
Social Regularisation in a BPR-based Venue
Recommendation System

Siwei Liu, Iadh Ounis, and Craig Macdonald

University of Glasgow, Glasgow , UK
s.liu.4@research.gla.ac.uk

iadh.ounis@glasgow.ac.uk, craig.macdonald@glasgow.ac.uk

Abstract. Venue Recommendation is a key application for Location-
Based Social Networks (LBSNs) such as Yelp and Foursquare. Bayesian
Personalised Ranking (BPR) is a popular pairwise recommendation tech-
nique that can be used to recommend a ranked list of venues to users.
Social information such as friendship plays an important role in venue
recommendation since it can alleviate the data sparsity problem induced
by cold-start users with few check-ins and rating information. Indeed,
introducing social information into BPR is a promising way to further
improve the effectiveness of the underlying venue recommendation sys-
tem. In this paper, we propose a novel Bayesian Personalised Ranking
Social Regularisation (BPRSoReg) approach that uses social informa-
tion as a regularisation method to enhance the performance of BPR.
Experiments are conducted on a large-scale dataset from Yelp. The ex-
perimental results show that the BPRSoReg approach can improve over
BPR by up to 54.0% in terms of mean reciprocal rank.

Keywords: Recommender systems · Matrix Factorisation · Social Net-
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1 Introduction

Matrix Factorisation (MF), a class of collaborative filtering algorithms, has de-
veloped extensively since it has been used in recommender systems in the Netflix
Prize competition in 2009 [2]. Based on its simple yet effective intuition that sim-
ilar users are likely to appreciate the same items, Matrix Factorisation has been
widely deployed in many online commercial platforms including Amazon, or for
music recommendation at iTunes [4]. However, traditional matrix factorisation
techniques suffer from the data sparsity problem since the explicit information
e.g. the explicit rating of items by users is intrinsically rare. Indeed, the density of
available ratings in commercial recommender systems is usually less than 1% [8].
Location-Based Social Networks (LBSNs) represent an important scenario that
can benefit from recommender systems. In LBSNs, the core task is to recom-
mend venues of interest to users. Usually, these venue recommendation systems
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suffer from a data sparsity problem. For example, the Round-13 Yelp challenge
dataset used in our experiments has a rating density of only 0.002%. Due to this
data sparsity problem, recommender systems face a challenge in extracting the
user’s interests and representations of each item/venue, often resulting in less
accurate recommendations [3].

To address the sparsity problem, various approaches have been proposed
in the literature to incorporate different sources of information including social
information [4] and the textual content of comments [5]. Moreover, negative sam-
pling [6] – as used by the Bayesian Personalised Ranking (BPR) [7] family of
approaches – is another important technique that tackles the sparsity problem,
based on a realistic assumption that most of the venues are unobserved or not
particularly interesting to users. BPR [7] takes advantage of implicit feedback,
which is more abundant compared with explicit feedback. Indeed, users’ implicit
feedback including clicks, viewing times, purchases, or check-ins, is much easier
to collect since users do not need to express their interests explicitly. Moreover,
implicit feedback can be tracked automatically online.

As mentioned above, in the current literature, there are two main approaches
to address the sparsity problem: either to incorporate different sources of in-
formation into the traditional MF technique or to leverage implicit feedback
in BPR. Since BPR is based on matrix factorisation, in this paper we aim to
investigate whether it is possible to integrate both approaches in a single rec-
ommender system. Our objective in this paper is therefore to propose a ranking
recommender system that can incorporate social information in addition to im-
plicit feedback. Hence, we propose the combination of the social regularisation,
originally proposed for MF, into the BPR pairwise recommendation approach;
Experiments on a large dataset from the Yelp LBSN demonstrate the benefit of
our approach.

The remainder of this paper is structured as follows: In Section 2, we firstly
describe the BPR rank-based recommender system then details of how Social
Regularisation (SoReg) can incorporate social information i.e. friendship infor-
mation. Since both BPR and SoReg are based on matrix factorisation, in Sec-
tion 3, we show how to integrate SoReg and BPR to achieve our objective.
Experimental Setup and Results are described in Sections 4 & 5. Concluding
remarks follow in Section 6.

2 Related Work

Bayesian Personalised Ranking: While matrix factorisation is designed for
the rating prediction task, it is not directly optimised for the ranking of venues.
In venue recommendation, the core task is to generate a personalised ranking for
users and hence users will not have to scan through all suggested venues. Instead,
they usually focus on the top ranked venues. Therefore, in many real venues
recommendation applications, giving users the best top ranked venues is more
useful than making rating predictions. Building on matrix factorisation, BPR [7]
is a pairwise ranking method that has been proposed to generate a personalised
ranked list of venues for users. BPR takes advantage of the latent representation



of users and venues generated by MF using venue pairs as training data and
optimising for correctly ranking venue pairs instead of focusing on correctly pre-
dicting the ratings. Its optimisation criterion is based on the assumption that
a user u prefers a venue v that has been viewed by this user over all other
non-observed venues. The maximum posterior estimator is computed as follows:

BPR−OPT := ln p(θ| >u) =
∑

(u,i,j)∈Ds

lnσ(x̂uij)− λθ ‖θ‖2 (1)

where θ represents the parameter vector of an arbitrary model class, σ is the
logistic sigmoid, x̂uij is an arbitrary real-valued function of the model parame-
ter vector θ that captures the special relationship between user u, venue i and
venue j ; λθ is a model-specific regularisation parameter; ‖.‖ denotes the Frobe-
nius norm; and ln(·) is the natural logarithm. Therefore p(θ| >u) is the posterior
probability that θ produces the correct personalised ranking for user u, which
BPR aims to maximise through stochastic gradient descent.
Social Regularisation: Social regularisation (SoReg) is a recommendation
model proposed by Ma et al. [4]. It utilises social information to improve the
performance of traditional matrix factorisation recommender systems by intro-
ducing a social regularisation term to constrain the matrix factorisation objective
function. The traditional objective function of matrix factorisation is:

L(U, V ) = min
U,V

1

2

i=1∑
m

j=1∑
n

Ii,j ∗ (Ri,j − UTi Vj)2 (2)

where Ii,j is an indicator variable that is 1 if user i rated venue j, otherwise 0.
A regularisation term is added to Equation (2) to avoid over-fitting, as follows:

L(U, V )
MF

= L(U, V ) +
λ

2
(‖U‖2F + ‖V ‖2F ) (3)

where λ is a parameter controlling the amount of regularisation.
Users’ decisions may be influenced by their friends. For example users of-

ten recommend venues to their friends. It is also common for users to ask their
friends for suggestions especially when they visit unfamiliar places. Based on
the assumption that users are likely to be influenced by their friends, the SoReg
model introduces social information i.e. friendship information, as a regularisa-
tion term to minimise the distance between the latent representations of target
user Ui and his/her friends, Uf , which further modifies Equation (3) as:

L(U, V )
SoReg

= L(U, V )
MF

+
α

2

m∑
i=1

∑
f∈F(i)

pcc(i, f) ‖Ui − Uf‖2F (4)

where F(.) is the set of friends of user i and α is a parameter that controls social
influences; pcc() estimates the similarity between the ratings of two users using
the Pearson Correlation Coefficient (PCC):

pcc(i, f) =

∑
j∈Vr(i)∩Vr(f)()

(Rij −Ri)(Rfj −Rf )√ ∑
j∈Vr(i)∩Vr(f)()

(Rij −Ri)2.
√ ∑
j∈Vr(i)∩Vr(f)()

(Rfj −Rf )2
(5)

where Vr(i) are the venues that user i has rated and Ri is their average rating.



In Equation (4), the loss function of the social regularisation model is the
sum of the loss function of MF and the social regularisation term. The Frobenius
norm of the difference between the latent representations of the user and his/her
friends is then multiplied by the PCC, which scales according to how similar the
user and his/her friends are, based on their rating history.

The functionality of SoReg is to ensure that the user-friend pair who share
similar interests are predicted to rate similarly other venues. The more similar
a user is to his/her friend, the greater the correlation. By applying the SoReg
model, not only a user and his/her friends become closer based on their similarity
level in the latent space, but so do the friends’ friends, who become closer at
the same time. This means that not only a user is recommended venues by
his/her friends, but also by his/her friends’ friends, although indirectly. The
range of Pearson Correlation Coefficient is [-1,1]. We apply a mapping function
f(x) = (x+ 1)/2 to bound the range of correlations to [0,1].

3 Pairwise Social Regularisation

While BPR is based on matrix factorisation, the objective function is Equa-
tion (1) introduced above. It can be noted in Equation (4) that the objective
function of SoReg is the objective function of MF augmented by the social reg-
ularisation. Therefore, to combine BPR with SoReg, we fit Equation (1) into
Equation (4) to replace the L(U, V )

MF

part, thereby making the objective function

of our proposed BPRSoReg approach as follows:

L(U, V )
BPRSoReg

=
∑

(u,i,j)∈Ds

lnσ(x̂uij)− λθ ‖θ‖2 +
α

2

m∑
i=1

∑
f∈F(i)

pcc(i, f) ‖Ui − Uf‖2F

(6)
Using Equation (6), a pairwise recommender system that takes into account
social information can therefore be established.

4 Dataset and Experiments

We use the Yelp challenge Round-13 dataset to conduct all our experiments.
This dataset has 6,685,900 rating records, 1,637,138 unique users and 192,606
unique venues. Hence, the data sparsity is 0.002120%. Of all these users, there
are 122,824 regular users (users with ≥ 10 rating records) and 1,514,314 cold-
start users (user with < 10 rating records). On average, the regular users have
36.1 friends, while the cold-start users have 6.8 friends. While no filtering is ap-
plied on the dataset, we analyse separately the regular users’ and cold-start users’
results, to determine how differently our proposed model performs on different
types of users.

We use Spotlight, a Python recommendation platform that includes an im-
plementation of a BPR implicit factorisation, to conduct our experiments1. Fol-
lowing previous work in [1] and [4], we set the latent dimension d to 10 and λ to

1 https://github.com/maciejkula/spotlight



0.001. The dataset is randomly split into 80% for training and 20% for testing
the ranking results given by the model.

Following the existing literature in recommender systems, to measure the
effectiveness of recommendations, mean reciprocal rank (MRR) is used where
the reciprocal rank is the multiplicative inverse of the ranked venues for a specific
user. The average value is taken for all users in the dataset as an estimation of
the performance of the system. MRR is computed as follows:

MRR =
1

U

|U |∑
i=1

1

ranki
(7)

where ranki is the rank position of the first relevant venue retrieved for user i.
In our experiments, we vary the social parameter α (see Equation (4)), which

controls the influence of the social regularisation, from 10−7 to 1, multiplying α
by 10 at each step. In the Yelp challenge Round-13 dataset, 45.4% of users have a
friend-list through which we can find their friends’ information according to the
user-id(s) provided. With this information, the Pearson Correlation Coefficient
between users is pre-computed before training commences, to increase training
efficiency. We compare the effectiveness – in terms of MRR – of BPRSoReg
with different amounts of social regularisation to the BPR baseline. Finally, sig-
nificance tests are conducted using a paired t-test with p < 0.01.

5 Results

Table 1 reports the effectiveness of BPRSoReg and BPR in terms of MRR for dif-
ferent groups of users. From the left hand group of Table 1, it can been seen that
the BPRSoReg model can consistently outperform BPR in terms of MRR across
all users - indeed, the best performance occurs when α=10−6, significantly im-
proving MRR by 54.0%. This demonstrates that social regularisation can greatly
improve the effectiveness of BPR. As α increases, the model’s effectiveness starts
to saturate, which means that the social regularisation is penalising models that
produce results that are too different from each given user’s friends. Conversely,
for a very small α, social regularisation gives a very small penalty to models
where users differ widely from their friends, and the performance naturally re-
turns to that of the baseline. Such a variance can be observed clearly in Figure 1,
which shows how MRR varies with α.

Next, the centre and right-hand groups of Table 1 report the obtained re-
sults for the regular and cold-start users, respectively. From the table, we observe
that introducing social information leads to a consistent improvement for cold-
start users but for regular users the ranking performance drops markedly when
α ≥ 10−4. This might be because for regular users, their check-ins are enough for
the BPR model to capture their interests so the model does not benefit from re-
ceiving additional regularisation for those users’ friends. However, the cold-start
users have very few check-ins, hence the model will benefit when additional social
information is available. As noted in Section 4, regular users have, on average, 6
times as many friends are cold-start users. While the cold-start users and regular
users share the same social parameter α during training, it is possible that the



Table 1. Ranking performances in terms of MRR of BPRSoReg and BPR, while
varying α for all users, as well as regular users (≥ 10 check-ins) and cold-start users
separately. Improvements (∆ %) are calculated with respect to the BPR baseline. Best
result is highlighted.

All Users Regular Users Cold-start Users

α MRR ∆ MRR ∆ % MRR ∆ %

BPR 0.00163 - 0.00111 - 0.00167 -

10−7 0.00193* (18.4%) 0.00114 (2.70%) 0.00199 (19.2%)
10−6 0.00251 (54.0) 0.00129 (16.2%) 0.00261 (56.3%)
10−5 0.00232* (42.3) 0.00112 (0.9%) 0.00241 (44.3%)
10−4 0.00190* (16.6) 0.00078 (-29.7%) 0.00199 (19.2%)
10−3 0.00201* (23.3) 0.00076 (-31.5%) 0.00211 (26.3%)
10−2 0.00195* (19.6) 0.00066 (-40.5%) 0.00206 (23.3%)
10−1 0.00188* (15.3) 0.00065 (-41.4%) 0.00198 (18.6%)

1 0.00188* (15.3) 0.00069 (-37.8%) 0.00197 (18.0%)

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100
0.0016

0.0018

0.0020

0.0022

0.0024

M
RR
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Fig. 1. Plot of prediction performances in terms of MRR of BPRSoReg with α varying
from 10−7 to 1 in comparison to the BPR baseline.

large numbers of friends mean that forcing the regular users’ latent factors to be
similar to all of their friends is too aggressive in penalising models that would oth-
erwise be effective. Therefore, the best effectiveness is obtained when α is small.

6 Conclusions

In this paper, we explored whether social information can be leveraged to im-
prove Bayesian Personalised Ranking (BPR). We proposed BPRSoReg, which
incorporates social information as a regularisation for BPR. Our experiments on
a large LBSN dataset demonstrate that we can significantly enhance the effec-
tiveness of BPR. Furthermore, our experiments show that BPRSoReg particu-
larly benefits cold-start users. In the future, we plan to add more ranking metrics
including Hit Ratio and Normalised Discounted Cumulative Gain. In addition,



we plan to integrate social information to different frameworks of recommender
systems such as those based on neural networks to examine the generalisation
of social information in recommender systems.
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