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Abstract

The reduced Ostrovsky equation is a modification of the Korteweg-de Vries
equation, in which the usual linear dispersive term with a third-order deriva-
tive is replaced by a linear non-local integral term, which represents the effect
of background rotation. This equation is integrable provided a certain curvature
constraint is satisfied. We demonstrate, through theoretical analysis and numeri-
cal simulations, that when this curvature constraint is not satisfied at the initial
time, then wave breaking inevitably occurs.

1 Introduction

It is well-known that the Korteweg-de Vries (KdV) equation can be used to model
internal solitary waves in the atmosphere and ocean, see for instance the reviews by
Grimshaw (2001) and Melville and Helfrich (2006),

ut + µuux + λuxxx = 0 . (1)

Here u(x, t) is the amplitude of an appropriate linear long wave mode, with linear long
wave speed c0, and (1) is expressed in a frame moving with that speed. The coefficients
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µ, λ are found from certain internal expressions involving the modal function and the
background density stratification.

However, when the effects of background rotation through the Coriolis parameter f
need to be taken into account, an extra term is needed, and the KdV equation (1) is
replaced by the Ostrovsky equation is, see Ostrovsky (1978), Grimshaw (1985) or the
review by Grimshaw et al (1998),

ut + µuux + λuxxx = γv , vx = u , (2)

where γ = f 2/2c0 6= 0. On the infinite line, the mass is zero∫ ∞
−∞

u dx = 0 , and then also

∫ ∞
−∞

v dx = 0 . (3)

For periodic solutions of period 2L, replace (−∞,∞) with (−L,L).
Our concern here is with the reduced Ostrovsky equation which is obtained by setting

λ = 0 in (2),
ut + µuux = γv , vx = u . (4)

Importantly, we note that when γ = 0, equation (4) reduces to the inviscid Burgers
(or Hopf) equation. It is then well-known and easily demonstrated that all localized
solutions, or all periodic solutions, will break. That is the solution will develop an infinite
slope in finite time. The issue then is how this breaking is affected when γ 6= 0. This is
to be contrasted with the regularisation of the Hopf equation by the KdV equation (1)
when it is known that breaking is replaced by the emergence of internal solitary waves,
often in the form of internal undular bores.

The reduced Ostrovsky equation (4) (also known variously as the Ostrovsky-Hunter
equation, or the Vakhnenko equation) has been previously studied numerically and
theoretically, notably by Hunter (1990) Vakhnenko (1992), Parkes( 1993), Vakhnenko
and Parkes (1998), Boyd (2004, 2005), Stepanyants (2006), Liu et al (2010) and Kraenkel
et al (2011). We also note that it is readily shown that equation (4) does not have any
smooth solitary wave solutions (see Liu et al (2010) and the Appendix of Grimshaw
and Helfrich (2011), where the argument produced there still applies when λ = 0), but
does support a family of smooth periodic travelling wave solutions (Ostrovsky, 1978).
Thus clearly not all solutions will break, although Boyd (2005) showed numerically that
a large class of solutions will break, even when the amplitude is very small provided
that the length scale is correspondingly also very small. However, it has been shown
by Vakhnenko and Parkes (1998) that (4) is integrable, with soliton solutions, see also
Vakhnenko (1992), Parkes( 1993) and Kraenkel et al (2011). This would seem to predict
that breaking is prevented, contrary to the numerical results of Boyd (2005), and also
to the proven non-existence of solitary waves. The purpose of this paper is to provide
an explanation of these apparent contradictions.

We can rescale equation (4) by

x̃ = γx , t̃ = t , ũ = µγu , ṽ = µγ2v . (5)
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Then equation (4) is obtained with µ = γ = 1, which we assume henceforth. In section
2 we examine the claimed integrability of (4) and show that although it is integrable
there is also a very strong constraint on when integrability can hold. In section 3 we
re-examine the soliton and periodic travelling wave solutions of (4) and demonstrate
that the former violate the integrability constraint, while the integrability allows for
an explicit determination of all the allowed periodic travelling waves. In section 4 we
present a sample of our numerical results, which confirm those of Boyd (2005), and go
further in indicating that when the integrability constraint fails, then breaking inevitably
occurs. We conclude in section 5 with a summary and discussion.

2 Integrability

Vakhnenko and Parkes (1998) used a transformation of variables to establish integrabil-
ity of (4), given by (but note the notation is changed here),

x = θ(X,T ) = X +

∫ T

T0

U(X,T ′) dT ′ , t = T , u(x, t) = U(X,T ) . (6)

Note that these are in fact characteristic co-ordinates, and can be specified by

dx

dt
= u , where x = X at t = T0 . (7)

It then follows that

UT = ut + uux , UX = φux , φ = θX = 1 +

∫ T

T0

UX(X,T ′) dT ′ , φT = UX . (8)

Thus equation (4) becomes

UXT = φU , and so UUXTT − UTUXT = U2UX . (9)

Finally, putting

U = VT , where V =

∫ T

T0

U(X,T ′) dT ′ , and so φ = 1 + VX , (10)

we see that (9) becomes
VXTT = (1 + VX)VT . (11)

Note that the zero mass condition (3) becomes∫ ∞
−∞

VT (1 + VX)dX = 0 . (12)

3



Vakhnenko and Parkes (1998, 2002) have shown that (11), and hence (4), is inte-
grable, and has loop soliton solutions constructed by the Hirota method. Note that they
set T0 = −∞. The Lax pair is

ψTTT − VTψT − Λψ = 0 ,

3ψXT − (1 + VX)ψ − νψT = 0 ,
(13)

where ν = ν(X) is arbitrary, and the spectral eigenvalue Λ is a constant. In this Lax
pair formulation, X is the “evolution” variable, and T is the “spatial” variable, so that
we cannot immediately use this Lax pair for an initial value problem. But importantly
we note that although the integrability of (11) holds for all X,T , it does not necessarily
hold for all x, t, as the implied integrability of the reduced Ostrovsky equation (4) will
only then hold provided that the Jacobian of the transformation from (x, t) to (X,T )
should not vanish. This Jacobian is φ, and since φ = 1 at T = T0, we infer that (4) is
integrable provided that φ > 0. But if as T = t → tb, φ → 0,∞, then the relations (8,
10) imply that ux → −∞, and so breaking occurs.

In an apparently alternative approach, Kraenkel et al (2011) have shown that the
original equation (4) in the (x, t) coordinate system, also has a Lax pair, expressed in
terms of a function F where

F 3 = 1− 3uxx . (14)

In particular they show that F is a conserved density,

Ft + (uF )x = 0 . (15)

In the transformed variables this becomes

(Fφ)T = 0 , so that Fφ = F0(X) where F (X,T0) = F0(X) , (16)

where we have used the boundary condition that φ = 1 at T = T0, and we note that
at T = T0, X = x, so that F0(x) is determined by the initial conditions in the original
variables. Further, we find that

uxx =
1

φ
{UX
φ
}X =

1

φ
{φT
φ
}X =

1

φ
{φX
φ
}T =

φφXT − φXφT
φ3

=
{log φ}XT

φ
. (17)

Indeed, the key result (15) can be established directly from (11) and (17). Next, we note
that using (16) and the definition (14), the expression (17) takes either of the equivalent
forms

(logF )XT =
F0

3F
(F 3 − 1) , (18)

or (log φ)XT =
φ

3
(1− F 3

0

φ3
) . (19)

which are, respectively, equations for F or φ alone. Then, as noted by Kraenkel et al
(2011), (18) can be converted to the integrable Bullough-Dodd equation

3vY T = exp (2v)− exp (−v) , where F = exp (v) , Y =

∫ X

X0

F0(X
′) dX ′ . (20)
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Note that transformations used by Vakhnenko and Parkes (1998, 2002) and that used
by Kraenkel et al (2011) are equivalent, although apparently Kraenkel et al (2011) were
unaware of this. The Lax pair of Kraenkel et al (2011) can now be obtained from that
for the Bullough-Dodd equation (20) in the transformed variables (X,T ) variable with
evolution in the T = t variable; see also Faquir et al (2007) and the references therein,
which indicate a connection with the Dym hierarchy, and presumably is equivalent to
the Lax pair (13).

The transformation to the integrable Bullough-Dodd equation (20), requires that
F 6= 0. In an infinite domain where all solutions are required to be localised, or in a
periodic domain, there is always at least one point where uxx = 0, and hence at that
point, F = 1. We conclude that integrability holds when F > 0, that is 3uxx < 1.
The conservation law (16) then shows that this condition is completely equivalent to
the condition that φ > 0. Indeed this condition also shows that as φ → 0,∞, then
F →∞, 0, and breaking occurs. We conclude that loss of integrability inevitably leads
to breaking.

In more detail, we infer that if the initial condition u(x, 0) = u0(x) is such that
F (x, 0) = F0(x) > 0 for all x, that is 3u0xx < 1 for all x, then from (16) 0 < Fφ =
F0(X) < ∞, integrability holds and there is no breaking. On the other hand, suppose
that there is a set of intervals x1 ≤ x ≤ x2 in which of which F0(x) ≤ 0, 3u0xx ≥ 1,
with equality only at the end points. Importantly, we observe that the value F = 0 is
conserved on characteristics, that is, if F0(X1,2) = 0, then F (X1,2, T ) = 0, T ≥ 0 (note
that now we set T0 = 0 without loss of generality). Consequently when the initial value
F0(X) takes both positive and negative values, then as long as the solution exists, that
is 0 < φ <∞, the X,T domain is divided into regions where F < 0, namely the region
between the characteristic boundaries X = X1,2, and the remaining region where F > 0.
Formally, the reduction to (20) holds only when F > 0. However, the conservation law
(16) remains valid as long as 0 < φ <∞, and if F < 0, (18) is replaced by

3F (log [−F ])XT = F0(F
3 − 1) , (21)

while the Bullough-Dodd equation (20) is replaced by

3vY T = exp (2v) + exp (−v) , where − F = exp (v) , Y =

∫ X

X0

F0(X
′) dX ′ . (22)

Formally (20) becomes (22) if v is replaced v+ iπ, according to the change of sign of F ,
and hence we assume that (22) may also be integrable, albeit in the complex v-plane.
However, the full equation is not integrable, with a breakdown on the lines X = x1,2
where F = 0.

Next, we note that equation (19) can be formally integrated once to yield

β(X,T ) = (log φ)X =

∫ T

0

φ

3
(1− F 3

0

φ3
) dT . (23)

where we have used the initial condition that φ = 1 at T = 0. This holds in the interval
X1 ≤ X ≤ X2 where F0 ≤ 0 (as well as in the remaining intervals where F0 > 0), and
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then the integrand on the right-hand side is positive for all φ > 0, with a minimum value
of −2−2/3F0(X) achieved where φ = −21/3F0(X), independently of T . Note that since
φ = 1 at T = 0, there always exists at least a finite domain in T ≥ 0 where φ > 0. It
follows that then β > 0 in X1 ≤ X ≤ X2, and so also φX > 0, with the consequence that
φ cannot achieve a minimum value in this interval. Indeed, for each X in the interval
X1 < X < X2,

β = (log φ)X > −2−2/3F0(X)T , (24)

and integrating (24) over the interval X1 < X < X2 yields

φ(X1, T ) < φ(X2, T ) exp (−αT ) , (25)

where α = 2−2/3
∫ X2

X1

(−F0(X)) dX = 2−2/3
∫ X2

X1

{3u0xx(x)− 1}1/3 dx . (26)

Thus the Jacobian φ(X1, T ) at the left-hand end of the interval on which F0 is negative
becomes exponentially small compared to its value φ(X2, T ) at the right-hand end. Thus,
provided the Jacobian φ(X2, T ) at the right-hand end does not grow exponentially fast,
φ(X1, T ) at the left-hand end becomes arbitrarily small. This suggests that breaking
will occur extremely close to the location X = X1, but since φX(X = X1, T ) > 0 from
the arguments described above, we infer that the first breaking event will occur just
below X = X1. In this vicinity, the slightest fluctuation will induce wave breaking. The
bound (25) becomes more stringent the larger the area of negative F0 in the interval
X1 < X < X2, with the e-folding time 1/α decreasing monotonically with increasing
area.

3 Travelling waves

3.1 Loop solitons

Before describing our numerical results on breaking solutions, it is useful to consider
the reduction of (4) for steady travelling waves. First we note that the the loop soliton
solutions of (4) obtained by Vakhnenko and Parkes (1998) violate the integrability con-
straint that φ > 0, and hence that 3uxx < 1. In the (X,T ) variables the loop soliton
solution is given by

U = − 3

8k2
sech2(kη) , η = X − cT , c = − 1

4k2
. (27)

In physical space, this loop soliton solutions (27) becomes

u = − 3

8k2
sech2(kη) , ζ = x+

t

4k2
= η − 3

2k
tanh (kη) . (28)

The condition φ > 0 becomes

φ = θX = 1− U

c
= 1− 3

2
sech2(kη) > 0 , (29)
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which is clearly violated for all η such that sech2(kη) > 2/3. That is the transformation
between ζ and η is only valid for sech2kη < 2/3. Also, the curvature (17) is

uxx =
c2U2

η − U(c− U)2

(c− U)3
=
−U(c2 − cU + U2/3)

(c− U)3
,

U

c
=

3

2
sech2(kη) , (30)

which is negative for all 0 < U/c < 1, but positive and greater than 3 for 1 < U/c < 3/2,
with a singularity at U = c. Thus the criterion that uxx < 1/3 is violated when U = c,
precisely the same value when φ = 0.

3.2 Periodic travelling waves

The reduced Ostrovsky equation (4) has a family of periodic travelling waves, u =
u(ζ) , ζ = x− ct of period 2L, with a limiting wave with a parabolic shape and a corner
crest, see Ostrovsky (1978), Grimshaw et al (1998), Boyd (2004) and Stepanyants (2006).
This limiting wave is given by

u =
ζ2

6
− c

2
, c =

L2

9
, −L < ζ < L . (31)

Note that this has 3uζζ = 1 and so is on the boundary of the allowed domain 3uζζ < 1.
The full family of periodic travelling waves can be obtained explicitly using a slight
adjustment of the transformation (6) described above. Let u = u(ζ), ζ = x− ct, so that
(4) becomes

{(u− c)uζ}ζ = u . (32)

Now put

ζ = η − V (η)

c
, u(ζ) = U(η) = Vη(η) . (33)

so that (32) becomes
c2Uηη = U(U − c) . (34)

Note that if (U, c) is a solution, then so also is (U − c,−c). There are two families of
periodic solutions, given by

U = a cn2(kη;m) + d , (35)

where a = −6mk2c2 ,
c

a
= ±2(m2 −m+ 1)1/2

3m
, (36)

and
d

a
=

[1− 2m± (m2 −m+ 1)1/2]

3m
. (37)

Here cn2(·) is the Jacobi Elliptic function of modulus m, 0 < m < 1. The solution (35)
has a period 2K(m)/k in the variable η, and hence, on using the transformation (33)
the corresponding period 2L in the variable ζ is given by

kL = [1− d

c
− 6ck2(1−m− E(m)

K(m)
)]K(m) , (38)
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For the first family, as m → 1, the solution (35) reduces to the solitary wave (27), and
as m→ 0 it reduces to a linear sinusoidal wave with wavenumber 2k in η-space, riding
on a pedestal d = c = −1/4k2. However, the expression (38) then shows that kL → 0
as m → 0, and so with L fixed, it follows that then k → 0, and this limit is singular.
For the second family, as m → 1, the solution (35) reduces to a solitary wave riding
on a pedestal d = c = −2a/3 = 1/4k2, and as m → 0 it reduces to a linear sinusoidal
wave with a wavenumber 2k in η-space, riding on a zero pedestal with speed c = 1/4k2.
In this case, the expression (38) shows that 2πk = L as m → 0, and so 1/2k is the
wavenumber in ζ-space. In physical space these solutions are given by

u = a cn2(kζ;m) + d , ζ = η − V (η)

c
, (39)

provided that
∂ζ

∂η
= 1− U(η)

c
6= 0 , (40)

which is just the general condition φ > 0. Since this must hold for all η, and a < 0, this
condition will fail when 0 ≤ d− c ≤ −a, that is, when

0 ≤ 2m− 1± (m2 −m+ 1)1/2 ≤ 3m.

It is readily shown that the first family satisfies this condition for all m, 0 < m < 1, and
hence cannot be physically realized. However, the second family does not satisfy this
condition for any m, 0 < m < 1, and hence is physically realizable. Note that for this
second family, it follows from (33, 38) that when m = 1, kL = 3/2, while

u =
1

4k2
− 3

8k2
sech2(kη) , ζ =

3

2k
tanh (kη) ,

so that the parabolic limiting solution (31) is recovered. From this perspective, the
limiting solution is a solitary wave! Also, the curvature is given by

uxx =
c2U2

η − U(c− U)2

(c− U)3
=

1

3
− D

3(c− U)3
, D = (d− c)2(c+ 2d) .

Since D ≥ 0, c − U ≥ 0 for all m, 0 ≤ m ≤ 1, it follows that 3uxx ≤ 1 for all m with
equality only at m = 1.

4 Numerical results

It remains to reconcile the theoretical results of section 2 with the numerical calculations
of Boyd (2005), and to this end some new simulations are reported here. Remarkably,
Boyd showed numerically that for the initial condition u(x, 0) = u0(x) = b cos kx, the
solutions break if 3bk2 > 1, which is precisely the condition that 3u0xx(x) > 1 for
some x. However, this numerical result is limited to a sinusoidal initial wave, while
the condition 3u0xx(x) > 1 for some x, that is max [3u0xx] > 1, is more general, and
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Figure 1: The maximum of 3u0xx as a function of θ for the initial condition (43) with
u1 = 0.3 and u2 = 0.03.

as discussed in section 2, points to the possibility that any initial state satisfying this
condition will evolve to breaking. Indeed, Boyd presented one calculation with an initial
condition composed of a superposition of two sinusoidal waves: one with k = 1 and the
second with k = 10. The amplitudes of the individual harmonics were chosen so that
the long wave satisfied 3bk2 < 1 and the short wave had 3bk2 > 1. In the calculation
the long wave remained stable and smooth, while the short wave proceeded to breaking
with 10 breaking crests. This seems to suggest that a general initial condition with a
region where 3u0xx > 1 will break. However, the significant amplitude and wave number
separation in Boyd’s two-wave example permitted the two waves to evolve essentially
independently. Thus the breaking was interpreted solely as a consequence of the short
wave exceeding the condition 3bk2 > 1.

We further test the connection max [3u0xx] > 1 to the occurrence of wave breaking,
by solving the reduced Ostrovsky equation (4) (with µ = γ = 1) numerically. As
Boyd (2005) notes, solutions of (4) on a domain of length L can be rescaled to any
other domain, thus our present calculations are for a periodic domain of length 2π. Two
contrasting numerical schemes were used. The first was a Fourier-pseudospectral method
with a fourth-order Runge-Kutta time integration for the equation in the original form
(4). In all the calculations presented here the model was run with N = 4096 grid points
(or Fourier components). Anti-aliasing was applied to the calculation of the nonlinear
term by zero-padding the Fourier transform to 2N coefficients. The time step was varied
between runs for numerical stability. This numerical model was tested by confirming
t hat a single sinusoidal wave will break if 3bk2 ≥ 1.02. The modest departure of the
breaking condition from the theoretical value is consistent with Boyd’s (2005) results
and is due to the rapid increase in time to breaking as 3bk2 approaches 1 from above and
the accumulation of numerical errors. As in Boyd (2005), the occurrence of breaking was
determined by monitoring the Fourier amplitudes of the numerical solution (see below).
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Figure 2: Numerical solutions of (4) with the initial condition (43) for u1 = 0.3 and
u2 = 0.03 at t = 0 (a) and t = 9 (b). The dashed curves are for θ = 3.913 and
max [3u0xx] = 0.9 and the solid curves are for θ = 3.109 and max [3u0xx] = 1.1.
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Figure 3: a) The magnitude of the Fourier coefficients at t = 9 for the numerical solutions
in Figure 2. b) Time series of B, the mean of the magnitudes of the Fourier coefficients
of the highest 128 wave numbers. In both panels the solid lines are for max [3u0xx] = 1.1
(θ = 3.109) and the dashed lines for max [3u0xx] = 0.9 (θ = 3.913).
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Figure 4: The time to breaking, tb versus max [3u0xx] for the initial condition (43) with
u1 = 0.3 and u2 = 0.03. The squares are for −π/2 ≤ θ ≤ π/2 and the circles are for
π/2 ≤ θ ≤ 3π/2

The second numerical method solves the reduced Ostrovsky equation in the charac-
teristic form (9). Thus, let W = UX with inverse U = I(W ) so that this characteristic
form can be written as the first order pair,

(φ,W )T = (W,φI(W )), (41)

subject to the initial conditions that φ = 1 and W = F ′0(X) at T = 0. Note that U
can be recovered from W preserving the zero mean condition (3), by ensuring that the
inverse operator I has the property that, for any 2π-periodic function f(X),

(If)X = f and

∫ 2π

0

If dx =

∫ 2π

0

(If)φ dX = 0 . (42)

This system is solved to spectral accuracy for an unbounded interval in Esler et al
(2009) (note that there is a misprint in their equation (26)) by expanding φ as a series
of Chebyshev polynomials inX with time-dependent coefficients. As noted there, solving
in characteristic space is particularly useful for investigating wave-breaking as the wave
breaks when the order unity quantity φ passes smoothly through zero. Esler et al
(2009) show that characteristic integrations can be carried smoothly past breaking,
where they agree closely with finite volume integrations which fit “equal area” shocks
to the waves after breaking. The system (41) was integrated numerically with spectral
accuracy by performing the integration in (42) in Fourier space and then normalising
in real space using the result that the trapezium rule is spectrally accurate for periodic
functions. Integrations up to T = 100 with 2048 nodes showed that Fφ was conserved
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Figure 5: Numerical solutions of (4) with the initial condition (44) with l = 0.3 and
b = −0.0165 (solid lines) and b = −0.0153 (dashed lines) at t = 0 (a) and t = 9 (b).
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Figure 6: Numerical solution of (4) with the initial condition (44) with l = 0.3 and
b = 0.05 for 0 ≤ t ≤ 18 in intervals of 0.5. The thick line segments indicate regions
where 3uxx > 1 for t < 14.
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with an accuracy of 10−8, and so the conservation of Fφ (see (16)) was used explicitly
by replacing (41) by the single equation (19). The advantage of this formulation is
that (19) depends solely on the Jacobian φ which remains positive and of order unity
until it vanishes when the wave breaks. The weakness of using (19) is that integrating
past breaking is less straightforward than for the pair (41). Next we note that equation
(19) can be formally integrated once, to yield (23). This equation was integrated for
evenly-spaced nodes on (0, 2π) using a Runge-Kutta method with φ obtained using the
inverse operator I, and normalised to spectral accuracy using the trapezium rule. This
implementation proved extremely fast, accurate and robust.

4.1 Fourier pseudo-spectral method results

First, we present the results using the Fourier pseudo-spectral method. The initial
condition is the superposition of a sinusoidal wave of length 2π and its first harmonic,

u0(x) = u1 sin (x) + u2 sin (2x+ θ), (43)

where θ is an arbitrary phase shift. The phase shift has two effects. The first is that the
amplitudes u1 and u2 can be selected so that each individual component is subcritical,
while varying θ causes the composite initial state to be either subcritical or supercritical
to the criterion max [3u0xx] > 1. This is illustrated in Figure 1 where max [3u0xx] from
(43) is plotted as a function of θ for u1 = 0.3 and u2 = 0.03. Furthermore, for these
values of u1 and u2 there is at most one region of 3u0xx(x) > 1 in the domain.

Two initial waves from (43) with u1 = 0.3 and u2 = 0.03 are shown in Figure 2a.
One (dashed) has θ = 3.913 and max(3uxx) = 0.9. The other (solid) has θ = 3.109 and
max(3uxx) = 1.1. These two initial conditions are quite close to each other, yet only
the case with max [3u0xx] = 1.1 evolves to breaking. Figure 2b shows the numerical
solutions at t = 9 and the supercritical initial condition has developed a small, but clear
breaking front where ux exhibits a spike. The magnitudes of the Fourier components at
t = 9 for each wave are plotted in Figure 3a. The magnitudes of the components of the
supercritical wave have increased and filled in for all Fourier degrees indicating breaking
(Boyd, 2005). In contrast, the subcritical case exhibits the expected exponential fall-off
with degree with a floor at the roundoff error limit. A good diagnostic for breaking is
the average value, B, of the highest 128 degree Fourier coefficients. The time series of
B(t) for these two numerical runs is plotted in Figure 3b. B(t) stays at the roundoff
floor for the subcritical initial condition. For the supercritical initial condition, B(t)
increases rapidly at t ≈ 7.75 and subsequently levels off. Note that the pseudospectral
numerical solution of (4) is unreliable once the breaking has fully developed.

Additional numerical solutions for u1 = 0.3 and u2 = 0.03 with θ varied confirm that
breaking emerges only for initial conditions with max [3uxx] > 1.02. Figure 4 shows the
time to breaking, tb, as a function of max [3u0xx]. Here tb is found from the intersection
of two linear fits to log(B(t)) on either side of the point of departure from the roundoff
floor. The time to breaking increases rapidly as the critical condition is approached
from above and decreases toward the non-rotating breaking time tb = 1/max [−u0x] =
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u−11 = 3.33 for the primary wave as max [3u0xx] increases. The time to breaking is
largely independent of the phase θ (i.e., details of the initial conditions). The squares
and circles indicate θ ≤ π/2 or θ ≥ π/2, respectively (see Figure 1). Additional tests
with different combinations of u1 and u2 give the same for the value of the breaking
criterion and a similar behaviour for tb as a function of the supercriticality.

It is important to know whether the breaking criterion max [3u0xx] > 1 applies to all
initial conditions. This is, of course, impossible to test numerically, but it is reasonable
to consider an initial disturbance that is quite different from (43). Thus some additional
calculations were undertaken with the Gaussian-shaped disturbance

u(x, 0) = b exp(−x
2

l2
)− b l

2π1/2
erf(

π

l
) (44)

in the periodic domain −π ≤ x ≤ π. Here b is the amplitude and l is the width scale.
The second term in (44) is the domain average of first term so that the integral of u(x, 0)
over the domain is zero as required.

First consider the situation b < 0. Then max [3uxx] = −6b/l2 at x = 0. Figure
5a shows two initial conditions for l = 0.3 with b = −0.0135 and −0.0165, so that
max [3uxx] = 0.9 and 1.1, respectively. The numerical solutions at t = 30 are plotted in
Figure 5. The supercritical, b = −0.0165, example has developed a breaking front near
x = 0. This is reflected in the B(t) diagnostic (not shown) which indicates breaking
occurs at tb ≈ 24.8. The subcritical case shows no evidence of breaking for t ≤ 100.

When b > 0 there are two regions where max [3uxx] > 1, centered at x = ±(3/2)1/2l,
for b > l2e1.5/12. A numerical solution with l = 0.3 and b = 0.05 such that max [3uxx] =
1.49 is shown in Figure 6. This example shows that the regions of 3uxx > 1 (indicated
by the thick line segments for t < 14) remain intact as the solution evolves and that
breaking fronts emerge from each of these regions. For t ≥ 14 additional scattered
regions of 3uxx > 1 develop due to accumulation of energy at high wave numbers once
the breaking begins (tb ≈ 10.3) and are not shown since they are related to errors in
the numerical solution. Additional numerical experiments with (44) and variations of
b and l again shown that breaking only emerges when the initial condition satisfies
max [3u0xx] > 1.02 for some range of x.

4.2 Characteristic method results

This numerical method has better accuracy, and is used here to refine the results ob-
tained above. Let the minimum over X at any time T of the Jacobian occur at Xm(T )
and have value φm(T ) = φ((Xm(T ), T ). Figure 7(a) shows log[φm(T )] as a function
of T for the initial profile (43) with u1 = 0.3, u2 = 0.03 and θ0 = 3.5453 so that
max[u0xx]−1/3 = 4×10−5. The wave breaks when φm first vanishes, at T = Tb = 2081.7
where Tb is the time to breaking (note that in this subsection we consistently use T in-
stead of t since we are now using characteristic variables, but of course T = t are the
same variable, see (6)). For this initial profile (26) gives α = 6.21× 10−4 so αTb = 1.3.
Figure 7(a) includes a line of slope α showing that the decay of φm(T ) is indeed bounded
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by (25) and is captured by (25) over the majority of the evolution. Figure 7(b) shows
αTb as a function of max[u0xx]− 1/3 for the same initial profile as in Figure 7(a) but for
varying θ0. Over two orders of magnitude change in the abscissa the ordinate varies by
less than 5%.

Figure 8 shows the Jacobian at the moment of breaking, φ(X,Tb), for the example
of Figure 7(a) with Figure 8(a) showing one period in X and Figure 8(b) showing the
detail of the wave in the region where F0(X) < 0. The scalings for Figure 8(b) follow
from the discussion leading to (26) in section 2, but it is informative to derive them
independently. Consider a weakly supercritical initial condition where u0xx is smooth
with a maximum at X0 slightly exceeding 1/3. Then, near X = X0,

u0xx = a− b(X −X0)
2 + · · · , (45)

where a = max[u0xx] = u0xx(X0) and b = −(1/2)u0xxxx(X0) > 0, and so

[F0(X)]3 = (3a− 1)[−1 + ξ2 + · · · ], (46)

where ξ = (X − X0)[3b/(3a − 1)]1/2 and ξ = ±1 corresponds to X = X1, X2 in the
general case. The generic behaviour near the breaking location should be governed by
a parameter-free version of (19) and so near breaking φ scales as F0, exactly in accord
with our analysis and the numerical integrations. Thus we write

φ = (3a− 1)1/3φ̂ . (47)

Then equation (19) becomes a parameter-free generic equation near breaking,

(log φ̂)ξτ = (φ̂/3)[1 + (1− ξ2)/φ̂3] , (48)

where T = ετ for

ε =
(3a− 1)5/6

(3b)1/2
. (49)

As expected, (49) differs from the general expression (26), applied in this limit, by only
a multiplicative constant. As can be seen in Figure 8(b), the form (46) means that F0

has an infinite gradient at X = X1,2. This is the generic behaviour for a smooth function
u0(x) but there is no such restriction on (19) nor in the analysis leading to (25) and (26),
and also no restriction there that u0xx should only slightly exceed 1/3. As 3u0xx → 1+ in
Figure 7(b), αTb approaches a non-zero value, corresponding to τ = τb ∼ 1.3. This value
could be found directly from integrating (48) subject to an arbitrary admissible initial
condition and appropriate boundary conditions, which appear to be that φ/F0 = O1 as
ξ → ±∞.

Figure 8(b) shows that the Jacobian first vanishes when Xm is indistinguishably close
to ξ → −1 from below, that is as X → X1 from below. Since Xm is also a minimum of
log φ,

β(Xm(T ), T ) = 0, and βX(Xm(T ), T ) > 0. (50)
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Differentiating with respect to T and using (23) gives

βXẊm + (1/3)φm[1− (F0(Xm)/φm)3] = 0. (51)

Once φm < F0, and this always occurs for sufficiently long integrations given the shapes
of φ and F0, (51) shows that Ẋm > 0. That is, the minimum of the Jacobian moves
monotonically to the right. Figure 9 shows log10[X1 − Xm(T )] for the same initial
profile as in Figure 7(a). The distance decreases slightly faster than the minimum of the
Jacobian showing that breaking for weakly supercritical initial conditions first occurs at
the point corresponding to the left-hand edge of the region where u0xx exceeds 1/3.

Figure 10 shows the minimum of the Jacobian, φm(T ), as a function of time for the
profile of Figure 7(a), and for T > 400. The dashed line shows the corresponding value
of F0 at the same X and T , i.e. Fm(T ) = F0(Xm(T )). On average φm is less than
1
2
Fm and so the second term on the right-hand side of (19) is approximately 8 times the

first. The nearer to breaking the greater is this disparity. Thus breaking is governed in
general by the approximate equation

(log φ)XT = − F
3
0

3φ2
, (52)

with F 3
0 = 2(−1 + ξ) in the local equation (48). Equation (52) has the solution

φ = A+B(X)T, (53)

for A constant and B(X) a function of X alone, provided ABX(X) = −F 3
0 /3. Thus

near breaking

φ = A(1− T

Tb
) +

T

3A

∫ X1

X

F 3
0 (X ′)X ′. (54)

Since F0 > 0 in X < X1 and F0 < 0 in X > X1 the expression (54) shows that φ is
increasing monotonically with distance from a local minimum at X = X1 of

φm = A(1− T

Tb
). (55)

For the local equation (48) this becomes

φ̂ = A(1− τ/τb) + (2τ/3A)(ξ + 1)2, (56)

with φ̂m = A(1− τ/τb). The form (55) is consistent with Figure 10 where the minimum
of the Jacobian does indeed appear to decrease linearly with T until vanishing at Tb.

5 Conclusion

Our numerical results and analysis for the reduced Ostrovsky equation (4), together with
the numerical results of Boyd (2005), strongly point to several conclusions regarding
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Figure 7: (a) The logarithm of the minimum, φm(T ), over X of the Jacobian φ(X,T )
as a function of T for the initial profile (37) with u1 = 0.3, u2 = 0.03 and θ0 = 3.5453
so max[u0xx]− 1/3 = 4× 10−5, computed with N = 4096 nodes. The wave breaks when
φm first vanishes, at T = Tb = 2081.7. (b) The scaled time to breaking, αTb, for this
initial profile for varying θ0 as a function of the excess of u0xx over 1/3. The number of
nodes in the computations are: ‘+’ N = 2048 and ‘o’ N = 4096.
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Figure 8: (a) The Jacobian φ(X,Tb) at the instant of breaking for the evolution of Figure
7. The thinner curve shows F0(X) which is negative in a region surrounding 1.31π. (b)
The scaled Jacobian φ̂(ξ) as a function of the scaled co-ordinate ξ. The scaling is such
that the region of negative F0(X) has unit depth and width 2.

the breaking, or non-integrability, criterion. In every case where the initial condition
u(x, 0) = u0(x) is such that the integrability criterion is violated, that is,

3u0xx(x) > 1 for some x , (57)

breaking occurred. This suggests that solutions that begin in a supercritical region
cannot evolve to a subcritical state without breaking. Further, every localized region
where (57) is satisfied produces a separate breaking event. We infer that the solutions
of the reduced Ostrovsky equation (4) belong to one of two classes. Either 3u0xx(x) < 1
for all x and then the equation is integrable and the solution exists for all time. Or this
criterion is violated locally, and then breaking always occurs. Of course, our numerical
and analytical results combined with the integrability criterion, that is 3uxx < 1 for
all (x, t), do not provide a complete rigorous proof of this statement, but the evidence
we have presented seems compelling. Boyd (2005) pointed out that the transformation
u(x, t) = D2u(x̃, t̃) where ũ = D2u, x̃ = x/D, t̃ = Dt leaves equation (4) unchanged
for all values of D 6= 0. Significantly uxx = ux̃x̃ and so the breaking condition (57) is
independent of this scaling transformation.

We note that Hunter (1990) showed that an initial condition for (4) on a periodic
domain, that has a sufficiently steep negative slope will lead to breaking. A similar
conclusion was also reached for the infinite line by Rosales and Grimshaw (private com-
munication, see Boyd (2005)). Recently Liu et al (2010) obtained similar results with
improved conditions for breaking to occur. Specifically, Hunter (1990) set the period
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2L = 1 and examined that characteristic emerging from that initial point X = xm where
the initial condition u0(x) has a maximum negative slope, u0x(x) ≥ u0x(xm) = −m, and
deduced that if m3 > 4M(m + 4) where M = max|u0|, then breaking occurs. But at
this location u0xx(xm) = 0, and so it lies within the region where the initial value of
F = F0(x) > 0. From our discussion of integrability in section 2 and our numerical
results in section 4, we expect breaking to occur only at the edge of this region. Alter-
native breaking criteria were obtained by Liu et al (2010), who used a priori estimates
to deduce that breaking occurs when either J > (3H/2)3/2 or when J > 0, H > 3/4,
where J = −

∫
I

(u0x)
3 dx, H = (

∫
I
|u0|2 dx)1/2 and I is again the periodic domain with

period 2L = 1. They also obtained an analogous criterion on the infinite line. However,
we note that all these criteria can take the form m2 > CM for some constant C > 0.
In the Appendix we show that if m2 > 4M/3, see (61), then our breaking criterion (57)
holds, whereas C = 4 for Hunter (1990) and C = 3/2 for Liu et al (2010). Noting
that (61) is only a sufficient condition for breaking, we infer that (57) is, in general, a
substantial improvement, and indeed, we contend is the optimal breaking criterion. We
note that Boyd’s initial condition, u0(x) = b cos kx, leads to M = b,m = kb and the
criterion (57) becomes 3bk2 > 1, that is 3m2 > M and so then C = 1/3. Further, in
all the numerical examples we have displayed here where breaking occurred, while the
criterion (57) was satisfied, the criterion of Hunter (1990) was not satisfied. The criteria
obtained by Liu et al (2010) are improvements of Hunter’s criterion, but as they found
in some numerical simulations, are far from optimal. We have confirmed that in all cases
where they found breaking (see their Figures 2,3,4) but their breaking criteria were not
satisfied, our breaking criterion (57) is satisfied.

It is pertinent to note that the breaking front first appears at a location in x at the
left-hand edge of the domain where 3u0xx > 1 in the initial condition. The “local” dis-
turbance that evolves to the breaking front originates in the region where 3u0xx > 1 and
then travels to the breaking location. In our simulations, where 3u0xx only marginally
exceeds unity, the travel speed is close to zero. This is readily apparent in the contour
plot in Figure 6, and in the detailed plots of the Jacobian in Figures 7 and 9. Note
that in the fixed reference frame, this corresponds to travelling at the linear long wave
speed, see (2) and the subsequent discussion. This is a consequence of the fact that most
simulations we have done have 3u0xx only marginally greater than 1, but nonetheless
is a predicted general result, which has implications for where solitary-like waves will
first appear when the λuxxx term in the full Ostrovsky equation (2) is restored. That
is, we expect that such solitary waves will appear first at the left-hand margins of these
localised supercritical zones. When we revert to the original coordinates through the
transformation (5), the breaking criterion becomes

3µu0xx(x) > γ , for some x . (58)

Note that breaking is then enhanced when nonlinearity is increased, that is as |µ| is
increased, but is suppressed as rotation is increased, that is γ is increased.

Although this study is based entirely on the canonical model equation (4), it is
useful to extrapolate the implication of the obtained results to the possible appearance
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of internal solitary waves in the coastal ocean following the generation of an internal
tide. In the absence of rotation, there is an expectation based on the Korteweg-de
Vries equation model, that internal solitary waves will inevitably form as the long-time
outcome. However, as discussed by Helfrich (2007), Grimshaw and Helfrich (2008) and
Helfrich and Grimshaw (2008) the effect of rotation is to inhibit this process. As noted
above the breaking criterion (58) can be used to infer whether or not internal solitary-like
waves, with much shorter length scales, will appear. Indeed, Farmer et al (2009) and Li
and Farmer (2011) successfully used this condition in a study of large amplitude internal
solitary waves in the South China Sea. They converted Boyd’s (2005) breaking criterion
for the special sinusoidal initial condition, which we have established is in fact universal,
to a so-called Ostrovsky number, which was used to characterize the respective roles of
nonlinearity and dispersion. Adapting their approach, we define the Ostrovsky number
as

Os =
3µκ

γ
, where κ = max[u0xx(x)] . (59)

Thus κ is the maximum curvature in the initial condition, and for a localised initial
pulse of amplitude A and length scale k−1, we can estimate that κ ∼ Ak2. Thus when
Os > 1, we expect to see localized “breaking” and the formation of internal solitary-like
waves. But if Os < 1 we expect that no such “breaking” will occur, and consequently
the formation of internal solitary-like waves is inhibited. Although we have defined Os

in terms of the initial data, we note that in practice the initial time can be chosen to
be any suitable time during the initial generation process of the internal tide, when the
system is still controlled by linear wave dynamics.

Acknowledgments

KRH was supported by grant N00014-09-10227 from the Office of Naval Research.

References

[1] Boyd, J.P. (2004) Ostrovsky and Hunter’s generic wave equation for weakly dis-
persive waves: matched asymptotic and pseudospectral study of the paraboloidal
travelling waves (corner and near-corner waves), Euro. J. Appl. Maths., 16, 65-81.

[2] Boyd, J. P. (2005) Microbreaking and polycnoidal waves in the Ostrovsky-Hunter
equation, Physics Letters A, 338, 36-43.

[3] Esler, J. G., Rump, O. J. and Johnson, E.R. (2009). Supercritical rotating flow over
topography. Phys. Fluids 21, 066601.

[4] Faquir, M., Manna, M.A. and Neveu, A. (2007) An integrable equation governing
short waves in a long-wave model, Proc. Roy. Soc., 463, 1939-1954.

24



[5] Farmer, D., Li, Qiang and Park, Jae-Hun (2009) Internal wave observations in the
South China Sea: the role of rotation and non-linearity, Atmosphere-Ocean, 209,
267-180.

[6] Galkin, V. N. and Stepanyants, Yu. A. (1991) On the existence of stationary solitary
waves in a rotating fluid. J. Appl. Maths. Mech., 55, 939-943.

[7] Grimshaw, R. (1985). Evolution equations for weakly nonlinear, long internal waves
in a rotating fluid. Stud. Appl. Math., 73, 1-33.

[8] Grimshaw, R. (2001). Internal solitary waves. Environmental Stratified Flows, ed.
R. Grimshaw, Kluwer, Boston, Chapter 1, 1-29.

[9] Grimshaw, R. and Helfrich, K.R. (2008). Long-time solutions of the Ostrovsky
equation. Stud. Appl. Math., 121, 71-88.

[10] Grimshaw, R. and Helfrich, K.R. (2011) The effect of rotation on internal solitary
waves, IMA J. Appl. Math., (submitted).

[11] Grimshaw, R. H. J., Ostrovsky, L. A., Shrira, V. I. and Stepanyants, Yu. A. (1998)
Long nonlinear surface and internal gravity waves in a rotating ocean, Surveys
Geophysics, 19, 289-338.

[12] Helfrich, K. R. (2007) Decay and return of internal solitary waves with rotation,
Phys. Fluids, 19, 026601 (9 pages).

[13] Helfrich, K. R. and W. K. Melville, W.K. (2006) Long nonlinear internal waves,
Ann. Rev. Fluid Mech., 38, 395-425.

[14] Helfrich, K. R. and Grimshaw, R.H.J. (2008). Nonlinear disintegration of the inter-
nal tide, J. Phys. Ocean., 38, 686-701.

[15] Hunter, J. K. (1990) Numerical solution of some nonlinear dispersive wave equa-
tions, Computational Solution of Nonlinear Systems of Equations, ed. E. L. Allgower
and K. Georg, Lectures in Applied Mathematics, 26, 301-316.

[16] Kraenkel, R., Leblond, H. and Manna, M. A. (2011) An integrable evolution equa-
tion for surface waves in deep water, arXiv:1101.5773v1.

[17] Leonov, A. I., (1981) The effect of Earth rotation on the propagation of weak
nonlinear surface and internal long oceanic waves, Annals New York Acad. Sci.,
373, 150-159.

[18] Li, Qiang and Farmer, David M. (2011) The generation and evolution of nonlinear
internal waves in the deep basin of the South China Sea, J. Phys. Ocean., 41,
1345-1363.

25



[19] Liu, Yue, Pelinovsky, Dmitri and Sakovich, Anton (2010) Wave breaking in the
Ostrovsky-Hunter equation, SIAM J. Math.Anal., 42, 1967-1985

[20] Ostrovsky, L. A. (1978) Nonlinear internal waves a in rotating ocean, Oceanology,
18, 119-125.

[21] Parkes, E. J. (1993) The stability of solutions of Vakhnenkos equation, J. Phys. A
Malh. Gen., 26, 6469-6475.

[22] Stepanyants, Y. A. (2006) On stationary solutions of the reduced Ostrovsky equa-
tion: Periodic waves, compactons and compound solitons, Chaos, Solitons and
Fractals, 28, 193-204.

[23] Vakhnenko, V. A. (1992) Solitons in a nonlinear model medium, J. Phys. A: Math.
Gen., 25, 4181-4187.

[24] Vakhnenko, V. O. and Parkes, E. J. (1998) The two loop soliton solution of the
Vakhnenko equation, Nonlinearity, 11, 1457-1464.

[25] Vakhnenko, V. O. and Parkes, E. J. (2002) The calculation of multi-soliton solutions
of the Vakhnenko equation by the inverse scattering method, Chaos, Solitons and
Fractals, 13 1819-1826

Appendix

Consider the initial value u0(x) = u(x, 0). Each of u0, u0x, u0xx are either bounded
periodic functions with period 2L, or localized bounded functions on the infinite line.
Since each has a zero mean, each must take both positive and negative values. Suppose
that m̃2 = max[u20x] and M± = max[±u0]. Then in the phase plane ξ = u0, η = u20x,
since the function u0(x) generates a closed periodic curve which reaches all boundaries
in the domain M− ≤ ξ ≤M+, 0 ≤ η ≤ m̃2, it is elementary that

dη

dξ
>
m̃2

R
, R = M+ −M− , somewhere ,

and so u0xx >
m̃2

2R
for some x .

(60)

If M = max|u0|, then R ≤ 2M , and we also note that m̃ ≥ m = max[−u0x]. Hence we
infer that,

if m2 >
4M

3
, then u0xx >

1

3
for some x . (61)

This then provides a sufficient condition for breaking to occur, but as the slope estimate
in (60) is not optimal, being essentially the simplest possible, it is not also a necessary
condition. We note that for the limiting periodic wave (31), m2 = M , and so, in this
case (61) is quite close to optimal. But for the initial condition u0 = b cos kx used by
Boyd (2005), breaking occurred when m2 > M/3, and then (61) is far from optimal.
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