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Abstract—With the rapid growth of mobile data demand,
the fifth generation (5G) mobile network must exploit
the large amount of spectrum in the millimeter wave
(mmWave) band to increase the network capacity. Due to
the limitation of propagation distance, line-of-sight (LOS)
link is highly desirable for mmWave systems. However,
LOS channel is not feasible all the time and mmWave is also
impacted significantly by the surrounding environment.
The LOS signal can be easily blocked by surrounding
buildings. Based on this issue, in this paper, we propose to
use reinforcement learning to manage the non line of sight
(NLOS) scenario. Specifically, we build a model simulating
blocked LOS signal for the user equipment (UE) with
only NLOS channel available for the UE. Q-Learning is
used to select the NLOS beam that meets the UE’s quality
of service requirements. Simulation results show that Q-
Learning can be used to manage the beam selection. In
particular, at initial training stage the Q-Learning explores
in the environment. However, with the training process, Q-
Learning learns from experience and the received power
increases significantly and converges to an excellent level.

Index Terms—Beam tracking, reinforcement learning,
none-line-of-sight, millimeter wave

I. INTRODUCTION

One of the aims of the fifth generation (5G) wireless
network is to provide Gbit/s throughput to support high-
speed multimedia data services. To achieve this goal, the
millimeter wave (mmWave) is a promising candidate for
this high data rate communication system. MmWave can
play an important role almost in every scenario of 5G
wireless network, such as wireless local area networks,
cellular networks, and vehicular networks [1]. The key
enabling technology of mmWave communications is
beamforming at both the transmitter and the receiver. A
new hybrid beamforming structure is proposed in [2],
which significantly reduces the calculation process in
the system. Beamforming provides a significant improve-
ment by reducing the interference level.

However, there are some challenges in such technol-
ogy. Due to high-frequency spectrum (30 GHz-300GHz)

of mmWave, the system is easily affected by the sur-
rounding environment. For example, the signal propaga-
tion suffers from increased path loss and severe channel
intermittency, and is easily blocked by conventional ma-
terials, such as brick and mortar [3]. Although mmWave
beamforming has excellent performance in the line-of-
sight (LOS) channel, there is a very low chance of
mmWave beamforming system always working, espe-
cially in the urban canyon scenario, where the likelihood
of having a LOS path between the UE and the base
station (BS) is very limited. Thus, the non-line-of-sight
(NLOS) channel must be considered for mmWave beam-
forming research. Also, due to the short propagation
path of mmWave beamforming of about 200 meters [4],
the density of the small cell base stations (SC-BSs)
will increase rapidly compared with fourth generation
(4G) networks. Due to the extremely expensive cost of
building SC-BSs, an effective solution is required.

Prior work proposed some beam management solu-
tions related to the problems mentioned above. The
authors in [5] proposed a method using an extended
Kalman filter to enable a static BS. The BS can track
moving UE with an analog beamformer after initial
channel acquisition. This method can effectively reduce
the alignment error and guarantee more durable connec-
tivity. Further, the authors in [6] proposed a beam track-
ing method for mmWave communications in a mobile
scenario, which is an analog beamforming architecture.
Another novel beam training method is proposed in [7].
The idea is based on the assumpation that since the angle
of departure (AoD) for a particular user does not change
drastically, the continuous nature of the AoD change can
be enabled to improve the efficacy of the beam training.
Besides, authors in [8] proposed an online algorithm
to learn how to select beam pairs with risk-awareness
to reduce the probability of severe beam misalignment



during the learning. Authors in [9] proposed a multi-
agents Q-Learning method to improve the efficiency of
the handover.

To manage the beam effectively, in this paper, we
propose a reinforcement learning (RL) based beam track-
ing strategy. Our work aims to find the most efficient
signal path on each position of the UE route with RL,
specifically Q-Learning. When the signal is sent from
the BS, the surrounding building could be the reflective
building for the NLOS channel. In the 3D scene, for
each UE’s position, there are different reflective signals
from different reflective buildings. However, it is im-
practicable to find each beam for every UE. Q-Learning
is required to explore the unfamiliar environment and
acquire the experience for other UEs.

II. SYSTEM MODEL

This section first presents an overview of the Q-
learning algorithm. It then describes the way to build
the 3D learning environment and the channel model.

A. Q-learning Algorithm

The reason why RL is suitable for our scenario is that
RL is an evaluative feedback-based model-less learning
paradigm and it is model free algorithm. The agent
learns from the optimal action based on the cost in
the given situation, which is achieved by exploration
and exploitation. In the exploitation, the agent takes the
actions and the actions related to the reward. When
the best action is taken, the maximum reward will be
recorded in the Q-Table. During the exploration, the
agent takes actions which may not achieve the maximum
reward instantaneously, however, this process will help
the agent to discover the next actions that are profitable
in the long run [10]. In our case, the agent tries to do
the exploration and exploitation and finds the best signal
path (least power loss or most received power) on each
position. And the essential function of Q-Learning is:
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where @ (s¢,a;) on the left is the new Q value while
Q (st,a¢) on the right is the old Q value. Further, « is
the learning rate, r; is the reward, -y is the discount factor
and max Q (St41,a) is the estimate of the future optimal
value.

B. Channel Model

We apply ray tracing (RT) technology to build a
3D channel model. RT is well known as a graphical
rendering technique for producing visual images in 3D
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Fig. 1: 3D Q-Learning Environment.

environments [11], which can provide very accurate
channel state information. In this work, we propose a
3D model via RT as shown in Fig. 1. In the simulation
mode, there is a single transmitter and a single UE with a
fixed moving path. And the LOS channel is not available
and the main channels are NLOS. As an example, three
reflective buildings with different reflection index are set
for the NLOS channel and one blocking building is for
blocking the LOS signal.

III. BEAM TRACKING WITH REINFORCEMENT
LEARNING IN 3D SCENARIOS

Our work aims to find the most efficient signal path
on each position of the UE route with RL, specifically
Q-Learning. When the signal is sent from the BS, the
surrounding building could be the reflective building for
the NLOS channel scenario. In the 3D scene, for each
UE’s position, there are different reflective signal paths
from different reflective buildings. However, the strength
on these signal paths is completely different. In this case,
Q-Learning can be applied to find the strongest signal
paths according to the cost function to make the system
more efficient.

To evaluate the performance of 3D scenario, we obtain
the distance of the path between the BS and the UE,
the reflection index among different reflection buildings
and the channel gain between the BS and the UE.
The received power strength is used to evaluate the
performance of the 3D scenario, which can be expressed
as
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where
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and Py is the time averaged radiated power, fp and ¢p
give the direction in which the ray leaves the transmitter,
04 and ¢ 4 give the direction from which the ray arrives
at the receiver, 3 is the reflection index of reflection
building, R is the distance between the transmitter and
the receiver, G is the transmitter antenna gain and
receiver antenna gain. Specifically, gr,9 and gr,p are
the total gain of transmitter and receiver in € direction,
while g7,4 and gg, are the total gain of transmitter and
receiver in ¢ direction. Once the received power in watts
is found, the power in dBm is determined from:

Pg (dBm) = 10log;o [Pr (W)] + 30dB — Ls(dB)

“)
where Lg is any additional loss in the system which
can be specified through the cable loss field, Pg is the
received power calculated in (2). We use (4) to determine
best reflective path. It also represents the cost function
for the Q-learning algorithm. The whole procedure con-
sists of two stages. The stage on the agent side is about
how Q-Learning decides to select NLOS path according
to the information transferred from the environment. The
step on the environment side is about how the states in
the environment change with the different actions taken
by the Q-Learning. We detail the steps of our approach
in Algorithm 1.

3)

Algorithm 1: Q-Learning for 3D scenario

Input: Different UE position and different signal paths
on each UE position
Output: Received power on each UE’s position
Initialization Q(s,a) arbitrarily;
while UE is moving do
1. Initial state
2. Choose action from current state using policy
derived from Q-Table
3. Take action, and observe reward and next state
if the received power is over the standard power
then
reward +10 to this beam selection and update
‘ the Q-Table;

else
penty to this beam selection and update the
Q-Table;

end
end

The above steps, firstly we input the location informa-
tion of BS, blocking building, reflection building, and UE
position to initial the environment. After that, according

to Section II (system model), we find all the possible
reflective signal path for each UE position and calculate
the power losses. Then the calculated received power is
used as the training data for Q-Learning method. Differ-
ent actions will be taken according to (4), and different
reward will be given according to (1). Specifically, in
Q-Learning, the state is different UE position based on
UE’s path, the action is reflected beam selections on each
UE position, and the reward is based on (4). According
to the channel state information we generate from the
simulation mode, when the received power is lower than
-105 dBm, which means the quality of service for UE can
not be guaranteed, the action will get the penalty. When
the received power is between -105 dBm and -90 dBm,
which means that the quality of service for UE can be
basically met, the action will have a small reward. And
when the received power is over than -90 dBm, which
means that the UE can have the best quality of service,
the action will get a big reward. After training, the Q-
Learning method will output the best beam on each UE
position, i.e., the beam with the largest received power.

TABLE I: Simulation Settings of 3D scenarios

Initial Power 20W

Reflection Index 0.8

Carrier Frequency 28 GHz

Effective Bandwidth 20 MHz
Total Number of BS Beams 1
Total Number of UE Beams 1

IV. RESULTS AND DISCUSSION

In this section, we present numerical results to demon-
strate the performance of the Q-Learning algorithm in a
3D scenario. The simulation settings of 3D scenario are
shown in Table I.

In the first experiment, we evaluate the performance
of Q-Learning in fixed UE position. Specifically, Fig. 2
shows the UE received power changes with the training
procedure. As we expect, we find that after training,
Q-Learning improves the received power level of the
UE. We observe that at the initial stage Q-Learning is
still unfamiliar with the environment, and it does not
improved the received power level on the UE side. After
about 200 iterations, the received power level starts to
increase and finally converges around 300 iterations. It
means that after training the Q-Learning can select the
best beam with the highest received power for the UE.
Assuming that when the UE received power level is



below -105 dBm, the UE will be out of service. In our
case, after training the beam tracking with Q-Learning,
the UE will always be in service.

In the second experiment, we evaluate the received
power with the training procedure on each UE position
to guarantee that the UE can have excellent service on
the whole blocking area. The UE moves on a straight
road with the fixed speed 2 meters per second. From
Fig. 3, it can be seen that Q-Learning can improve
the received power level at each position. At the initial
stage of training, the received power changes greatly,
which means the little experience is learned from the
environment. However, after around 250 iterations, the
received power level starts to converge to the power,
which can provide guaranteed service to the UE.
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Fig. 3: Received Power with Training on Each Position.

V. CONCLUSION

In this paper, we propose a smart NLOS mmWave
beam tracking method with Q-Learning algorithm. To
make it practicable to mobile networks, the simulation
is designed in a 3D propagation environment. Numerical
results show that after training with Q-Learning, for each
UE position, the UE can always have an excellent service
with the best mmWave beam. However, there are still
some improvements that can be made in the future: 1) In
this paper, the UE moves with average speed information
and a fixed route. However, in practice, the path and
speed of the UE can be inaccurate. Further research
needs to be done in this part; 2) Q-Learning is the
fundamental algorithm among reinforcement learning.
Other reinforcement learning need to be explored and
compared with the Q-Learning performance.
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