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ABSTRACT 15 

Aquifers are subterranean reservoirs of freshwater with heterotrophic bacterial 16 

communities attached to the sediments and free-living in the groundwater. In the present 17 

study, mesocosms were used to assess factors controlling the diversity and activity of the 18 

subsurface bacterial community. The assimilation of 13C, derived from 13C-acetate, was 19 

monitored to determine whether the sediment-associated and free-living bacterial 20 

community would respond similarly to the presence of protozoan grazers. We observed a 21 

dynamic response in the sediment-associated bacterial community and none in the free-22 

living community. The disparity in these observations highlights the importance of the 23 

sediment-associated bacterial community in the subsurface carbon cycle. 24 

INTRODUCTION 25 

The subsurface is a large habitat for microorganisms, yet the environment has 26 

generally been understudied because of the difficulties associated with accessing the 27 

subsurface. Groundwater is present in the pore space between subsurface sediments and 28 

can contain high nutrient concentrations (Valiela et al. 1990; Moore 1999). Furthermore, 29 

the chemical composition of groundwater changes during interactions with subsurface 30 

sediments and through mixing with other water sources (Charette and Sholkovitz 2006; 31 

Beck et al. 2007). Both groundwater and sediments are potential subsurface microbial 32 

habitats which have distinct bacterial communities (this study, Lehman et al. 2001; Flynn et al. 2008). 33 

The impact of these differences on carbon cycling in sediments versus groundwater 34 

systems is not well understood. 35 

Bacterial cells, small eukaryotes, and viruses are all components of the subsurface 36 

microbial community (Goldscheider et al. 2006). Descriptions of prokaryotic (Shi et al. 37 
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1999; Griebler and Lueders 2009) and eukaryotic (Novarino et al. 1997; Valster et al. 38 

2009) diversity in aquifers are based on microscopic observations, culturing experiments, 39 

and identifications from phospholipid fatty acids or small subunit rRNA gene libraries. 40 

There is spatial and temporal variability in prokaryotic diversity within both pristine and 41 

contaminated aquifers (Haack et al. 2004; López-Archilla et al. 2007), and 42 

microorganisms found in the subsurface are also found in other ecosystems (Griebler and 43 

Lueders 2009).  44 

Previous research in groundwater microbial ecology indicates that the bacterial 45 

community is not passively transported through the subsurface but can participate in 46 

subsurface biogeochemical cycles (Ghiorse and Wilson 1988; Madsen and Ghiorse 47 

1993). Bacterial cells grow in aquifer sediments (Chapelle et al. 1987) and there is 48 

temporal variability in bacterial biomass (Velasco Ayuso et al. 2009). Groundwater 49 

microorganisms also utilize a variety of organic substrates and the patterns in substrate 50 

utilization are spatially heterogeneous (Madsen and Ghiorse 1993; Pedersen et al. 2008; 51 

Velasco Ayuso et al. 2009). Finally, geochemical evidence of organic carbon 52 

consumption, denitrification, and production of carbon dioxide, methane or sulfide 53 

(Chapelle and Lovley 1990; Baker et al. 2000; Routh et al. 2001) as well as the presence 54 

of different functional genes (Griebler and Lueders 2009) indicate that a variety of 55 

bacterial metabolisms exist in the subsurface.  56 

The use of isotopically-labeled compounds, or stable isotope probing, is one 57 

method that allows researchers to identify metabolically-active cells within a microbial 58 

community (Boschker et al. 1998; Dumont and Murrell 2005). Previous groundwater 59 

research has examined the assimilation of acetate within an aquifer contaminated with 60 



 4 

hydrocarbons and found that only a subset of groundwater microorganisms in these 61 

systems are metabolically active vis-à-vis acetate assimilation (Pombo et al. 2002; Pombo 62 

et al. 2005). One limitation in using stable isotope probing is that metabolically-active 63 

cells which do not assimilate the labeled compound are incorrectly assigned to the 64 

“inactive” category. Nonetheless, even with these methodological limitations, the use of 65 

isotopically-labeled compounds has elucidated the role of specific microbial groups in 66 

substrate remineralization (see for example: Radajewski et al. 2002; Padmanabhan et al. 67 

2003).  68 

As methods for assessing microbial diversity have matured, microbiologists have 69 

been able to explore the factors in different ecosystems that control and structure 70 

bacterial community composition. Bacterial mortality due to protozoan grazers can have 71 

a major impact on bacterial community composition (Jürgens and Matz 2002; Nagaosa et 72 

al. 2008). The presence of grazers can also control bacterial growth in aquifer sediments 73 

(Mattison et al. 2002; Nagaosa et al. 2008), although the magnitude of this effect varies 74 

for different experimental systems (DeLeo and Baveye 1997). Finally, field studies have 75 

shown that the presence of grazers can increase the remineralization and mobilization of 76 

anthropogenic contaminants (Madsen et al. 1991; Kinner et al. 2002; Tso and Taghon 77 

2006). Although grazers are acknowledged to be important in subsurface ecosystems, we 78 

still lack knowledge about the impact of grazers on metabolically-active bacterial cells. 79 

The present project examined sediment-associated and free-living microorganisms 80 

in the subsurface. Mesocosms were used to mimic in situ conditions and we used stable 81 

isotope probing to characterize the microbial community involved in the assimilation of 82 

13C-acetate or its metabolic byproducts. Our results revealed that the free-living bacterial 83 
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community was passively transported through the subsurface. In contrast, the sediment-84 

associated microorganisms altered their community composition in the presence of 85 

protozoan grazers. 86 

MATERIALS AND METHODS 87 

Experimental setup and sampling strategy  88 

The mesocosms used in the present project were 25 cm high x 7 cm wide cylinders 89 

based on a design by DeFlaun et al. (2001). The cylinders were filled with sediment 90 

collected from the Waquoit Bay National Estuarine Research Reserve (Cape Cod, MA, 91 

USA) which had been autoclaved for one hour, allowed to cool, and then autoclaved for 92 

an additional two hours. The cylinders were setup in an unheated garage immediately 93 

adjacent to the well used to sample the groundwater. Groundwater was pumped through 94 

polyethylene tubing lined with fluorinated ethylene propylene from 2.4 m below the 95 

surface using a peristaltic pump. Once at the surface, the groundwater traveled through 96 

three meters of tubing protected from light in insulated sheaths until the water reached the 97 

bottom of each cylinder. A temperature sensor was placed in-line immediately before the 98 

groundwater was divided into the tubing used for each individual cylinder. The flow rate 99 

through each cylinder was 30 ml hr-1 which resulted in an 8-hour residence time for the 100 

groundwater within each cylinder. For half of the cylinders, protozoan grazers were 101 

removed by filtering the groundwater through a 1 μm filter (Polycap 36 AS filter, 102 

Whatman Inc. Florham Park, NJ). The other half of the cylinders received whole 103 

groundwater with the microbial community intact. Groundwater flowed through the 104 

sediment-filled cylinders for one month prior to the onset of the experiment.  105 
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Cylinders received either 12C-acetate (Fisher, enzyme grade), uniformly-labeled 106 

13C-acetate (99% 13CH3-13COOH, Cambridge Isotope Laboratories, Andover MA), or no 107 

acetate. For the cylinders receiving acetate, a peristaltic pump pulled acetate from stock 108 

bottles and merged it with the flow of groundwater so that the concentration of acetate in 109 

the groundwater was 200 μM for the first 11 days of the experiment. On day 30 and day 110 

38 of the experiment, concentrated acetate was injected directly into the base of each 111 

cylinder due to a problem with the peristaltic pump which had been injecting the acetate. 112 

The final concentration of the acetate in each cylinder immediately after these acetate 113 

injections was 198 μM.  114 

The data presented include sediment and groundwater from six cylinders which 115 

received 13C-acetate, four cylinders which received 12C-acetate, and two cylinders which 116 

received no acetate (one exposed to whole groundwater and one exposed to 1 μm-filtered 117 

groundwater). During the experiment, groundwater was collected on the following days: 118 

day 0 (t0), day 3 (t1), day 19 (t2), day 30 (t3), day 37 (t4), and day 43 (t5). Each aliquot 119 

of groundwater integrates the previous three to six days of groundwater exiting the 120 

sediment-filled cylinders. Groundwater was filtered through combusted 0.2-µm Anodisc 121 

filters (Whatman) which were then stored at -80ºC until further processing. The 122 

experiment was terminated 46 days after the initial addition of acetate. At this point, the 123 

sediment was removed from the cylinders in four vertical sections, each of which was 5 124 

cm high, and kept frozen at -80ºC until further processing.  125 

Environmental data: groundwater  126 

During the experiment, groundwater was collected to obtain cell abundances and 127 

organic carbon data. Measurements of salinity, pH, and oxygen concentration were taken 128 
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with a YSI 556 MPS handheld sensor (YSI Incorporated, Yellow Springs, OH). A HOBO 129 

temperature probe (HOBO Probe v2, Onset, Bourne, MA) measured the temperature of 130 

the groundwater pumped through the cylinders every 15 minutes. The groundwater used 131 

to obtain the abundance of flagellates was fixed with 3.7 % formaldehyde (final 132 

concentration), allowed to sit for 24 hours, and then filtered onto a 0.8 μm filter following 133 

the methods of Sherr et al. (1993). For bacterial abundance, groundwater was fixed with 134 

2% paraformaldehyde (final concentration), allowed to sit for one hour, and then frozen 135 

at -80°C until analysis (Campbell 2001). DOC concentrations in groundwater were 136 

measured with a Shimadzu TOC-VCSH total organic carbon analyzer using sucrose as a 137 

standard solution.  138 

Environmental data: sediments 139 

The concentration and carbon isotopic ratio of total organic carbon bound to the 140 

sediments were obtained with the Europa 20-20 CF-IRMS interfaced with the Europa 141 

ANCA-SL instrument. δ13C values were reported relative to PeeDee belemnite using 142 

standard notation: δ13C (‰)= (Rsample / Rstandard - 1) 1000, where R is the ratio of the 143 

heavy to light element. The δ13C values were converted to atom %13C for ease of 144 

presentation. 145 

DNA extractions 146 

DNA was extracted from the sediments and the 0.2 μm Anodisc filters using the 147 

UltraClean MegaPrep Soil DNA Kit (MoBio Laboratories, Inc. Carlsbad, CA) following 148 

the manufacturer’s protocol with the following modifications. The extracts were shaken 149 

with solution S1 and the bead solution for 30 min at 65ºC at the beginning of the 150 
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extraction. The addition of solution S4 and the subsequent centrifugation step was 151 

repeated twice. 152 

Ultracentrifugation 153 

Ultracentrifugation was used to separate the 12C- and 13C-labeled DNA within 154 

DNA extracts from sediments from five cylinders (two from whole groundwater and 155 

three from 1 µm-filtered groundwater, four sections from each cylinder) and two 156 

groundwater samples (one from the whole groundwater treatment and one from the 1 µm-157 

filtered groundwater treatment, with five time points for each). This resulted in 158 

ultracentrifugation of twenty DNA extracts from the sediments and ten DNA extracts 159 

from the groundwater. Extracted DNA was mixed with cesium chloride and spun in a 160 

Beckman Coulter Optima L-80 XP Ultracentrifuge (Fullerton, CA) following protocols 161 

modified from Freitag et al. (2006) as previously described (Longnecker et al. 2009). 162 

Briefly, DNA was spun at 140,000 x g for 66 hours at 20ºC using a VTi 65.2 vertical 163 

rotor. At the conclusion of the ultracentrifugation run, ten fractions were collected from 164 

each centrifuge tube and the refractive index was measured for each fraction. DNA was 165 

precipitated following a protocol adapted from Griffiths et al. (2000) and Freitag et al. 166 

(2006). Two volumes of a 30% w/v polyethylene glycol 6000/1.6 M sodium chloride 167 

solution were added to each fraction. Fractions were incubated at 4ºC for 72 hours, 168 

centrifuged at 20,000 x g for 15 minutes at 4ºC, and then washed three times with cold 169 

70% ethanol. The DNA pellet was then dried and resuspended in 10 mM Tris.  170 
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Community fingerprinting 171 

Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to 172 

assess bacterial community composition. T-RFLP was conducted on DNA extracted 173 

directly from the sediments and groundwater, and on DNA collected from the 174 

ultracentrifugation fractions. DNA was amplified using the GoTaq Master Mix (Promega 175 

Corp. Madison WI) using FAM-labeled 27F and 519R. PCR conditions were an initial 176 

denaturation (95ºC for 5 minutes) followed by 35 cycles of denaturation (95ºC, 30 177 

seconds), annealing (46ºC, 30 seconds), extension (72ºC, 90 seconds), and a final 178 

extension cycle of 72ºC for 5 minutes. Nested PCR was used to amplify DNA from the 179 

ultracentrifugation fractions. This involved an initial amplification with 15 cycles of the 180 

PCR program described above and the primers 27F and 1512uR. An aliquot from this 181 

PCR reaction was transferred into a new PCR reaction, and amplified for an additional 35 182 

cycles using the same PCR program and the primers 27F and 519R. At least two 183 

additional negative controls from the first PCR reaction were run in the second reaction 184 

to detect possible contamination due to the increased number of PCR cycles.  185 

PCR products were digested using 1 U of the restriction endonuclease Hin6I 186 

(Fermantas International, Inc. Burlington, Ontario) at 37ºC for 2 hours. After the 187 

restriction digest, DNA was analyzed on an Applied Biosystems 3730XL capillary 188 

sequencer as previously described (Longnecker et al. 2009). Chromatograms were 189 

analyzed using DAx Data Acquisition and Analysis software (Van Mierlo Software 190 

Consultancy Eindhoven, the Netherlands). The position of TRFs between samples was 191 

aligned using MATLAB (L. Finlay, J. Kitner, S.J. Giovannoni and E.B. Kujawinski, 192 

unpublished).  193 
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Cloning and sequencing of 16S rRNA genes in sediments 194 

Two sediment samples were chosen for further analysis using clone libraries of 195 

almost full-length 16S rRNA genes: one from sediment exposed to whole groundwater 196 

and a second sample from sediment exposed to 1 μm-filtered groundwater. For both 197 

clone libraries, the sediment was from the bottom of cylinders that received 13C-acetate. 198 

Briefly, DNA was amplified using 27F and 1492R. The resulting PCR products were 199 

cloned using the pCR4-TOPO vector (TOPO-TA, Invitrogen) according to the 200 

manufacturer’s directions. DNA was extracted from the resulting colonies using a 201 

modified alkaline lysis protocol (Sambrook et al. 1989). The PCR-amplified inserts were 202 

then digested with 1U of the restriction endonucleases MspI and HinPI following the 203 

manufacturer’s instructions (New England Biolabs). The clones were separated into 204 

different phylotypes based on the RFLP banding patterns.  205 

At least one clone from each RFLP pattern was sequenced to 2x coverage by cycle 206 

sequencing using fluorescent dideoxy terminators. Internal primers were used to obtain 207 

the 2x coverage within the 16S rRNA gene. The primers used for sequencing were: 208 

M13F (5′- GTAAAACGACGGCCAG-3′), M13R (5′CAGGAAACAGCTATGAC-3′), 209 

515F (5′GTGCCAGCMGCCGCGGTAA-3′), 1114F (5′GCAACGAGCGCAACC C-3′), 210 

519R (5′GWATTACCGCGGCKGCTG-3′), and 907R 211 

(5′CCGTCAATTCMTTTGAGTTT-3′). Sequences were assembled using Sequencher 212 

(Gene Codes Corporation). Chimeras identified by Bellerophon (Huber et al. 2004) were 213 

removed from further analysis. GenBank sequence accession numbers are FJ719033-214 

FJ719100; clones are preceded by ‘p03’ (sediment exposed to whole groundwater) or 215 

‘p04’ (sediment exposed to 1 μm-filtered groundwater). The phylogenetic association of 216 
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each clone was determined using the small subunit rRNA taxonomy and alignment 217 

pipeline (STAP, Wu et al. 2008).  218 

Statistical analysis 219 

Non-metric multidimensional scaling (NMS) (Kruskal 1964; Mather 1976) was 220 

used to analyze variability in bacterial community composition. NMS is a multivariate 221 

statistical technique used to examine similarities, or differences, between samples by 222 

reducing the comparisons between samples from a multidimensional space to fewer 223 

dimensions, preferably two or three. Differences between individual samples were 224 

calculated based on the presence or absence of TRFs with the Bray-Curtis distance 225 

measure using the Fathom toolbox (David Jones, University of Miami – Rosenstiel, 226 

http://www.rsmas.miami.edu/personal/djones/matlab/matlab.html). The differences were 227 

then presented graphically in a multidimensional space; samples that are close together in 228 

the ordination are more similar to one another than samples located further apart. The 229 

statistics toolbox in MATLAB was used to run the NMS analyses. Additional code was 230 

written to assess the dimensionality of the data set by comparing 40 runs with real data to 231 

50 runs with randomized data . Additional axes were added if the addition of the axis 232 

resulted in a significant improvement over the randomized data (at p ≤ 0.05) and the 233 

reduction in stress was greater than 0.05. The p-values were calculated as the proportion 234 

of randomized runs with stress less than or equal to the observed stress which was 235 

calculated using Kruskal’s stress formula 1; stress is a measure of goodness of fit used in 236 

NMS. The proportion of variation represented by each axis was assessed by using a 237 

Mantel test to calculate the coefficient of determination (r2) between distance in the 238 
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ordination space and distance in the original space. All MATLAB code is available upon 239 

request. 240 

One-way analysis of similarity (ANOSIM) was used to assess if groups visualized 241 

by NMS were statistically significant. MATLAB code for ANOSIM was also from the 242 

Fathom toolbox. The Bray-Curtis distance matrix calculated for the NMS was used for 243 

ANOSIM with the distances converted to ranked distances prior to ANOSIM 244 

calculations. The significance of each group was tested by 10,000 randomizations of the 245 

dataset, and p-values were calculated to determine the probability of no difference 246 

between groups. If the p-value was less than 0.05, we rejected the null hypothesis of no 247 

difference between groups. 248 

The non-parametric Kruskal-Wallis test was also used to examine differences 249 

between samples which did not meet the requirements of normality or equal variance.  250 

RESULTS 251 

Groundwater chemical parameters and microbial abundances 252 

There were minor changes in the bulk chemical properties of the groundwater 253 

during the experiment (Fig. 1). The salinity was always less than 0.1 (unitless, data not 254 

shown), oxygen averaged 8.4 mg L-1 and pH averaged 6.5. The groundwater temperature 255 

decreased from ~14ºC to 10ºC by the end of the experiment.  256 

The concentration of dissolved organic carbon (DOC) in the groundwater prior to 257 

entering the sediment-filled cylinders averaged 75.1 μM (66.3 to 83.9 μM, 95% 258 

confidence interval, n = 4). In columns where no acetate was added, DOC increased to 259 

91.6 μM in the whole groundwater (70.6 to 113.4 μM, 95% confidence interval, n = 11) 260 

and to 92.0 μM in the 1 μm-filtered groundwater (80.1 to 103.1 μM 95% confidence 261 
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interval, n = 15). In the sediment-filled cylinders which received additions of acetate, the 262 

DOC concentrations in the groundwater exiting the sediment-filled cylinders were 263 

significantly higher with average values of 110.8 μM (75.9 to 145.6 μM, 95% confidence 264 

interval, n = 27) in the 1 μm-filtered groundwater and 146.8 μM (95.4 to 198.2 μM, 95% 265 

confidence interval, n = 21) in the whole groundwater.  266 

At the conclusion of the experiment, we measured the atom % 13C bound to the 267 

sediments. This measurement includes both organic carbon abiotically bound or adsorbed 268 

to the sediment grains and organic carbon assimilated by the attached bacterial 269 

community. The % 13C value from sediment sampled from a core with no carbon added 270 

was 1.08%, while the value from a core with 12C carbon added was 1.13%. These values 271 

are close to 1.10% 13C which is the natural abundance of 13C. Larger amounts of the 13C 272 

label were found in the bottom of the cylinders closest to the source of 13C acetate. There 273 

was a general decrease in atom % 13C as the water moved upwards through the sediment-274 

filled cylinders (Fig. 2). Furthermore, a higher proportion of the 13C label was found in 275 

sediments exposed to whole groundwater compared to sediments exposed to 1 μm-276 

filtered groundwater (Kruskal-Wallis test, p = 0.0178, n = 20).  277 

From groundwater collected at different time points throughout the experiment, the 278 

abundance of bacterial cells in the groundwater flowing into the sediment-filled cylinders 279 

was 2.1 x 104 cells ml-1 (95% confidence interval = 0.8 to 3.4 x104 cells per ml-1, n = 3). 280 

As was observed with the DOC data, the abundance of bacterial cells increased after the 281 

groundwater flowed through the sediment-filled cylinders. The abundance of 282 

heterotrophic bacterial cells in groundwater exiting the sediment-filled cylinders that 283 
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received acetate additions averaged 1.1 x105 cells ml-1 and 4.8 x 105 cells ml-1 in 1 μm-284 

filtered and whole groundwater, respectively. 285 

The abundance of heterotrophic flagellates in the groundwater flowing into the 286 

sediment-filled cylinders was <100 cells ml-1. The protistan community in groundwater 287 

was primarily comprised of flagellates between two and five μm long. Data on the 288 

abundance of heterotrophic nanoflagellates in the groundwater exiting the sediment-filled 289 

cylinders (Fig. 3) indicated that we were able to reduce the abundance of nanoflagellates 290 

in the 1 μm-filtered groundwater five-fold relative to the whole groundwater treatments. 291 

Bacterial community composition of groundwater and sediment  292 

DNA was extracted from 54 samples and analyzed with T-RFLP analysis. Two of 293 

the samples were from groundwater entering the sediment-filled cylinders; the remaining 294 

samples were either from groundwater exiting the sediment-filled cylinders (n = 25) or 295 

from the sediment within the cylinders (n = 27). ANOSIM was used to test for 296 

differences in bacterial community composition (Table 1). There were statistically 297 

significant differences in bacterial community composition between the incubations with 298 

carbon added compared to those with no carbon added. There were also significant 299 

differences in diversity between the sediment-associated bacterial community and the 300 

free-living bacterial community, and in the bacterial community in treatments with whole 301 

groundwater compared to those with 1 µm-filtered groundwater. Finally, the bacterial 302 

community in groundwater entering the sediment-filled cylinders resembled the 303 

groundwater bacterial community exiting the sediment-filled cylinders. However, there 304 

were no significant differences in bacterial community composition across the four 305 

different sediment sections removed from the cylinders (Table 1). Therefore, for the 306 
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remainder of the project, the sediment sections removed from each cylinder were treated 307 

as pseudo-replicates from the same cylinder. 308 

Bacterial community composition following ultracentrifugation 309 

We defined 13C-labeled DNA as DNA collected from densities ≥ 1.7258 g ml-1 310 

based on our previous results (Longnecker et al. 2009) and on the position of our 12C- and 311 

13C-labeled standard DNA. We observed faint PCR bands in regions defined as 13C-DNA 312 

from cylinders only exposed to 12C-acetate. Since these cylinders had not been exposed to 313 

13C-acetate, we would not expect DNA to be labeled with measureable amounts of 13C. 314 

Therefore, TRFs in the 12C-only enrichments that occurred in the 13C-rich region were 315 

removed from further consideration in all samples in order to be conservative in 316 

characterizing the bacterial community involved in acetate assimilation. 317 

Based on analysis of the TRFs obtained after ultracentrifugation, the bacterial 318 

community composition in the groundwater was significantly different from what was 319 

observed in the sediment (ANOSIM, R = 0.2631 and p = 0.0001). There was no 320 

significant difference in groundwater bacterial community composition between the 321 

whole and 1 μm-filtered groundwater treatments (ANOSIM, p-value > 0.05). 322 

Furthermore, there was no difference in groundwater bacterial community composition 323 

between the 12C-DNA region and the 13C-DNA region following ultracentrifugation 324 

(ANOSIM, p-value > 0.05).  325 

Examination of the bacterial community composition in the sediments revealed a 326 

different situation than was observed in the groundwater. The NMS calculation (Fig. 4) 327 

resulted in an ordination with a final stress of 0.25 and r2 = 0.70 with slightly more 328 

variability on axis one than on axis two (r2 on axis 1 = 0.33, r2 on axis 2 = 0.23). Further 329 
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examination of the bacterial community in the sediments revealed the community 330 

composition of 12C-DNA and the 13C-labeled DNA was significantly different 331 

(ANOSIM, R = 0.2070, p = 0.0001), and there were significant differences in bacterial 332 

community composition between the whole and 1 μm-filtered treatments (ANOSIM, R = 333 

0.2417, p = 0.0001). 334 

Analysis of clone libraries  335 

Two clone libraries from 16S rRNA genes amplified from the sediments were 336 

constructed to allow phylogenetic identification of a portion of the sediment-associated 337 

bacterial community. A total of 177 clones were analyzed with 90 clones from sediment 338 

exposed to whole water and 87 clones from sediment exposed to 1 μm-filtered 339 

groundwater. The clones were screened with RFLP, and 68 clones were fully sequenced 340 

(n = 29 and n = 39 from sediment exposed to whole water or 1 μm-filtered groundwater, 341 

respectively). With the limited number of sequences obtained in the present project, we 342 

opted to provide higher level taxonomic information rather than focusing on a detailed 343 

phylogenetic assessment. Phylogenetic identification revealed that the majority of the 344 

sequences were Proteobacteria (Table 2), with over 50% of the sequences originating 345 

from Betaproteobacteria. In the sediments exposed to 1 µm-filtered groundwater, two 346 

groups of Alphaproteobacteria, Bradyrhizobiales and Sphingomonadales, were also a 347 

large proportion of the clones obtained. 348 
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DISCUSSION 349 

A static bacterial community in groundwater 350 

In the present project, the composition of the groundwater bacterial community did 351 

not change in response to our experimental manipulations. We observed higher 352 

abundances of bacterial cells in groundwater exiting the sediment-filled cylinders, which 353 

indicates that the groundwater bacterial community was able to grow within our 354 

incubations. However, the groundwater bacterial community had a low response to the 355 

experimental manipulations based on two observations. First, filtration of the 356 

groundwater with a 1 µm filter did not alter the bacterial community composition in the 357 

groundwater. Second, the bacterial community in groundwater exiting the sediment-filled 358 

cylinders resembled the bacterial community entering the cylinders. Based on these two 359 

results, we conclude that subsurface microbial community assessments based solely upon 360 

groundwater samples are limited to an examination of the less responsive component of 361 

the microbial community. Indeed, the sediment-associated community may be the more 362 

biogeochemically-relevant community in subsurface systems where there are differences 363 

in community composition (this study, Lehman et al. 2001; Lehman et al. 2004; Flynn et 364 

al. 2008) and differences in metabolic capabilities associated with organic substrate 365 

remineralization (Kato 1984). However, while the groundwater bacterial community did 366 

not exhibit large changes during this experiment, groundwater is still an important vector 367 

for transporting the bacterial community and organic carbon through the subsurface. 368 
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A dynamic sediment-associated bacterial community 369 

Proteobacteria dominated the bacterial community in the sediments in the present 370 

project. The dominance of Proteobacteria has also been observed in pristine aquifers 371 

(López-Archilla et al. 2007; Nagaosa et al. 2008; Blöthe and Roden 2009) and in biofilms 372 

grown in the presence of groundwater (Peacock et al. 2004). In addition, bottle 373 

incubations both with and without grazers determined that Proteobacteria were a large 374 

component of the bacterial community in groundwater (Longnecker et al. 2009). Given 375 

the diverse array of metabolisms possible within the Proteobacteria, we can only 376 

speculate about which metabolic processes the Proteobacteria could be utilizing within 377 

the present project. However, Proteobacteria have been implicated in sulfate reduction, 378 

denitrification, and iron-based metabolisms in other aquifers (López-Archilla et al. 2007; 379 

Blöthe and Roden 2009).  380 

The presence of grazers in the groundwater entering the cylinders affected the 381 

development of the sediment-associated bacterial community. Grazers are known to alter 382 

bacterial diversity and activity (Jürgens and Matz 2002), in part by selectively grazing 383 

specific members of a bacterial community (Jezbera et al. 2005). Alternatively, the 384 

bacterial community may rely on nutrients released during protozoan grazing (Caron et 385 

al. 1988; Barbeau et al. 1996) or shifts in the composition of organic matter due to 386 

grazing activity (Kujawinski et al. 2004; Gruber et al. 2006). In the present study, the 387 

presence of grazers did not significantly alter the composition of organic matter in the 388 

groundwater exiting the sediment-filled cylinders (Longnecker and Kujawinski 2011). 389 

However, our data show that the presence of grazers was a key factor in controlling the 390 
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sediment-associated bacterial community constituents although determining which 391 

processes are involved will require additional work.  392 

We used the δ 13C measurements of the sediments as a means to quantify 393 

differences in carbon cycling within our experiment. A higher proportion of the 13C label 394 

was bound to sediments when grazers were present. There are three possible explanations 395 

for this observation. First, there could be increased consumption of acetate by the 396 

sediment-associated microbial community in the presence of grazers. Second, the subset 397 

of the bacterial community responsible for assimilation of the 13C label could have been 398 

resistant to grazing pressure within the sediments. Third, the metabolically-active 399 

bacterial community incorporated higher amounts of carbon into the biofilm attached to 400 

the sediments in the presence of grazers. This adds isotopically-labeled carbon to the 401 

sediment grains and the biofilm could provide resistance to grazing pressure (Matz and 402 

Kjelleberg 2005). However, whether the bacterial community was responding to changes 403 

in the composition of organic matter, to increases in organic carbon, to nutrients released 404 

due to grazing activity, or to some combination of all three processes, remains unknown. 405 

Conclusions 406 

The present project revealed distinct differences between sediment-associated and 407 

groundwater bacterial communities. While the groundwater bacterial community did not 408 

alter its composition during the present project, a distinct sediment-associated community 409 

developed in the presence of protozoan grazers. Furthermore, the presence of protozoan 410 

grazers increased the retention of labeled organic carbon in the sediments which indicates 411 

that the presence of grazers can alter the retention of organic carbon in the subsurface. 412 
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 589 

Table 1. Variability in bacterial community composition for DNA extracted from the 590 

sediments and groundwater. ANOSIM was used to test for statistically significant 591 

differences in bacterial community composition between groups. The following 592 

comparisons are shown: 1) acetate amendment compared to no-carbon addition, 2) free-593 

living compared to sediment-associated bacterial community, 3) sediment-filled cylinders 594 

exposed to whole versus 1 μm-filtered groundwater, and 4) the vertical location of the 595 

sediment within the cylinders. “n.s.” = the comparison was not significant.  596 

Comparison n  ANOSIM 

No Carbon added 16 R = 0.1622 
p = 0.0051 Acetate added  36 

Groundwater 25 R = 0.3651 
p = 0.0001 Sediment 27 

Whole 24 R = 0.1014 
p = 0.0073 1 μm-filtered 28 

Top of core 6 

n.s.  Upper middle 6 
Lower middle 6 
Bottom of core 9 

597 
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Table 2. Phylogenetic information from the 16S rDNA sequences from the two clone 598 

libraries: one from sediment exposed to whole groundwater and one from sediment 599 

exposed to 1 μm-filtered groundwater. Both samples were from cylinders with 13C-600 

acetate added. The percentages do not add up to 100% due to rounding within each 601 

phylogenetic group. 602 

  % of clones 

Phylum Class / Order / Family  Whole 
groundwater 

1 μm-filtered 
groundwater 

Acidobacteria Solibacteres  1 
    
Actinobacteria Actinobacteridae 2 2 
    
Bacteroidetes Flexibacteraceae 4  
 Saprospiraceae 1 1 
 Environmental sequences 1  
    
Cyanobacteria Environmental sequences  1 
    
OP11-5 Environmental sequences 2  
    
OP3 Environmental sequences 7  
    
Planctomycetes Environmental sequences 1 1 
    
Proteobacteria Alphaproteobacteria   
 Bradyrhizobiales 2 12 
 Caulobacterales 1 2 
 Rhizobiales 9  
 Rhodobacterales  2 
 Sphingomonadales 3 17 
 Betaproteobacteria   
 Burkholderiales 53 36 
 Methylophilales 2  
 Rhodocyclales 1 7 
 Nitrosomonadales  8 
 Gammaproteobacteria   
 Legionellales 4  
 Moraxellaceae  8 
 Xanthomonadales  1 
    
Verrucomicrobia Verrucomicrobiae 4  

603 
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Figure legends 604 

Fig. 1. Temperature, pH, and dissolved oxygen (DO) measurements made during the 605 
course of the experiment. Data are mean values of measurements taken from multiple 606 
cubitainers at each time point; for most samples, the error bars (± one standard deviation) 607 
are smaller than the symbol used in the figure. 608 

Fig. 2. Atom % 13C of organic carbon in the sediments removed from the cylinders at the 609 
conclusion of the experiment. Data from cylinders with 13C-labeled acetate are shown 610 
here; data from control cylinders are discussed in the text. Data points have been jiggered 611 
on the y-axis for clarity of presentation. The points with error bars are duplicate 612 
subsamples of sediment. 613 

Fig. 3. Abundance of heterotrophic nanoflagellates (x 103 cells ml-1) in the groundwater 614 
exiting the sediment-filled cylinders. The error bars are ± one standard deviation. 615 

Fig. 4. NMS analysis of sediment-associated bacterial community composition after 616 
DNA was separated into 12C- and 13C-DNA using ultracentrifugation. The lines in the 617 
figure separating the treatments with and without grazers and the 12C- and 13C-DNA are 618 
based on statistically significant differences.  619 

620 
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Fig. 2 627 
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