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Abstract: A higher-order square-root operator splitting algorithm is
employed to derive a tangent linear solution for the three-dimensional
parabolic wave equation due to small variations of the sound speed in
the medium. The solution shown in this paper unifies other solutions
obtained from less accurate approximations. Examples of three-
dimensional acoustic ducts are presented to demonstrate the accuracy
of the solution. Future work on the applications of associated adjoint
models for acoustic inversions is proposed and discussed.
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1. Introduction

Sound propagation can be affected by the temporal and spatial variability of acoustic
properties in the medium, and this paper presents a tangent linear solution for the sound
field variability due to small variations of the sound speed. Although not detailed in this
paper, this tangent linear solution can also lead to adjoint models for acoustic inversions
and sensitivity analysis. Earlier development of this modeling technique was for meteor-
ology and ocean dynamics, and it was later extended for acoustics, e.g., by Hursky et al.
(2004) and Hermand et al. (2006). The solution presented in this paper is based on the
parabolic-equation (PE) method, and the contribution of this work is to extend the
previous formulations of Hursky et al. (2004) and Smith (2006) for three-dimensional
(3D) sound propagation and for better accuracy by employing a higher-order square-
root operator splitting algorithm (Lin and Duda, 2012).

A brief introduction to the previous work is provided here. Consider the fol-
lowing one-way parabolic wave equation,

@

@x
uðx; y; zÞ ¼ ikref

�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

refr2
? þ n2ðx; y; zÞ

q �
uðx; y; zÞ ¼ ikref L uðx; y; zÞ: (1)

Here, the Cartesian coordinate system is selected to achieve a uniform resolution, and
the parabolic wave equation can also be expressed in the same form using cylindrical
coordinates. In Eq. (1), u is the demodulated sound pressure with the baseline phase
removed according to the reference wavenumber kref, i.e., uðx; y; zÞ ¼ pðx; y; zÞ
� expð� ikref xÞ; andr2

? ¼ ð@2 = @y2 þ @2 = @z2Þ is the two-dimensional (2D) Laplacian.
Besides, the exact PE operator consisting of the square-root Helmholtz operator is

L ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2

refr2
? þ n2ðx; y; zÞ;

q
(2)

where n is the index of refraction with respect to kref. For simplicity of the presentation,
the medium density variable is neglected in Eq. (1) without loss of generality. If needed,
the density variable can be either incorporated into the 2D Laplacian r2

? (Collins, 1993)
or transferred into an effective index of refraction (Bergmann, 1946). Now consider
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n2ðx; y; zÞ ¼ c0ðx; y; zÞ þ ec1ðx; y; zÞ; (3)

where c0 is the square of the index of refraction of the background state, and c1 is a
perturbation scaled by an arbitrary small parameter e. Hursky et al. (2004) showed
that the standard narrow-angle PE operator (Tappert, 1977) has the following linear
approximation with respect to c1:

L1 ¼
1
2
ðk�2

refr2
? þ c0 � 1Þ þ 1

2
ec1: (4)

Later, Smith (2006) showed another approximation for the wide-angle PE operator
(Feit and Fleck, 1978):

L2 ¼ �2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k�2

refr2
?

q
þ n0 þ en1; (5)

where the medium perturbation is directly expressed in terms of the index of refrac-
tion, n¼ n0þ en1. In this paper, a new approximation that generalizes L1 and L2 will
be derived using the following higher-order square-root operator splitting scheme
(Lin and Duda, 2012):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þAþ B
p

ffi �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B
p

� 1
2
½ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA
p

Þð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B
p

Þ þ ð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B
p

Þð�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA
p

Þ�;

(6)

where the symbols A and B denote general operators.

2. Theory

Derivation of the new approximated PE operator that generalizes L1 and L2 is straight-
forward by substituting n2(x, y, z)¼ c0(x, y, z)þ ec1(x, y, z) in the exact PE operator
L, Eq. (2), and then employing the higher-order square-root operator splitting scheme,
Eq. (6), with A ¼ �1þ c0 þ k�2

refr2
? and B ¼ ec1. This yields

L3 ¼ L0 þ
1
2
½ð1� L0Þð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ec1

p
Þ þ ð�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ec1

p
Þð1� L0Þ�; (7)

where L0 ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 þ k�2

refr2
?

q
is the background PE operator. The rest of the section

is focused on solving a parabolic wave equation composed of L3; @u = @x ¼ ikrefL3u,
to obtain the higher-order tangent linear PE solution.

We first use the same perturbation parameter e to decompose the demodulated
sound pressure, i.e., uðx; y; zÞ ¼

P1
m¼0e

mumðx; y; zÞ. Then, substituting the perturbation
expansion of u in the parabolic wave equation of L3 and collecting terms of the same
order in e yields the next set of equations for each expansion component um:

Oð1Þ : @u0

@x
¼ ikrefL0 u0; (8a)

OðemÞ : @um

@x
ffi ikrefL0 um þ

ikref

4
½ð1� L0Þc1 þ c1ð1� L0Þ� um�1 for m � 1; (8b)

where the order of c1 is kept linear by approximating
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ec1

p
in L3 as 1þ ec1/2.

Equation (8a) is a standard parabolic partial differential equation, and its solution is
u0ðxþ DxÞ ¼ eikref DxL0 u0ðxÞ with an assumption of negligible or nonexistent x-dependency
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in L0 from x to xþDx. To solve Eq. (8b), we need to first calculate the higher deriva-
tives of um, i.e.,

@‘um

@x‘
ffi ðikrefL0Þ‘um þ

ðikrefÞ‘

4

X‘�1

j¼0

Lj
0½ð1� L0Þc1 þ c1ð1� L0Þ�L‘�j�1

0 um�1

for m � 1 and ‘ � 2: (9)

Then, using the Taylor series expansion umðxþ DxÞ ¼
P1

‘¼0ð‘!Þ
�1ðDxÞ‘@‘umðxÞ=@x‘,

we can determine the solution of Eq. (8b) with an additional assumption of negligible
or nonexistent x-dependency in c1 from x to xþDx. Finally, substituting u0(xþDx)
and um(xþDx) in the perturbation expansion leads to the higher-order tangent linear
PE solution of L3:

L3 : uðxþ DxÞ ffi eikref DxL0 uðxÞ

þ 1
4

X1
‘¼1

ðikrefDxÞ‘

‘!

X‘�1

j¼0

Lj
0½ð1� L0Þec1 þ ec1ð1� L0Þ�L‘�j�1

0 uðxÞ: (10)

Because the refractive index perturbations are small in the applications of interest, we
can further assume commutativity between L0 and c1. So, Eq. (10) can be rewritten as

L3 : uðxþ DxÞ ffi eikref DxL0 1þ ikref

2
Dxð1� L0Þec1

� �
uðxÞ; (11)

where the higher-order terms in Dx in Eq. (10) are retained to form the exponential
operator. One can see that, before marching to xþDx with the background PE propa-
gator eikref DxL0 , the tangent linear correction ikrefDxð1� L0Þec1uðxÞ=2 for the medium
perturbation ec1 is applied to u(x), and the higher-order component of the correction is
�ikrefDxL0ec1uðxÞ=2.

Following similar procedures one can also find the narrow-angle and wide-
angle tangent linear solutions resulted from L1 and L2, respectively:

L1 : uðxþ DxÞ ffi eikref Dx½k�2
refr

2
?þn2

0�1�=2 1þ ikref

2
Dxec1

� �
uðxÞ (12)

and

L2 : uðxþ DxÞ ffi eikref Dx½�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk�2

refr
2
?

p
þn0�ð1þ ikrefDxen1ÞuðxÞ: (13)

Note that Eq. (11) will reduce to Eq. (12) when the higher-order correction is
neglected, and when the background PE propagator eikref DxL0 is approximated by the
standard narrow-angle PE method, L0 ffi ðk�2

refr2
? þ c0 � 1Þ=2. Similarly, Eq. (11) will

reduce to Eq. (13) if the background PE propagator is approximated by the wide-angle

PE method, L0 ffi �2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k�2

refr2
?

q
þ n0. In Sec. 3, we will directly compare these

three solutions and demonstrate that the higher-order tangent linear solution resulted
from L3 is most accurate.

Although it will not be presented as an example, the tangent linear solution
introduced in this paper can lead to an adjoint model. One approach is briefed as fol-
lows. The derivation starts with keeping only the first two terms in the perturbation
expansion of u, i.e., uffi u0þ eu1. By substituting this linear perturbation expansion in
Eq. (11), we can obtain a marching equation to determine u1(xþDx) from the value of
u0, u1, and c1 at x,
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u1ðxþ DxÞ ffi eikref DxL0 u1ðxÞ þ
ikref

2
Dxð1� L0Þc1

� �
u0ðxÞ

� �
: (14)

Equation (14) can in fact be rewritten in a compact form u1ðxþ DxÞ ffi F u1ðxÞ
þQ c1 u0ðxÞ, and it is readily suited for the procedure proposed by Hursky et al.
(2004) to construct the associated adjoint model. The details are omitted here, and
interested readers are referred to Hursky et al. (2004).

3. Numerical examples

A higher-order split-step Fourier scheme introduced by Lin and Duda (2012) is employed
here to implement the background PE propagator eikref DxL0 and the higher-order correc-
tion � ikrefDxL0ec1uðxÞ=2. An example of underwater sound propagation over an ideal-
ized slope is presented to demonstrate the solution accuracy. The geometry of this ideal-
ized problem is shown in Fig. 1(a), and the model parameters are as follows. The slope is
5�, and the water column is homogeneous with sound speed 1500 m/s, density 1 g/cm3,
and no medium absorption. The bottom is also homogeneous with sound speed 1700 m/s,
density 1 g/cm3, and medium absorption 0.5 dB/wavelength. A 75 Hz point source is
located 2 km away from the apex at a depth of 100 m. This idealized slope example is in
fact identical to the wedge problem studied by Lin and Duda (2012), where a reference
solution obtained from a method of images (Deane and Buckingham, 1993) was used to
benchmark the higher-order split-step Fourier PE solution. Here, the image solution is
used to check the higher-order tangent linear PE solution [Eq. (11)]. Note that when
implementing the higher-order split-step Fourier scheme, the water-bottom interface has
to be smoothed. The hyperbolic tangent smoothing procedure suggested by Tappert
(1977) is employed here, and the smoothing width is set to be 1.25 m, which is one-
sixteenth of the acoustic wavelength in the water at 75 Hz and will not cause significant
errors to the PE solution. Also, the numerical convergency of the higher-order split-step
Fourier scheme is ensured with the cross-range grid size Dy¼ 1.5 m, the depth grid size
Dz¼ 1 m, and the marching step Dx¼ 1.25 m.

Fig. 1. (Color online) An example of 75 Hz sound propagation in an idealized slope environment. (a) Geometry
of the slope model. (b) Comparison of TL solutions at z¼ 30 m along the x axis. Among three different tangent
linear PE solutions, the higher-order one has the best agreement with the reference solution obtained from the
method of images of Deane and Buckingham (1993).
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In the first test, the water sound speed of the background state is set to be
1510 m/s, so it requires the perturbation Dc¼�10 m/s to reach the 1500 m/s sound speed
set forth in the slope model parameters. The higher-order tangent linear PE solution of
the transmission loss (TL) at z¼ 30 m along the x axis is shown in Fig. 1(b), and the
method of images of Deane and Buckingham (1993) is implemented to obtain a refer-
ence solution for comparison. In addition to the higher-order solution [Eq. (11)], the
narrow-angle and wide-angle tangent linear solutions resulted from L1 and L2 [Eqs. (12)
and (13)] are also computed. As seen in Fig. 1(b), the higher-order tangent linear solu-
tion has the best agreement with the image solution, and the other two tangent linear
solutions have significant pattern phase errors in a distance greater than 5 km.

To examine the accuracy of the higher-order tangent linear PE solution corre-
sponding to different sound speed perturbations, the water sound speed of the back-
ground state in the idealized slope model is changed from 1470 to 1530 m/s, i.e., Dc
varies from 30 to �30 m/s. Let the higher-order solution with the background sound
speed equal to 1500 m/s (Dc¼ 0) be the reference, the root-mean-square (rms) error of
the TL solution at z¼ 30 m along the x axis is computed and plotted in Fig. 2 as a
function of Dc (the curve with circles). Small rms errors are achieved for |Dc|< 20 m/s.
A similar computation is also made by neglecting the higher-order correction
�ikrefDxL0ec1uðxÞ=2 to demonstrate its significance. The resultant rms errors are plot-
ted in Fig. 2 as a curve with triangles, and one can clearly see that without applying
the higher-order correction the error of the tangent linear solution becomes large.

Another example of the horizontal ducting of sound by a sound speed front
over a slope is presented. The sound speed front is caused by a nonlinear internal
wave of depression across the slope as shown in Fig. 3(a). There are two layers in the
water column, and the upper layer is 20-m thick with sound speed 1520 m/s, as
opposed to 1480 m/s in the lower water layer. The rest of the model parameters are
described below. The slope is 3�, and the bottom properties follow the idealized slope
example. The shape of the internal wave is a hyperbolic secant squared function with
amplitude 50 m and width 150 m, and the wave is located at 2.5 km away from the
apex. A 75 Hz point source is placed between the apex and the internal wave (500 m to
the wave), and the source depth is 50 m.

The higher-order split-step Fourier scheme is also utilized in this internal wave
example, with the same computational configuration as the previous example. Figure
3(b) shows the background TL solution on the x-y plane at the source depth (50 m) in
the absence of the internal wave, and one can see both the cut-off of the sound in the
x direction and the interference pattern caused by the horizontal refraction of acoustic
modes off the slope. Because the thermocline in the water column is depressed by the
internal wave, a 3D acoustic duct is formed. A similar ducting condition is studied
analytically by Lin and Lynch (2011), who showed that, due to the joint effect of the
off-slope refraction by the sloping bottom and the upslope refraction from the sound
speed front, the propagating sound can be trapped between the apex and the front.
The higher-order tangent linear solution shown in Fig. 3(c) indeed represents this

Fig. 2. Error comparison of the higher-order tangent linear PE solution with and without the higher-order
correction �ikrefDxL0ec1uðxÞ=2 in the idealized slope example.
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propagation physics. To examine the accuracy of the tangent linear solution, the
higher-order split-step Fourier PE solution (Lin and Duda, 2012) is computed directly
without using the perturbation formula. As seen in Fig. 3(d), the higher-order tangent
linear solution agrees with the direct solution very well. Note that, even though the
acoustic ducting condition changes drastically due to the presence of the internal wave,
the tangent linear solution can still accurately predict the effects of sound speed varia-
tions and track down the sound field variability.

4. Summary

A higher-order tangent linear PE solution of 3D sound propagation is derived in this
paper, and it unifies other tangent linear PE solutions by employing a higher-order

Fig. 3. (Color online) An example of 75 Hz sound propagation in the presence of a nonlinear internal wave over
a slope. (a) Geometry of the slope plus internal wave model. (b) The background solution of the TL on the x-y
plane at z¼ 50 m in the absence of the internal wave. (c) The higher-order tangent linear PE solution of the TL
on the x-y plane at z¼ 50 m in the presence of the internal wave. (d) Comparison of different TL solutions.
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splitting algorithm for the square-root Helmholtz operator. Numerical examples of 3D
sound propagation are presented to show the performance of the solution. The first
example considers an idealized slope/wedge problem, and the higher-order tangent lin-
ear solution agrees very well with the reference solution obtained from the method of
images by Deane and Buckingham (1993). The second example is the horizontal duct-
ing of sound by a sound speed front over a slope. It shows that the tangent linear solu-
tion can accurately predict the sound field variability even when the ducting condition
changes drastically. Future work on developing associated adjoint models is proposed
for acoustic inversions, sensitivity analysis and, as an ultimate goal, acoustic data
assimilation in a 3D environment.
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