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[1] Deep-sea ultramafic-hosted vent systems have the potential to provide large amounts of metabolic
energy to both autotrophic and heterotrophic microorganisms in their dispersing hydrothermal plumes.
Such vent-systems release large quantities of hydrogen and methane to the water column, both of
which can be exploited by autotrophic microorganisms. Carbon cycling in these hydrothermal plumes
may, therefore, have an important influence on open-ocean biogeochemistry. In this study, we investi-
gated an ultramafic-hosted system on the Mid-Cayman Rise, emitting metal-poor and hydrogen sulfide-,
methane-, and hydrogen-rich hydrothermal fluids. Total organic carbon concentrations in the plume
ranged between 42.1 and 51.1 uM (background=43.2 + 0.7 uM (n=15)) and near-field plume samples
with elevated methane concentrations imply the presence of chemoautotrophic primary production
and in particular methanotrophy. In parts of the plume characterized by persistent potential temperature
anomalies but lacking elevated methane concentrations, we found elevated organic carbon concentrations
of up to 51.1 uM, most likely resulting from the presence of heterotrophic communities, their extracellular
products and vent larvae. Elevated carbon concentrations up to 47.4 uM were detected even in far-field
plume samples. Within the Von Damm hydrothermal plume, we have used our data to hypothesize a mi-
crobial food web in which chemoautotrophy supports a heterotrophic community of microorganisms. Such
an active microbial food web would provide a source of labile organic carbon to the deep ocean that
should be considered in any future studies evaluating sources and sinks of carbon from hydrothermal vent-
ing to the deep ocean.
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1. Introduction

[2] Ridge-crest hydrothermal systems represent a
biological habitat in the deep ocean that exist both
on a local scale (vent fauna)[Corliss et al., 1979;
Van Dover, 2000] and in the overlying water col-
umn (plume microorganisms) [Winn et al., 1986].
Hydrothermal vents emit chemically-reduced fluids
into the open ocean, which are diluted with
surrounding seawater. The disequilibria set up
between the reduced chemicals exiting the seafloor
and the more oxidizing species present in ocean wa-
ter provides the energy required for chemosynthesis:
the biological conversion of inorganic carbon and
methane to more complex organic molecules using
chemical energy instead of sunlight.

[3] At high-temperature vents (>100°C), the emit-
ted fluids are so much less dense than the surround-
ing seawater that they rise up into the water column
in a turbulent buoyant plume that experiences
an approximately 10*-fold dilution with the sur-
rounding seawater. By the time the plume becomes
nonbuoyant, a few hundred meters off the seafloor,
it disperses away from the vent site due to local
currents [Lupton et al., 1985; German and Seyfried,
In press]. Owing to kinetic barriers that preclude
rapid oxidation, the concentrations of reduced spe-
cies in the nonbuoyant plume remain elevated
compared to the open ocean, creating the potential
for plume-hosted microbial activity some distance
from the hydrothermal vent source [Winn et al.,
1986; Lesniewski et al., 2012; Sylvan et al., 2012].
Significant metabolic energy can be gained from
the oxidation of hydrogen, methane, and metal
sulfides in hydrothermal plumes, as long as abi-
otic oxidation reactions are kinetically inhibited
[McCollom, 2000].

[4] High-temperature venting associated with ser-
pentinization of ultramafic rocks is characterized
by high hydrogen and methane concentrations in
end-member fluids released at the seafloor (e.g.,
Rainbow; Charlou et al. [1998]). These systems
have the potential to provide a larger amount of met-
abolic energy to the microbial community per liter
of hydrothermal fluid compared to basalt-hosted

systems where hydrogen and methane concentra-
tions are generally lower. Ultramafic systems also
have the potential to host abiotic organic carbon syn-
thesis deep within the crust through Fischer-Tropsch
type synthesis [Shock, 1990; Shock and Schulte,
1998] and may provide a further energy source to
heterotrophic microorganisms.

[5] In this study, we have sampled the ultramafic-
influenced Von Damm hydrothermal system on the
Mid-Cayman Rise (MCR) first reported by Connelly
et al. [2012]. The site comprises a 200 m diameter
mound located on the eastern slope of an oceanic
core complex (Mt Dent) located 13 km west of the
axial rift-valley of the MCR at this latitude [Hayman
et al., 2011]. This system lacks typical “black smo-
kers” associated with many high-temperature vent
fields and instead hosts hot, clear fluids that emanate
from the summit of the mound, yielding a buoyant
plume rich in methane and hydrogen sulfide, but
low in metals [Connelly et al., 2012].

2. Methods

2.1. Plume Detection

[6] In August 2011, the Von Damm hydrothermal
plume was sampled systematically as part of a tele-
presence-enabled Ocean Exploration cruise aboard
the NOAA ship Okeanos Explorer [German et al.,
2012a, 2012b]. Plume investigations were carried
out using a SeaBird 9/11+ conductivity-temperature-
depth (CTD)-rosette equipped with a light scattering
sensor (LSS), an oxidation-reduction potential sensor,
and a dissolved oxygen sensor. The rosette was also
equipped with an ultrashort baseline navigation bea-
con, which allowed for processed water column data
to be merged with the exact position of the CTD at
depth. Data processing was carried out at the NASA
Jet Propulsion Laboratory and Woods Hole Oceano-
graphic Institution immediately following each
CTD-rosette recovery to provide the three scientists
on board the ship, together with the shore-based sci-
ence party, with a three-dimensional image of the
plume merged with underlying bathymetry to aid
decisions for further deployments. A total of three
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Tow-Yo operations (CTD 2, 3 and 4) and one verti-
cal cast (CTD 7) were carried out within the dispers-
ing Von Damm hydrothermal plume (Figure 1).

[7] This cruise also involved a remotely operated
vehicle component that was limited to video recon-
naissance of the Von Damm mound and surround-
ing areas. A subsequent cruise in January 2012 to
the MCR, quantified the temperature of the Von
Damm end-member fluids using a high-temperature
probe operated by the remotely operated vehicle
Jason [German et al., 2012b]. Further data on
the vent fluid composition collected during this
cruise will be reported elsewhere.

2.2. Sample Collection, Processing, and
Analysis

[8] A suite of water column samples was collected
by CTD rosette from the dispersing hydrothermal
plume using 2.5 L bottles. Water samples were col-
lected based on real-time feedback from the CTD
and in particular, the in situ LSS and oxidation-
reduction potential sensors. On recovery of the
CTD rosette aboard ship, water samples were
collected for shipboard methane (CH,) analysis,
and shore-based total organic carbon (TOC) and
cell count analyses.

2.2.1. Methane Analysis

[9] Water samples for methane analysis (20 mL)
were drawn from the Niskin bottles in 60 mL plastic

syringes. Dissolved CH,4 concentrations were deter-
mined by gas chromatography using a Hewlett
Packard 5890 II gas chromatograph fitted with a 6
ft 5 A molecular sieve column and a flame ioniza-
tion detector following a headspace extraction in
nitrogen [German et al., 2010].

2.2.2. Total Organic Carbon Analysis

[10] Selected fluid samples were archived in 40 mL
I-CHEM certified low-level total organic carbon
(TOC) vials and frozen.TOC analyses were carried
out at the University of California, Santa Barbara
on a Shimadzu TOC-V series TOC analyzer as
described in Carison et al. [2010]. All samples
were systematically standardized against low car-
bon water every 6-8 analyses, with deep Sargasso
seawater (2600 m) and surface Sargasso seawater
standards [Hansell and Carlson, 1998; Carlson
et al., 2004]. Daily standard waters were cali-
brated with DOC consensus waters standards.
The analytical precision was +0.9uM (lo,
n=3) for deep reference water and +0.7 uM
(1o, n=3) for surface reference water. Three to
five replicate analyses were carried out on each
sample to determine analytical precision.

2.3. Cell Counts

[11] Aliquots (18 mL) from selected CTD samples
were preserved in formaldehyde (3.7% final concentra-
tion) in duplicate, and stored at 4°C for return to MBL
(Woods Hole, MA) where cells were counted by
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Map of the Von Damm Hydrothermal vent site (star), located on the eastern slope of Mt Dent. The location

of the three Tow-Yo transects are shown (CTD 2 — yellow line, CTD 3 — green line, CTD 4 — blue line). A vertical cast
(CTD 7) was also conducted, directly over the vent site (star).
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epifluorescence microscopy with DAPI (4',6-diami-
dino-2-phenylindole, Sigma) [Porter and Feig, 1980)].

3. Results

[12] Particles in the Von Damm hydrothermal
plume, as detected using the in situ LSS, were ob-
served up to ~1km away from the vent-source
(Figure 2A). However, even after in situ LSS
anomalies fell to within background range (<0.02
V), methane concentrations remained eclevated at
nonbuoyant plume height, reaching a maximum of
11.2nM (Figure 3A, CTD 3). This compares to typ-
ical background methane concentrations of
0.5+0.2nM (n=35) (measured on a separate back-
ground CTD cast). These methane anomalies indi-
cate further dispersal of hydrothermally influenced
plume-water, devoid of suspended plume particles.
The CTD cast carried out directly over the Von
Damm mound (CTD 7) revealed elevated methane
concentrations up to 43.7nM that were accompa-
nied by background levels of particles at nonbuoy-
ant plume height. This observation is consistent
with the fluids emanating from the central Von

(A)
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Damm spire that are clear and devoid of suspended
particulate matter [Connelly et al., 2012; German
et al., 2012a, 2012b]. TOC concentrations ranged
between 42.1 and 51.1 uM and cell counts ranged
between 0.5 and 5.1 x 10* cells per mil indicating
significant enrichments relative to background
levels of 43.2+0.7uM (n=5) and <1 x 10*
cells/mL, respectively (Tables 1 and 2). The actual
increase in total carbon that could be attributed to
this cell increase from 0.5x 10* cells/mL to
5.1 x 10* cells/mL can be calculated by assuming
a cell has a weight of 9.5 x 107"* g, of which 45%
is carbon [Battley, 1998]. This would imply an
overall increase in total organic carbon from cellu-
lar biomass of ~1.7 uM, representing a very small
proportion of the TOC pool.

[13] Plume identification was made possible
through temperature anomaly calculations [Baker,
1998], carried out as part of the immediate shore-
based processing of data that followed each cast.
These temperature anomalies result from the
dilution of high-temperature end-member fluids
(< 232°C) with surrounding seawater and allowed
the Von Damm hydrothermal plume to be traced
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Figure 2. Combined Tow-Yo casts (CTD 2, 3, and 4) and vertical profile (CTD 7) from the Von Damm hydrother-
mal plume showing (A) optical backscatter anomalies and (B) potential temperature anomalies.
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Figure 3. (A) Relationship between methane and optical backscatter in the hydrothermal plume. The dashed line at
0.02 V is the maximum optical backscatter value for background seawater in this region. (B) Relationship between
methane and temperature anomalies in the hydrothermal plume. The selected groups of samples demonstrate similar-
ities and are discussed in sections 4.1 and 4.2. For both figures, the four CTD deployments are represented by different
symbols

Table 1. Data From the Three Tow-Yo Casts Where Samples Were Collected for Methane, TOC, and Cell Counts

Depth (m) OBS? (V) CHy4 (nM) TOC (uM) o Cells/mL (x 10%) o
CTD 2
2296 0.015 3.6 433 0.6 0.8 0.2
2250 0.018 1.2 438 1.1 0.9 0.1
2202 0.018 6.0 0.7 0.1
2099 0.020 1.4 0.7 0.1
2020 0.033 55.1 43.6 0.3 2.0 0.5
2000 0.029 44.8 44.7 0.3 2.0 0.5
1900 0.019 13 42.7 0.4 0.9 0.2
2020 0.033 483 45.0 0.2 0.8 0.2
2000 0.027 5.6 443 0.5 0.7 0.2
2200 0.018 6.3 422 0.4 0.6 0.1
2100 0.025 30.2 454 1.0 13 0.3
2050 0.026 343 23 0.5
2021 0.034 38.8 1.0 0.2
1899 0.018 1.4 1.0 0.2
CTD 3
2399 0.017 3.3 0.6 0.2
2296 0.019 8.0 29 0.4
2200 0.018 9.7 473 0.1 2.8 0.6
2100 0.018 0.8 454 1.0 1.9 0.5
2000 0.019 9.4 46.1 0.5 3.1 0.8
1900 0.018 1.4 477 0.9 13 03
CTD 4
2360 0.015 3.5 1.1 0.2
2299 0.017 1.9 0.2
2200 0.018 7.3 455 0.7 32 0.4
2100 0.025 2.8 2.0 0.2
2000 0.019 0.8 45.6 1.2 2.1 0.2
1900 0.018 0.9 47.4 0.6 2.1 0.2
2298 0.019 6.2 46.4 0.2
2198 0.016 9.0 46.8 1.0
2000 0.019 1.8 42.1 0.8
1900 0.018 1.1 42.9 1.4

?OBS = Optical backscatter.
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Table 2. Data From the Stationary CTD Cast Carried Out Above the Von Damm Vent Site, Including Samples

Collected for Methane, TOC, and Cell Counts

Depth (m) OBS* (V) CH4 (nM) TOC (uM) c Cells/mL (x 10% c
CTD 7

2324 0.019 1.4 0.9 0.1
2300 0.018 1.3 51.1 1.3 1.1 0.1
2300 0.021 1.1 452 1.1
2248 0.017 4.0 45.9 0.7 1.3 0.2
2248 0.018 3.6 46.1 1.0
2203 0.018 37.5 0.7 0.2
2203 0.021 36.4 44.5 1.4
2150 0.015 2.9 1.8 0.4
2047 0.017 0.3 5.1 0.4
1998 0.016 0.7 43.7 0.8 3.7 0.3
1998 0.017 26.2 45.8 1.0 1.8 0.3
1970 0.018 0.5 47.0 0.9 34 0.5
1970 0.019 12.4 1.2 0.2
2150 0.017 12.3 48.1 1.0 1.0 0.2
2108 0.017 42.8 1.1 0.2
2050 0.016 1.3 1.5 0.2
1800 0.019 1.3 45.6 0.8 1.2 0.2

%0BS = Optical backscatter.

for ~5km from its source during three separate
Tow-Yo deployments (Figure 2B). Plume depth
showed significant spatial and temporal variations,
a feature that can be attributed to plume travel
along isopycnal surfaces that change depth in re-
sponse to tidal cycles and/or topography [Rudnicki
et al., 1994; Rudnicki and German, 2002; Bennett
et al., 2008]. By plotting the profiles against den-
sity, we can see that the plume sampled in all three
Tow-Yo operations traveled along the same iso-
pycnal surface consistent with dispersal away from
a common vent-source. The aim of CTD 7 (vertical
CTD cast, directly over the Von Damm mound)
was to intercept the rising buoyant plume. How-
ever, it was very difficult to achieve this given
the limited ship time available for the cast and the
impact of deep ocean currents that impaired
the precise positioning of the CTD-rosette at depth.
Samples collected below nonbuoyant plume depth
(Table 2, >2210m) were both cooler and lower
in methane concentrations than at nonbuoyant
plume height (<4.0 nM). However, while the core
of the buoyant plume would have been expected
to be warmer than the nonbuoyant plume and
more methane-rich, the samples we collected still
exhibited elevated temperature anomalies compared
to background and methane concentrations that were
also greater than in background seawater. This combi-
nation of elevated temperatures and methane concen-
trations, coupled with the location of the CTD-rosette
above the Von Damm mound suggest that while the
CTD was not directly within the core of the buoyant
plume at the time of sampling, it did still intercept
the outer fringes of the rising, buoyant plume.

[14] In aprevious study on the Mid-Cayman Rise, a
plume was detected ~5km SW from the Von
Damm site that exhibited similar characteristics to
the plumes reported here (albeit with a more pro-
nounced Eh anomaly at lower maximum dissolved
methane concentrations) [German et al., 2010]. If
there is another hydrothermal source in the vicinity
of Von Damm, it is unlikely that it was sampled in
this study. There were no deviations in the density
of the dispersing plume, nor were there any unusual
increases in temperature.

4. Discussion

4.1. Primary Productivity in the Near-Field

Plume

[15] Chemical changes in dispersing hydrothermal
plumes result from both dilution and chemical reac-
tions between the source vent-fluids and the seawa-
ter that they mix with. Chemical reactions in the
fluids may fuel chemosynthetic carbon fixation
and have the potential to provide a source of labile
organic carbon to the water column and underlying
sediments [Roth and Dymond, 1989; Bennett et al.,
2011a, 2011b].

[16] To investigate potential primary productivity
occurring in the Von Damm plume, we first con-
sider changes in methane concentrations during
plume dispersal. The abundance of methane in hy-
drothermal plumes may be influenced by microbial
oxidation (methanotrophy), production (methano-
genesis), and/or dilution [Anderson et al., 1961].
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Traditionally, methanogenesis was thought to occur
only under fully anaerobic conditions; however, it
has recently been detected in aerobic conditions as
a result of methyl phosphonate decomposition in
phosphate stressed waters [Karl et al., 2008]. The
maximum methane concentration measured in
the Von Damm plume was 55nM, occurring in
seawater with temperature anomalies of 0.03°C
(Figure 2A). This temperature anomaly results from
the dilution of 232°C end-member fluid with the
surrounding seawater at the seafloor (5.4°C) and
suggests that the vent fluids have experienced a
0.76 x 10*-fold dilution. Based on the measured
dissolved methane concentration of 2.8 mM in
end-member fluids venting at the summit of
Von Damm (J. McDermott, pers. communication
2012), dilution of this magnitude should result in
a plume concentration of 370nM, substantially
greater than the measured maximum of 55nM.
The nonconservative behavior of methane in the
hydrothermal plume provides compelling evidence
for consumption via active microbial methane oxi-
dation [De Angelis et al., 1993; Cowen et al.,
2002; Gamo et al., 2003].

[17] Continued dilution and consumption of meth-
ane in the dispersing hydrothermal plume can be
evaluated by plotting all the methane data relative
to temperature anomalies (Figure 3B). While no
single relationship can describe the entire data set,
there does appear to be relationships in select
groups of samples. One group of samples, at a tem-
perature anomaly of 0.025 4 0.005°C, appear to
have experienced the same dilution, but exhibit
widely varying, elevated, methane concentrations
(Group A). This suggests that in these relatively
“fresh” plume samples methanotrophy is active.
During chemoautotrophic carbon fixation, there
should be an increase in cellular biomass and extra-
cellular carbon release into the TOC pool and this
may explain the elevated TOC concentrations in
the Von Damm plume (42.1 and 51.1 uM (back-
ground=43.2+0.7uM (n=5)). However, it has
previously been reported that variations in organic
carbon concentrations in plumes may also result
from entrainment of organic carbon from areas of
high productivity on the seafloor surrounding a vent
site [Bennett et al., 2011b] or even from the end-
member fluids themselves (in the case of ultra-
mafic-hosted systems) [Konn et al., 2009]. Neither
of these two carbon sources are likely to be respon-
sible for the elevated TOC concentrations present in
our samples, because the temperature anomalies in
the plume infer that a 0.76 x 10*-fold dilution has
occurred during buoyant plume rise (see above).

Consequently, any elevated concentrations of TOC
in the end-member fluids or from entrainment of
TOC-enriched diffuse flow close to the seafloor,
should have been diluted out by surrounding
seawater during buoyant plume rise [Bennett et al.,
2011b]. Any enrichment in TOC in our plume
samples must therefore be a result of in situ produc-
tivity. By plotting TOC versus methane concentra-
tions (Figure 4A), we can see that for samples that
have experienced the same dilution (same tempera-
ture anomalies, Group A), TOC increases with
decreasing methane concentrations. Not all the meth-
ane samples were analyzed for TOC (hence, there are
fewer data points in this plot compared to Figure 3B)
but nevertheless, the inverse correlation between
TOC and methane concentrations argues strongly
for biological productivity occurring at the same time
as microbially mediated methane oxidation in this re-
gion of the dispersing Von Damm plume.

[18] It is important to note, however, that methane
oxidation, itself, cannot be responsible for the coin-
cident increase in TOC, because there is only
enough energy available from the oxidation of
methane to produce 1-2% of the 5 uM enrichment
in total organic carbon observed. If oxidation of 1
mol of methane results in a Gibbs free energy
change of —192 kcal (—803 kJ) as estimated by
McCollom [2000], the oxidation of 55 nM of meth-
ane (the maximum values reported here from any-
where within the nonbuoyant Von Damm plume)
could yield no more than ~1072 cal/L (44 J per L).
In comparison, the energy required to fix 1 uM of
a simple glucose molecule is 6.9 x 107" cal/L
(2887 J per L) [Battley, 1998]). This suggests that
other autotrophic carbon fixation pathways must
occur in parallel with the oxidation of methane to
account for the elevated TOC concentrations ob-
served. As this is an ultramafic influenced hydro-
thermal system, elevated hydrogen concentrations
will be expected and will provide a large amount
of energy for carbon fixation. Elevated sulfur con-
centrations known to be present in the Von Damm
plume [Connelly et al., 2012] suggest that sulfur ox-
idation could be another important energy pathway.
Sulfide oxidation and ammonium oxidation may also
provide sources of energy available within the Von
Damm plume [McCollom, 2000; Baker et al.,
2012]. The 2009 hydrothermal plume detected 5 km
SW of the Von Damm site was rich in the sulfur
oxidizing microbial groups Epsilonproteobacteria
Sulfurimonas and Gammaproteobacteria SUP05
[German et al., 2010], both of which have been
found to be prevalent in plumes from other hydro-
thermal systems [Sunamura et al., 2004; Nakagawa
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et al., 2005; Dick and Tebo, 2010; Baker et al.,
2012; Lesniewski et al., 2012] and, indeed, are ubiq-
uitous in the mesopelagic deep ocean [Swan et al.,
2011]. Such organisms may be responsible for the
elevated TOC concentrations in the plume sampled
during this study.

4.2. Cycling in the Dispersing Von Damm
Plume

[19] Two further distinct groups of samples exist in
the Von Damm plume. Both sample groups span a
range of potential temperature anomalies
(Figure 3B) indicating dilution with ambient seawa-
ter to varying extents. Of these two, the samples
most concentrated in methane (Group B) appear
to decrease in methane concentration with increas-
ing plume dilution (decreasing potential tempera-
ture anomalies; Figure 3B). The same is true for
their TOC concentration, which also show a linear
decrease with decreasing methane concentration
(Figure 4A). This suggests that dilution is driving
the changes in methane concentrations in this por-
tion of the Von Damm plume. Interestingly, using
the linear relationship between TOC and methane
defined by these Group B samples we can predict
that, at background methane concentrations
(0.5nM), the TOC concentration should be
41 uM, which provides reassuringly close conver-
gence with the concentration expected for deep
ocean Caribbean waters [Carilson et al., 2010].
The majority of the samples in Group B were
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Figure 4.

collected from CTD casts 3 and 4 and, hence, repre-
sent the more distal portions of the Von Damm
nonbuoyant plume. The relationship between TOC
and methane in these far field samples therefore
reflects dilution and suggests primary productivity
is inhibited. However, the ranges of observed cell
concentrations are significantly greater in the distal
plume relative to the near-field (Group A) non-
buoyant plume samples (Figure 4B) and suggests
another possibility, that if there is any primary
productivity occurring in the distal plume, con-
sumption by mixotrophic and/or heterotrophic
microorganisms must also be occurring.

[20] The third and final group of samples collected in
this study (Group C) exhibit uniformly low methane
concentrations (< 4.0 nM), but span the widest range
of potential temperature anomalies (0.012—0.033°C;
Figure 3B). These samples come from all four CTD
casts and, at 42.1-51.1 uM, their TOC and cell con-
centrations span the widest range of values of all
three groups (Figures 4A and 4B). These samples
come from the fringes of the nonbuoyant and buoy-
ant Von Damm plume, along its entire dispersal
trajectory. In previous studies, both positively and
negatively buoyant lipid-rich particles have been
detected emanating from hydrothermal plumes,
and high concentrations of zooplankton have been
documented within the 100 m layer above hydro-
thermal plumes at Endeavour segment, Juan de Fuca
Ridge [Cowen et al., 2001; Wakeham et al., 2001].
Organic-rich material on the edges of the plume

(B)

6 ~

Range in cell concentration (cells/ml x 104)
w
T

Group A Group B Group C

(A) Relationship between TOC and methane for individual groups of samples identified in Figure 3b. Error

bars for TOC are as in Tables 1 and 2. Not all the methane samples were analyzed for TOC and therefore there are
fewer data points in this plot compared to Figure 3B. (B) A percentile graph of cell counts for individual groups of
samples characterized in Figure 3B, demonstrating the range of cell concentrations observed. The bottom and top
of each box represent 5% and 95% of the data, while the lower and upper dashed lines represent 25% and 75% of
the data. The solid middle line represents the median.
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may be the result of vent larvae, transparent exopo-
lymer particles or organic material (polysaccharides,
proteins) hypothesized to be produced by plume
microbes as a result of chemosynthesis [Mullineaux
et al., 1995; Shackelford and Cowen, 2006; Breier
et al., 2012]. We postulate, therefore, that the data
from Group C may be indicative of a community
of heterotrophic microorganisms fuelled by plume-
supplied nutrients. Microbial consumer studies in
the hydrothermal plume have previously concen-
trated on the zooplankton living off upper plume
edges [Cowen et al., 2001; Burd et al., 2002;
Vinogradov et al., 2003]. In our study, the greater
cell numbers were all within a similar size range
(~1 x 1 pm), whereas zooplankton are much larger
(>100 pum). Consequently, we hypothesize that con-
sumers in the Von Damm plume are smaller micro-
bial heterotrophs and mixotrophs (e.g., bacteria,
viruses and small eukaryotic protists). Examples
of such organisms have been detected previously
in other hydrothermal vent systems [Atkins et al.,
2000; Ortmann and Suttle, 2005; Kaye et al., 2011,
Sylvan et al., 2012].

[21] Taken together, our data allow three distinct
regions within the Von Damm hydrothermal plume
to be identified:

(1) The near-field plume, where chemoautotrophic
primary production results in increased organic
carbon production

Upper 100 m above Zooplankton

(2) The more distal nonbuoyant plume where
dilution dominates and any, if present at all,
in situ carbon production is matched by carbon
consumption

(3) The fringes of the buoyant and nonbuoyant
plume, where heterotrophy results in increased
cellular biomass and TOC.

[22] In sequence, these three regions allow a micro-
bial food web to be hypothesized, with relative
plume locations, from primary productivity to pri-
mary and secondary consumers (Figure 5). This is
most clearly reflected in the increasing range of cell
concentrations observed from Groups A to C
(Figure 4B). The role of chemoautotrophy as a food
source to macroinvertebrates at deep-sea hydrother-
mal vents and cold seeps is well recognized, but
limited to the immediate locality of the venting
fluids. In comparison, the dispersing hydrothermal
plume also hosts a chemoautotrophic community
and can provide an important carbon and energy
source to higher trophic levels in the microbial food
web. Energy sources are both entrained and pro-
duced in situ, providing the energy to both the base
of the food web and the microbial heterotrophs and
mixotrophs at increasing trophic levels (Figure 5).

[23] In our study, elevated concentrations of or-
ganic carbon have been detected beyond the near
vent environment (~5 km) and may continue to host
a microbial food web even farther afield (up to

DOC

Heterotrophic

plume
Plume edge Eukar_yotic
(upper and lower) protists

Plume center

Buoyant plume

Vent

Seafloor

Chemoautotrophs

bacteria Viruses >

co,

Chemoautotrophs

<— 93M AOO04 TVIGOWIN —

Chemoautotrophs
M

Cco,

H,, CH,, H,S, Fe?",
Mn2*, NH,*, DOC, CO,

Figure 5. Schematic of a deep-sea hydrothermal plume with the proposed microbial food web and relative trophic posi-
tions within the plume. The lower half of the schematic represents the entrainment of energy sources from the vent fluids
and the surrounding vent field, which fuel the microbial food web in the plume. DOC = Dissolved Organic Carbon.
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25km [Burd et al., 2002]). Chemoautotrophically
fueled microbial food webs are recognized else-
where in the ocean, such as at oxygen minimum
zones and at the redox transition zone of an anoxic
basin [Taylor et al., 2001; Podlaska et al., 2012],
and methanotrophy has been identified as an impor-
tant food source to higher trophic levels [Deines
et al., 2007]. We recommend that the complete mi-
crobial food web should be considered in all future
hydrothermal plume studies that seek to evaluate
the potential sources and sinks of carbon from hy-
drothermal venting to the deep ocean.

5. Summary

[24] By using potential temperature anomalies as a
conservative tracer, we have been able to trace a
particle-deplete hydrothermal plume 5 km from its
source and detect elevated concentrations of total
organic carbon reaching a maximum of 51.1 uM.
We have identified three distinct regions within
the dispersing Von Damm hydrothermal plume that
appear to host primary producers and primary and
secondary consumers, respectively. This has en-
abled us to hypothesize the presence of a microbial
food web within the dispersing hydrothermal plume
that should provide an important conceptual frame-
work for any future studies that seek to evaluate
sources and sinks of carbon from hydrothermal
venting to the deep ocean.
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