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Far-infrared reflection off heterostructures made from ultrathin ferromagnetic layers
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Recent progress has been made in creating terahertz magnons using ultrathin ferromagnetic lay-
ers. Due to their short lifetimes, these can be difficult to measure. Here we detail a calculation
that shows that infrared magnons can be detected using standard reflection and attenuated total
reflection measurements from a thin film heterostructure made up of alternating ultrathin magnetic
and nonmagnetic layers. We use an entire-cell effective medium calculation to find the magnetic
permeability of the heterostructure and then use electromagnetic boundary conditions to calculate
reflectivity as a function of frequency. There are appreciable dips in the reflectivity at infrared
magnon resonance frequencies, for realistic material parameters. Moreover, the strong coupling
of magnon-photons indicates the possible use of 50 GHz – 1 T Hz magnons in integrated signal
processing devices.

I. INTRODUCTION

Ferromagnets and ferrimagnets typically have resonant
frequencies in the 1 – 50 GHz range. [1] This range
of frequencies covers frequency bands that are used for
radar and satellite communication (typically ranges from
30 MHz to about 36 GHz) and local wireless commu-
nications. For example, wifi operates at 2.4 GHz. [2]
There are large changes in the interaction of electromag-
netic radiation with magnetic materials as a function of
frequency or applied field near their resonant frequen-
cies. For example, transmission of a signal can vary by
80 dB/cm with a change of field of under 500 Oe. [3] Since
this occurs precisely in the frequency bands of technolog-
ical interest, ferromagnets and ferrimagnets have been
used to make signal processing devices such as band-stop
filters, band pass filters and isolators. [3–5] Compared
to other technologies that produce similar devices, mag-
netic materials have the advantage of being tunable (on
application of external fields) and easily-integrable into
on-wafer devices. Materials including Yttrium Iron Gar-
nett (YIG), [4, 6] metals such as iron and Permalloy,
[3, 7, 8] and barium-hexaferrite [9–11] have all been used
with particular advantages to each material.

However, today there is a push to develop applica-
tions in the 50 GHz – 1 THz range. [12, 13] We will
call this range of frequencies terahertz radiation, or far-
infrared radiation. One reason for the push is that the
1 – 50 GHz communication bands are becoming increas-
ingly full with the exponential increase in the number
of wireless-enabled devices in the world today. In par-
ticular, electronic engineers are interested in 150 GHz
frequencies as this is below a strong absorption by wa-
ter vapor that occurs at 180 GHz that limits wireless
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range. [12] For indoor applications, it is of particular in-
terest. [14] There are many other examples. Automotive
radars [15] have moved to the frequency range of 76 – 81
GHz. Similarly, atmospheric research often takes place
in the 92 – 100 GHz range.

All the components needed for wireless communication
are therefore required to be adapted for higher frequency
operation. Antiferromagnets generally have higher reso-
nant frequencies than ferromagnets or ferrimagnets, but
these are typically in the range of 1 – 2 THz [16, 17] so are
instead too high in frequency. In addition, antiferromag-
nets such as FeF2 or MnF2 often have Néel temperatures
well below room temperature and would require substan-
tial cooling. [18]

A possible solution for devices based on magnetic ma-
terials is to use ultrathin ferromagnetic layers. By “ul-
trathin” we mean that the magnetic layers are only 4 – 6
atomic planes thick. It is well-known that ultrathin mag-
netic layers have standing waves which can be at much
higher frequencies – hundreds of GHz – due to the con-
tribution of the exchange interaction. [19, 20] In fact,
materials can be designed, by a choice of thickness, to
have resonances which cover much of the gap in the fre-
quency spectrum discussed above. The main conclusion
of this theoretical paper is that realistic, structured thin
film materials containing ultrathin ferromagnetic layers
can have strong frequency-dependent interactions with
electromagnetic waves in the 50 GHz – 1 THz region,
that is currently of great interest.

Before describing the system to be studied, we pause
to discuss another motivation for having magnetic mate-
rials with strong resonances in the 50 GHz – 1 THz range.
Terahertz magnons are of interest not just for the electro-
magnetic signal processing applications discussed above,
but also in the field of magnonics, whereby spin waves
are proposed to carry information and perform logic op-
erations. [21–24] Terahertz magnons would lead to faster
computation than magnons in the 1–10 GHz range, but
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FIG. 1. Reflection geometry of the layered structure. The
x-y plane is the plane of incidence for infrared radiation. The
magnetic layered film has thickness d and is placed on top of
a semi-infinite substrate that extends y > 0. The effective
magnetization of the structure, Meff, is directed along z. An
externally applied magnetic field H0 is also applied along z.
The angle of incidence in air θ is the angle the wavevector of
the incident wave k1 makes with the normal to the surface.
Here we consider the case of an incident transverse electric
(TE) beam so that the oscillating H field of the is in the x-y
plane. The inset shows a schematic of the first few even stand-
ing waves in an ultrathin film, that have some net moment
that can couple with the impinging light.

currently these magnons are not long-lived and are diffi-
cult to detect. [25–27] Here, we show that they may be
detected by reflection.

We consider a composite thin film of thickness d that
contains alternating ultrathin layers of a magnetic mate-
rial (NA atomic layers thick) and non-magnetic material
(NB atomic layers thick). This is illustrated in Fig. 1.
Note that we call the composite material (or heterostruc-
ture) a magnetic thin film with d = 30 – 300 nm, and this
is not to be confused with the ultrathin magnetic layers
that are only 4 – 6 atomic planes thick, that are stacked
in order to form the composite film. Within the ultrathin
magnetic layers (white layers in Fig. 1), standing mag-
netic waves form through the thickness. Radiation in the
50 GHz – 1 THz range can be resonantly absorbed by the
standing waves (to be discussed later). However, a suf-
ficient amount of material is needed for this interaction
to be measurable, which is why we consider a thin film
stack of these ultrathin layers. We consider exclusively
iron as the material making up the ultrathin magnetic
layers. We also did calculations for insulating YIG but
found that the resonant frequencies could not be made
high enough for realistic YIG layers.

We use an entire-cell effective medium calculation [28–
30] to characterize the effective permeability tensor of the
composite thin film (see Appendix A). We then use the
permeability tensor to calculate the reflectivity and at-
tenuated total reflectivity (ATR) of far-infrared radiation
from the metallic composite thin film on top of a dielec-
tric quartz substrate (see Appendix B). The reflectivity

FIG. 2. The geometry for attenuated total reflection is simi-
lar to normal reflectivity (see Fig. 1), but includes a dielectric
crystal prism a height dgap above the magnetic thin film com-
posite with thickness d. The wavevector of the incident light
inside the prism is denoted k, as opposed to the wavevector
in the air gap k1 and the wavevector in the magnetic meta-
material k2.

geometry is shown in Fig. 1 and the ATR geometry is
shown in Fig. 2.

The reason we consider conducting films is that we
consider iron as the material in the magnetic layers. In
thin films [31] and metallic multilayers [32] the conduc-
tivity can change from bulk values due to scattering of
electrons from interfaces, so we consider various values of
the conductivity in our calculations.

We find a number of important results. First, we note
that 50 GHz – 1 THz radiation normally has a reflection
coefficient near 1 for thick metallic films, independent of
frequency. In the composite thin film, this is not the case.
As a result of interaction between the radiation and the
magnetic material, together with the finite thickness of
the composite film, one can find a dip in the reflectivity
at particular frequencies that correspond to standing spin
excitations. For simple reflectivity measurements, this
dip can be on the order of 10% of the background reflec-
tivity. For attenuated total reflection measurements, the
dip is deeper, on the order of 20–30%, depending on the
details of the layered structure. This is certainly measur-
able in experiments. Finally, we note that the excitation
frequencies can indeed be designed to lie in the 50 – 600
GHz range.

The theory used is detailed in Appendices as it is some-
what standard, however the equations used to generate
our results should be provided to the reader. In Sec. II
results are provided and discussed. Possible implications
to experiments are also described. In Sec. III conclusions
are given.

Reflection geometries

Before presenting the results, the geometries need some
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explanation. We wish to calculate the reflection coeffi-
cients for 50 GHz – 1 THz radiation from a magnetic
composite material, as shown in Fig. 1. Located at y = 0
is the interface between a dielectric substrate (gray) with
dielectric constant ε3 and the magnetic thin film com-
posite with complex dielectric constant ε2(ω) and mag-
netic permeability tensor µ̃(ω). The composite extends a
thickness d in the −ŷ direction. The composite contains
alternating ultrathin layers of a magnetic material and
a nonmagnetic material. Only five ultrathin layers are
shown in Fig. 1 for simplicity. The effective saturation
magnetization of the composite Meff is directed along ẑ,
as is the static applied field H0. The incident wavevec-
tor k1 is at an angle θ from normal incidence in air. The
plane of incidence for light is the x-y plane. We will focus
on the case of transverse electric (TE) incident radiation.
That is, the electric field of the infrared radiation is along
the z direction and the oscillating H field is in the x-y
plane. Transverse magnetic (TM) reflection is uninter-
esting in this geometry because the H field is along the
z direction, parallel to Meff. This means that µzz = 1
for all frequencies and the incident radiation does not
interact with the magnetic properties of the material.

The inset in Fig. 1 shows a zoom-in of a magnetic
film with NA atomic planes and a nonmagnetic spacer
layer with NB atomic planes. Cartoons of the exchange-
dominated standing spin waves are drawn, indexed by
integer n. Here, for symmetric magnetization pinning on
the top and bottom of the ultrathin film, it is the even
modes (n=0, 2, 4,...) that have a net dynamic moment,
and which may couple with the incident radiation, lead-
ing to changes in the material’s reflectivity at resonant
frequencies. The odd modes have zero moment and are
not drawn in this inset. The mode profiles will be dis-
cussed in more detail in the next section. At the stand-
ing waves’ resonant frequencies, the Voigt permeability
µ1 [33] for the composite material, namely

µ1 =
µxxµyy + µ2

xy

µyy
, (1)

has sharp peaks. (See Appendix B.) This indicates that
strong absorption of radiation at these frequencies is pos-
sible. An understanding of the permeability therefore
leads to an understanding of the reflectivity results.

Attenuated total reflection (ATR) can be more sensi-
tive to the detection of magnon-polaritons because it is
more sensitive to material absorptions at resonances. [34?
] We consider the addition of a dielectric prism a dis-
tance dgap above the magnetic composite material, as
illustrated in Fig. 2, creating an air gap in which evanes-
cent infrared light may travel into the composite. This is
the so-called Otto ATR configuration. [34] The incident
angle is again labelled θ but this time is defined inside
the prism. We will see that it is indeed more sensitive to
detecting terahertz magnons than simple reflectivity.

II. RESULTS

Results are presented for a composite metallic struc-
ture comprised of alternating ultrathin layers of iron and
some nonmagnetic, metallic material. The thickness of
the iron films is NA atomic layers and the thickness
of the nonmagnetic films is NB such that the super-
lattice can be described as NA/NB , as shorthand no-
tation. The exchange constant used for iron is AFe =
2.05µerg/cm, which is a value averaged from multi-
ple reported values. [35–39] Iron has a lattice constant
a = 0.2856 nm and this value is assumed for the non-
magnetic spacer material as well. Iron also has a gy-
romagnetic ratio γ = 2.92 GHz/kOe, and saturation
magnetization M0 = 1700 emu/cm3. [40] The exchange
field between neighboring ferromagnetic layers is there-
fore Hex = A/(a2M0) = 1, 500 kOe. The applied field
strength considered throughout is H0 = 1000 Oe. A
damping parameter of Γ = 10−3 is used, which is an order
of magnitude larger than that found in ultralow-damping
materials, such as metallic FexCo1−x alloys. [41, 42] The
damping is considered to be linear with frequency (see
Appendix A). The uniaxial anisotropy K is neglected
here as its contribution is small compared to the exchange
interaction.

A pinning field is applied to the top and bottom atomic
planes in each magnetic ultrathin layer, and the strength
of this pinning greatly affects the frequency of excited
spin waves in the system. No exchange coupling is con-
sidered here between different magnetic layers, through
the nonmagnetic layers between them. This is a simplifi-
cation because in reality it is common for metallic inter-
layer exchange coupling to occur, for example through
RKKY coupling. [43, 44] One may argue that the surface
pinning fields are a phenomenological way to describe fer-
romagnetic exchange coupling through spacer layers. For
example, Ref. [45] found an effective surface anisotropy
field – or pinning field – equal to 20 kOe averaged over a
whole thin film, with this value markedly increased if it
influences just the surface layer of spins.

In this work, we primarily consider a pinning field
that is one quarter of the strength of the exchange field
(Hpin = 0.25Hex). Surface pinning can be large for thin
magnetic layers, with the possibility of the magnetization
being completely pinned at an interface. [46] Note that
here we assume the pinning field is the same at the top
and the bottom atomic planes for simplicity, but that due
to the order of growth of the alternating thin films, these
pinning fields may be different. This pinning allows the
profile of the lowest frequency (n = 0) magnetic stand-
ing wave to have a curvature and therefore an exchange
contribution. As mentioned earlier, it is the exchange
contribution that pushes the standing wave frequencies
into the infrared frequency range.

This is illustrated in Fig. 3. The real part of the
Voigt permeability µ1, calculated using entire-cell effec-
tive medium theory (see Appendix A), is plotted as a
function of frequency for three different composite het-
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FIG. 3. The real part of the effective Voigt permeability
µ1 = (µxxµyy + µ2

xy)/µyy of heterostrutures as a function
of frequency. The results for alternating four atomic layers
of iron and two atomic layers of a nonmagnetic material is
shown by the solid (blue) line (so called 4/2 supperlattice).
The results for 5/2 and 6/2 superlattices are shown by the
long-dashed (red) line and the fine-dashed (green) lines, re-
spectively. There are peaks in the Voigt permeability where
the lowest standing wave in the ultrathin magnetic films is
resonant. The insets show the form of the n = 0 standing
waves in the ultrathin iron films with six and four atomic
layers, respectively.

erostructures. Each composite comprises an ultrathin
layer of iron with varying thickness, and two atomic
planes of some nonmagnetic spacer, repeated to form a
superlattice. The solid, blue line shows the results for
a 4/2 composite, the long-dashed, red line shows the re-
sults for 5/2, and the fine-dashed green line shows the
results for 6/2. Peaks in the permeability correspond to
where standing spin waves are resonant in the ultrathin
layers. The frequencies of these standing waves are in the
far infrared region (greater than 300 GHz). Notice that
as the iron layer is made thicker, the resonant frequency
decreases. This is because the misalignment of neigh-
boring magnetic moments is less for the thicker ultrathin
layers, meaning they have less exchange energy.

The maximum value for the real part of the Voigt per-
meability is 37 in Fig. 3 for the 6/2 superlattice (fine-
dashed, green line), compared to 21 for 4/2 (solid, blue
line). There are two reasons for this. Firstly, 6/2 rep-
resents a composite material that is 75% iron, compared

to 66.7% iron for 4/2, and therefore is expected to have
a larger permeability. Secondly, the resonance for the
6/2 superlattice occurs at almost half the frequency as
that for 4/2. The magnetic damping is linear with fre-
quency, meaning that at lower frequencies the magneti-
zation has a larger response to a perturbing field, the
magnetic susceptibility is larger, and therefore the per-
meability is larger.

The lowest-order (n = 0) standing wave profiles for
the iron layers with six (green) and four (blue) atomic
planes are shown in insets above the plot in Fig. 3, above
their corresponding frequencies. One can see the effect of
the surface pinning to bend them. Without surface pin-
ning, these standing waves would be flat and the lowest
magnon frequency would be in the low GHz region, rather
than in the infrared. One can estimate the frequency of
these modes using f ∼ γDk2, where D = 2A/M0 [47]
and the wavenumber k can be estimated by the shape of
the mode. Doing this for the mode profiles drawn in the
insets yields estimates for the frequencies that are the
correct order of magnitude.

We pause here to consider other standing wave modes.
The odd modes have no net magnetic moment – for pin-
ning that is the same on the top and bottom surfaces
only – so do not couple to the electromagnetic radiation.
However, higher order even modes have a net moment –
as long as pinning is non-zero – and so these resonances
correspond to peaks in the permeability. A plot of the
Voigt permeability µ1 is shown in Fig. 4 for a 20/2 het-
erostructure. The iron layers are much thicker than in
Fig. 3 so that the n = 2 standing wave is lowered in
frequency to around 600 GHz. Three different values of
surface pinning Hpin are considered. As a percentage of
the exchange field, these are 25% (dot-dashed line), 15%
(solid, green line), and 5% (dashed, red line).

First, notice that the size of the permeability peaks in
Fig. 4 are 20 to 40 times smaller compared to those shown
in Fig. 3. This is because the n = 2 modes have a much
smaller net magnetic moment than the n = 0 modes.
In the insets at the top of Fig. 4, the mode profiles are
shown for two of the pinning fields. For Hpin = 0.25Hex

(right panel) the outermost atomic planes contribute a
net magnetic moment (shaded regions) whereas the mag-
netic moment in the center of the film averages to zero.
For Hpin = 0.05Hex (left panel) the net moment is close
to zero because the magnetic boundaries are essentially
free, and one sees a dramatic reduction in the height of
the permeability peak.

Second, as the pinning field is reduced, the resonant
frequency of the n = 2 mode decreases from 645 GHz
for Hpin = 0.25Hex (black, dot-dashed line) to roughly
500 GHz for Hpin = 0.05Hex (red, dashed line). This
is because the wavelength is getting longer for weaker
pinning (compare the standing wave profiles in the insets)
and so the exchange energy contribution is getting less.
As discussed earlier, the frequency goes as f ∼ γDk2.

For thinner iron layers, the n = 2 mode moves to much
larger frequencies, but damping is therefore larger and
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FIG. 4. The real part of the effective Voigt permeability µ1

of 20/2 heterostrutures as a function of frequency. The peaks
in this figure correspond to the n = 2 standing wave in the
20-atom-thick iron film being resonant. Plots are shown for a
pinning field which is 25% (dot-dashed line), 15% (solid, green
line), and 5% (dashed, red line) of the exchange field. The
n = 2 standing wave profile is drawn in the two insets above
for weak pinning (Hpin = 0.05Hex, left) and for strong pin-
ning (Hpin = 0.25Hex, right). The shading in the right inset
indicates the atomic layers that contribute to a net dynamic
moment of the mode.

the permeability gets even smaller. The effect on the
reflectivity is negligible. It is for these reasons that we
focus on the fundamental n = 0 standing wave in the rest
of the article. We also choose to keep the pinning field
constant at Hpin = 0.25Hex in order to have resonant
frequencies in the 300–600 GHz range.

Next, the regular reflectivity from the composite mate-
rial on top of a quartz substrate [48] (ε3 = 4.5 [49]) is con-
sidered (see Fig. 1). The permittivity of the composite is
taken to be that of a metal with ε2 = 1+(iσ)/(ε0ω), with
the value of the conductivity σ in SI units. [33] In thin
films [31] and metallic multilayers [32] the conductivity
can change from bulk values. For this reason, at first we
consider σ = 106 S·m−1 for the heterostructures, which
is lower than the value of 107 S·m−1 typically quoted
for iron. (We vary the conductivity later.) Results for
the same three composite materials studied in Fig. 3,
as a function of frequency, are considered in Fig. 5(a). A
343 nm thick composite film (this corresponds to between
150 and 200 repeats of the Fe/nonmangetic ultrathin lay-
ers) is on top of the semi-infinite quartz. Radiation is
incident at θ = 45◦. One sees that there are dips in
the reflectivity of roughly 8% for the 6/2, 5/2 and 4/2
composites, all of the same 343 nm thickness.

The reason that the reflectivity dips are the same for
all these three different composite materials can be ex-

plained using the semi-analytic expression for the reflec-
tivity from a semi-infinite magnet, given in Eqs. (B8) and
(B9). For a constant incident angle, one can see that the
reflection coefficient crudely goes as

R ∼
1−

√
ε2/µ1

1 +
√
ε2/µ1

, ε2 = 1 +
iσ

ε0ω
∼ iσ

ε0ω
. (2)

The magnitude of ε2 decreases with frequency, and we
have already seen that the peak in the Voigt permeabil-
ity µ1 decreases with frequency. These two trends cancel
each other out to give reflectivity dips that are roughly
constant for the various heterostructures. This is promis-
ing as it means that magnon frequencies can be pushed
to higher frequencies in metals, without an appreciable
loss in signal.

Fig. 5(b) shows results for the calculation repeated,
but this time for an ATR geometry with a silicon prism
(ε = 11.56) positioned with a 5 µm air gap above the
343 nm thick composite film (see Fig. 2). The reflectivity
dips appear at the same frequencies, but the dips are
deeper, measuring roughly 24%. This shows that the
measurement of infrared magnons can be enhanced by a
factor of three using ATR. The angle of incidence is 45◦

inside the prism. The angle of incidence can be varied

Reflection
d = 343 nm
θair = 45°

ATR
dgap = 5 µm
εprism = 11.56
d = 343 nm
θprism= 45°

6/2 5/2 4/2
(a)
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FIG. 5. The reflectivity from a 343 nm thick composite film
with σ = 106 S·m−1 on top of a dielectric substrate (ε3 = 4.5)
in (a) standard reflection, and (b) ATR. In the ATR geometry,
there is a 5 µm air gap between the film and a prism with ε =
3. The angle of incidence is 45◦ in air for standard reflection
and in the prism for ATR. The same three heterostructures
are considered as in Fig. 3, namely 4/2 (solid, blue lines), 5/2
(dashed, red lines) and 6/2 (fine-dashed, green lines).
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with smaller angles giving a little larger reflectivity dips.
The air gap can also be varied but does not dramatically
change the results on this scale as the wavelength of light
at these frequencies is in the millimeter range.

The composite thickness d = 343 nm used to generate
Fig. 5 is very thick as it corresponds to 200 repeats of
the 4/2 ultrathin layers or 150 repeats of the 6/2 layers.
Therefore, in Fig. 6 we compare the ATR results with d =
343 nm (solid line) to a more realistic heterostucture that
is just 34.3 nm thick (20 repeats of the 4/2 superlattice,
thick dashed line). Only the 4/2 heterostructure results
are shown here as the results are very similar for other
heterostructures. By making the metallic thin film much
thinner, the overall reflectivity drops from 0.93 to 0.49.
Moreover, the dip in reflectivity that was 24% drops to
4%. It is promising for experiments that just 20 repeats
of the ultrathin films produces a reflectivity dip that is
theoretically measurable. The more repeats that can be
grown, the easier it is to detect infrared magnons.

We also show in Fig. 6 the limit of a semi-infinite het-
erostructure (finely-dashed line). One sees that near the
standing wave resonance at 540 GHz, the ATR reflectiv-
ity matches with that from the 343 nm film. That is
because all films that are thicker than the skin depth be-
have in roughly the same way to absorb radiation and the
skin depth becomes really short near the ferromagnetic
resonance. [50] Also, at roughly 560 GHz, the reflectivity
goes to 1 for the semi-infinite film. This is the so-called
antiresonance frequency [51] where the real part of the
Voigt permeability µ1 crosses zero (see Fig. 3), the skin-
depth diverges, and the reflectivity therefore goes to 1
(see Eq. (2)). This frequency is interesting for creating
band pass filters. [52, 53]

We consider varying the electrical conductivity σ of

d = 34.3 nm 

d = 343 nm 

semi-infinite
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FIG. 6. The ATR reflectivity from a 4/2 heterostructure of
varying thickness: 34.3 nm (thick dashed line), 343 nm (solid
line) and semi-infinite (fine dashed line). The ATR parame-
ters are the same as those quoted in Fig. 5.

σ = 105 S m-1 

σ = 106 S m-1 

σ = 104 S m-1 

σ = 107 S m-1 

(a) θ = +45°
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(b) σ = 104 S m-1 
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FIG. 7. (a) The ATR reflectivity – as a function of frequency
– from a 323 nm thick 4/2 heterostructure of varying conduc-
tivity: 107 S·m−1 (thick, solid, black line), 106 S·m−1 (solid,
blue line), 105 S·m−1 (thick-dashed line) and 104 S·m−1 (fine-
dashed line). The ATR parameters are the same as those
quoted in Fig. 5. In panel (b), the σ =104 S·m−1 result is
shown for angle of incidence inside the ATR prism equal to
+45◦ (fine-dashed line) and −45◦ (solid line) to show nonre-
ciprocal effects that appear for low values of conductivity.

the composite. Results are shown in Fig. 7(a) for the
ATR reflectivity from a 343 nm thick 4/2 heterostruc-
ture on semi-infinite quartz. The angle of incidence is
again 45◦ inside the silicon prism (ε = 11.56). A stan-
dard value for the conductivity of iron is 107 S·m−1, but
in thin films with a large surface area, the conductivity
can be one or two orders of magnitude lower. [31, 32]
Furthermore, if the nonmagnetic material used between
the iron layers is non-conducting, then the effective con-
ductivity of the thin film composite can be lower. [54] We
therefore plot results with conductivity 107 S·m−1 (thick,
solid, black line), 106 S·m−1 (solid, blue line), 105 S·m−1

(thick-dashed line) and 104 S·m−1 (fine-dashed line). As
the conductivity is reduced, the overall reflectivity drops
from close to one to almost zero, because more light is
transmitted through the magnetic heterostructure film.
The dip is roughly the same magnitude for the larger
three values of the conductivity, and becomes a peak for
the smallest value. In fact, for σ =105 S·m−1 (thick-
dashed line) the dip represents a drop of almost 50%
in the background reflectivity, as compared to 24% for
the more metallic case of 106 S·m−1 (solid line). To see
the largest response at the standing wave frequency, one
therefore requires a material with conductivity that is
weakly metallic.

In Fig. 7(b) we plot the results for σ = 104 S·m−1
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from panel (a) again, this time for angles of incidence
in the silicon prism equal to +45◦ (fine-dashed line) and
−45◦ (solid line). One sees large non-reciprocity in the
reflectivity. The reflectivity dip goes almost to zero for
θ = −45◦, but does not go below 0.2 for θ = +45◦.
The nonreciprocity decreases as the conductivity is in-
creased. Such nonreciprocity was discovered in antiferro-
magnetic insulators some decades ago. [18, 55] A related
phenomenon that is often seen in magnetic insulators in
this frequency range is the existence of surface waves. [56–
58] Although this nonreciprocity on reflection is related
to surface effects, we found that true surface waves only
appear in this composite material if the conductivity was
made smaller (σ < 104 S·m−1) and if the composite was
made 100 µm thick. Neither of these parameters are re-
alistic for this specific study as we focus on iron (a metal)
and because 100 µm corresponds to over 10,000 repeats
of the ultrathin iron layers.

We have mentioned in this work that infrared radiation
is absorbed when the Voigt permeability becomes large
at standing wave resonant frequencies. To see this in an-
other way, we plot the ATR fields inside the composite
in Fig. 8, for two different frequencies: 535 GHz (just
off resonance, left panels) and 539 GHz (on-resonance
for the 4/2 heterostructure, right panels). The real part
of Ez is plotted in the top panels and the real part of
Hx is plotted in the bottom panels. Air (white), mag-
netic composite film (343 nm shaded region) and quartz
(white) regions are shown along the horizontal axis. As
mentioned earlier, the wavelength of the far-infrared ra-
diation used is far longer than the composite thin film
so the electric field is constant on these length scales,
apart from near the resonant frequency. At resonance,
the fields abruptly change their shape and decay expo-
nentially in the magnetic composite. One also sees an
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FIG. 8. ATR electromagnetic field components inside the
material as a function of distance y. Fields are shown just
off resonance (panels (a) and (b)) and on-resonance (panels
(c) and (d)). The top panels show the real part of Ez and
the bottom panels show the real parts of Hx. A 323 nm
thick 4/2 heterostructure (shaded region) is considered with
σ = 106 S/m.

increase in the magnitude of Ez at the air/magnet inter-
face – compare panels (a) and (c) – which is indicative
of the increased absorption of radiation at precisely this
frequency.

III. CONCLUSION

We have theoretically shown that high-frequency
magnons can be detected using standard infrared mea-
surements in heterostructures containing ultrathin fer-
romagnetic layers. For iron parameters, the heterostruc-
tures only need to contain 20 repeats to show appreciable
dips in the reflectivity. ATR measurements in the Otto
geometry are at least three times more sensitive than
standard reflectivity measurements.

The frequencies of the infrared magnons depend on the
thickness of the ultrathin magnetic layers and on surface
pinning fields. Larger pinning fields and thinner layers
create larger frequencies for the standing waves through
the magnetic thickness due to shorter wavelengths and
therefore larger exchange energy contributions. Further-
more, although iron is the only material considered here,
a ferromagnetic material with a large exchange constant
is the best choice for pushing magnons to larger frequen-
cies. Cobalt or an iron/cobalt alloy may therefore be a
good candidate.

To maximize the reflectivity dips, one requires both a
low magnetic damping and also a moderate value for the
conductivity (that of a poor metal, for example). The in-
troduction of many surfaces in a heterostructure usually
increases the damping (due to two-magnon scattering
processes) while simultaneously decreasing the conduc-
tivity. Therefore, there is a trade-off between these two
desired properties and stacks of ultrathin layers should be
carefully engineered to have significant reflectivity dips.

The ATR reflectivity depends on a range of param-
eters, including the incident angle of light, the air gap
thickness, the prism dielectric constant and the thin film
superlattice thickness d. The results presented here are
a summary of the trends and there remains a vast pa-
rameter space to be explored in order to find the optimal
experiment to detect infrared magnons.

This work also shows that heterostructures made up of
ultrathin magnetic layers, which are easily integrated into
circuits and on-wafer devices, have the ability to be used
for signal processing applications. Although magnetic
elements are widely present for applications in the 1- –
50 GHz [9–11] this opens the way for those applications
to be extended to much higher frequencies between 50
GHz and 1 THz.
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Appendix A: Entire-cell effective medium method

An entire cell effective medium method [28–30] is used
to find the magnetic susceptibility of the magnetic com-
posite material, so that the material’s interaction with
infrared radiation can be calculated in the next subsec-
tion. This method works by writing down magnetization
equations of motion for each atomic layer, and coupling
these with the dynamic magnetic fields in each layer, with
Maxwell’s boundary conditions obeyed between neigh-
bors.

Let there beNA atomic magnetic layers andNB atomic
nonmagnetic layers, and these layers are repeated to
make up the composite. We define unit vectors paral-
lel to the magnetization Mi direction in each magnetic
layer i according to

mi =
Mi

M0
, (A1)

whereM0 is the saturation magnetization of the material.
The magnetic energy density E (in CGS units) of a

layer i of the ultrathin film is altered depending if the
layer is inside the film (E i), on the top interface (E1) or
on the bottom interface (ENA). These three options are
given by

E i = −
(
Ai,i+1

a2

)
mi ·mi+1 −

(
Ai,i−1

a2

)
mi ·mi−1

−K
(
mi
z

)2 − (H0 + hi
)
·miM0, (A2)

E1 = −
(
A1,2

a2

)
m1 ·m2 −K

(
m1
z

)2
−
(
H0 + h1

)
·m1M0 −Hpin ·m1M0, (A3)

ENA = −
(
ANA−1,NA

a2

)
mNA−1 ·mNA −K

(
mNA
z

)2
−
(
H0 + hNA

)
·mNAM0

−Hpin ·mNAM0. (A4)

In Eq. (A2), Ai,i+1 is the exchange coupling constant be-
tween two magnetic layers in erg/cm, a is the atomic lat-
tice spacing in the magnet, K is the uniaxial anisotropy
constant with units of erg/cm3, H0 is the constant ex-
ternal field, and hi is the high-frequency driving field in
layer i, in the x − y plane. It is due to the incident ra-
diation H, but can have different values in each atomic
layer due to the interaction with the magnet.

Eq. (A3) for the top layer of the magnetic film is al-
tered compared to Eq. (A2) for interior layers by the fact
that there is exchange coupling to only one layer below,

not to two layers. Also, we assume that there is a surface
pinning field Hpin at the interface with the nonmagnetic
material. As mentioned in the main text, the magne-
tization can be completely pinned at an interface. [46]
Eq. (A4) for the bottom layer has similar changes as the
top layer. Note that here we assume the pinning field is
the same at the top and the bottom layer for simplicity.

The energy density in Eqs. (A2)–(A4) is used to find
the response of the magnetization in each magnetic layer
using the torque equation,

dmi

dt
= − |γ|mi ×Hi

eff = − |γ|mi ×
(
−∇MiE i

)
,(A5)

where γ is the gyromagnetic ratio, and the effective mag-
netic field in each layer Hi

eff is found by taking the neg-
ative variational derivative of the energy density with
respect to the magnetization vector.

The entire set of equations for the NA layers are lin-
earized by assuming a static component of the magne-
tization along the applied static field, mz ≈ 1, and by
assuming the dynamic magnetization and driving fields
have time dependence e−iωt. Two linearized equations of
motion for an interior ferromagnetic layer indexed by i
are given by

hiy =
−iω
γ
mi
x +

(
H0 +Ha +Hi−1

ex +Hi+1
ex

)
mi
y

−
(
Hi−1

ex mi−1
y +Hi+1

ex mi+1
y

)
, (A6)

hix =
iω

γ
m(i)
y +

(
H0 +Ha +Hi−1

ex +Hi+1
ex

)
mi
x

−
(
Hi−1

ex mi−1
x +Hi+1

ex mi+1
x

)
. (A7)

Here, H0 is the static applied field strength, Ha =
2K/M0 is the effective uniaxial anisotropy field, and
Hi±1

ex = Ai,i±1/(a
2M0) are exchange fields acting on layer

i due to layers i± 1.
The effects of damping can be included phenomenolog-

ically with the addition of a frequency dependent damp-
ing term. This is done by letting ω −→ ω(1 + iΓ), where
Γ = 2α and α is the Gilbert damping parameter. [59]

Maxwell’s boundary conditions in the long wavelength
limit are applied to the system in order to relate the mag-
netic field in each layer. The magnetic field component
tangent to each surface hx, and the magnetic induction
field component normal to each surface by must be con-
tinuous. In other words, we have

h1
x = · · · = hNA

x = Cx,

hNA+1
x = · · · = hNA+NB

x = Cx, (A8)

h1
y + 4πM0a

1
y = · · · = hNA

y + 4πM0a
NA
y = Cy,

hNA+1
y = · · · = hNA+NB

y = Cy, (A9)

where Cx and Cy are independent constants.
The magnetization equations of motion (Eqs. (A6) and

(A7)), plus Eqs. (A8) and (A9), form a total of 3NA + 1
equations with the same number of unknowns. The en-
tire system of equations can be put into the form of a set
of 2NA inhomogeneous linear equations by eliminating
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all hx and hy. The components of mi can be found nu-
merically by choosing a value for the angular frequency
of the driving fields ω and inverting the resulting matrix.

To find the net response of all layers to a driving field,
and therefore the effective magnetic susceptibility of the
entire structure, the magnetization and driving field com-
ponents found are averaged over all magnetic and non-
magnetic layers. These averages are

〈M〉 =
M0

NA +NB

(
NA∑
i=1

mi

)
,

〈h〉 =
1

NA +NB

NA∑
i=1

hi +

NB∑
j=1

hNA+j

 . (A10)

To deconvolve the four components of the effective
magnetic susceptibility, we first choose Cy 6= 0, Cx = 0
[29] to find two components

χyy =
〈My〉
〈hy〉

, χxy =
〈Mx〉
〈hy〉

. (A11)

Then, the constant Cx is changed to some non-zero value
and the system of equations are solved a second time,
so that the remaining two components of the magnetic
susceptibility can be found as

χxx =
〈Mx〉 − χxy〈hy〉

〈hx〉
, (A12)

χyx =
〈My〉 − χyy〈hy〉

〈hx〉
. (A13)

To perform reflection calculations (see the next sub-
section), the magnetic permeability tensor is used, which
has the CGS form

µ̃(ω) = Ĩ + 4πχ̃(ω) (A14)

=

 µxx µxy 0
−µxy µyy 0

0 0 1

 , (A15)

where there is symmetry in the off-diagonal components
µxy = −µyx, but µxx 6= µyy, since the confinement of
the thin film geometry allows for greater response of the
magnetization in the plane of the film than perpendicular
to it.

Appendix B: Reflectivity calculation

Magnon-polaritons are often observed as large changes
in the reflectivity of magnetic media when the frequency
of the incident beam couples with that of magnetic res-
onances [16]. In order to find the reflectivity from the
system sketched in Fig. 1, we write the TE radiation’s

electric field in each of the three regions of interest (air,
composite film, and substrate) assuming plane wave-like
solutions, namely

Eair(r, t) = ẑ
(
Ieiky1y +Re−iky1y

)
ei(kxx−ωt),

Efilm(r, t) = ẑ
(
E+e

iky2y + E−e
−iky2y

)
ei(kxx−ωt),

Esub(r, t) = ẑ
(
Teiky3y

)
ei(kxx−ωt),

(B1)

where the in-plane wave vector kx is the same in each

region and is given by kx = k0ε
1/2
1 sin θ, with ε1 being the

dielectric constant of the incident medium (here ε1 = 1
for air) and k0 = ω/c.

To solve for the reflectivity of the system, boundary
conditions must be applied. Namely, the electric field E
and magnetic field H parallel to the surface of the film
must be continuous. The components of Hx need to be
found in each material in terms of the components of E
given in Eq. (B1). The Maxwell-Faraday equation yields

∇×E = −1

c

∂B

∂t
= −1

c

∂

∂t
(µ̃H) =

iω

c
µ̃H, (B2)

where B = µ̃H.
Both the incident medium (air) and the substrate are

nonmagnetic, so that µ̃ = 1 and Eq. (B2) gives, for our
geometry,

Hx =
c

iω

∂Ez
∂y

, (B3)

In the magnetic composite, however, µ̃ is given by the
effective medium tensor in Eq. (A15), so that Eq. (B2)
yields

Hx =
c

iω

[(
1

µ1

)
∂Ez
∂y

+

(
1

µ2

)
∂Ez
∂x

]
, (B4)

where

µ1 =
µxxµyy + µ2

xy

µyy
and µ2 =

µxxµyy + µ2
xy

µxy
,(B5)

and µ1 is referred to as the Voigt permeability. [33]
We can now apply the conditions for the continuity

of tangential E and tangential H at each interface. By
setting y = 0 at the film-substrate interface and the film-
air interface at y = −d, one has

Hair
x

∣∣
y=−d = Hfilm

x

∣∣
y=−d , Eair

z

∣∣
y=−d = Efilm

z

∣∣
y=−d ,

Hfilm
x

∣∣
y=0

= Hsub
x

∣∣
y=0

, Efilm
z

∣∣
y=0

= Esub
z

∣∣
y=0

.

This yields four boundary condition equations, forming
an inhomogeneous linear system of equations. By setting
I = 1 in Eq. (B1), the coefficients R, T, E+ and E−, for
radiation reflected in air, transmitted through the sub-
strate, and inside the magnetic composite, respectively,
can be found as solutions to the matrix equation
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
e−iky2d eiky2d 0 −eiky1d

(
ky2

µ1
+ kx

µ2
)e−iky2d (kxµ2

− ky2

µ1
)eiky2d 0 ky1e

iky1d

1 1 −1 0

(
ky2

µ1
+ kx

µ2
) (kxµ2

− ky2

µ1
) −ky3 0


 E+

E−
T
R

 =


e−iky1d

ky1e
−iky1d

0
0

 . (B6)

Here we are primarily interested in the reflectivity, given
by R∗R = |R|2.

In Eq. (B6), the component of the wavevector ky in
each of the three materials must be found in terms of the
material parameters and the radiation frequency ω, in
order to find the reflectivity. These dispersion relations
are found by looking for solutions of plane wave form, as
in Eq. (B1), to the electromagnetic wave equation. This
process is detailed in Ref. [60]. The result for air, the
composite and the substrate, respectively, is

k2
y1 = k2

0 − k2
x =

(ω
c

)2

cos2 θ, (B7a)

k2
y2 = k2

0ε2µ1 − k2
x(µxx/µyy), (B7b)

k2
y3 = ε3k

2
0 − k2

x =
(ω
c

)2 (
ε3 − sin2 θ

)
. (B7c)

It is interesting to note that if the substrate is removed,
and the magnetic composite could be made infinite, then
the reflectivity has a simple analytic form which provides
both a check of the calculation and some insight into the
final results. One finds a reflectivity coefficient

R =
1− η
1 + η

, (B8)

η =
1

ky1

(
ky2

µ1
+
kx
µ2

)

=

√
ε2µ1 − µxx

µyy
sin2 θ

µ1 cos θ
+

tan θ

µ2
, (B9)

where θ is the angle of incidence for infrared radiation in
air.

First, to use this expression as a check, examine the
limit that the semi-infinite material is made nonmagnetic
(1/µ2 → 0 and µxx = µyy = µ1 = 1). Then Eqs. (B8)
and (B9) reduce to the Fresnel equation for s-polarized
light. [61]

Second, to gain some intuition, one sees that the reflec-
tion coefficient – and therefore the reflectivity – depends
in a complicated way on all the various components of
the permeability tensor. In particular, we will show that
the Voigt permeability µ1 has a large variation near a
magnetic resonance, and therefore the reflectivity has a

large dip at the frequency where this occurs, which may
be obvious from examining Eqs. (B8) and (B9). Note
that µ2 and the ellipticity µyy/µxx also vary with fre-
quency, but in a far less dramatic way, and so they are
less important in controlling the size of η than the Voigt
permeability.

The dips in the reflectivity at infrared magnon fre-
quencies will be smaller for a thin film of the magnetic
composite, than those for the semi-infinite material used
to derive the simple Eqs. (B8) and (B9). This is because
more of the incident radiation can “leak” through to the
substrate. The thicker that the composite can be made,
the easier it is to detect infrared magnons.

Now we turn to the ATR geometry shown in Fig. 2, in
the so-called Otto configuration. Two additional bound-
ary conditions from the prism/air interface must be con-
sidered, but the calculation proceeds in an identical man-
ner as for the regular reflectivity, detailed above.

The electric field in the prism is defined in an analogous
way to in Eq. (B1) and is given by

Eprism = ẑ
(
Ipe

ikypy +Rpe
−ikypy

)
ei(kxx−ωt), (B10)

where kyp is the y component of the electromagnetic wave
vector in the prism. Let εp be the dielectric permittiv-
ity of the prism and θ be the angle of incidence inside
the prism, rather than inside air. Then the dispersion
relations analogous to Eq. (B7) are

k2
y1 = k2

0 − k2
x =

(ω
c

)2

(1− εp sin2 θ), (B11a)

k2
y2 =

(ω
c

)2 (
ε2µ1 − εp sin2 θ(µxx/µyy)

)
, (B11b)

k2
y3 = ε3k

2
0 − k2

x =
(ω
c

)2 (
ε3 − εp sin2 θ

)
, (B11c)

k2
yp =

(ω
c

)2

(εp − εp sin2 θ) =
(ω
c

)2

εp cos θ. (B11d)

This time, we set the incoming wave amplitude Ip =
1 and find Rp to calculate the reflection coefficient and
then the reflectivity. The matrix Eq. (B6) containing
the electromagnetic boundary conditions becomes for the
ATR geometry:



11



−e−ikypdT e−iky1dT eiky1dT 0 0 0
kype

ikypdT ky1e
−iky1dT −ky1e

iky1dT 0 0 0
0 −e−iky1d −eiky1d e−iky2d eky2d 0

0 −ky1e
−iky1d ky1e

iky1d (
ky2

µ1
+ kx

µ2
)e−iky2d (kxµ2

− ky2

µ1
)eiky2d 0

0 0 0 1 1 −1

0 0 0 (
ky2

µ1
+ kx

µ2
) (kxµ2

− ky2

µ1
) −ky3




Rp
I
R
E+

E−
T

 =


e−ikypdT

kype
−ikypdT

0
0
0
0

 ,
(B12)

where dT = (dgap + d) is short-hand notation for the to-
tal thickness of the air gap plus the magnetic composite
thin film. The reflectivity R∗

pRp = |Rp|2 can be found

as a function of all the various materials parameters and
frequency of the incident radiation using a numerical soft-
ware package such as Mathematica.
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