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Abstract
The extremely high error rates reported by Keegan et al. in ‘A platform-independent method for detecting errors in
metagenomic sequencing data: DRISEE’ (PLoS Comput Biol 2012;8:e1002541) for many next-generation sequencing
datasets prompted us to re-examine their results. Our analysis reveals that the presence of conserved artificial
sequences, e.g. Illumina adapters, and other naturally occurring sequence motifs accounts for most of the reported
errors. We conclude that DRISEE reports inflated levels of sequencing error, particularly for Illumina data. Tools
offered for evaluating large datasets need scrupulous review before they are implemented.
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INTRODUCTION
Error identification and correction in high-through-

put sequencing datasets, especially at the single read

level, have been addressed by many investigators

[1–18]. Many approaches use platform-dependent

quality scores, read consensus or k-mer analysis.

Recently, Keegan et al. [19] described DRISEE, a

method to assess quality of genomic and metage-

nomic next-generation sequencing runs. The authors

analysed numerous publicly available datasets with

DRISEE and reported widely variable levels of

sequencing errors, generally far higher than other

published estimates [1, 20–22].

DRISEE bases its error estimates on variation from

a consensus sequence in bins of artificially duplicated

reads (ADRs). DRISEE assumes that prior to

sequencing, over-amplification from a given start

point in the template leads to formation of ADRs,

and that sequencing error, not naturally occurring

sequence diversity, accounts for sequence variation

within an ADR bin. An ADR bin consists of all reads

starting with an identical prefix, by default the first

50 nt of the read.

DRISEE as described might provide an improved

method for estimating sequencing errors than the

platform-based quality scores; however, the authors

failed to carefully examine the origins of ADR bins.

DRISEE analyses all reads except those that contain

ambiguous bases. The authors correctly note, ‘Bins

can be screened for eukaryotic content, sequences

with low complexity, and/or known sequences that

may exhibit an unusually high level of biological

repetition (16s rRNA-based, sequences with low

complexity, eukaryotic sequences etc.). Bins that con-

tain such sequences should be excluded from further

consideration’. However, the Supplemental Methods

in the DRISEE manuscript reveal that the authors did

not exclude such reads.

Widespread Illumina adapter
contamination
We obtained from the NCBI Sequence Read

Archive (SRA) the 12 metagenomic datasets that

were used in the original publication to generate

Figure 4b. DRISEE error estimation demonstrated
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a significant discrepancy from the quality scores

reported by the Illumina platform. Our analysis of

DRISEE-generated ADR bins with �20 reads

showed that Illumina adapter sequences drive the

formation of these bins. This 65-nt adaptor sequence

usually occurs upstream of the sequencing primer-

binding site. Unfortunately, Illumina adapter artifacts

sometimes contaminate libraries. Unless they are fil-

tered out or trimmed, reads starting with Illumina

adapters will present identical 65-nt prefixes at the

start of the read and create a spurious ADR bin.

DRISEE interprets the actual biological variation

that follows the adapter sequences in these bins as

extensive sequencing error.

With DRISEE (version 1.2), we re-analysed the

12 datasets, identifying reads as ‘adapter contami-

nated’ if they presented at least 15 nt perfect identity

to the Illumina adapter sequences in the first 50 nt

(see Supplemental Methods). Figure 1 shows the

marked difference in error estimation for reads

with and without Illumina adapters. Although

Keegan et al.’s [19] claim that the true error rates

are higher than reported in the quality scores may

be correct, the exceedingly high error rates presented

in Figure 4b from the original publication reflect the

presence of untrimmed Illumina adapter sequences

and do not support their claims.

Spurious ADR bins caused by adaptor sequences

differ markedly from valid bins in the magnitude of

errors and their distribution by nucleotide position.

Figure 2 shows DRISEE output from individual

large bins from dataset SRR061459. The adapter-

generated bin exhibits error greater than zero at all

positions following the prefix and the average error

greatly exceeds that of the valid ADR bin.

Low-complexity and conserved
gene reads
Analysis of all 10 Illumina genomic datasets, as well

as 10 randomly chosen Illumina metagenomic runs

from Keegan etal.’s Figure 3 [19], detected significant

Illumina adapter contamination and a high propor-

tion of low-complexity reads in all datasets, both of

which generated spurious bins that inflated DRISEE

error drastically. Table 1 demonstrates the inflation

of DRISEE error for one of these datasets chosen

randomly (SRA accession SRR061488). Genes

with conserved regions followed by biological vari-

ation that commonly occurs in both bacterial and

eukaryotic genomes can create bins large enough

Figure 1: Change in DRISEE error estimation for reads with and without Illumina adapter contamination for all
12 datasets that were used in the original publication to demonstrate how DRISEE error profiles differ markedly
from quality scores.
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Figure 2: DRISEE error by position. The largest bin contained 15264 reads and the prefix appeared to be a true
ADR (bacterial genomic sequence). The per cent error at each position is plotted on the y-axis (light blue). Scores
for an adapter-generated bin with 8177 reads are shown for comparison (dark red).

Figure 3: Some of the motifs that generated invalid bins for dataset 4441625.3.The first 20 largest bins are shown.
The first column is bin size and the second is the 50-nt prefix. Similar motifs are shown using the same font colour.
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to be considered by DRISEE and inflate overall error

estimations. For instance, 74 of 403 bins in

SRR061488 derive from the 16S rRNA gene.

Platform-specific error
Keegan et al. [19] also report a striking difference in

error rates between 454 and Illumina datasets. As we

have shown, contaminating adapter sequences ac-

count for much of the DRISEE error in Illumina

datasets. We next analysed 55 of the 65 Roche/

454 metagenomic datasets used to generate Figure

3 in the DRISEE manuscript (the other 10 datasets

were not available in MG-RAST or SRA).

Our analysis showed that while adapter contam-

ination is rare in 454 data, the 50-nt prefixes from 34

of the datasets were dominated by similar sequence

motifs from sources we could not identify

(see Supplemental Methods). Figure 3 exemplifies

some of these motifs in one dataset (MG-RAST

ID 4441625.3). Identical motifs in multiple datasets

from the same research project suggest a library prep-

aration artifact. Bins from another eight datasets had

low-complexity, repetitive sequence prefixes. Whole

genome amplification provided material for at least

six of these libraries. Other datasets derived from

metatranscriptomic material and contained a high

proportion of rRNA-templated reads. The majority

of the datasets used to compare the error rates of

sequencing platforms in Figure 3 from the original

publication violate underlying assumptions of

DRISEE and led to publication of misleading results.

Improving DRISEE
Not all reads that share the same first 50 bases rep-

resent artificial duplication. Meaningful results from

DRISEE require understanding the source and dis-

tribution of sequence sets with identical prefixes.

Suspicious bins must be excluded. However, this

adds a layer of complexity and might result in too

few bins to reach a robust error estimate. The min-

imum number of bins necessary to reach a reliable

estimate and the impact of the sub-sampling neces-

sary to complete the analysis in a reasonable time

were not adequately addressed by the authors.

Although DRISEE may eventually have the po-

tential to identify problematic datasets and assess the

sequencing quality of next-generation sequencing

runs based on ADRs, the current version of the soft-

ware is inadequate and its results are unrealistic.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key points

� DRISEE is proposed as a method for detecting errors inmetage-
nomic sequencing data by binning reads that contain the same
prefix and investigating their divergence.

� DRISEE does not eliminate bins created by adapter contamin-
ation or that arise from closely related or low-complexity
sequences, which results in inflated error estimates.

� DRISEE in its current implementation is inaccurate, and error
rates reported in the DRISEE publication regarding Illumina and
454 technologies aremisleading.
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