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Abstract. I discuss the general problem of fitting mixing models to ratio-ratio data, and derive 19 

formulae for applying non-linear Maximum Likelihood methods for parameter estimation. To 20 

estimate mixing model parameters in the under-determined inversion it is necessary to introduce 21 

prior constraints, which I implement by penalizing the likelihood function for variations from a 22 

starting model. I illustrate practical aspects of the inverse problem by applying the method to 23 

synthetic data for a ternary system of putative mantle reservoirs using Sr, Nd, and Pb isotope 24 

ratios. I fit the synthetic data using two different starting models to demonstrate the sensitivity of 25 

the gradient method used to solve the non-linear inverse to the starting model and the necessity 26 

of inspecting the final model to avoid spurious results. I include Matlab scripts to facilitate 27 

starting model selection and to perform binary and ternary ratio-ratio inversions as an Electronic 28 

Appendix. 29 

30 



1. Introduction 31 

Estimation of mixing end-members from compositional data is a common analytical problem in 32 

geochemistry. If the compositional parameters are ratios of elements or isotopes (i.e., ratio-ratio 33 

data), then the equation for the mixing trend, or surface, contains cross-terms resulting from 34 

differences in end-member concentrations of the ratio denominators  (Vollmer, 1976). These 35 

cross-terms generate hyperbolic mixing surfaces in ratio-ratio parameter space, with the 36 

deviation from linearity being controlled by the denominator concentration ratios (e.g., Langmuir 37 

et al., 1978). Except for degenerate (linear) cases, which arise when the concentration ratios are 38 

all equal to unity, hyperbolic mixing surfaces have asymptotes that are parallel to the coordinate 39 

axes. 40 

The mixing inverse problem for ratio-ratio data therefore requires fitting a hyperbolic surface to 41 

data. The dimension of the hyperbolic surface is equal to the dimension of the mixing model less 42 

one, such that binary models have 1-d surfaces, ternary models have 2-d surfaces, etc. The 43 

inversion is non-unique, or under-determined, because there are an arbitrarily large number of 44 

end-member compositions that give rise to the same hyperbolic surface (Figure 1). Least Squares 45 

(LS) methods may be used to estimate the asymptotes and scale factors that define the hyperbolic 46 

surface (Albarede, 1995), but not the mixing model parameters, themselves.  47 

To estimate the mixing model parameters we must select from the range of possible solutions 48 

defined by the best-fitting hyperbolic surface. For physically plausible models with mixing 49 

proportions defined on the interval [0,1] the end-members must encapsulate the data, but the data 50 

are otherwise fit equally well by any set of end-members on the hyperbolic surface (Figure 1). In 51 

some cases the solution space can be constrained by chemical or geological arguments, but 52 



ultimately there will be a range of potential solutions that fit the data equally well from which to 53 

choose.  54 

Non-linear Maximum Likelihood (ML) methods can be used to solve this type of problem (e.g., 55 

Menke, 1989; Tarantola and Valette, 1982) by specifying a starting model and then penalizing 56 

the inverse for variations from both the data and the starting model (Sohn, 2005). The non-linear 57 

inversion requires an iterative solution that converges at maxima in the likelihood function. This 58 

approach allows for estimation of the full set of mixing model parameters by incorporating prior 59 

information in the form an initial guess for the end-member compositions and then finding a 60 

solution that minimizes misfit to both the data and the starting model. 61 

To this point treatments of the ratio-ratio mixing inverse problem have largely been limited to 62 

binary models. Many geochemical mixing problems, however, include more than two 63 

components, thus motivating extension of the inverse to higher-order systems. This work, for 64 

example, is motivated by the desire to use long-lived isotopes to study mixing of mantle 65 

reservoirs, and it has been recognized for some time that at least three, and quite possibly more, 66 

end-members are required to model the array of oceanic basalt (i.e., MORB and OIB) isotopic 67 

compositions (e.g., Zindler et al. 1982; Zindler and Hart, 1986; Stracke et al., 2005). In this 68 

paper I review the general problem of fitting mixing hyperbolas to ratio-ratio data, and derive 69 

formulae for inverting n-dimensional mixture data to obtain ML estimates of end-member 70 

compositions. I illustrate practical aspects of the ML method for higher-order models by 71 

applying it to synthetic Sr, Nd, and Pb isotope ratio data for a ternary system based on mixing of 72 

putative mantle reservoirs. Matlab scripts to perform the inversion for ternary ratio-ratio data are 73 

provided as an Electronic Appendix. 74 
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2. The general, n-dimensional, mixing hyperbola 76 

The general, n-dimensional, ratio-ratio mixing equation is given by 77 

 ,   (1) 78 

where  is the composition of end-member i for ratio j (e.g., 87Sr/86Sr, La/Sm, etc.),  is the 79 

concentration of the denominator of ratio j in end-member i, φi is the mixing proportion of end-80 

member i, and xj is the sample (mixture) composition for ratio j. To conserve mass we also have 81 

 .    (2) 82 

By rewriting Eq. (1) we obtain 83 

 .  (3) 84 

For non-trivial solutions for the mixing proportions φi we must have 85 

 ,   (4) 86 

yielding the general expression for the n-dimensional, ratio-ratio, mixing surface with 2n2 87 

parameters (n2 for  and n2 for ). We can reduce the number of parameters by expressing the 88 

equation in terms of the concentration ratios  89 

 ,  (5) 90 

 which are related by two properties: 91 



 ,   (6) 92 

 .    (7) 93 

Note also that . There are thus  independent concentration ratios, and the 94 

mixing equation can be rewritten by exploiting the fact that all of the concentration ratios can be 95 

defined by knowing  (a n by n matrix whose first row and column have entries equal to 1).  96 

From Equation (5) we have 97 

 ,    (8) 98 

and when this is substituted into Equation (4) we obtain 99 

    (9) 100 

by using the matrix property that we can scale any row or column of  by any 101 

factor (i.e., ) and the determinant of the resulting matrix must still be zero.  102 

Equation (9) represents the simplest and most general version of the n-dimensional hyperbolic 103 

mixing equation, and it has  free parameters (as opposed to 2n2 for Eq. 4):  104 

for  and n2 for . When n = 2 Eq. (9) yields the mixing hyperbola of Vollmer (1976), which 105 

can be expressed as  106 

,  (10) 107 

where 108 



    (11) 109 

Note that  is the only independent concentration ratio in the binary system.  110 

The coefficient for the cross-term, A, goes to zero when K = 1 (i.e., the end-member 111 

concentrations of the elements in the denominator are equal), yielding a degenerate hyperbola 112 

(straight line). For K ≠ 1 the mixing equation yields an equilateral hyperbola (Albarede, 1995), 113 

which can be seen by rearranging Eq (10) as follows. Assuming that A ≠ 0 we can divide Eq (7) 114 

by A to obtain 115 

   (12) 116 

where b = B/A, c = C/A , and d = D/A. This can be rewritten to yield 117 

 ,  (13) 118 

and relabeled to obtain the general form of an equilateral hyperbola 119 

 ,  (14) 120 

where  and  are the asymptotes of the hyperbola, and h is a scale factor. 121 

The equation for the equilateral hyperbola is of special interest as it highlights two important 122 

facts about the inverse problem of fitting mixing hyperbolas to ratio-ratio data. First, the mixing 123 

inversion is formally under-determined because there are  degrees of freedom 124 

(DOFs) in the mixing model (Eq. 9) but only  DOFs (the number of independent minors 125 



of an n x n matrix) in the mixing surface. In the binary (n = 2) case, for example, there are 5 126 

DOFs in the model ( ), but only 3 DOFs in the hyperbolic equation ( ).  127 

Second, the shape of a hyperbola is defined by its eccentricity, and the eccentricity of all 128 

equilateral hyperbolas is . Thus all mixing hyperbolas (except the degenerate straight line 129 

case) have the same shape, regardless of the model parameter values. Thus, while the position of 130 

the asymptotes and the scale factor may vary, the shape is fixed. The curvature of a binary 131 

mixing hyperbola varies continuously and approaches zero near the asymptotes. If the end-132 

member ratios are fixed then the curvature at a given point is controlled by the concentration 133 

ratio (e.g., Langmuir et al., 1978), but the concentration ratio does not affect the shape of the 134 

hyperbola.  135 

 136 

4. Formulation of the hyperbolic mixing inversion 137 

As described above, there are  DOFs in the mixing model (Eq. 9) but only  138 

DOFs in the mixing surface. The inverse problem is thus formally under-determined, and we 139 

cannot solve for the model parameters (i.e., end-member compositions) without the introduction 140 

of additional information. The only parameters that may be estimated from the data alone are the 141 

 asymptotes and scale factor(s) of the n-dimensional hyperbolic mixing surface. The 142 

Least Squares method presented by Albarede (1995) can be extended to general, n-dimensional 143 

systems to yield estimates for these parameters.  144 

In order to estimate mixing model parameters, as opposed to hyperbolic asymptotes and scale 145 

factors, it is necessary to introduce additional constraints to the inversion. ML methods are well-146 

suited to this type of inverse problem (e.g., Menke, 1989; Tarantola and Valette, 1982), and Sohn 147 



(2005) used this approach to derive an inversion for binary (i.e., n = 2) ratio-ratio mixing models. 148 

The ML approach can be extended to general, n-dimensional models as follows.  149 

We begin by defining a data vector,  150 

 , (15) 151 

representing the n independent ratio observations from N samples (N ≥ n). We then define the 152 

model vector, 153 

 , (16) 154 

representing the  parameters in the mixing model. The data and model vectors are 155 

grouped into a single vector, 156 

 ,      (17) 157 

which has n*N (data) +  (model parameter) rows.  158 

To begin the iterative inversion we make initial guesses for the model parameters, m0, which are 159 

used to form the initial vector, . Assuming Gaussian distributions for the data and 160 

model, the prior distribution of z is 161 

 .  (18) 162 



The inversion is then carried out by maximizing Eq. (18) subject to the constraints of the mixing 163 

model (Eq. 9) . This set of equations can be solved iteratively 164 

using Lagrange multipliers, yielding 165 

  (19) 166 

where is a gradient matrix. F has one row for each sample in the dataset and one 167 

column for each element of z, and is therefore an N x  matrix. The elements of 168 

F are defined by , which can be calculated using the formula for the differentiation 169 

of determinants 170 

 .        (20) 171 

If we set and B = adj A, we then have 172 

  for 1 ≤ j ≤     (21) 173 

    for ≤ j ≤    (22) 174 

   for ≤ j ≤  (23) 175 

where  is the Kronecker delta function with the property that  for i = j, and 176 

 for . 177 



The estimation procedure of Eq. 19 requires specification of the prior covariance matrix, , 178 

which contains data and model parameter uncertainties, and has the effect of weighting the 179 

inversion. The misfit penalty for each element of z is inversely proportional to the prior variance 180 

(uncertainty) of the individual parameters. Note that the covariance matrix determines the degree 181 

to which the solution is penalized for variations from the starting model, and that each starting 182 

model parameter must explicitly be assigned an uncertainty. If we assume that the data and 183 

model are independent then the prior covariance matrix will be diagonal, but if prior knowledge 184 

regarding covariations in the data and model is available it can also be incorporated. 185 

5. Solution of the hyperbolic mixing inversion 186 

We obtain the posterior vector, , when the iterative solution converges, with the 187 

elements of  representing the model parameter estimates. Because of the non-linear nature of 188 

the inverse problem, it is possible for the method to converge on a local, as opposed to global, 189 

minimum in the solution space, and it is also possible that the solution will not converge at all. 190 

For these reasons it is necessary to carefully inspect the inverse results, and some amount of 191 

trial-and-error using different sets of initial guesses will usually be necessary to obtain the best 192 

results.  193 

The goodness of fit of the model is expressed in terms of the likelihood function (Eq. 18), but the 194 

misfit of the posterior mixing model to the data can also be expressed as a Residual Sum of 195 

Squares (RSS) by summing the data residuals from the best-fitting hyperbolic surface, 196 

 ,  (24) 197 



where rxi is the residual of the ith data point in the x-direction, etc. The residuals are determined 198 

by finding the minimum distance between each data point and the best-fitting hyperbolic surface, 199 

which is accomplished by finding the point on the hyperbolic surface with a normal vector 200 

passing through the data and calculating the Euclidean distance between the two points. This is 201 

also a non-linear problem that requires solving an iterative system of equations. If the RSS is 202 

normalized by the number of samples and the data uncertainty then we can obtain the Mean 203 

Square of Weighted Deviates (MSWD) (e.g., Brooks et al., 1972; McIntyre et al., 1966), which 204 

quantifies the misfit relative to the data error.  205 

Estimation of model parameter uncertainties is problematic owing to the non-linear nature of the 206 

inverse and the fact that prior information must be introduced to solve the inversion. Non-207 

parametric methods can be applied to address the first issue but the second issue is more 208 

problematic. There will always be a range of possible solutions for the end-member 209 

compositions on the (infinite) hyperbolic surface (e.g., Figure 1), and in this sense the parameter 210 

uncertainties are arbitrarily large. Nevertheless, parameter estimates require uncertainties, and to 211 

address this issue I use non-parametric methods to estimate uncertainties by exploring the 212 

likelihood function (Eq. 18) in the vicinity of the final solution. I use a modified version of the 213 

bootstrap method (e.g., Efron and Tibshirani, 1986) wherein the bootstrap replicates used to 214 

estimate error include random perturbations to the starting model as well as permutations of the 215 

data. The bootstrapped parameter estimates will thus incorporate the sensitivity of the solution to 216 

the starting model, albeit only within the neighborhood of the starting model. Uncertainty 217 

estimates derived in this way are conditional on the starting model, and are thus only valid within 218 

a small region of the solution space. 219 

  220 



 221 

6. Application to test cases and discussion 222 

I apply the method to a synthetic ternary dataset to illustrate practical aspects of higher-order 223 

mixing analyses. The synthetic dataset is based on the Sr, Nd, and Pb isotopes of oceanic basalts, 224 

which have been used to study mixing of long-lived mantle reservoirs (e.g., Hart et al., 1992; 225 

Zindler and Hart, 1986). I used the putative DMM, EM1, and EM2 mantle reservoirs as the three 226 

end-member components, with isotopic compositions drawn from Zindler and Hart (1986) 227 

(Table 1). I generated 100 synthetic mixtures with random end-member mass fractions and then 228 

added Gaussian noise to mimic geological variability and/or analytical uncertainty (see 229 

Electronic Appendix).  230 

To demonstrate the sensitivity of the method to the starting model I begin the inverse with two 231 

different parameter sets. Both models have the same end-member ratio values, but in the first one 232 

all the concentration ratios are set to unity (such that the mixing surface is a plane), whereas in 233 

the second the concentration ratios have been adjusted (using the graphical interface included in 234 

the Matlab scripts) to better fit the data prior to the inversion (Table 1). In both cases the inverse 235 

is successful in fitting a hyperbolic surface to the data, but the inverse only finds the ‘true’ model 236 

when the starting model has been pre-warped to fit the data (Figures 2, 3). From the perspective 237 

views shown in Figure 2 we can see that when the starting model does not fit the data very well 238 

the solution converges to a hyperbolic surface that fits the data, but that there are some samples 239 

(mixtures with low mass fractions of end-member 2) that are outside the sample space defined by 240 

the model. This illustrates the fact that the inverse fits a hyperbolic surface to the data by 241 

adjusting the model parameters, but it does not have any way of knowing whether the resulting 242 



model parameters violate the requirement that for all i. Thus the inverse may generate 243 

parameter estimates that produce a hyperbolic surface that fits the data, but which are 244 

nevertheless in violation of mass fraction constraints. The only way to prevent this is to carefully 245 

inspect the results, which is trivial for binary cases but requires somewhat more effort for ternary 246 

(and higher-order) cases.  247 

When the starting model is warped to better match the data before starting the inversion, 248 

however, the method performs well (Figure 3). In the software included with this publication I 249 

facilitate this process by including a graphical interface that allows the user to manually perturb 250 

the model parameters until a satisfactory starting model is obtained. Comparison of the final 251 

model with the true values for the synthetic data (Table 1) reveals that the parameters have been 252 

perturbed towards the true values, but that they have not quite reached them. This is a 253 

consequence of the penalty paid for variations from the starting model, and it can be addressed 254 

by simply running the inversion again using the final model as a starting model. When this is 255 

done the solution converges to the true model within error. Careful selection of the starting 256 

model is thus essential for obtaining useful results, and some amount of forward modeling will 257 

always be needed prior to implementing the inverse method.  258 

Inspection of the initial vs. final parameter estimates in Table 1 reveals that the inverse method 259 

perturbs the concentration ratios while leaving the end-member ratio values essentially 260 

unchanged. This is because the gradients in the likelihood function with respect to the end-261 

member ratios are very weak, reflecting the aforementioned fact that the end-members can be 262 

anywhere on the best-fitting hyperbolic surface and produce the same data misfit. Thus, from a 263 

practical point of view, the inverse finds the concentration ratios that provide the best-fitting 264 



hyperbolic surface for a given starting model of end-member compositions, and may be viewed 265 

as a way of ‘tuning’ an initial model to the data by adjusting the concentration ratios. 266 

The non-linear ML method presented herein is completely general and can be applied to mixing 267 

problems with arbitrarily large numbers of end-members. There are, however, practical 268 

considerations that render the method ill-suited for mixing problems with large numbers of end-269 

members. Firstly, the disparity between the DOFs in the mixing model and the best-fitting 270 

hyperbolic surface increases with model order as , such that the inverse problem 271 

becomes increasingly under-determined as the model order grows. Secondly, inspection of the 272 

model fit to the data, which, as illustrated above is essential to avoid spurious results, becomes 273 

problematic for n > 3 because there is no way to generate a synoptic view of the model. 274 

In summary, I describe a method for inverting ratio-ratio data to obtain estimates of mixing 275 

model parameters. The derivation allows for treatment of the general n-dimensional problem, but 276 

in practice it is best suited to binary and ternary mixing models. Care must be taken when 277 

implementing the method to find a starting model that produces a reasonable fit to the data, and 278 

to inspect the final model to ensure that it does not violate mass fraction positivity constraints. 279 

The method effectively tunes a starting model to mixture data, reinforcing the fact that fitting a 280 

mixing model to mixture data requires prior knowledge, however it may be derived, regarding 281 

the end-member compositions. 282 
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Figure Captions 284 

1. The non-uniqueness of end-member components in the ternary mixing inverse problem. A 285 

suite of mixtures in a ternary system (red dots) defines a hyperbolic surface. For simplicity a 286 

planar surface is used in this figure, representing the special case where all concentration ratios 287 

are equal to one. In order to satisfy the positivity requirements for the mass fractions (e.g., fi ≥ 0) 288 

the end-member ratios must lie outside the data field, but their position on the hyperbolic surface 289 

defined by the data is otherwise formally unconstrained. For example, the data are equally well 290 

fit by the co-planar surfaces defined by end-member components [1,2,3] (gray/black surface) and 291 

[A,B,C] (yellow/blue surface). 292 

2. Inverse results for Case I – initial guess is planar surface. Three different perspective views of 293 

the synthetic data (black dots) are shown with the mixing surface defined by the initial model (A) 294 

– (C) and the final model (D) – (F). Residuals for the initial and final models are shown in panel 295 

(G). Note that the mixing surfaces are slightly transparent to allow for visibility of all data points. 296 

3. Model results for Case II – initial guess with curvature. As for Figure 2, three different 297 

perspective views of the synthetic data are shown with the mixing surface defined by the initial 298 

model (A) – (C) and the final model (D) – (F). Residuals for the initial and final models are 299 

shown in panel (G). Note that the mixing surfaces are slightly transparent to allow for visibility 300 

of all data points. 301 
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Figure 1. The non-uniqueness of end-member components in the ternary mixing inverse 
problem. A suite of mixtures in a ternary system (red dots) defines a hyperbolic surface. For 
simplicity a planar surface is used in this figure, representing the special case where all concen-
tration ratios are equal to one. In order to satisfy the positivity requirements for the mass fractions 
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