AR ~ 1) was observed in some areas (e.g. North Atlantic: Bacon et al., 1976; 91 South Pacific; Turekian and Nozaki, 1980; Central and Eastern Indian Ocean: Cochran et al., 92 1983; Indian Ocean: Chung and Finkel, 1988)), however, a large scale deficiency of ²¹⁰Po 93 with respect to 210 Pb (210 Po/ 210 Pb AR < 1) has also been reported in various parts of the world 94 ocean (e.g. East China and Philippine Sea: Nozaki et al., 1990; Equatorial Pacific and Bering 95 Sea: Nozaki et al., 1997; Sargasso Sea: Kim and Church, 2001; South China Sea: Chung and 96 Wu, 2005; Church et al., 2012). Sampling and analytical problems with the ²¹⁰Po/²¹⁰Pb meas-97 urements have been reported in the past. For example, samples collected from 1500 to 4000 98 m off the coast of Peru showed a pronounced ²¹⁰Po deficiency (210 Po/ 210 Pb <1, Thomson and 99 Turekian, 1976). However, examination of new set of samples from the same area revealed 100 equilibrium $({}^{210}\text{Po}/{}^{210}\text{Pb} \sim 1)$ and this difference was attributed to the loss of Po onto the 101 walls of sampling bottles due to storage of samples (Turekian and Nozaki, 1980). Mechanis-102 103 tic detail for this deficiency therefore remains elusive up to date.

In this article, we report vertical profiles of dissolved and total (= particulate + dis-104 solved) ²¹⁰Po and ²¹⁰Pb concentration and ²¹⁰Po/²¹⁰Pb ARs in the upper 600 m at the Bermuda 105 Time-series Study (BATS) site along with their concentrations and ARs in sediment trap 106 samples from 500m, 1500m and 3200m depths collected concurrently by the Oceanic Flux 107 Program (OFP). The primary goal is to understand the cycling of Po and Pb in the upper wa-108 ter column by comparing variations in ²¹⁰Po and ²¹⁰Pb concentrations and the ²¹⁰Po/²¹⁰Pb ARs 109 in the upper water column with concurrently measured depositional fluxes of ²¹⁰Po and ²¹⁰Pb 110 in sediment traps at 500m, 1500m, and 3200m. 111

113 **2. Materials and Methods**

Seawater and sediment trap (500, 1500, and 3200 m) samples were collected at the BATS site (31⁰40'N, 64⁰10'W), located approximately 75 km southeast of Bermuda in 4500 m water depth. Seawater samples were collected bimonthly from September 1999 to September 2000 from the surface to ~600 m to obtain high-resolution ²¹⁰Po-²¹⁰Pb profiles. Concurrent to the radionuclide sampling, other relevant biogeochemical variables including nutrients, productivity (¹⁴C-based), and POC were also measured (nutrients and primary productivity data can be found at http://bats.bios.edu/bats_form_prod.html).

Sinking flux material collected by the Oceanic Flux Program (OFP) (Conte et al., 2001; 2003) over the same time period was also analyzed for ²¹⁰Po and ²¹⁰Pb. The OFP mooring consists of three Parflux sediment traps (0.5 m² surface area) deployed at 500, 1500 and 3200 m and programmed at a nominal two weeks sample integration period. The trap brine is poisoned with ultra-purity mercuric chloride (200 mg/L) to arrest any bacterial activity.

The analytical procedure for the determination of ²¹⁰Po and ²¹⁰Pb is given in Kim 126 (2001). Briefly, ~20 liter water samples were collected in collapsible cubitainers and utilized 127 for total ²¹⁰Po-²¹⁰Pb measurements. For the dissolved phase, water samples were filtered 128 through 0.45-µm cartridge filter using a small pump (JABSCO). The filtration was completed 129 within an hour of sampling on board in order to minimize the loss of dissolved nuclides by 130 sorption on to the surface of the sampling bottles, and possible alteration of the particles, such 131 as particle settling and break-down, although particle integrity was not verified separately. 132 The filtered and unfiltered (or total; here onwards 'total' and 'unfiltered' are synonymously 133 used) water samples were acidified to pH < 1, and chemical yield tracers (~ 2 dpm of ²⁰⁹Po, 5 134 mg of Pb) and Fe³⁺ carriers were added. The spikes and carriers were allowed to equilibrate 135 and the pH was adjusted to \sim 7 using NH₄OH. After settling for \sim 4-5 hours, the supernatant 136 was siphoned off and the residual mixture was centrifuged. The precipitate was dissolved in 137 0.5 M HCl. To this solution, 200 mg of ascorbic acid was added to reduce Fe^{3+} to Fe^{2+} . After 138 plating, the solution was dried and taken in 9M HCl. This solution was passed through a 9M 139 HCl anion-exchange resin column to quantitatively separate the Pb from the Po. An aliquot of 140 the separated solution was utilized to measure stable Pb for the chemical yield of Pb 141 (Baskaran et al., 2009). The in-situ²¹⁰Po was processed within two weeks after sample col-142 lection. The plated solution was stored for 1-2 years and again ²¹⁰Po was re-plated to assay 143 the *in-situ*²¹⁰Pb. The in-growth (in-growth factor for the determination of ²¹⁰Pb from the as-144

say of in-grown ²¹⁰Po, and contribution of ²¹⁰Po from the decay of ²¹⁰Pb from the time of col-145 lection to first plating) and decay corrections for ²¹⁰Po and ²¹⁰Pb were appropriately applied, 146 as detailed in Baskaran et al. (2012, in review). An aliquot of the sediment trap material was 147 digested with conc. HF-HNO₃-HCl with the addition of ~ 2 dpm of 209 Po and 5 mg of stable 148 Pb. The digested solution was eventually converted to HCl medium and the pH was adjusted 149 to ~ 2 using NH₄OH and subsequently plated on to Ag disks, and the rest of the procedure is 150 the same as outlined above. All the analyses of the samples were completed by 2002. Particu-151 late ²¹⁰Po and ²¹⁰Pb concentrations were calculated by subtracting the filtered sample activity 152 concentrations from their corresponding unfiltered sample activity concentrations and their 153 154 measurement errors were propagated.

155

156 **3. Results and Discussion**

157 *3.1 Dissolved and total*²¹⁰*Po and*²¹⁰*Pb in the water column:*

The vertical profiles of dissolved and unfiltered (total) ²¹⁰Po and ²¹⁰Pb concentrations 158 are plotted in Fig. 1 and the data are given in Appendix-I. Water column concentrations of 159 dissolved ²¹⁰Po and ²¹⁰Pb varied seasonally. Total ²¹⁰Po concentrations were generally higher 160 in the upper 100 m than in deeper waters (100 - 600 m). Concentrations of dissolved and to-161 tal ²¹⁰Po and ²¹⁰Pb in the upper 100m were highest during December (average values for dis-162 solved ²¹⁰Po: 12.2 dpm/100L in December; 8.4, 7.2, 7.1. and 5.0 dpm/100L in September, 163 January, March and May, respectively) (Appendix-I). Concentrations of dissolved ²¹⁰Po at a 164 particular depth only varied by a factor of ~2 over the sampling period (e.g., between 6.0 165 dpm/100L and 12.2 dpm/100L at 50 m layer), while the corresponding ²¹⁰Pb concentrations 166 varied by less than 10% (e.g., between 17.4 dpm/100L and 19.0 dpm/100L), indicating that 167 the higher ²¹⁰Po variability is due to variations in biogenic activity which preferentially af-168 fects the Po activity. Total ²¹⁰Pb activity in the upper 100 m from January to May remained 169 constant between 19.2 and 19.8 dpm/100L, indicating relatively uniform atmospheric deposi-170 tional input of ²¹⁰Pb and similar removal rates on to particulate matter. The distinctly higher 171 ²¹⁰Pb concentration in September 2000 is attributed to higher depositional flux due to higher 172 173 amounts of precipitation and possibly higher atmospheric dust input during the summer time.

The fraction of particulate ²¹⁰Po was significantly higher than that of ²¹⁰Pb (Fig. 1, Appendix-I). The fraction of particulate ²¹⁰Po varied widely, between 5 and 63%, with generally higher percentage in the upper 150m and lower percentage below. The fraction of particulate ²¹⁰Pb was lower than that of ²¹⁰Po and exhibited less than 30%. The high fraction of particulate ²¹⁰Pb in May was attributed to higher seasonal dust input.

Seasonal inventories of ²¹⁰Po and ²¹⁰Pb in the upper 500 m water column for each 179 sampling period varied by factor of ~2 for 210 Po, from 2.4 x 10⁴ to 4.5 x 10⁴ dpm m⁻² for dis-180 solved 210 Po and 8.0 x 10⁴ to 10.6 x 10⁴ dpm m⁻² for dissolved Pb, with the highest 210 Po val-181 ues found in December (Table 1). The particulate ²¹⁰Po inventory was a factor of two larger 182 than that of ²¹⁰Pb. Large variations in the inventories of ²¹⁰Po are likely due to seasonal var-183 iations in the biogenic particulate matter and its effect on the scavenging of Po. The water 184 column inventories of ²¹⁰Po (both filtered and unfiltered) correlated with ²¹⁰Pb negatively 185 (figure not shown); however, the inventories of ²¹⁰Po and ²¹⁰Pb correlated with the POC in-186 ventories in the upper 500 m, although the data points are very limited (Table 1). 187

The 210 Po/ 210 Pb ARs in the upper 600 m varied between 0.18 and 0.44 in the dissolved 188 phase and 0.17 to 0.71 for the total (Fig. 2). The mean 210 Po/ 210 Pb AR was always higher in 189 the total samples compared to the dissolved phase samples and this is attributed to higher 190 210 Po/ 210 Pb ARs in the particulate matter, generally with values >1.0 (Fig. 2). The mean 191 ²¹⁰Po/²¹⁰Pb AR for the total samples was higher in January (0.51) and March (0.55) than in 192 May (0.39) and September (0.36). The 210 Po/ 210 Pb AR for the upper 500 m (based on the in-193 ventories of these nuclides) varied between 0.27 and 0.37 in the dissolved phase and between 194 0.29 and 0.51 in the total sample (Table 1). The estimated AR for the particulate fraction var-195 ied between 0.2 and 10.7 (Appendix-I), similar to the earlier results reported by Kim and 196 Church (2001), Buesseler et al. (2008), and Stewart et al. (2010). The subsurface maximum 197 210 Po_p/ 210 Pb_p AR was found at 200 m and this is likely due to re-adsorption of Po onto the bi-198 ogenic particulate matter (Fig. 2c). The steep gradient in ²¹⁰Po_n in the upper 200 m is attribut-199 ed to the remineralization of biogenic particulate matter and subsequent release of ²¹⁰Po to the 200 water column. 201

High concentration of ²¹⁰Pb in the upper ~ 100 m has been widely reported in literature and is attributed to atmospheric depositional input. In the present study area, the atmospheric depositional input of ²¹⁰Pb is generally derived from the North American terrestrial material in the winter, as inferred from the atmospheric deposition of stable lead (Veron et al., 1993), and from North Africa (Sahara) in the summer (Kim, et al., 1999); it also could be due to differences in the scavenging intensity of ²¹⁰Pb from the water column. Higher concentrations of ²¹⁰Pb in aerosols at Bermuda during summer/fall and lower values during win209 ter/spring have been reported (Hartman, 1987) and thus it is likely that the depositional fluxes 210 are also higher during these seasons. The highest concentrations in the upper 100 m was found in December and this is likely due to higher depositional fluxes during fall where the 211 highest amount of precipitation is also reported (in October; http://www.bermuda-212 online.org/climateweather.htm). Higher concentrations of ²¹⁰Po and ²¹⁰Pb in September and De-213 cember (Fig.1) could be attributed to higher inputs of Saharan dust during the summer 214 months (Prospero, 1996). The surface depletion of ²¹⁰Po relative to ²¹⁰Pb is also attributed to 215 lower ²¹⁰Po/²¹⁰Pb ARs in the precipitation as well as in the aerosols deposited onto the sea 216 surface. Although the expected ²¹⁰Po/²¹⁰Pb ARs in the original soils and Saharan dust to be 217 ~1.0, this ratio could be significantly altered during the transit due to addition of 210 Pb from 218 the aerosols that contain 210 Po/ 210 Pb ARs < 0.1. It has been also reported that the atmospheric 219 input of ²¹⁰Pb to the Atlantic Ocean including the Sargasso Sea is roughly a factor of two or 220 larger than that for the whole of the Pacific Ocean (Cochran et al., 1990). 221

222

223 *3.2. Fluxes of particulate ²¹⁰Po and ²¹⁰Pb at 500 m, 1500 m and 3200 m depth:*

Temporal variation of settling fluxes of particulate ²¹⁰Po, ²¹⁰Pb and ²¹⁰Po/²¹⁰Pb AR at 500, 1500, and 3200 m depths from May 1999-May 2000 are shown in Fig. 3. The average fluxes of mass, aluminum, calcium carbonate and organic carbon along with settling fluxes of ²¹⁰Po and ²¹⁰Pb at 500, 1500, and 3200m depths are also summarized in Fig. 4.

The average activities of ²¹⁰Po and ²¹⁰Pb in the 500 m trap with their standard devia-228 tion were found to be 265 ± 180 and 543 ± 400 dpm/g and their settling fluxes were found to 229 be 5.5 \pm 4.8 and 10.0 \pm 9.4 dpm m⁻² d⁻¹, respectively (Appendix-II). These ²¹⁰Po values are 230 approximately an order of magnitude lower than that observed at 150 m depth in the region 231 $(109 \pm 40 \text{ dpm}^{210}\text{Po m}^{-2} \text{ d}^{-1})$, Stewart et al., 2010; 67 ± 21 dpm $^{210}\text{Po m}^{-2} \text{ d}^{-1}$, Buesseler et al., 232 2008), and indicate that >90% of the 210 Po in the sinking particulate matter is remineralized 233 between 150 m and 500 m. At 500 m depth, there is a strong correlation between fluxes of 234 POC and ²¹⁰Po (R=0.83, P >0.001), mass flux and ²¹⁰Po flux (R=0.54, P>0.05), and mass flux 235 and ²¹⁰Pb flux (R=0.63. P>0.05). The ²¹⁰Po and ²¹⁰Pb fluxes at 500 m depth varied by an or-236 der of magnitude over the study period and they exhibited minimum fluxes during the winter 237 months when mass fluxes were low. Peak fluxes were observed in July and August 1999 238 (Appendix-II). The ²¹⁰Po/²¹⁰Pb AR of the trap material at 500 m varied from 0.2 to 2.3 with 239 an average value of 0.7 \pm 0.5 (calculated from data given in Appendix-II). The (210 Po/ 210 Pb)_p 240

AR in the coastal and shelf areas where particle concentrations are high, the 210 Po/ 210 Pb activity ratio is generally < 1.0. For example, activity ratios of 1.3 and 1.3-2.4 were reported in the North Atlantic and Pacific Ocean, respectively (Brewer et al., 1980; Harada and Tsunogai, 1986). They were found to be 0.45 in Santa Barbara Basin (162-377 m depth, Moore et al., 1981) and 0.2-1.4 with in Santa Monica Basin (100-850 m; Huh et al., 1990), where the particle concentrations and fluxes are significantly higher.

The sinking fluxes of particulate ²¹⁰Po and ²¹⁰Pb at 1500 m depth varied between 8.2 247 and 14.8 dpm m⁻² d⁻¹ (mean: 10.6 \pm 3.0 dpm m⁻² d⁻¹) and 0.7 and 49.2 dpm m⁻² d⁻¹ (mean: 248 13.2 ± 13.7 dpm m⁻² d⁻¹), respectively (Fig. 4, Appendix-II). The ²¹⁰Po flux varied by less than 249 a factor of 2; however, ²¹⁰Pb activity varied by an order of magnitude during the deployment 250 period of May–December 1999. Lower variability of ²¹⁰Po is attributed to remineralization. 251 The sinking flux of 210 Po at 1500 m was higher than that at 500 m by a factor ~2. The 210 Pb 252 flux was generally lower in May through July and higher from September through December. 253 The 210 Po/ 210 Pb AR of the trap material at 1500 m depth varied from 0.3 to 14.8, with a mean 254 value of 3.4 (Appendix-II). The ²¹⁰Po/²¹⁰Pb ARs of less than unity (0.8-1.0) was also found at 255 1000 m and 2000 m depths in the East Sea (Sea of Japan), a marginal sea, during spring when 256 terrestrial particulate matter input is large (Hong et al., 2008). There was a significant correla-257 tion between Al and ²¹⁰Pb flux at 1500 m (R=0.66, P>0.05), but there was no correlation be-258 tween Al and Po. There was no significant correlation between POC and ²¹⁰Po or ²¹⁰Pb in the 259 1500 m trap samples (Fig.5 c and d), probably due to sudden change in particle composition 260 (e.g., increase in carbonate and aluminum (terrigenous) containing particles) and changes in 261 the nature of POC. 262

The average activities of ²¹⁰Po and ²¹⁰Pb in sinking particulate matter at 3200 m was 263 399 ± 185 and 1017 ± 418 dpm g⁻¹, respectively. These values can be compared to 327 to 980 264 dpm ²¹⁰Po g⁻¹ and 131 to 391 ²¹⁰Pb g⁻¹, with a factor of 3 inter-annual variation at one site 265 (32°05'N, 64°15'W) reported by Bacon et al. (1985). The sinking fluxes of particulate ²¹⁰Po 266 and ²¹⁰Pb varied between 1.4 and 32.6 dpm m⁻² d⁻¹(mean: 15.3 ± 8.9 dpm m⁻² d⁻¹) and 14.4 267 and 53.0 dpm $m^{-2} d^{-1}$ (mean:28.5± 10.8 dpm $m^{-2} d^{-1}$), respectively (Fig. 4). Sinking fluxes of 268 particulate 210 Po and 210 Pb from an earlier study were reported to be 31.0 ± 12.0 and 12.2 ± 10.0 269 3.7 dpm m⁻² d⁻¹, respectively (Bacon et al., 1985). Our data reported in this study falls in the 270 lower end for ²¹⁰Po, however, it is larger as much as a factor of three compared to that in 271 1980-81 period (Bacon et al., 1985), due to probably lateral transport of inorganic particles. 272

The flux measurement reported here are consistent with the range observed in the atmospher-273 ic input of ²¹⁰Pb at Bermuda of 11.2-18.9 dpm m⁻² d⁻¹, which depends upon the variation of 274 rainfall and origin of air masses descending to Bermuda Island (Turekian et al., 1983; Kim et 275 al., 1999; Cochran et al., 1990). Our values can also be compared to other published values 276 from deep water traps in this region. The settling fluxes of ²¹⁰Po and ²¹⁰Pb were reported to be 277 2.19^{210} Po dpm m⁻² d⁻¹ and 1.64^{210} Pb dpm m⁻² d⁻¹ at 1000 m, and 18.63^{210} Po dpm m⁻² d⁻¹ and 278 10.1 ²¹⁰Pb dpm m⁻² d⁻¹ at 4000 m, respectively, in PARFLUX S site (Brewer et al., 1980). 279 The 210 Po/ 210 Pb AR of 2.5± 0.3 in 1978-81 periods (Bacon et al., 1985) was significantly 280 higher than 0.5 ± 0.5 reported in this 1999-2000 study period. A similar depletion of ²¹⁰Po with 281 respect to ²¹⁰Pb in the water column in the same region was reported by Kim (2001). There is 282 a significant correlation between ²¹⁰Po flux and mass flux (R=0.87, P>0.001) and ²¹⁰Po flux 283 and POC flux (R=0.86, P>0.001). 284

285

287

286 3.3 Residence Time of 210 Po and 210 Pb:

Using a simple box model, the scavenging residence times of 210 Po (τ_{Po}) with respect to removal onto suspended particulate matter for the upper 400 m may be calculated using the equation (1) given below. This calculation assumes that there is no significant net advection and diffusion fluxes on time scales (months) comparable to the mean-life of 210 Po. The scavenging residence time of 210 Po is calculated as follows:

293 $\tau_{Po} = [I_{AR}/(1-I_{AR})] \times \tau$ (1)

where I_{AR} is the ²¹⁰Po/²¹⁰Pb activity ratio in the upper 400 m and τ is the mean-life of ²¹⁰Po 294 (199 days). The calculated residence times varied between 67 and 118 days for dissolved 295 phase and 106 to 250 days for total (=dissolved and particulate), with the longest residence 296 time in March and shortest residence time in September. This implies rapid net removal in 297 September and less in March to deeper waters. This is consistent with the reportedly pre-298 ferred partitioning during late summer by N fixing cyano-bacteria (Kim and Church, 2001). 299 300 This calculation also assumes that the particle composition has remained constant throughout the seasons and its variation did not play any major role on the removal of particle-reactive 301 302 radionuclides. However different magnitude of bulk particle flux and seasonal fluxes of biogenic particles (silica, carbonate, and sulfate) indeed do play a role in their residence time 303 (described below). 304

306 3.4 Partitioning of ²¹⁰Po and ²¹⁰Pb:

308 The fractionation factor $(F_{Po/Pb})$ is defined as the ratio of the distribution coefficient 309 (K_d) of ²¹⁰Po (K_d^{Po}) to that of ²¹⁰Pb (K_d^{Pb}) .

 311
 —
 (2)

 312
 —
 (3)

314 where C_p is the concentration of suspended particulate matter ($\mu g/L$), Po_d and Pb_d are the concentrations of dissolved ²¹⁰Po and ²¹⁰Pb, respectively and Po_p and Pb_p are the concentra-315 tions of particulate ²¹⁰Po and ²¹⁰Pb, respectively. The fractionation factors varied between 316 0.20 and 82 in the 26 samples for which both ²¹⁰Po and ²¹⁰Pb data are available (Appendix-A; 317 the negative values are omitted). The rather large variability may stem from the high variabil-318 ity in particle composition, such as organic matter, calcium carbonate, opal and lithogenic 319 matter. In only 5 out of 26 samples, the F_{Po/Pb}< 1 (at 200m, 300m, 400m in Sept., 2000; 400m 320 in May 2000 and 120m in Jan. 2000, Appendix-A), indicating higher affinity of ²¹⁰Pb com-321 pared to ²¹⁰Po, again indicating stronger Po enrichment to particulate matter in most of the 322 samples compared to ²¹⁰Pb. The $F_{Po/Pb}$ for the integrated depth of 400 m water column can be 323 calculated as follows: 324

325

307

310

326
$$F_{Po/Pb} = \left[(I_{tPo} - I_{dPo}) / (I_{tPb} - I_{dPb}) \right] * (I_{dPb} / I_{dPo})$$
(5)

327

Where I_{tPo} , I_{dPo} , I_{tPb} and I_{dPb} are the inventories of total ²¹⁰Po, dissolved ²¹⁰Po, total ²¹⁰Pb and dissolved ²¹⁰Pb, respectively. The $F_{Po/Pb}$ values for the upper 400 m varied between 1.5 and 5.5, indicating overall enrichment of Po onto particulate matter. This preferential sorption of Po compared to Pb implies that the K_d of Po > K_d of Pb. However, the particulate enrichment of Po can be from its assimilation or metabolized like other O-S group elements in organisms, versus that of Pb which is primarily by physiochemical surface adsorption.

334

336

335 *3.5. Relationship between ²¹⁰Po and ²¹⁰Pb removal rates and major carrier phases:*

The fluxes of particulate Al and carbonates at 1500m were greater as much as four

and two times than at 500m, while organic carbon flux was only ~ 10% (1500 m) and 30 % 337 (3200 m) as that of at 500 m (Fig. 4, Table 2). Polonium-210 and ²¹⁰Pb will likely have dif-338 ferential affinities for specific carrier phases such as organic material, calcium carbonate, and 339 opal or lithogenic facies. Thus, variability in ²¹⁰Po and ²¹⁰Pb fluxes and activity ratios may 340 possibly be related to compositional variability. We estimated the lithogenic mass from par-341 342 ticulate Al, assuming an average crustal Al content of 84,000 ppm for lithogenic material (Taylor and McLennan, 1985), and the mass of biogenic silica by difference (i.e. subtracting 343 344 lithogenic, organic carbon, calcium carbonate components from the total mass). The estimated opal/CaCO₃ ratio at 3200 m depth over this period is 0.21, and is comparable to the overall 345 mean (0.25) reported for the period of 1978-1984 (Conte et al., 2001). 346

The significant increase in the flux of lithogenic material with depth supports the con-347 clusion that the deep water column at this site is a substantial sink for advected lithogenic ma-348 terial (Huang and Conte 2009). As suggested by Huang and Conte (2009), a likely source of 349 the deep-water scavenged lithogenic component is continental slope sediments that have been 350 advected by the Gulf Stream into eastern North Atlantic gyre. McCave et al. (2001) found 351 significant variations in trace metal concentrations in intermediate depth waters in the north-352 eastern Atlantic indicating intermittent detachment and lateral advection of nepheloid layers 353 354 into mid-waters. Detailed mineralogical and chemical analyses of suspended particles profiles across a Gulf Stream-Bermuda transect could provide relevant data to test the hypothesis that 355 356 the lateral advection and deep water scavenging of lithogenic material sourced from continen-357 tal margin sediments contributes a significant contribution of the deep particle flux in the northern Sargasso Sea. 358

359

360 3.6. Possible lateral sources of 210 Pb to the OFP area:

We compare our ²¹⁰Pb fluxes (9.99 dpm cm⁻² d⁻¹ at 500m; 13.2 dpm cm⁻² d⁻¹ at 1500m; 361 and 28.5 dpm cm⁻² d⁻¹ at 3200m) with two adjoining sites: i) another OFP site (31⁰40'N, 362 64⁰10'W) in Nares Abyssal Plain which is northwest of our sampling station; and ii) in the 363 south, the Hatteras Abyssal Plain (32 °48.6"N, 70°44.6'W) (Cochran et al., 1990). Cochran et 364 al. observed that the mean flux of 210 Pb increased from 6.0 to14.0 dpm m⁻² d⁻¹ between the 365 1436 and 4832 m traps at Nares station. This was attributed to the continued uptake of ²¹⁰Pb 366 on to small particles as they are transferred through the water column by packaging into large 367 particles and subsequent disintegration of the large particles back into small particles at dif-368

ferent depths. Bacon et al. (1985) previously reported 9.6 dpm m⁻² d⁻¹ at 3200 m depth south of the current site ($32^{\circ}05'N$, $64^{\circ}15'W$), which is much less than the current observation of 28.5 dpm m⁻² d⁻¹(Fig. 8). Using the published total ²¹⁰Pb concentration at the Nares and Hatteras sampling stations (Cochran et al, 1990), and our sediment trap measurements yield ²¹⁰Pb residence time of 29-32 years in the upper 3200 m water column and it falls within the reported values for the North Atlantic (Bacon et al., 1976).

It was observed that the sinking flux of ²¹⁰Pb measured using sediment trap and ²¹⁰Pb 375 376 inventories in the bottom sediments are not sufficient to balance the atmospheric input and in situ production in the water column. About 50% of the ²¹⁰Pb scavenged from the water col-377 umn at the Nares and Hatteras Abyssal Plains is not sink to the ocean floor locally but is 378 transported out of the area to sink elsewhere in the north due to boundary scavenging (Bacon 379 et al., 1976). They estimated that the scavenging efficiency of ²¹⁰Pb in the water column is 380 relatively low (< 50%) in the south of about 45 ° N and high (> 50%) in the north of 50 °N in 381 the North Atlantic. The fluxes of particulate ²¹⁰Pb in sediment trap at 3200m is about three 382 times as that of 500 m and more than twice as that of 1500m trap (Fig. 4). Although the mass 383 flux at 1500m and 3200m remain the same (Fig. 4), higher flux of ²¹⁰Pb is likely due to lateral 384 inputs. One can estimate spatial scale due to lateral eddy diffusion transport of ²¹⁰Pb using the 385 relationship between the time scale of diffusion (t), the scale length (Δx) and eddy diffusion 386 coefficient ($D_E \sim 10^5 \text{ cm}^2/\text{s}$), 387

- 388 $\Delta x = \sqrt{(D_E \cdot \tau_E)}.$
- Over the mean life of ²¹⁰Pb of 32.2 yrs, the length scale is ~100 km. Thus, substantial amount
 of material can be laterally transported to the sampling site.
- 391

392 4. Conclusions

Based on the data presented, we draw the following conclusions: i) there is disequi-393 librium between dissolved²¹⁰Po and ²¹⁰Pb throughout the upper 600 m water column, indicat-394 ing preferential scavenging of ²¹⁰Po on monthly time scales; ii) residence times of ²¹⁰Po in the 395 upper 400 m depth varied seasonally between 67 and 118 days for the dissolved phase, which 396 we attribute to differences in the biological cycling; iii) the fractionation factor of Po versus 397 Pb (F_{Po/Pb}) integrated over 600 m depth varied between 1.5 and 10.5, again indicating prefer-398 ential biological sorption of Po over Pb in the upper 600 m water; iv) Fluxes of both ²¹⁰Po 399 and ²¹⁰Pb increased with depth and the ²¹⁰Po/²¹⁰Pb AR deceased also with depth, although the 400

fluxes and ²¹⁰Po/²¹⁰Pb AR were similar between 1500 m and 3200 m depths; v) the 401 210 Po/ 210 Pb AR in the deep particle flux at 3200 m depth was generally < 1.0. This depletion 402 can be attributed to scavenging by terrigenous suspended particulate matter that is depleted in 403 ²¹⁰Po; vi) We did not find any correlation between Al and ²¹⁰Po in any of the depths, but we 404 found significant correlation between ²¹⁰Pb and Al as well as ²¹⁰Po and POC; vii) Our meas-405 urements of fluxes of particulate ²¹⁰Po and ²¹⁰Pb at 1500 and 3200 m depths appear to be lower 406 in ²¹⁰Po and higher in ²¹⁰Pb fluxes at 3200 m depths than the previously reported and could be 407 attributed to variations in the amount of lithogenic and biogenic particulate matter over time; 408 and viii) From the measured fluxes of ²¹⁰Po and ²¹⁰Pb at 500 m, 1500 m, and 3200 m traps, it 409 410 appears that this region is a sink for lithogenic elements and they are likely brought by lateral advection. 411

412

413 Acknowledgements

414

We thank the two anonymous reviewers for a thorough review of the earlier version of 415 this manuscript. N. Hussain, L. Alleman, C. Hill and A. Bahrou helped us with the analysis of 416 ²¹⁰Po and ²¹⁰Pb on these set of samples and their help is appreciated. We also thank the crew 417 of the R/V Weatherbird for their assistance with shipboard sampling. JC Weber of the OFP 418 time-series is acknowledged for his contributions in laboratory analyses of OFP samples. 419 GHH's sabbatical leave was supported by Korea Ocean Research and Development Institute 420 421 (renamed as Korea Institute of Ocean Science and Technology) (PG47900 and PE98742). The Oceanic Flux Program has been supported since inception by the NSF Chemical Ocean-422 423 ography Program, most recently by grants OCE-0325627/0509602, OCE-0623505 and OCE-0927098. Partial support in writing this manuscript was supported by OCE-0961351 (MB). 424

425 **References**

- Bacon, M. P., Huh, C.-A., Fleer, A. P. Deuser, W. G., 1985. Seasonality in the flux of natural
 radionuclides and plutonium in the deep Sargasso Sea. Deep-Sea Research 32, 273-286.
- Bacon, M. P., Belastock, R.A., Tecotzky, M., Turekian, K. K. Spencer, D. W., 1988. Lead210 and Polonium-210 in ocean water profiles of the continental shelf and slope south of
 New England. Continental Shelf Research 8, 841–853.
- 432

443

448

451

454

459

463

467

- Bacon, M.P., Spencer, D.W., Brewer, P.G., 1976. Pb-210/Ra-226 and Po-210/Pb-210 disequilibria in seawater and suspended particulate matter. Earth and Planetary Science Letters 32, 277–296.
- 436 427 Baskaran M 2011 Bo 210 an
- Baskaran, M, 2011. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb210 fallout: a Review. Journal of Environmental Radioactivity, 102, 500-513.
- Baskaran, M., Hong, G. H., Santschi , P. H., 2009. Radionuclide analysis in seawater. In:
 Wurl, O., (Ed.), Practical guidelines for the analysis of seawater. CTC Press, Boca Raton,
 259-304.
- Baskaran, M., T.M. Church, G.-H. Hong, A. Kumar, M. Qiang, H.-Y. Choi, S. Rigaud, and K.
 Maiti 2012. Effects of flow rates and composition of the filter, and decay/in-growth correction factors involved with the determination of in-situ particulate ²¹⁰Po and ²¹⁰Pb in seawater, Limnol. Oceanogr. (in review).
- Bruland, K. W., 1983. Trace elements in seawater. In: Riley, J. P. and Chester, R. (eds.)
 Chemical Oceanography 8, Academic Press, London, 157-220.
- Brewer, P. G., Nozaki, Y., Spencer, D., Fleer, A., 1980. Sediment trap experiments in the deep
 North Atlantic: isotopic and elemental fluxes. Journal of Marine Research 38,703-728.
- Buesseler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P. J., Trull, T. W., Bidigare, R. R., Bishop, J. K. B., Casciotti, K. L., Dehairs, F., Elskens, M., Honda, M., Karl, D. M., Silver, M.
 W., Steinberg, D. K., Valdes, J., Van Mooy, B., Wilson, S., 2007. Revisiting carbon flux
 through the ocean's twilight zone. Science 316, 567-570.
- Buesseler, K. O., Lamborg, C., Cai, P., Escoube, R., Johnson, R., Pike, S., Masque, P.,
 McGillicuddy, D., Verdeny, E., 2008. Particle fluxes associated with mesoscale eddies in
 the Sargasso Sea. Deep-Sea Research II 55, 1426-1444.
- 464 Chung, Y., Finkel, R., 1988. ²¹⁰Po in the western Indian Ocean: distributions, disequilibria
 465 and partitioning between the dissolved and particulate phases. Earth and Planetary Sci466 ence Letters 88, 232-240.
- Chung, Y., Wu, T., 2005. Large ²¹⁰Po deficiency in the northern South China Sea. Continental
 Shelf Research 25, 1209-1224.
- 470
- 471 Church, T.M. and M.M. Sarin, 2008. U- and The-series nuclides in the atmosphere: Supply,
 472 exchange, scavenging and applications to aquatic processes. In: *Radioactivity in the Envi-*

- 473
- ronment, Vol. 13, Elsevier, p. 11-45.
- 474
- Church, T.M., S. Rigaud, M. Baskaran, A. Kumar, J. Friedrich, P. Masque, V. Puigcorbe, G. 475 Kim, O. Radakovitch, G. -H. Hong, and G. Stewart, 2012. Inter-calibration studies of 476 ²¹⁰Po and ²¹⁰Pb in dissolved and particulate sea water samples. Limnol. Oceanogr. (Meth-477 ods), accepted for publication. 478
- Cochran, J. K., Bacon, M. P., Krishnaswami, S., Turekian, K. K., 1983.²¹⁰Po and ²¹⁰Pb distri-480 butions in the central and eastern Indian Ocean. Earth and Planetary Science Letters 65, 481 433-452. 482
- 483

492

496

502

506

510

513

479

- Cochran, J. K., McKibbin-Vaughan, T., Dornblaser, M. M., Hirschberg, D., Livingston, H. D., 484 Buesseler, K. O., 1990. ²¹⁰Pb scavenging in the North Atlantic and North Pacific Oceans. 485 Earth and Planetary Science Letters 97, 332-352. 486
- Conte, M. H., Ralph, N., Ross, E. H., 2001. Seasonal and inter-annual variability in deep 488 ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series 489 490 (BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea Research II 48, 1471-1505. 491
- 493 Conte, M. H., Dickey, T. D., Weber, J. C., Johnson, R. J., Knap, A. H., 2003. Transient physical forcing of pulsed export of bioreactive material to the deep Sargasso Sea. Deep-Sea 494 Research I 50, 1157-1187. 495
- Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P., Hicks, B. B., Miller, J. 497 M., Prospero, J. M, Arimoto, R, Church, T. M., Ellis, W., Galloway, J. N., Jickells, T. D., 498 Knap, A. H., Reinhardt, K. H., Soudine, A., Tokos, J. J., Tsunogai, S., Wollast, R., Zhou, 499 M., 1991. The Atmospheric Input of Trace Species to the World Ocean, Global 500 Biogeochem. Cycles, 5(3), 193-259. 501
- Fisher, N. S., Burns, K. A., Cherry, R. D., Heyraud, M., 1983. Accumulation and cellular dis-503 tribution of ²⁴¹Am, ²¹⁰Po, and ²¹⁰Pb in two marine algae. Marine Ecology Progress Series 504 11, 233–237. 505
- Fisher, N. S., Teyssie, J.-L., Krishnaswami, S., Baskaran, M., 1987. Accumulation of Th, Pb, 507 U, and Ra in marine phytoplankton and its geochemical significance. Limnology and 508 509 Oceanography 32, 131-142.
- Harada, K., Tsunogai, S., 1986. Fluxes of ²³⁴Th, ²¹⁰Po and ²¹⁰Pb determined by sediment trap 511 experiments in pelagic oceans. Journal of Oceanography 42, 192-200. 512
- Hartman, M.C. 1977. The total deposition of Pb, Cd, Zn, ²¹⁰Pb and atmospheric transport to 514 515 the western Atlantic using Rn-222 and air mass trajectory analysis, 123 pp., M.S. thesis, 516 Univ. of Del., Newark, 1987.
- Heyraud, M., Cherry, R. D., 1979. Polonium-210 and lead-210 in marine food chains. Marine 518 Biology, 52,227-36. 519

520

- Hong, G. H., Kim, Y. I., Baskaran, M., Kim, S. H., Chung, C. S., 2008. Distribution of ²¹⁰Po
 and export of organic carbon from the euphotic zone in the southwestern East Sea (Sea of
 Japan). Journal of Oceanography 64, 277-292.
- Huang, S., Conte, M. H., 2009. Source/process apportionment of major and trace elements in
 sinking particles in the Sargasso Sea. Geochimica et Cosmochimica Acta 73, 65-90.

527

532

536

539

543

546

549

553

557

561

- Huh, C.-A., Small, L. F., Niemnil, S., Finney, B. P., Hickey, B. M., Kachel, N. B., Gorsline, D.
 S., Williams, P. M., 1990. Sedimentation dynamics in the Santa Monica-San Pedro Basin
 off Los Angeles: radiochemical, sediment trap and transmissometer studies. Continental
 Shelf Research 10, 137-164.
- Hussain, N., Church, T. M., Larson, R. E., 1998. Radon daughter disequilibria and lead systematics in the western North Atlantic. Journal of Geophysical Research, 103, 16059-16071.
- Kadko, D., 1983. Excess ²¹⁰Po and nutrient recycling within the California coastal transition
 zone. Journal of Geophysical Research 98, 857-864.
- Kharkar, D. P., Thomson, J., Turekian, K. K., Foster, W.O., 1976. Uranium and thorium decay
 series nuclides in plankton from the Caribbean. Limnology and Oceanography 21, 294299.
- Kim, G., Alleman, L. Y., Church, T. M., 1999. Atmospheric depositional fluxes of trace elements, ²¹⁰Pb, and ⁷Be to the Sargasso Sea. Global Biogeochemical Cycles 13, 1183-1192.
- 547 Kim, G., 2001. Large deficiency of polonium in the oligotrophic ocean's interior. Earth and
 548 Planetary Science Letters 192, 15-21.
- Kim, G., Church, T. M., 2001. Seasonal biogeochemical fluxes of ²³⁴Th and ²¹⁰Po in the upper Sargasso Sea: Influence from atmospheric iron deposition. Global Biogeochemical Cycles 15, 651-661.
- Masqué, P., Sanchez-Cabeza, J. A., Bruach, J. M., Palacios, E., Canals, M., 2002. Balance and residence times of ²¹⁰Pb and ²¹⁰Po in surface waters of the northwestern Mediterrane-an Sea. Continental Shelf Research 22, 2127-2146.
- McCave, I. N., Hall, I. R., Anita, A. N., Chou, L., Dehairs, F., Lampitt, R. S., Thomsen, L.,
 Van Weering, T. C. E., Wollast, R., 2001. Distribution, composition and flux of particulate material over the European margin at 47–50°N.Deep Sea Research II 48, 3107–3139.
- McNeary, D. Baskaran, M. 2007. Residence times and temporal variations of ²¹⁰Po in aero sols and precipitation from southeastern Michigan, United States. Journal of Geophysical
 Research 112, 11 pages, D04208, doi:10.1029/2006JD007639.
- Moore, W. S., Bruland, K. W., Michel, J., 1981. Fluxes of uranium and thorium series isotopes in the Santa Barbara Basin. Earth and Planetary Science Letters 53, 391-399.

- Nozaki, Y., Thomson, J., Turekian, K.K., 1976. The distribution of Pb-210 and Po-210 in the
 surface waters of the Pacific Ocean. Earth and Planetary Science Letters 32,304–312.
- Nozaki, Y., Zhang, J., Takeda, A., 1997. ²¹⁰Pb and ²¹⁰Po in the equatorial Pacific and the Bering Sea: the effects of biological productivity and boundary scavenging. Deep-Sea Research II 44, 2203-2220.
- Nozaki, Y., Tsunogai, S., 1976. ²²⁶Ra, ²¹⁰Pb and ²¹⁰Po disequilibria in the Western North Pacific Ocean. Earth and Planetary Science Letters 32, 313-321.
- Nozaki, Y., Naoko, I., Yashima, M., 1990. Unusually large ²¹⁰Po deficiencies relative to ²¹⁰Pb
 in the Koroshio Current of the East China and Philippine Seas, Journal of Geophysical
 Research 95, 5321-5329.
- Nozaki, Y., Tsubota, H., Kasemsupaya, V., Yashima, M., Ikura, N., 1991. Residence times of
 surface water and particle-reactive ²¹⁰Pb and ²¹⁰Po in the East China and Yellow Seas.
 Geochimica et Cosmochimica Acta 55, 1265-1274.
- Prospero, J.M., 1996. Saharan dust transport over the North Atlantic Ocean and Mediterranean: An overview, *The impacts of Desert Dust Across the Mediterranean*, edited by S.
 Guerzoni and R. Chester, 133-151.
- Sarin, M.M., Krishnaswami, S., Ramesh, R., Somayajulu, B.L.K., 1994. ²³⁸U decay series nuclides in the northeastern Arabian Sea: Scavenging rates and cycling processes. Cont. Shelf Res., 14: 251-265.
- Sarin, M. M., Kim, G., Church, T. M., 1999. Po-210 and Pb-210 in the South-equatorial At lantic: distribution and disequilibrium in the upper 500 m. Deep-Sea Research II 46, 907 917.
- Settle, D. M., Patterson, C. C., Turekian, K. K., Cochran, J. K., 1982: Lead precipitation
 fluxes at tropical oceanic sites determined from ²¹⁰Pb measurements, Journal of Geophys ical Research87, 1239–1245.
- Shannon, L. V., Cherry, R. D., Orren, M. J., 1970. Polonium-210 and Lead-210 in the marine
 environment. Geochim. Cosmochim. Acta 34, 701-711.
- Stewart, G. M., Fowler, S. W., Teyssie, J. L., Cotret, O., Cochran, J. K., Fisher, N. S., 2005.
 Contrasting transfer of polonium-210 and lead-210 across three trophic levels in marine
 plankton. Marine Ecology-Progress Series 290, 27-33.
- Stewart, G. M., Moran, S. B., Lomas, M. W., 2010. Seasonal POC fluxes at BATS estimated
 from ²¹⁰Po deficits. Deep-Sea Research I 157, 113-124.
- 612

571

575

578

582

586

590

594

598

602

605

616 Thomson, J., Turekian, K.K., 1976. Polonium-210 and Lead-210 distributions in ocean water

<sup>Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution.
Blackwell Scientific, Oxford. 328p.</sup>

617	profiles from the	e eastern South	Pacific. Earth	n Planet. Sci	. Lett. 32,	297-303

621

- Tsunogai, S., Nozaki, Y., 1971. Lead-210 and polonium-210 in surface water of the Pacific.
 Geochemical Journal 5, 165-173.
- Turekian, K. K., Benninger, L. K., Dion, E. P., 1983. ⁷Be and ²¹⁰Pb total deposition fluxes at
 New Haven, Connecticut and at Bermuda. Journal of Geophysical Research 88, 5411 5415.
- Turekian, K. K., Nozaki, Y., 1980. ²¹⁰Po and ²¹⁰Pb in the Eastern South Pacific- the role of upwelling on their distributions in the water column. In: Goldberg, E. D., Horibe, Y.,
 Saruhashi, K. (eds.) Isotope Marine Chemistry, Uchida Rokakuho Publ. Co. Tokyo.p. 157-164.
- Veron, A. J., Church, T. M., Flegel, R., Patterson, C. C., Erel, Y., 1993. Response of lead cycling in the surface Sargasso Sea to changes in tropospheric input. Journal of Geophysical
 Research 98, C10, 18269-18276.

634 635

636 Table 1. Inventories^{*} (dpm m⁻²) of filtered (f) and unfiltered (uf) ²¹⁰Po and ²¹⁰Pb, particulate 637 210 Po (210 Po_p) and 210P b (210 Pb_p) and 210 Po/ 210 Pb activity ratios in the upper 500 meter water 638 column

Date	210 Po _f	²¹⁰ Po _{uf}	210 Pb _f	210 Pb _{uf}	$(^{210}\text{Po}/^{210}\text{Pb})_{\rm f}$	210 Po _p	210 Pb _p	POC
	Inventory	Inventory	Inventory	Inventory	Activity ratio	(%)	(%)	$(\text{mol } \text{m}^{-2})$
Sept. 1999	36236	51257	NM	NM	-	29	-	0.94
Dec. 1999	44818	60889	NM	NM	-	26	-	0.64
Jan. 2000	29898	39566	79945	85287	0.37 ± 0.01	24	6	0.55
March 2000	30310	45846	83305	90239	0.36 ± 0.01	34	8	-
May 2000	24391	31092	81575	93272	0.30 ± 0.01	22	13	-
Sept. 2000	27729	38819	106427	135924	0.26 ± 0.01	29	22	0.91

639 *: The propagated error on the inventories is less than 5%

Table 2. Average chemical composition of settling particles for the period May 1999-May2000.

Depth	Mass flux	Lithogenic	Biogenic mate	erial		²¹⁰ Po	²¹⁰ Pb
(m)	$mg m^{-2} d^{-1}$	material		~ ~ ~ ~ ~ ~ ~	(dpm/mg)	(dpm/mg)	
		(%)	Organic	$CaCO_3(\%)$	Opal		
			matter (%)		(%)		
500	25.8±19.9	5.5 ± 4.7	29.7 ± 15.2	46.9 ± 18.6	19.9 ± 22.5	$0.27{\pm}\ 0.18$	0.54 ± 0.40
	(N=24)	(N=24)	(N=24)	(N=24)	(N=24)	(N=20)	(N=15)
1500	41.2 ± 15.3	12.5 ± 5.0	15.4 ± 3.8	61.3 ± 6.7	10.8 ± 7.9	0.28 ± 0.10	0.38 ± 0.33
	(N=24)	(N=24)	(N=24)	(N=24)	(N=24)	(N=15)	(N=13)
3200	41.7 ± 20.9	18.8 ±9.0	11.2 ± 1.5	57.6 ± 5.3	12.3 ± 7.6	0.40 ± 0.19	1.02 ± 0.42
	(N=24)	(N=24)	(N=24)	(N=24)	(N=24)	(N=15)	(N=10)

645 N= number of samples.

(A) September 1999

(B) December 1999

(C) January 1999

(D) March 2000

(E) May 2000 (F) September 2000
 Figure 1. Vertical Profiles of activities of ²¹⁰Po and ²¹⁰Pb in the water column. The counting errors were less than 10% and are not included in the size of the symbol.

(c)

Figure 2. Activity ratios of ²¹⁰Po/²¹⁰Pb in the total (a), dissolved (b), and particulate phases(c) in the water column. The subscripts of t, d, and p denote total, dissolved and particulate phases of both ²¹⁰Po and ²¹⁰Pb, respectively. The counting errors were less than 10% and are not included in the size of the symbol.

(a)

(b)

(c)

Figure 3. Temporal variation of settling fluxes of particulate 210 Pb (a), 210 Po (b), and their activity ratio (210 Po/ 210 Pb) in sediment traps at 500, 1500, and 3200 m depths from May 1999-May 2000. X-axis is date expressed as yyyy-mm-dd.

Figure 4. Average settling fluxes of particulate ²¹⁰Po, ²¹⁰Pb,bulk mass, Al, CaCO₃ and organic carbon at 500, 1500, and 3200 m depths from May 1999 to May 2000.

Figure 5. Association of particulate 210 Po and 210 Pb to the major carrier phases of the settling particulate matter, bulk mass (a, b), particulate organic carbon (POC) (c,d), and calcium carbonate (CaCO₃) (e, f), particulate Al (g, h), and biogenic silica fluxes (i, j) for the entire depth samples.

Depth (m)	POC	210 Po _f	210 Po _{uf}	²¹⁰ Po _p	210 Pb _f	210 Pb _{uf}	²¹⁰ Pb _p
	(µ M)	(dpm/100L)	(dpm/100L)	(%)	(dpm/100L)	(dpm/100L)	(%)
September	1999-16						
2	2.58	8.12±0.34	15.4±0.6	47.2	NM	NM	-
20	2.62	7.05 ± 0.32	14.1±0.6	50.1	NM	NM	-
50	2.50	9.60 ± 0.40	18.7±0.7	48.6	NM	NM	-
100	NM	8.70±0.39	10.1±0.5	14.2	NM	NM	-
150	2.21	6.34±0.26	8.99±0.35	29.5	19.4±0.9	27.5±1.3	29.4
200	1.82	8.12±0.37	8.61±0.37	5.7	NM	NM	-
300	1.38	6.66±0.25	9.79±0.37	32.0	23.5±1.1	22.1±1.3	-
400	1.48	8.68±0.35	12.2±0.5	28.8	NM	NM	-
December	1999-17						
2	2.16	12.0±0.4	17.4±0.7	31.0	NM	NM	-
20	2.00	12.1±0.4	17.8±0.6	32.3	NM	NM	-
50	2.19	12.2±0.4	17.9±0.7	31.7	NM	NM	-
100	NM	12.4±0.5	18.5±0.7	32.7	NM	NM	-
120	NM	3.84±0.16	8.88 ± 0.48	56.7	32.5±1.7	NM	-
200	0.90	7.83±0.39	9.28±0.46	15.6	26.6±1.3	28.9±1.6	7.9
300	1.00(m)	11.5±0.6	12.4±0.6	6.9	27.7±1.5	28.3±1.2	2.2
400	1.09	8.54 ± 0.38	12.4±0.7	30.8	-	23.9±1.1	-
January	2000-18						
2	2.08	7.74 ± 0.50	11.3±0.5	31.4	18.5±1.0	17.4±0.8	-6.4
20	2.48	7.52 ± 0.44	12.4±0.6	39.6	18.6±0.8	20.1±0.9	7.5

Appendix-I: Concentrations of POC, filtered (f) and unfiltered (uf) ²¹⁰Po and ²¹⁰Pb and percentages of particulate^{*} ²¹⁰Po and ²¹⁰Pb in the upper 600m

50	2.23	6.76±0.39	11.3±0.0.6	40.3	18.0 ± 0.7	23.9±1.2	24.7
100	NM	6.88±0.46	10.0±00.4	31.3	17.8±0.7	17.8±0.8	-0.1
120	NM	6.01±0.37	6.36±0.36	5.6	16.0±0.7	19.8±0.8	19.0
200	0.67	6.17±0.31	6.54±0.30	5.6	16.4±0.9	16.6±0.8	1.2
300	0.76	5.85 ± 0.42	8.08±0.35	27.6	14.3±0.6	15.6±0.7	8.0
400	0.73	6.12±0.34	8.10±0.38	24.4	15.3±0.7	14.9±0.6	-2.5
March	2000-19						
2	1.91	7.20 ± 0.38	12.9±0.6	44.3	-	18.2±0.8	-
50	NM	7.25 ± 0.55	12.0±0.5	39.4	19.0±0.9	19.9±0.9	4.5
100	NM	6.96±0.39	11.5±0.6	39.4	16.4±0.7	20.1±0.8	18.2
200	NM	7.08 ± 0.34	9.94±0.49	28.8	16.3±0.7	19.7±1.1	17.4
300	NM	5.55 ± 0.34	7.56±0.46	26.6	17.9±0.9	16.8±1.0	-6.4
400	NM	5.57 ± 0.28	8.04±0.56	30.7	14.5±0.6	16.5±0.8	11.9
500	NM	5.29±0.29	8.49±0.50	37.7	16.0±0.7	15.3±0.6	-5.0
600	NM	6.09 ± 0.50	7.40 ± 0.56	17.7	14.0±0.5	15.1±0.6	7.3
May	2000-20						
2	2.22	4.29±0.20	9.20±0.35	53	16.1±0.8	19.3±0.8	16.5
25	2.18	5.01±0.26	8.21±0.45	39	16.2±0.6	18.9±0.7	14.4
50	4.10	6.04±0.25	8.98±0.35	33	17.4±0.7	18.5±0.8	6.0
75	NM	5.12±0.24	7.40 ± 0.32	31	15.9±0.7	19.1±0.8	16.5
100	NM	4.44 ± 0.20	6.36±0.25	30	16.7±0.7	20.0±0.7	16.5
200	1.56	4.80±0.22	5.39±0.23	11	18.1±0.7	18.3±0.7	1.1
300	1.01	4.56±0.18	5.89±0.23	23	16.4±0.6	19.0±0.7	13.7
400	1.20	6.16±0.26	6.89±0.27	11	14.8±0.7	17.9±0.7	17.4
September	2000-21						

2	NM	7.92 ± 0.37	11.81±0.49	33	30.7±1.2	32.3±1.3	4.8
20	NM	7.60±0.37	5.08 ± 0.26	-	30.9±1.2	30.8±1.2	-
60	NM	3.99±0.17	10.65 ± 0.40	63	22.5±0.8	23.6±0.9	4.7
120	NM	5.19±0.25	11.17±0.45	54	21.3±0.8	24.4±1.1	12.6
200	NM	5.90±0.24	6.30±0.25	6.3	20.8±1.1	20.9±0.9	0.8
300	NM	5.71±0.26	6.02 ± 0.26	5.1	20.0±0.8	21.0±1.0	5.0
400	NM	6.61±0.27	8.34±0.34	21	19.9±1.0	21.2±0.9	6.2
600	NM	5.42±0.26	9.26±0.45	42	17.7±0.8	20.3±0.9	12.6

*: particulate ²¹⁰Po or ²¹⁰Pb activity = (unfiltered – filtered) activity of ²¹⁰Po or ²¹⁰Pb

• Setting	nuncs		u 10, AI, 0	igame (caroonat	C
500 m							
Flux (m ⁻²	$^{2}d^{-1}$)						
Mass	Al	Org C	CaCO ₃	210 Po		210 Pb	
(mg)	(µg)	(mg	(mg)	(dpm)		(dpm)	
10.40	38	1.13	4.3	1.35	± 0.007	9.07	± 0.06
29.21	73	5.88	10.5	5.98	± 0.009	22.7	± 0.1
23.07	48	3.25	10.7	3.33	± 0.008	13.6	± 0.1
22.31	87	3.31	10.6	4.76	± 0.014	8.67	± 0.03
30.26	96	9.41	Nd	21.0	± 0.05	19.9	± 0.1
12.11	57	1.43	2.62	4.61	± 0.01	8.91	± 0.05
20.59	67	2.85	8.29	11.68	± 0.02	35.3	± 0.2
11.79	16	Nd	Nd	7.58	± 0.02	5.98	± 0.03
23.37	80	3.53	12.9	3.42	± 0.01	5.26	± 0.02
15.28	58	2.42	8.90	3.55	± 0.01	5.82	± 0.03
8.24	52	1.79	2.60	1.59	± 0.01	0.70	± 0.02
7.36	146	0.84	3.74	3.32	± 0.01	3.72	± 0.06
7.17	2	1.12	Nd	0.95	± 0.01	1.20	± 0.03
11.39	50	3.49	Nd	1.90	± 0.01	3.06	± 0.03
23.65	77	1.99	10.6	4.14	± 0.01	5.96	± 0.02
	500 m Flux (m² Mass (mg) 10.40 29.21 23.07 22.31 30.26 12.11 20.59 11.79 23.37 15.28 8.24 7.36 7.17 11.39 23.65	500 m Flux (m²d⁻¹) Mass A1 (mg) (µg) 10.40 38 29.21 73 23.07 48 22.31 87 30.26 96 12.11 57 20.59 67 11.79 16 23.37 80 15.28 58 8.24 52 7.36 146 7.17 2 11.39 50 23.65 77	500 mFlux (m ⁻² d ⁻¹)MassAlOrg C(mg)(µg)(mg10.40381.1329.21735.8823.07483.2522.31873.3130.26969.4112.11571.4320.59672.8511.7916Nd23.37803.5315.28582.428.24521.797.361460.847.1721.1211.39503.4923.65771.99	500 m Flux (m ⁻² d ⁻¹) Mass Al Org C CaCO ₃ (mg) (µg) (mg (mg) 10.40 38 1.13 4.3 29.21 73 5.88 10.5 23.07 48 3.25 10.7 22.31 87 3.31 10.6 30.26 96 9.41 Nd 12.11 57 1.43 2.62 20.59 67 2.85 8.29 11.79 16 Nd Nd 23.37 80 3.53 12.9 15.28 58 2.42 8.90 8.24 52 1.79 2.60 7.36 146 0.84 3.74 7.17 2 1.12 Nd 11.39 50 3.49 Nd 11.39 50 3.49 Nd	500 m 7 B 7 B 7 B Flux (m ² d ⁻¹) Mass Al Org C CaCO ₃ 210 Po (mg) (µg) (mg (mg) (dpm) 10.40 38 1.13 4.3 1.35 29.21 73 5.88 10.5 5.98 23.07 48 3.25 10.7 3.33 22.31 87 3.31 10.6 4.76 30.26 96 9.41 Nd 21.0 12.11 57 1.43 2.62 4.61 20.59 67 2.85 8.29 11.68 11.79 16 Nd Nd 7.58 23.37 80 3.53 12.9 3.42 15.28 58 2.42 8.90 3.55 8.24 52 1.79 2.60 1.59 7.36 146 0.84 3.74 3.32 7.17 2 1.12 Nd 0.95 11.39 50 3.49 Nd 1.90 <	500 m $1 + 2$ 2^{10} Po Flux (m ² d ⁻¹) Mass Al Org C CaCO ₃ 2^{10} Po 10.40 38 1.13 4.3 1.35 \pm 0.007 29.21 73 5.88 10.5 5.98 \pm 0.009 23.07 48 3.25 10.7 3.33 \pm 0.008 22.31 87 3.31 10.6 4.76 \pm 0.014 30.26 96 9.41 Nd 21.0 \pm 0.05 12.11 57 1.43 2.62 4.61 \pm 0.01 20.59 67 2.85 8.29 11.68 \pm 0.02 11.79 16 Nd Nd 7.58 \pm 0.01 15.28 58 2.42 8.90 3.55 \pm 0.01 15.28 58 2.42 8.90 3.55 \pm 0.01 7.36 146 0.84	9 1 2500 mFlux (m²d¹) (mg)Org C (mg)CaCO3 (mg) 210 Po (dpm) 210 Pb (dpm)10.40381.134.31.35 \pm 0.0079.0729.21735.8810.55.98 \pm 0.00922.723.07483.2510.73.33 \pm 0.00813.622.31873.3110.64.76 \pm 0.0148.6730.26969.41Nd21.0 \pm 0.018.9120.59672.858.2911.68 \pm 0.0235.311.7916NdNd7.58 \pm 0.015.2615.28582.428.903.55 \pm 0.015.2615.28582.428.903.55 \pm 0.013.727.1721.12Nd0.95 \pm 0.013.0623.65771.9910.64.14 \pm 0.013.06

Appendix-II: Settling fluxes of ²¹⁰Po and ²¹⁰Pb, Al, organic carbon and carbonate.

-1/8/2000								
1/10-25					ND		ND	
2000	18.56	180	1.55	11.0				
1/25-					ND		ND	
2/92000	54.37	194	5.09	36.3				
2/9-232000	73.50	279	6.36	45.7	ND		ND	
2/23-					ND		ND	
3/92000	57.89	432	5.21	39.4				
3/9-23							ND	
2000	71.68	202	6.73	49.7	11.9	0.1		
3/23-4/6							ND	
2000	42.26	40	4.85	27.1	4.92	0.01		
4/6-202000	26.37	87	2.53	15.4	4.63	0.02	ND	
4/20-							ND	
5/32000	8.83	77	0.73	6.10	1.20	0.02		
5/3-172000	11.67	57	1.70	5.60	2.47	0.03	ND	
		1500						
		m						
5/28- 6/12								
1999	52.04	446	3.00	23.2	8.34	± 0.21	1.91	± 0.09
6/12-								
271999	73.02	536	4.32	38.3	13.3	± 0.4	1.34	± 0.05
6/27-								
7/121999	58.47	351	3.60	35.3	8.20	± 0.22	1.47	± 0.06
7/12-								
271999	63.77	366	5.85	35.8	11.0	± 0.3	0.74	± 0.04
7/27-								
8/101999	29.90	402	2.98	17.2	4.91	± 0.17	1.10	± 0.04
8/10-	0 < 07	200	2 00	20.0	14.0	0.0		
241999	36.07	309	3.09	20.0	14.8	± 0.2	ND	
8/24-	20.47	242	0.27	174	0.00	0.12	0.14	0.52
9/8/1999	30.47	545	2.37	1/.4	9.00	± 0.13	9.14	± 0.53
9/8-231999	29.14	559	2.69	13.7	11.5	± 0.15		

9/26-								
10/1019	999 18.55	179	1.27	10.8	6.63	± 0.07	13.5	± 0.1
10/10-								
25199	31.45	480	1.74	20.7	8.97	± 0.17	16.0	± 0.1
10/25-								
11/1019	999 36.85	755	1.89	25.1	13.6	± 0.2	13.4	± 0.1
11/10-								
251999	30.27	398	1.53	19.8	10.3	± 0.1	20.1	± 0.1
11/25-								
12/1019	999 52.14	667	2.57	33.4	14.2	± 0.2	49.2	± 1.9
12/10-								
251999	29.66	488	1.65	19.0	9.96	± 0.15	17.4	± 1.1
12/25/1	999							
-1/8/20	00 39.74	485	2.24	23.8	14.4	± 0.2	25.9	± 1.2
1/10-25	i				ND		ND	
2000	15.01	167	0.97	9.58				
1/25-					ND		ND	
2/92000) 33.18	338	2.61	21.1				
2/9-232	2000 59.58	391	4.71	37.9	ND		ND	
2/23-					ND		ND	
3/92000) 58.64	386	5.91	40.8				
3/9-23					ND		ND	
2000	54.46	301	5.61	36.5				
3/23-4/	6				ND		ND	
2000	57.93	312	3.48	38.1				
4/6-202	2000 36.75	289	2.35	24.3	ND		ND	
4/20-					ND		ND	
5/32000) 31.81	312	1.90	21.6				
5/3-172	2000 32.79	320	1.77	22.5	ND		ND	
				3200 m	210		210	
	Mass	Al	Org C	CaCO ₃	²¹⁰ Po		²¹⁰ Pb	
(mm/dd/	/yy) (mg)	(µg)	(mg C)	(mg)	(dpm)		(dpm)	
5/28-	6/12 31.08	727	1.62	17.9	12.4	± 0.2	ND	

1999									
6/12-							ND		
271999	74.65	1015	3.39	37.3	27.2	± 0.5			
6/27-									
7/121999	59.01	1027	3.25	32.2	27.4	± 0.4	14.4	±	1.0
7/12-									
271999	98.17	657	4.81	56.8	32.6	± 0.5	ND		
7/27-									
8/101999	54.68	987	3.19	31.5	23.5	± 0.3	ND		
8/10-									
241999	23.97	776	1.64	11.6	1.37	± 0.04	31.9	±	1.6
8/24-									
9/8/1999	18.12	282	0.98	9.8	17.0	± 0.2	ND		
9/8-231999	48.08	614	2.34	25.1	13.1	± 0.2	18.7	±	0.6
9/26-									
10/101999	15.28	234	0.76	7.5	5.15	± 0.11	19.1	±	1.0
10/10-									
25199	34.20	611	1.56	20.2	13.4	± 0.3	28.7	±	1.1
10/25-									
11/101999	26.76	560	1.20	16.8	6.03	± 0.07	26.1	±	1.1
11/10-									
251999	25.66	705	1.15	15.3	10.5	± 0.2	34.5	±	1.4
11/25-									
12/101999	35.01	716	1.52	21.2	14.8	± 0.1	53.0	±	2.2
12/10-									
251999	24.84	709	1.22	13.0	12.4	± 0.1	26.6	±	1.3
12/25/1999									
-1/8/2000	26.64	645	1.32	13.3	12.1	± 0.1	32.3	±	1.4
1/10-25					ND		ND		
2000	15.47	260	0.88	8.52					
1/25-					ND		ND		
2/92000	29.20	277	1.59	17.6					
2/9-232000	71.40	447	4.66	44.6	ND		ND		
2/23-	46.28	379	2.39	29.6	ND		ND		

3/92000						
3/9-23					ND	ND
2000	59.92	437	3.45	38.4		
3/23-4/6					ND	ND
2000	61.15	425	3.29	39.7		
4/6-202000	44.15	327	1.90	28.2	ND	ND
4/20-					ND	ND
5/32000	37.93	398	1.60	22.8		
5/3-172000	39.90	442	1.70	25.3	ND	ND

ND: no data

+: Samples that had a few fish fragments.