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Abstract 

The Red Sea has long been recognized as a region of high biodiversity and endemism. 

Despite this diversity and early history of scientific work, our understanding of the 

ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef 

systems. We carried out a quantitative assessment of ISI-listed research published from 

the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral 

reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef 

associated bacteria) and compared the amount of research conducted in the Red Sea to 

that of the Australia’s Great Barrier Reef (GBR) and the Caribbean. On average, for these 

eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and 

about 1/8th the amount of the Caribbean. Further, more than 50% of the published 

research from the Red Sea originated from the Gulf of Aqaba, a small area (< 2% of the 

area of the Red Sea) in the far northern Red Sea. We summarize the general state of 

knowledge in these eight topics and highlight areas of future research priorities for the 

Red Sea region. Notably, data that could inform science-based management approaches 

is badly lacking in most Red Sea countries. The Red Sea, as a geologically “young” sea 

located in one of the warmest regions of the world, has the potential to provide insight to 

pressing topics such as speciation processes as well as the capacity of reef systems and 

organisms to adapt to global climate change.  As one of the world’s most biodiverse coral 

reef regions, the Red Sea may yet have a significant role to play in our understanding of 

coral reef ecology at a global scale.  



 
Introduction 

The Red Sea has long been recognized as a region of high biodiversity (Stehli and Wells 

1971) and endemism (Ormond and Edwards 1987), home to well over 1000 species of 

fishes and over 50 genera of hermatypic corals. The Red Sea coral reefs were some of the 

first to be examined by early European taxonomists (e.g., Forsskåll, Ehrenberg, Ruppell, 

Klunzinger), but have become relatively inaccessible to Western scientists in recent 

decades due to complicated visa and permitting regulations, coupled with a lack of 

marine research infrastructure. Despite the size of the Red Sea and diversity of its reef-

associated inhabitants, it remains a poorly studied system compared to other large coral 

reef systems around the world (e.g., the Great Barrier Reef or the Caribbean). The Red 

Sea, however, is of increasing interest to scientists working on climate change due to its 

relatively high and variable water temperatures  (from 20ºC in spring to 35ºC in summer) 

and high salinity (c. 40.0 psu in the northern Red Sea; Edwards 1987). Consequently, the 

Red Sea is an ideal model system for understanding how reefs may fare under predicted 

scenarios of global climate change. It is arguably the world’s warmest and most saline 

habitat in which extensive reef formation occurs.  

Despite this biodiversity, early history of scientific work, and potential 

importance for understanding the ability of reefs to adapt and/or acclimate to changing 

environmental conditions there is a current lack of understanding of the ecology of Red 

Sea coral reefs. Researchers wishing to access information about the ecology of the Red 

Sea via modern channels (e.g., ISI or Google Scholar searches) will find relatively little 

information, particularly in recent years. Further, the vast majority of the accessible 

published research originates from a ~6km stretch of coastline in the far northern Red 

Sea, within the Gulf of Eilat / Aqaba (hereafter Gulf of Aqaba). We estimate that over 



half of the recent research in the Red Sea originates from this region yet it represents less 

than 2% of the Red Sea area. There are many reasons to suspect that the processes in this 

relatively small and isolated region may not be representative of the broader Red Sea 

“proper” (sensu Head 1987).  

This review seeks to quantify the number of ecological studies conducted in the 

Red Sea and compare this to the number of studies conducted in two other large coral 

reef systems, the Great Barrier Reef of Australia and the Caribbean. Specifically the 

objective of this review is to highlight the lack of research in the Red Sea by examining 

eight topics of current ecological interest in other coral reef systems, and comparing the 

current state of knowledge in these topics among three distinct biogeographic regions; the 

Red Sea, the Caribbean, and the Great Barrier Reef (GBR). The coral reef area within the 

Red Sea (c. 8,890 km2) is broadly comparable to that of the Caribbean (c. 10,530 km2). 

Although the reef area is only approximately half that of the GBR (c. 17,400 km2), these 

two reef systems are of similar length (Red Sea: c. 2,000 km; GBR: c. 2,300 km) making 

the Red Sea one of the longest coral reef system in the world.  

We present below assessments of various disciplines falling broadly under the 

heading of “coral reef ecology”. We do not seek to comprehensively review details of all 

relevant research in these various disciplines, but rather to quantify the relative 

magnitude of work in the Red Sea as compared to other regions. Where appropriate, brief 

summaries of the primary focus of the work within each topic highlight areas where the 

Red Sea knowledge base is particularly weak. A number of Middle East countries are 

making a push to invest heavily in education and research institutions in the region (e.g., 

Mervis 2009), creating an opportunity for renewed and expanded research on coral reefs 

in the wider Red Sea. It is our hope that this review can highlight some areas in which 

these research efforts could quickly address important gaps in our knowledge. 



 

General Methodology 

To quantify and compare the status of globally accessible research in the Red Sea, we 

identified eight areas of research focus of current interest to coral reef scientists (hereafter 

we will refer to these as “topics”), namely apex predators, connectivity, coral bleaching, 

coral reproduction, herbivory, marine protected areas, non-coral invertebrates (primarily 

sponges), and reef-associated bacteria. We then quantified the number of published 

studies in each of these topics using Thomson Reuter’s Web of Knowledge (WoK) and 

used various regional restrictors to compare the number of studies conducted within the 

Red Sea to that of the Great Barrier Reef and the Caribbean (Table 1; and see Electronic 

Supplementary Material for details).  

 

Status of Ecological Research in the Red Sea 

Apex Predators 

It is well documented that top predators are the most heavily exploited of marine 

organisms (Myers et al. 2007; Collette et al. 2011). The collapse of fisheries targeting 

large-bodied, long-lived, predatory teleosts and sharks, however suggests that it is 

unlikely that many of these species can be sustainably harvested at a commercially viable 

level without strict management (Walker 1998; Hilborn, 2007). Effective management 

can only be achieved through a thorough understanding of the ecology and population 

biology of these species. Unfortunately, for most Red Sea fisheries-targeted species, this 

information is completely lacking. 

Our WoK search revealed only 39 Red Sea studies (> 60% of which were from 

the Gulf of Aqaba), compared to 85 from the Great Barrier Reef and 206 from the 

Caribbean (Table 1, ESM 1). An analysis of the few studies available on Red Sea top 



predators showed that their objectives, with very few exceptions (e.g., Shpigel and 

Fishelson 1991; Belmaker et al. 2005; Clarke et al. 2011), focused on the physiology of a 

very limited number of species (e.g., Fishelson and Baranes 1997; Karpestam et al. 

2007). In some cases, the principal focus was on other species, such as ospreys (Fisher et 

al. 2001), sponges (Burns and Ilan 2003), humans (Randall and Levy 1976), or parasites 

(Ivanov and Lipshitz 2006) and only relate peripherally to top predators. Interestingly, 

this is the only topic of the eight examined for which the Red Sea actually had more 

published research than the GBR up until the late 1990s, but has subsequently fallen 

behind (Fig. 1a).  

There is a current lack of data on the population ecology, reproductive biology, 

resource partitioning, and migration patterns of apex predators in the Red Sea. This lack 

of management-relevant data poses a major obstacle for successful conservation 

planning. The GBR, which is also lacking essential data about the population status of its 

top predators, is nonetheless one of the most intensely managed reef systems in the world 

(McCook et al. 2010). While declines of top predator populations are more likely to be 

noticed in this type of well-managed system (Robbins et al. 2006), they would most 

likely go unnoticed in the Red Sea. In the Caribbean, the ecology of many predatory 

species has received considerable attention (e.g., Lutcavage et al. 1997; Pikitch et al. 

2005) and many marine reserves have been established (Bond et al. 2012). In addition, 

apex predators are of high value to Caribbean and Australian tourism industries and are 

valued socially and culturally. This does not appear to be the case in any of the Red Sea 

countries.  

If Red Sea marine ecosystems, and the goods and services that humans derive 

from them, are to be sustained, future work will have to focus on diversity, abundance, 

and life histories of top predator species within the Red Sea. Research priorities should 



include species verification and areas of origin of all species taken directly or as by-catch 

in fisheries. There is a clear need to identify spatially and temporally sensitive areas, such 

as nurseries or seasons of high by-catch. Some of the larger, more mobile apex predators 

almost certainly cross national borders on a regular basis and potentially even have 

connections with Indian Ocean populations. Any attempts at management for these 

species will have to secure multinational cooperation – a nontrivial undertaking in this 

region of the world. 

 

Connectivity 

Connectivity is a broad term that in the marine realm usually refers to  

“the demographic linking of local populations through the dispersal of individuals among 

them as larvae, juveniles or adults” (Sale et al. 2005). Coral reefs are naturally 

fragmented, discontinuous habitats and the extent to which reef associated species 

exchange individuals among spatially discrete populations has implications for their 

persistence, resilience and recovery (Jones et al. 2009). Connectivity is now recognized 

as an important parameter informing conservation and management decisions (e.g., Sale 

et al. 2005, Almany et al. 2009, McCook et al. 2009). Studies dealing with connectivity 

in coral reefs have dramatically proliferated in the last decade (Jones et al. 2009), and 

have been fuelled by the development of new genetic techniques (Lowe and Allendorf 

2010). Yet the number of studies on connectivity within the Red Sea is minimal 

compared to the research that has been published from the GBR or the Caribbean (Fig 

1b).  

Our WoK search revealed only 77 Red Sea studies, compared to 471 from the 

Great Barrier Reef and 670 from the Caribbean (Table 1, ESM 2). We were primarily 

seeking research that clearly studied connectivity or population genetics, and explicitly 



excluded studies only focusing on community structure. While many studies utilized 

genetic approaches for taxonomic purposes (especially for microbes), studies related to 

population connectivity and population genetics were rare. Of the 77 Red Sea 

connectivity studies, only 13 papers measured gene flow among populations within the 

Red Sea or between the Red Sea and adjacent regions. The majority of genetic studies 

were mostly phylogenies that included a few samples from the Red Sea as part of the 

phylogenetic trees but that did not actually measure gene flow or connectivity within this 

region. 

 Our search revealed only eight studies on fishes in the Red Sea. Among these 

eight studies, two used otolith chemistry to estimate connectivity among habitats while 

the remaining six studies used genetic markers to discern population structure. Fish are 

perhaps one of the best-studied groups in coral reefs in terms of phylogeography and 

population connectivity (Jones et al. 2009). Yet, in the Red Sea this field of study remains 

poorly addressed.  

The unique geologic history of the Red Sea and the high number of endemic 

species that it harbors, make it an ideal system to study gene flow and speciation. In 

particular, there is an opportunity to investigate how biophysical gradients (from south to 

north), distance and historical fluctuations of the sea level have shaped the genetic 

diversity and species distribution in this region (DiBattista et al. 2013). There are likely to 

be some hidden genetic breaks throughout its length, and in general, connectivity studies 

will definitely help to reveal some insight to the processes and mechanisms at the origin 

of such high endemism rates that are present today in the Red Sea.   

Connectivity studies are essential if effective spatial management is to be 

achieved in a region (McCook et al. 2009). Given a lack of such management in most of 

the Red Sea, future connectivity research should focus on elucidating general patterns of 



larval dispersal, gene flow among populations, and linkages among the many types of 

coastal habitats found in the Red Sea (e.g., snapper migration corridors from coastal 

wetlands to reefs further offshore; McMahon et al. 2012).  Such data would be essential 

to inform the design of marine protected areas, should there be a move to develop them 

within this region. 

 

Coral bleaching 

Red Sea reefs thrive in the warmest and most saline waters of any extensive coral reef 

system in the world, due largely to the limited freshwater inflow and restricted water 

exchange with the Indian Ocean, (Sheppard et al. 1992). For this reason, Red Sea reefs 

have been assumed to be highly thermo-tolerant, and thus, predicted to be among the last 

reefs to bleach as seawater temperatures increase (Grimsditch and Salm 2006). However, 

recent observations of severe bleaching on inshore reefs in the central Red Sea (Furby et 

al. 2013) indicate that this prediction may be inaccurate, and raises questions as to 

whether bleaching events have been occurring in the Red Sea but were overlooked or not 

reported due to limited observer effort. 

Our WoK search yielded only 12 relevant coral bleaching papers from the Red 

Sea compared with 339 from the GBR and 167 from the Caribbean (Table 1, ESM 3). 

More than half (7 out of 12) of the relevant Red Sea publications were conducted within 

the Gulf of Aqaba, showing both a general lack of information on the topic of coral 

bleaching in the Red Sea as a whole, as well as a very strong regional bias in the little 

information that is available. 

Of the 12 ISI-listed publications found from the Red Sea, only one mentioned the 

actual occurrence of bleaching events in the Red Sea, recalling three major events all of 

which occurred in the 1990s in the central and southern Red Sea (Turak et al. 2007). The 



description of these bleaching events was based largely on qualitative observations and 

contained very limited quantitative data. Of the remaining publications, four examined 

the effects of thermal stress or ultra-violet radiation on zooxanthellae and coral regulatory 

pathways (Winters et al. 2006, 2009; Zeevi-Ben-Yosef and Benayahu 2008; Kvitt et al. 

2011), two discussed oceanographic aspects of thermal stress (Veal et al. 2010; Davis et 

al. 2011), and one used coral cores to quantify the deleterious effects of ocean warming 

on coral growth rates (Cantin et al. 2010). Other relevant papers investigated the 

possibility of Red Sea corals acting as refugia of biodiversity in scenarios of severe 

global environmental stress (Riegl and Piller 2003), included the Red Sea in a 

comparative review of global trajectories of the state of coral reefs (Pandolfi et al. 2003), 

or discussed the relationship between coral disease and bleaching (Rosenberg and Ben-

Haim 2002; Danovaro et al. 2008).  

It is readily apparent that research relating to coral bleaching in the Red Sea has 

lagged well behind that of the GBR and Caribbean. Studies quantifying the extent and 

severity of bleaching events in the Red Sea, the effect of bleaching on reef biodiversity 

and community structure, patterns of recovery, and predictions for the future are either 

lacking or are published in grey literature that is difficult to access (e.g., PERSGA/GEF, 

2010). Although we do not know what tolerance thresholds Red Sea corals have, 

functional genomics work could make large advances in this field by addressing 

questions regarding the mechanisms for tolerance to the local environmental conditions. 

This is an obvious area in which Red Sea research could make significant contributions to 

global coral reef ecology.  

In contrast, research from both the Caribbean and the GBR covers a more diverse 

variety of bleaching-related topics with a considerable number of publications concerned 

with each topic (Fig. 1c). Such topics include: detailed, quantitative, reports on bleaching 



events (e.g., Baird and Marshall 1998; Jimenez 2001); investigations of potential causes 

of bleaching events (Gleason and Wellington 1993; Shinn et al. 2000); the effect of 

bleaching on different groups of organisms and various aspects of reef community 

structure and ecological processes (e.g., Meesters and Bak 1993; Mumby 1999; Baird and 

Marshall 2002); the tolerance thresholds of different coral taxa and clades of 

zooxanthellae to thermal stress (e.g., Marshall and Baird 2000; Lasker 2003); recovery 

patterns, long term considerations, and future predictions (e.g., Hughes 2003; Baker et al. 

2008); and many other subtopics.  

 

Coral reproductive biology 

Over the past three decades considerable research has focused on the reproductive 

strategies (timing and mode of reproduction) of scleractinian corals (Baird et al. 2009).  

Early research focused on brooding taxa that employ internal fertilization and release 

fully-developed planulae (Harrison 2011), and led to the general misconception that 

brooding was the main form of larval development of reef corals. However, the discovery 

of mass spawning events in the mid-1980’s on the Great Barrier Reef (Harrison et al. 

1984; Babcock et al. 1986) challenged this view and established that hermaphroditic 

broadcast spawning is the predominate reproductive strategy among scleractinian corals. 

This reproductive strategy has since been the focus of most studies in coral reproductive 

biology. Currently, information on the sexual reproductive biology of scleractinian corals 

is available for over 444 species worldwide (Harrison 2011). 

Our WoK search returned 11 articles on coral reproductive biology in the Red Sea 

(nine of which were from the Gulf of Aqaba). In comparison, 197 articles were found 

from the Great Barrier Reef and 108 from the Caribbean, which together represent over 

50% of the total number of articles in this field (Table 1, ESM 4). Of the two articles 



from the Red Sea basin that were not from the Gulf of Aqaba, one study described the 

synchrony of reproductive condition of Acropora species (Hanafy et al. 2010) and the 

other one found limited larval dispersal of a brooding coral after studying the gene flow 

between 2 locations in the Gulf of Aqaba and a third location in the main Red Sea basin 

located over 500 km away (Maier et al. 2005).    

Interestingly, among the studies from the Gulf of Aqaba, one study revealed that 

spawning in this particular region of the Red Sea is asynchronous, with different species 

releasing gametes at different times throughout the year (Shlesinger et al. 1998). This 

seems to be in stark contrast with observations from the Great Barrier Reef where 

synchronous coral spawning seems to be a general trend (e.g., Shlesinger et al. 1998). 

However, two independent studies conducted in the main Red Sea basin have reported 

both the presence of synchronous spawning of Acropora species in the central Red Sea 

(Bouwmeester et al. 2011), and a strong synchrony in the gametogenesis of Acropora 

corals (Hanafy et al. 2010), suggesting that reproduction patterns differ between the Gulf 

of Aqaba and the central Red Sea. The generality of these patterns, however, needs to be 

investigated further.   

To date, our knowledge of patterns of reproduction of corals in the main Red Sea (i.e., 

excluding the Gulf of Aqaba) are limited to a few species of Acropora (Hanafy et al. 

2010), and our understanding of recruitment patterns is limited to a single study in the 

Gulf of Aqaba (Glassom et al. 2004). There is a clear need for future studies to document 

the reproductive modes of Red Sea corals, quantify the timing of spawning events and 

how they vary among species and locations, identify environmental cues that are 

associated with spawning events, and quantify pelagic larval durations and larval 

competency to better understand reproductive connectivity within the Red Sea. 

 



Herbivory 

Herbivory is widely accepted as a key process structuring benthic communities on 

coral reefs, and consequently is one of the most thoroughly studied aspects of coral reef 

ecology (e.g., Hay 1984; Hughes 1994). The importance of herbivory has long been 

recognised in coral reefs ecosystems worldwide (e.g., GBR: Stephenson and Searles 

1960; Caribbean: Randall 1965; Red Sea: Vine 1974), however the majority of these 

early studies were largely descriptive. The increasing prevalence of anthropogenic and 

climate-induced disturbance and subsequent collapse of several reef systems from coral- 

to macroalgal-dominance highlighted the critical importance of herbivory, and brought 

this research area to the fore (Hughes 1994; McClanahan et al. 2001; Bellwood et al. 

2004). This renewed emphasis lead to marked increases in herbivory-focused research on 

the GBR and Caribbean reefs, but there was no corresponding increase in such research 

in the Red Sea (Fig. 1h). As a consequence, our current understanding of herbivory in the 

Red Sea is limited, and is based largely on inference from other regions.  

 Despite the considerable attention herbivory has attracted, our WoK search 

revealed that only 34 of the 1,066 herbivory papers (3.2%) were conducted within the 

Red Sea (Table 1, ESM 5). In marked contrast, herbivory has attracted much greater 

attention on the Great Barrier Reef (322 papers) and in the Caribbean (255 papers), 

accounting for 30% and 24% of herbivory studies, respectively. 

Within Indo-Pacific and Caribbean reef systems a wealth of studies have 

documented large variation in the abundance and community structure of herbivores 

across a range of spatial scales (e.g., latitude: Floeter et al. 2005; shelf position: Hoey and 

Bellwood 2008; habitat: Hay 1981) and related this to variation in algal communities 

across similar scales (e.g., Wismer et al. 2009). These correlative relationships have been 

supported by experiments that have demonstrated the exclusion of herbivores leads to a 



proliferation of algal biomass and a shift toward larger erect macroalgae (e.g., Hughes et 

al. 2007) and direct estimates of herbivory using macrophyte assays (e.g., McCook 

1996). While this body of work clearly demonstrates the importance of herbivory per se, 

another suite of studies have focused on understanding the functional importance of 

individual taxa, the level of redundancy within functional groups, and the influence of 

habitat characteristics on foraging activities of herbivores (e.g., Bellwood et al. 2006; 

Mumby 2006; Burkepile and Hay 2006 Hoey and Bellwood 2011; Rasher et al. 2013). 

Collectively, these studies identified a functional dichotomy between those species that 

have the capacity to prevent (i.e., grazers) or potentially reverse (i.e., browsers) shifts to 

macroalgal-dominance on coral reefs.  

In marked contrast, studies examining herbivory within the Red Sea have been 

largely restricted to descriptions of among-habitat variation in herbivore assemblages 

(e.g., Bouchon-Navaro and Harmelin-Vivien 1981; Brokovich et al. 2010). Apart from a 

couple of recent papers that have quantified variation in the role of parrotfishes on Red 

Sea reefs (Alwany et al. 2009; Afeworki et al. 2011) there is a lack of quantitative 

information on the role of herbivores in this region. The Red Sea contains many 

endemics for which basic dietary data is completely lacking.  Future research should 

firstly focus on identifying the trophic and functional affinities of individual taxa, and 

quantifying large-scale variation (i.e., cross-shelf and latitudinal) in herbivore 

communities and functions. The limited rainfall and freshwater input into the Red Sea 

makes it an ideal system to examine the effects of herbivory in the absence of land-based 

eutrophication. For example, cross-shelf variation in benthic communities on the GBR, in 

particular the high macroalgal cover on inshore reefs, has been suggested to be related to 

increased nutrient input from terrestrial activities (Wismer et al. 2009). However, Saudi 

Arabian reefs in the central Red Sea display similar cross-shelf variation in benthic 



communities (Hoey and Berumen, pers obs). Finally, comparisons of rates and agents of 

herbivory between the Red Sea and species-rich regions such as the GBR (the Red Sea 

has approximately one-third of the herbivore species richness of the GBR; Bellwood and 

Wainwright 2002) presents a unique opportunity to examine how herbivore diversity 

influences ecosystem process on coral reefs. 

 

Marine protected areas 

Marine protected areas (MPAs) are increasingly popular tools for management of coral 

reef systems (Mora et al. 2006; Almany et al. 2009). Very few MPAs, unfortunately, 

have the luxury of having the full spectrum of scientific data available to ensure optimal 

reserve design (McCook et al. 2009). However, as MPAs become more prevalent, 

scientific attention is likewise growing in attempts model local characteristics to optimize 

reserve designs and to assess the effectiveness of existing MPAs.   

As with other topics, our WoK search revealed only 17 Red Sea studies, 

compared to 220 from the Great Barrier Reef and 152 from the Caribbean (Table 1, ESM 

6). Within the Red Sea Egypt has the largest number and greatest area of reefs within 

MPA’s. Accordingly, the majority of the results from our WoK search were conducted in 

the Egyptian Red Sea (ESM 6). Of the studies conducted in Egyptian waters most 

investigated the effectiveness of established MPAs (Galal et al. 2002; Ashworth et al. 

2006; Kochzius 2007; Marshall et al. 2010; Hannak et al. 2011; Samy et al. 2011). The 

concentration of this research on Egyptian reefs meant that of the eight topics reviewed, 

this topic had the lowest proportion of studies conducted within the Gulf of Aqaba. 

Although very few quantitative data are available, it appears that many of the Red 

Sea reefs experience heavy fishing pressure (Jin et al. 2012) with little or no effective 

management. With the exception of perhaps Egypt, the need for management strategies 



and implementation is readily apparent. There have been several, and relatively 

ambitious, plans for MPAs in some regions of the Red Sea. For example, in 1988 the 

IUCN/UNEP (1988) proposed 40 MPAs along the Saudi Arabian coast of the Red Sea. 

Most of these recommendations, however, have not been implemented and are generally 

hidden in grey literature. As several endemic species are targeted in the fisheries (e.g., 

DesRosiers 2011; Jin et al. 2012), and the region’s largest oil producer (Saudi Aramco) 

has recently begun extraction operations in the Saudi Arabian Red Sea, there are 

compelling conservation motivations for creating a plan to sustainably harvest the natural 

resources of the Red Sea. 

 

Non-coral invertebrates (represented by sponges) 

Non-coral invertebrates provide the greatest biodiversity to coral reef environments, but 

are probably the least studied (Bouchet et al. 2002; Appeltans et al. 2012).  The sheer 

number of invertebrate species inhabiting coral reefs prevented us from reviewing them 

collectively. Among all non-coral invertebrates associated to reef systems, sponges are an 

important structural and functional component of coral reefs (Diaz and Tzler 2001) and 

are among the most commonly studied non-coral invertebrates in reef systems. As such, 

they were selected as an “indicator” group to observe the trends and current state of 

research of invertebrates in the Red Sea relative to the GBR and the Caribbean.   

Our WoK search revealed 23 studies on sponges from the Red Sea (18 from the 

Gulf of Aqaba), compared to 88 from the Great Barrier Reef and 170 from the Caribbean 

(Table 1, ESM 7). These 23 studies form the Red Sea do not seem to show any unifying 

theme. In fact, they span a broad spectrum of topics – from taxonomy to reproduction and 

anti-predatory defenses (e.g., Burns et al. 2003; Gugel et al. 2011).  Further, several of 

the papers were not specific to sponges, instead focused more generally on benthic fauna 



with only peripheral attention to sponges. Several articles detail the taxonomic 

identification of new species of sponges; these primarily originate from the Gulf of 

Aqaba (ESM 7). Of the five studies conducted outside the Gulf of Aqaba, two examined 

the community structure of sponges using genetic techniques (Wörheide 2006; Wörheide 

et al. 2008), while the remaining three papers examined symbiotic relationships with 

sponges and other organisms (Wilkinson and Fay 1979; Ilan et al. 1999; Magnino et al. 

1999). As genetic tools and methods continue to be developed, sponges together with 

other non-coral invertebrates could prove to be ideal model organisms to address 

numerous evolutionary and ecological questions.   

 Non-coral invertebrates are understudied worldwide, and the lack of research on 

this group appears to be accentuated within the Red Sea. Future research should prioritize 

describing the diversity and distribution of non-coral invertebrates on Red Sea reefs. At 

the same time, new species may be screened for biomedical applications. Sponges and 

the vast array of bioactive compounds they harbor have long been of commercial interest 

for their potential pharmacological value. Given that intensive taxonomic efforts have 

lapsed since the earliest European naturalists visited, the Red Sea likely holds many 

exciting new discoveries. Given the number of endemic corals and fishes within the Red 

Sea, it is likely that a particularly long list of new species of non-coral invertebrates 

awaits description by modern taxonomy (with increasingly combined morphological and 

molecular approaches) in the Red Sea.  

 

Reef-associated bacteria 

Recent advances in meta-“omic” approaches have opened up entirely new fields of work 

related to coral- and reef-associated microbial communities (Rohwer and Youle 2010). 

Although the ecological role of most of these associated microbial communities remains 



enigmatic in most cases, this is an emerging field of work that will inform research in 

coral disease, coral health and resilience, and likely even thermal tolerances. Our WoK 

search was restricted to “bacteria” as “microbiology” proved to be far too broad. We 

acknowledge that while our search may not capture all aspects of microbiology, it does 

provide a useful comparison of research efforts in this field among the three geographic 

regions.  

 Our WoK search revealed 41 Red Sea studies, compared to 342 from the Great 

Barrier Reef and 166 from the Caribbean (Table 1, ESM 8). Of all the topics we 

investigated, reef associated bacteria is among the most poorly studied outside of the Gulf 

of Aqaba. More than 80% of the papers our search returned were from the Gulf of Aqaba 

(33 out of 41 papers), with the vast majority of the Red Sea very poorly covered. Of the 

41 papers from the Red Sea (ESM 8), six focused on the relationships between coral 

disease and certain bacteria (e.g., Arotsker et al. 2009; Zvuloni et al. 2009). Several 

publications focused on bacteria isolated from sponges (e.g., Kelman et al. 2001; 

Bergman et al. 2011) and from coral mucus (e.g., Kooperman et al. 2007; Shnit-Orland 

and Kushmaro 2009). Perhaps the most unusual studies are those regarding the giant 

bacterium Epulopiscium fishelsoni, an intestinal tract symbiont of some Red Sea 

surgeonfishes (e.g., Clements and Bullivant 1991; Angert et al. 1993). This enigmatic 

bacterium was originally discovered in the Red Sea and the paper that identified them as 

bacteria (as opposed to eukaryotic protists) is amongst one of the most highly cited 

papers from the region (Angert et al. 1993).  

Globally, coral reef-associated microbial research is focusing on relationships 

between microbes and coral disease and more recently coral bleaching (e.g., Aronson and 

Precht 2001; Rosenberg et al. 2007). Notably, many studies now recognize the 

importance of identifying microbiota associated with corals, sponges, and other benthic 



organisms under normal, “healthy” conditions (e.g., Rohwer et al. 2002; Taylor et al. 

2007). In fact, most microbes are likely non-infectious and many play key roles in 

nutrient recycling of the reef ecosystem (Moriarty et al. 1985). Understanding the role of 

these microbial communities will no doubt add to our understanding of many interesting 

ecological phenomena. Microbial research on reefs in the Red Sea should continue to 

describe distribution, community composition, and function of reef-associated microbes 

to establish baseline data. The environmental conditions of the Red Sea, however, 

provide a unique opportunity to examine the role of microbes under elevated seawater 

temperatures and salinity. This may provide critical insights into the potential role of 

microbes on reefs worldwide under continued climate change.  

 

GENERAL DISCUSSION 

Despite the extent of coral reefs in the Red Sea, the biodiversity and endemism these 

reefs contain, and the seminal work of early natural historians in the Red Sea, this region 

is sorely under-studied. On average across the topics we investigated, Australia’s Great 

Barrier Reef and the Caribbean have 6 and 8 times the number of published studies, 

respectively, than the Red Sea. The lack of available information represents, in many 

cases, a significant hurdle for conservation and management in the region. We hope that, 

by highlighting gaps and areas of most urgent need for research attention, we can spur 

work in these areas.   

We do not intend to diminish the value of the work that has been done in the Red 

Sea region. Work from the Red Sea has undeniably been influential in coral reef ecology, 

as shown by the large number of results that arise due to the KeyWords Plus feature in 

WoK searches when using the term “Red Sea”. Specifically, this is an indication that 

many studies from other parts of the world cite heavily work based in the Red Sea. 



Nonetheless, the current state of knowledge of coral reef ecology in the Red Sea is 

generally far behind that of comparable regions around the world. In light of forecast 

climate change, the Red Sea may serve as an important natural laboratory to help 

understand the near future for coral reefs elsewhere in the world. The increasing attention 

to research in the Red Sea can thus have broader impact than simple acquisition of 

region-specific knowledge.   

While conducting this review, we have come across numerous relevant references 

that would traditionally be considered “grey” literature. Many Red Sea studies are 

published in conference proceedings or journals of local institutions that may be difficult 

for researchers outside of the region to discover. Of course, grey literature also exists for 

the other regions to which we compare the Red Sea results, but the relative importance of 

this body of knowledge is not clear. A substantial language barrier may exist for many 

researchers working in Red Sea countries, and in many cases these researchers may not 

submit their work to WoK-listed journals. In the Caribbean and Great Barrier Reef, 

however, it could be argued that a higher proportion of the authors are native English 

speakers, and many of these authors target WoK-listed journals. In these two regions, 

some hold a perception that grey literature represents work of insufficient quality to have 

been accepted in WoK-listed journals. On the other hand, many Red Sea researchers may 

view grey literature as a primary option for publication.  A related observation is that the 

first authors for the vast majority of the WoK papers from the Red Sea are not natives of 

a Red Sea country. In other words, it appears that most of these papers are written by 

scientists visiting the region. This may be indicative of a fundamental difference in 

publication strategy between the Red Sea and the other two regions we assessed. Simply 

increasing the amount of research funding (or number of institutions) in the region would 

not likely address this fundamental challenge. Therefore, in parallel to increased capacity 



and financial support, efforts for regional improvement should also focus on creative 

solutions to support local scientists to make a transition from targeting regional “grey” 

outlets to internationally recognized journals.   

While we acknowledge that our WoK searches do not fully capture all possible 

known information about these areas of research, we maintain that these numbers reflect 

what is readily accessible to most colleagues who might take an interest in regional work. 

Although some databases do exist for “grey” Red Sea work (e.g., PERSGA 2010), in 

many cases some prior knowledge of these databases must exist in order to locate the 

articles. Therefore, a standardized WoK search likely reveals the actual relative state of 

internationally accessible knowledge available for each region. Again, our purpose in this 

review is not to definitively assess all available information from the Red Sea for each of 

our topics but rather to highlight the knowledge gap.  

The Red Sea has the potential to once again have an important influence on coral 

reef ecology worldwide. As reefs face increasing pressure from global climate change, 

many authors have suggested that corals in the Red Sea may provide insight to 

mechanisms of adaptation or tolerance to elevated temperatures. Given the relatively 

young age of the Red Sea and high endemism of its fauna, the system may help us to 

understand speciation processes and other processes creating and maintaining 

biodiversity on coral reefs. Given general consensus that we are experiencing a global 

biodiversity crisis, coupled with limited resources for conservation, understanding these 

processes is more important than ever. The Red Sea represents a largely untapped 

scientific resource with great potential, and it is our hope that future work will 

strategically address many of these important gaps in our knowledge.   
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Figure 1: Cumulative number of Web of Knowledge listed publications through time for 

various topics in coral reef ecology from three regions: Red Sea (red line), Australia’s 

Great Barrier Reef (blue line), Caribbean (green line). Topics were searched on 

apps.webofknowledge.com using specific search terms (see Table 1) and refined by the 

respective region.  
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Table 1: Summary results of the number of publications found using Web of Knowledge search engine for various topics and 
filtered for specific comparative regions of interest. Red Sea results are separated into all relevant Red Sea results and results 
exclusive of studies conducted only in the Gulf of Aqaba / Gulf of Eilat. Full details of the records for each search are included 
online as Electronic Supplementary Material (ESM) with the respective ESM file number indicated in the table.  
 
 

Topic 
Red Sea Great Barrier 

Reef Caribbean All ESM Search Terms 
all 

excluding 
Eilat/Aqaba 

Apex Predators 40 15 85 206 2014 1 "predatory fish*" OR shark* 

Connectivity 77 41 471 670 26840 2 
((structure or connectivity) and (genetic* or 
population*) marine) or (phyloge*) and (marine) not 
"community structure" 

Coral Bleaching 12 5 339 167 1182 3 ("coral bleaching" or "bleaching event") 
Coral 

Reproduction 11 2 197 108 603 4 scleractinia* reproducti* 
Herbivory 34 19 322 255 1066 5 (Herbiv* AND coral-reef OR Graz* AND coral-reef) 

Marine Protected 
Areas 17 10 220 152 2247 6 

("marine reserve*" or "marine protected area*" or "no 
take zone*" or "no entry zone*") and ("fisheries*" or 
"spillover*" or "catch*" or "fishing*") 

Porifera 23 5 88 170 18570 7 Sponge* OR porifer* AND "coral reef" 
Reef-Associated 

Bacteria 41 8 342 166 1555 8 reef bacteria* 
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