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Abstract Despite the ubiquitous role sponges play in reef
ecosystem dynamics, little is known about population-level
connectivity in these organisms. The general field of popu-
lation genetics in sponges remains in its infancy. To date,
microsatellite markers have only been developed for few
sponge species and no sponge population genetics studies
using microsatellites have been conducted in the Red Sea.
Here, with the use of next-generation sequencing, we char-
acterize 12 novel polymorphic loci for the common reef
sponge, Stylissa carteri. The number of alleles per loci
ranged between three and eight. Observed heterozygosity
frequencies (Ho) ranged from 0.125 to 0.870, whereas
expected (He) heterozygosity frequencies ranged from 0.
119 to 0.812. Only one locus showed consistent deviations
from Hardy-Weinberg equilibrium (HWE) in both
populations and two loci consistently showed the possible
presence of null alleles. No significant linkage disequilibri-
um was detected for any pairs of loci. These microsatellites

will be of use for numerous ecological studies focused on
this common and abundant sponge.
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Introduction

In the field of benthic reef ecology, considerable effort has
been made to study coral population dynamics (Van Oppen
and Gates 2006; Davies et al. 2012), while sponge ecology
and population genetics remain in their infancy (Becerro
2008; Uriz and Turon 2012). Sponges are among the most
diverse and ecologically important benthic organisms to
reefs (Sarà and Vacelet 1973; Uriz and Turon 2012).
Sponges are important to reef ecosystems as primary pro-
ducers and bioeroders (Rützler 1975; Diaz and Rützler
2001). In addition, sponges increase overall habitat avail-
ability for reef microfauna (Beaulieu 2001; Rützler 2004;
Henkel and Pawlik 2011). They remove organic matter from
the reef and increase the cycling rate of carbon and impor-
tant nutrients (Reiswig 1971; Pile et al. 1997; Diaz and
Rützler 2001; Jiménez and Ribes 2007). Furthermore, hav-
ing arisen in the Precambian era (Finks 1970; Li et al. 1998),
sponges are among the most ancient metazoans, making
them target organisms for evolutionary studies on such
varied topics as speciation, cell and tissue development,
and the origin of the immune system (Schütze et al. 1999;
Müller and Müller 2003; Srivastava et al. 2010). Lastly,
sponges produce important secondary metabolites for pos-
sible pharmaceutical applications (Munro et al. 1999; Mayer
et al. 2010). Our understanding of the basics of sponge
population ecology and genetics is thus crucial to under-
standing how sponge populations function, how they
evolve, and how resilient they can be to perturbations that
affect reef ecosystems. Like many benthic reef organisms,
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sponges have a complex life history with a juvenile larval
stage and a sedentary adult stage. While a given sponge
species might reproduce both sexually and asexually,
sponge populations rely heavily on larval dispersal for ge-
netic exchange (Maldonado and Uriz 1999; Maldonado
2006). Incorporating knowledge of genetic connectivity in
sponges into the design of marine protected areas will be
crucial for developing conservation schemes that will main-
tain ecosystem stability and diversity (McCook et al. 2009;
Arrieta et al. 2010).

To broaden our knowledge of population genetics in
sponges, we developed 12 new polymorphic microsatellite
markers for a common reef sponge, Stylissa carteri (Table 1).
S. carteri has a widespread distribution (Hooper and van Soest
2002) and has been found to be abundant in coastal Red Sea
reefs typically between 5 and 15 m in depth (M.L.B. and E.C.
G., unpublished data). As a member of the family Axinellidae,
Stylissa carteri has indirect and external larval development
(Maldonado 2006), and the morphology of the larva is
most likely of the parenchymella form (Ereskovsky 2010).
To date, genetic resources for sponges are extremely limited.
For instance, microsatellite markers have only been character-
ized for eight species not including Stylissa carteri (Duran et
al. 2002; Knowlton et al. 2003; Blanquer et al. 2005; Hoshino
and Fujita 2006; Noyer et al. 2009; Dailianis and
Tsigenopoulos 2010; Gigliarelli et al. 2010; Guardiola et al.
2011). The purpose of this study was to identify polymorphic
loci that are informative for determining the population
structure, connectivity patterns, and possible reproductive
capabilities of S. carteri.

Methods

Sample collection, DNA extraction and sequencing

Samples of Stylissa carteri were collected by SCUBA at
Fsar Reef (22°23′N; 39°03′E), n=24, and Abu Shoosha
Reef (23°305′N; 39°049′E), n=24, in the central Red
Sea at a depth between 5 and 15 m. Samples were
collected in November 2010, June 2012, and August
2012 and immediately placed in 70 % ethanol and
calcium-magnesium-free artificial seawater (CMF-ASW)
upon surfacing. The sample taxonomy was verified as
S. carteri by Nicole de Voogd at The Netherlands Centre
for Biodiversity (NCB) Naturalis.

The total holobiont DNA was extracted from 200–
250 mg sponge tissue with an initial cell lysis step where
the tissue was immersed in 600 μl of 1 % 2-mercaptoethanol
RLT buffer (Qiagen) and shaken using a FastPrep
Instrument (MP Biomedicals). Following cell lysis, the
DNA extraction method proceeded via the Allprep
DNA/RNA mini Kit (Qiagen). The quality and quantity of

extracted DNAwas measured using a NanoDrop 8000 spec-
trophotometer (Thermo Scientific).

Next-generation sequencing was done for one S. carteri
sample using a Roche 454 GS-FLX (titanium) sequencer at
the King Abdullah University of Science and Technology
Bioscience Core Lab. Over 2 million reads with an average
length of 230 bp were generated. Raw, unassembled reads
were used to search for putative microsatellite loci.

Characterisation of microsatellite loci and PCR optimization

Microsatellites were mined from the generated 454 data
using the software MSATCOMMANDER v 1.0.8 (Faircloth
2008) with Primer3 plug-in (Rozen and Skaletsky 2000).
MSATCOMMANDER default settings were used for screen-
ing reads for perfect, dinucleotide motifs. A total of 2,417
putative microsatellite loci were obtained and 96 were select-
ed for polymerase chain reaction (PCR) trials. PCR reactions
were set up following protocols associated with the Multiplex
PCR kit (QIAGEN). Primers were tested at annealing temper-
atures ranging from 55 to 63 °C. PCR reaction volume was
10 μl, consisting of 5 μl Multiplex Mix (Qiagen), 1 μl primers
(2 μM), 3 μl water, and 1 μl genomic DNA (30–100 ng/µl).
PCRs were performed using an Applied Biosystems
GeneAmp PCR 9700 system using the following parameters:
15 min at 95 °C, followed by 30 cycles of 30 s at 94 °C,
90 s at 55–63 °C, 90 s at 72 °C and a final extension
of 72 °C for 10 min. The 96 designed primer pairs were
first tested on eight samples to identify polymorphic
loci. PCR products were run on a QIAxcel genetic
analyzer (Qiagen) using a high-resolution cartridge to
check for primer specificity (clean bands) and to iden-
tify polymorphic loci. Of the 96 loci tested, 31 showed
clear unambiguous and polymorphic PCR bands.
Primers for these loci were labeled with ABI fluores-
cent tags (6-FAM, PET, VIC, and NED) and PCRs
were performed as described previously for all 48 sam-
ples. Diluted PCR products were mixed with Hi-Di
formamide (Applied Biosystems) and GeneScan 500-LIZ
size standard (Applied Biosystems) and run on an ABI 3730xl
genetic analyser (Applied Biosystems). Microsatellite loci
were scored using the software GENEMAPPER 4.0 (Applied
Biosystems).

Data analysis

Allelic frequencies, number of alleles (Na), observed (Ho)
and expected heterozygosities (He) were estimated for each
reef using the software Genalex v 6.5. We tested for the
presence of linkage disequilibrium and deviations from
Hardy-Weinberg proportions using Genepop (Raymond
and Rousset 1995; Rousset 2008). Genepop was also used
to calculate Fis using the Weir and Cockerham estimate
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(Weir and Cockerham 1984). MICROCHECKER (Van
Oosterhout et al. 2004) was used to verify if deviations from
HWE could be explained by the presence of null alleles.

Results and discussion

Of the 31 primer pairs that were used to amplify all 48
samples, only 12 yielded clear fragment peaks that could
be reliably scored and amplified in all samples. An average
of 73.5 alleles (3–8 per loci/population) was found per
population analyzed. None of the samples that were geno-
typed shared the same multilocus genotype, indicating the
absence of clones within our samples. Observed heterozy-
gosity frequencies (Ho) ranged from 0.125 to 0.870, while
expected (He) heterozygosity frequencies ranged from
0.119 to 0.812. Results from Genepop suggested that a total
of seven loci deviated from Hardy-Weinberg equilibrium
(HWE) after Bonferroni correction for at least one popula-
tion (Fsar: sc58, sc90, sc75; Abu Shosha: sc72, sc75, sc85,
sc82, sc96). However, only one locus (sc75) deviated from
HWE in both populations (pFsar<0.001, pabushosha<0.001).
Results from MICROCHECKER showed the possible pres-
ence of null alleles for seven loci (Fsar: sc58, sc90, sc56,
sc75; Abu Shoosha: sc90, sc75, sc85, sc82, sc96). Yet, only
two of these loci showed consistent evidence for null alleles
in both populations (sc90 and sc75). No significant linkage
disequilibrium was detected for any pairs of loci (α=0.05).

While it is noted that several markers developed here
showed deviations from HWE, the disparity of these de-
viations among populations in all but one locus (sc75)
suggests that other contributing factors different from null
alleles might be the cause of this phenomena. Deviations
from HWE linked to reduced heterozygosities seem to be
rather common in other sponge species (Duran et al. 2004a;
Whalan et al. 2005; Duran and Rützler 2006; Noyer 2010;
Guardiola et al. 2011; Uriz and Turon 2012), and might be a
consequence of limited dispersal leading to inbreeding, the
presence of clonality, or both, rather than the presence of
null alleles. Overall, it seems that heterozygote deficits
might be a natural trend of sponges and, in the case of this
study, it does not seem to be an artifact due to primer binding
errors. However, further studies are warranted to test these
hypotheses in S. carteri. The markers described in this study
will certainly provide a valuable tool for this purpose.

Conclusion

The 12 microsatellite markers developed here will make
useful contributions to the future studies of sponge popula-
tion genetics. Until now, microsatellites have only been
developed for eight species within all the Porifera (Duran

et al. 2002; Knowlton et al. 2003; Blanquer et al. 2005;
Hoshino and Fujita 2006; Noyer et al. 2009; Dailianis and
Tsigenopoulos 2010; Gigliarelli et al. 2010; Guardiola et al.
2011) and have only been used for population-wide analyses
in few species (Duran et al. 2004a; Calderón et al. 2007;
Hoshino et al. 2008; Blanquer et al. 2009; Blanquer and
Uriz 2010, 2011; Noyer 2010; Dailianis et al. 2011;
Guardiola et al. 2011). The highly variable markers
presented herein will be useful for determining fine scale
variability between sponge populations and tools for deter-
mining species identification for cryptic taxa within this
group. Due to strong spatial structure reported in some
sponges (Duran et al. 2004b; Blanquer and Uriz 2010),
microsatellite markers will be especially important for mak-
ing strong ecological and evolutionary inferences.
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