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Abstract 

Photolysis of pyridazine N-oxide (PNO) results in the detection of a complex series of 

transient phenomena. On the ultrafast (fs) timescale, we could detect the decay of the first 

singlet excited state of PNO, and the formation of a short-lived transient species, that, based 

on its time-resolved resonance Raman (TR3) spectrum, we assign to the oxaziridine 1,2-diaza-

7-oxa-bicyclo[4.1.0]hepta-2,4-diene. On a longer (hundreds of ns) timescale, this species 

rearranges to a ring-opened diazo compound, which we have also detected by time-resolved 

infrared and TR3 spectroscopy. In addition, we identify 1-oxa-3,4-diazepine as a long-lived 

species formed in the photochemistry of PNO. This species is formed via its oxirane isomer, 

which in turn is likely formed directly from the S1 state of PNO via a conical intersection. The 

barrier determined experimentally for the decay of 1,2-diaza-7-oxa-bicyclo[4.1.0]hepta-2,4-

diene (Ea = (7.1 + 0.5) kcal mol-1) is far larger than any barrier calculated by any method that 

includes dynamic electron correlation, but very close to the barriers calculated at the RHF or 

CASSCF levels of theory. Many methods (B3LYP, MP2, MP4) fail to give a minimum 
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structure for 1,2-diaza-7-oxa-bicyclo[4.1.0]hepta-2,4-diene, while M06, M06-2X, MP3, 

CCSD, or CCSD(T) yield activation energies for its electrocyclic ring opening that are far too 

small. In addition, we note that several important geometric parameters, both of 1,2-diaza-7-

oxa-bicyclo[4.1.0]hepta-2,4-diene and of the transition state of its ring opening reaction 

clearly have reached no convergence, even at the fully optimized CCSD(T)/cc-pVTZ level of 

theory.  We therefore suggest that the transient species described in this contribution might be 

excellent test molecules for further development of highly correlated and DFT methods. 

 

Introduction 

The photochemistry of heteroaromatic N-oxides is only insufficiently understood on the 

molecular level.1,2 While a wide variety of different products can be isolated, among them 

products due to ring expansion, –contraction, and –opening as well as products of 

deoxygenation, the reaction mechanisms leading to them are mostly speculative. Two types of 

reactions are distinguished: photodeoxygenation, which is believed to occur generally on the 

triplet surface, and photorearrangement, which is considered to be singlet state chemistry. For 

the simplest heterocyclic N-oxide, pyridine N-oxide 1, it could be shown that atomic oxygen, 

O (3P), is formed in modest quantum yield upon 308 nm laser excitation.3 Understanding the 

main reaction pathway of photorearrangement, however, is complicated for 1 by the fact that 

in organic solution essentially only tar is formed, while in basic solution the anion species 4 

can be isolated and its formation be monitored (Scheme 1).4,5 The reaction mechanism has 

been postulated to proceed via bridged oxaziridine 2 and azoxepine 3, although diradical and 

nitrene intermediates have been invoked as well.1,2,6-8 
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Scheme 1. Reaction sequence postulated for the photolysis of pyridine N-oxide 1 in the 

presence of base 

 

The products of the photochemistry of pyridazine N-oxide 5 are better characterized, and 

although only low yields could be obtained, the formation of furan 13 and cyclopropene-3-

carbaldehyde 12 seems to be established.9 These products point to the intermediate formation 

of carbene 11, and hence to the presence of diazo compound 8, which could again be formed 

via bicyclic oxaziridine 6 and diazoxepine 7. Alternatively, an oxygen-walk rearrangement of 
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6 could yield diazoxepine 10, via oxirane 9. In case of a diphenyl-substituted derivative, 

Tomer et al. were able to monitor the formation of diazo compound 15 upon photolysis of 

3,6-diphenylpyridazine N-oxide 14 (Scheme 2).10 An attempt to resolve the growth of 15 by 

nanosecond laser flash photolysis failed; obviously the formation of 15 was complete within 

the duration of the laser pulse. The rearrangement of derivatives of 5 to intermediary diazo 

compounds has recently been employed in a new heterocycle synthesis.11  
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Scheme 2. Photochemical reactions of 5 and 14 

 

In this contribution, we wish to report on the observation of transient intermediates in the 

photochemistry of pyridazine N-oxide 5, using picosecond time-resolved resonance Raman 

spectroscopy (ps-TR3), femtosecond time-resolved transient absorption (fs-TA), nanosecond 

time-resolved transient absorption (ns-TA), nanosecond time-resolved IR (ns-IR) and 

nanosecond time-resolved resonance Raman (ns-TR3) spectroscopies. We also present the 

results of DFT and ab initio studies concerning possible intermediates in the reaction 

examined.  

 

Results and Discussion 

Experimental results 
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Figure 1. (a, b and c) The fs-TA spectra of 5 in acetonitrile upon 266 nm irradiation. (d) The 

kinetic of the fs-TA bands observed at 368 nm. The solid lines indicate the kinetics fitting to 

the experimental data points. 

 
Figure 1 displays the fs-TA spectra of 5 in acetonitrile. The spectra change at the early 

delay time within 1.56 ps is assigned as the internal conversion (IC) process from Sn to S1. 

Then, the S1 of 5 quickly converts into another species absorbing at 345 nm (denoted as IM1) 

with an isosbestic point at 365 nm. After the complete generation of this new species, its 

absorbance stays constant up to around 1 ns. The kinetics at 345 nm was fit by a function with 

an exponential rise of 2.67 ps (A1=-0.012) and an exponential decay of 11.36 ps (A2=0.009). 

The short-lived time constant is consistent with a typical IC process and the relatively longer 

time constant corresponds to the growth time constant of IM1.  
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Figure 2. (Left) The ps-TR3 spectra of 5 in acetonitrile recorded with 266 nm pump 

wavelength and 365 nm probe wavelength. (Right) Comparison of (a) the experimental ps-

TR3 of 5 recorded at 1000 ps with (b) the M06/cc-pVTZ-calculated Raman spectrum (using a 

scaled factor of 0.978) of the species 6. 

 

  To gain structural information for the species IM1 formed on the tens of ps time scale and 

help better understand the photophysical and photochemical processes of 5 in acetonitrile, ps-

TR3 experiments were conducted for 5 and these results are given in Figure 2. Examination of 

Figure 2 suggests that mainly one species was generated at very early time and grew in as the 

delay time between the pump and the probe lasers increased. As this species was probed upon 

irradiation, we tentatively assigned it as the species 6 (1,2-diaza-7-oxa-bicyclo[4.1.0]hepta-

2,4-diene) which is produced after the irradiation of 5, as suggested in Scheme 2. Therefore, 

the experimental ps-TR3 spectrum was compared with the DFT simulated Raman spectrum of 

6 (see Figure 2 right). The excellent agreement between the experimental and the calculated 

vibrational frequency patterns provides evidence for the assignment of the species detected in 

ps-TR3 to 6. Considering the generation during the same delay time period, it is reasonable to 

assume the species IM1 in fs-TA is also 6. 

Nanosecond laser flash photolysis (λexc = 308 nm) of 5 in acetonitrile solution at T = 294 K 

led to the detection of two transient intermediates. The first transient (λmax = 390 nm) decayed 

with a lifetime of τ ~ 900 ns (first order kinetics), while the second transient (λmax = 340 nm) 

grew in with an identical lifetime (Figure 3). As the spectrum exhibits an isosbestic point at λ 

~ 370 nm (Figure 4), this picture is consistent with only one transient being formed initially, 

which subsequently decays to form the second transient. It is noted that due to partial overlap 
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of the bands of the decaying and the growing transient, the real absorption maxima of the 

transient species may differ from the ones observed experimentally. In addition, we also 

observed “instantaneous” product formation (λmax = 350 nm), which was too rapid to be 

resolved with our experimental set-up, thus complicating the mechanistic scheme. We note 

that the growing transient is stable on the longest time-scales accessible to the nanosecond 

equipment used, which points to it being a compound of at least millisecond lifetime. 
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Figure 3. Traces recorded after photolysis (308 nm) of 5 in acetonitrile. Monitoring 

wavelength is 315 nm (growing species, diazo compound 8) and 400 nm (decaying species). 
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Figure 4. ns-TA spectra (λexc = 308 nm) of 5 in acetonitrile. Dark circles: spectrum recorded 

at 200 ns. Light circles: spectrum recorded at 3 µs. Inset: difference spectrum (200 ns – 3 µs). 

 

Neither growth nor decay were affected by purging the solution with oxygen or adding 0.2 % 

1-octene, which essentially rules out any participation of triplet excited states or highly 
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oxidizing species such as O (3P). This makes it likely that the reaction observed corresponds 

to an intramolecular rearrangement taking place on the ground state singlet surface. A study 

of the temperature dependence of the rearrangement (in acetonitrile) yielded a linear 

Arrhenius plot (Figure 5), with the resulting parameters log (A / s-1) = 11.3 + 0.5 and Ea = (7.1 

+ 0.5) kcal mol-1.   
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Figure 5. Arrhenius plot (T = 230 – 294 K) for the formation of diazo compound 8 (λmon = 

345 nm, λexc = 308 nm). 

 

Similar observations were made using CFCl3 as solvent. At ambient temperature, again the 

decay at λ = 400 nm with synchronous growth at λ = 345 nm was observed, τ being ca. 700 

ns.  

Product studies on the photochemistry of 5 had revealed the formation of carbene-derived 

products such as cyclopropene-3-carbaldehyde or furan, thus suggesting the intermediacy of 

diazo compound 8. The diazo-chromophore usually exhibits very strong and diagnostic IR 

bands between 2000 and 2150 cm-1, which makes the photorearrangement of 5 an ideal 

candidate to be studied with the time-resolved IR spectroscopy.  
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Figure 6. (a) and (c) ns-IR spectrum observed at 2 µs after photolysis (308 nm) of 5 in CCl4. 

(b) Transient trace monitored at 2079 cm-1. (d) Transient trace monitored at 1696 cm-1.  

 

Indeed, upon photolysis (λexc = 308 nm, CCl4) of 5 we were able to monitor the growth of 

an IR band with a maximum at 2079 cm-1 (Figure 6). Further IR bands observed at 1696 and 

1659 cm-1 can be assigned to the C=O and the C=C stretching in 8. Carbonyl- and C=C-

stretching frequencies in this range are typical of conjugated aldehydes. Hence we can 

confidently assign diazo compound 8 to be the product growing in at ambient temperature. 

Unfortunately we were unable to detect any IR absorptions due to a decaying species, which 

is not particularly surprising in view of the much lower IR-intensities to be expected for the 

bands of any of the cyclic precursor molecules to 8. 
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Figure 7. The ns-TR3 spectra of 5 in acetonitrile recorded using a 266 nm pump wavelength 

and a 355 nm probe wavelength. The asterisk (*) marks regions affected by solvent 

subtraction artifacts and/or stray light. 

 

Two species are detected for 5 in acetonitrile in ns-TR3 experiments (Figure 7). The first 

one appears upon irradiation and lasts for till the detection limitation (100 μs). The second 

species was detected from 150 ns as suggested by the increasement of the peak intensity at 

1526 cm-1. As the two species coexisted with several overlapped Raman features, the Raman 

signal at 10 ns was substracted from the one recorded at 100 μs to gain the Raman spectrum 

for the second species and the subtracted result was given in Figure 8 (a). Considering the 

very stable character of the second species, we compared its Raman spectrum with the 

calculated one for the final ring-opening product 8 (Figure 8 b). The reasonable similarities 

between the experimental and the calculated Raman spectra suggests the second species 

probed in the ns-TR3 experiments is 8.  
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Figure 8. Comparison of (a) the experimental ns-TR3 spectrum remaining after subtraction of 

an appropriately scaled spectrum at 10 ns from the spectrum recorded at 100 μs with (b) the 

simulated Raman spectra of diazo compound 8 (M06/6-31G*, scaling factor is 0.935, half-

width is 10), and comparison of (c) the simulated Raman spectra of diazoxepine 10 (see its 

structure in Scheme 2) (M06/cc-pVTZ, scaling factor is 0.965, half-width is 15) with (d) the 

experimental ns-TR3 spectrum remaining after subtraction of an appropriately scaled 

spectrum in Figure 8a from the spectrum recorded at 10 ns. The asterisk (*) marks regions 

affected by solvent subtraction artifacts and/or stray light. 

 

Then, an appropriately scaled spectrum in Figure 8 (a) was subtracted from the spectrum 

recorded at 10 ns to gain the Raman signal of the first species and the remaining bands after 

subtraction is given in Figure 8 (d). To assign this species, the Raman spectra for all the 

possible intermediates and transient species produced between the species 6 with the 

generation of 8 were simulated and compared with Figure 8 (d). Based on a comparison of 

calculated and experimental Raman spectra, the transient was assigned to diazoxepine 10 (c.f. 

Scheme 2). On a timescale up to 100 µs, we did not observe any decay of the bands assigned 

to 10, meaning that 10 is a stable product and therefore cannot be the precursor to diazo 

compound 8. During the first few ten to few hundred ns, we could observe a very weak signal 

at 1528 cm-1 (the wavelength of the most intense Raman band of 6), on top of the much more 

intense and growing band of 8 with a maximum at 1526 cm-1 (see Figure S1, Supporting 

Information). The very small signal intensity and the overlap with a more intense band of 8, 

however, prevents us from accurately determining the lifetime of this decaying transient. 

Nevertheless, it allows us to cautiously state that 6 likely has a decay lifetime of the order of 

hundreds of ns, in agreement with the data shown in Figures 1, 4 and 7.  
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Calculation Results 

  In order to identify the transient species observed, we performed geometry optimizations on 

reactive intermediates along the reaction coordinates connecting 5 and 8, along with transition 

states connecting the minima. Geometry optimizations were performed employing a variety of 

DFT methods, RHF theory, 2nd, 3rd, and 4th order Møller-Plesset perturbation theory, and 

coupled cluster theory with single and double excitations (CCSD) as well as single and double 

excitations plus perturbational treatment of triple excitations (CCSD(T)). In addition to the 

single reference methods, we also employed a multireference method (CASSCF with 8,8 

active space). On selected levels of theory, calculations were also done employing a 

polarizable continuum model to account for solvation by acetonitrile, and carbon tetrachloride 

(as a model solvent for the very similar CFCl3). 

  For a consistent picture, the findings of the experimental work – laser photolysis of 5 

yielding diazo compound 8 (identified via ns-IR and ns-TR3), with the bicyclic oxaziridine 6 

as an intermediate (as identified by ps-TR3) need to reflect the results of the computational 

work. However, it turned out that 6, 7, and the transition states (TS) connecting 6 and 7 as 

well as 7 and 8 are extremely challenging stationary points to correctly describe by quantum 

chemical methods. In many cases either 7 or 6 and 7 were not predicted to be minimum 

structures, and the stabilities of 6 and 7 diverged widely depending on the method chosen.  

Table S1 (see Supporting Information) provides a summary of the energies obtained in our 

geometry optimizations. To summarize the results presented in Table S1, we can state that the 

barriers predicted for the decay of 6 and 7 diverge significantly. Many methods, like MP2 or 

B3LYP, fail to provide a minimum structure for both 6 and 7. Other methods, like the 

Minnesota functionals employed, CCSD or CCSD(T), give a minimum structure for 6, but not 

for 7. Only a few methods (RHF, CASSCF, and MP3) also find 7 to be a stationary point on 

the potential energy surface.12 However, even with the methods commonly accepted to be 

highly accurate, like CCSD and CCSD(T), the barrier for decay of 6 is underestimated 

significantly (CCSD: 2.8 kcal mol-1; CCSD(T): 0.4 kcal mol-1; experiment: 7.1 kcal mol-1), 

and DFT methods normally believed to give fairly accurate thermochemical data, like M06, 

while providing Raman spectra in excellent agreement with the experimental TR3 spectra of 6 

(and hence likely very good calculated geometries), fail completely in predicting the stability 

of 6.  The fact that the CASSCF(8,8) results closely mirror the results obtained by Hartree-

Fock theory suggests that the problems should not be due to the system having significant 

multireference character. This conclusion is also supported by the observation that in 

CCSD(T) calculations the values of the T1 diagnostic13 always were well below 0.02. 
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However, unlike static electron correlation, the degree of dynamic electron correlation does 

play a large role in determining the stability of 6 and 7. The general trend observed is that 

without dynamic electron correlation included (HF and CASSCF), the barriers for decay of 6 

and 7 are highest. Adding solvation by acetonitrile or carbon tetrachloride via a polarizable 

continuum model generally stabilizes both 6 and 7, albeit not by much. Adding explicit 

solvent molecules also has little influence – at the M06/6-31G(d) level of theory, 7 is not a 

minimum structure, if the compound is placed in a cluster of twelve molecules of either 

CH3CN or CCl4. The electronic energy of activation for ring opening of 6 in a cluster of 

twelve molecules of CCl4 is calculated (M06/6-31G(d)) as ∆U = 0.3 kcal mol-1, and therefore 

is of a similar order of magnitude as that of the same reaction in the gas phase. Inclusion of 

some dynamic electron correlation (as in MP2) leads to destabilization of 6 and 7 to a degree 

that they are no longer minima, and only use of highly correlated methods recovers some 

stability at least for 6. In the series of calculations employing Møller-Plesset perturbation 

theory, the trends observed are not linear, however, and a maximum of stability is reached for 

both 6 and 7 when MP3 theory is employed. While this gave us the opportunity to calculate 

the Raman spectrum of 7 at a post-HF level of theory, the situation clearly is unsatisfactory 

from the standpoint of a computational chemist.   

  Figure 9 shows the optimized geometries of 6, 7 and the TS connecting them and 8. Relevant 

geometric parameters are listed for MP3/cc-pVTZ, M06/cc-pVTZ, CCSD/cc-pVTZ, and 

CCSD(T)/cc-pVTZ.  
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 Figure 9. Optimized geometries for 6 (top left), TS 6 → 7 (top right), 7 (bottom left), and TS 

7 → 8 (bottom right). Selected geometric parameters: normal font: MP3/cc-pVTZ. Italics: 

M06/cc-pVTZ. Underlined: CCSD/cc-pVTZ. Underlined italics: CCSD(T)/cc-pVTZ. 

 
  The results show that for 6 and the TS 6 → 7, the results depend very critically on the level 

of theory used for optimization. While there is good agreement between the results obtained at 

the MP3 and CCSD levels of theory, CCSD(T) optimization leads to a far earlier TS than any 

other method (TS 6 → 7: CCSD(T): RC-N = 1.644 Å; CCSD: RC-N = 1.707 Å), which is in line 

with the very small barrier (electronic energy of activation 0.4 kcal mol-1) calculated at the 

CCSD(T) level of theory. In case of the reaction 7 → 8, where calculated post-HF data is only 

available for the MP3 method, the calculations indicate a very early TS for ring opening, with 

a fairly short N-O distance (MP3/cc-pVTZ: RN-O = 1.702 Å). We have calculated (B3LYP/6-

311G(d)//M06/cc-pVTZ or B3LYP/6-311G(d)//MP3/cc-pVTZ) the NICS14 values for 6, 7, TS 

6/7, and TS 7/8 (1 Å above the plane of the rings). They are obtained as δ = -5.8 (6), -13.7 

(TS 6/7), -7.4 (7), and -7.5 ppm (TS 7/8). Hence, at least the TS for the electrocyclic ring 

opening reaction of 6 can be characterized as distinctly (homo)aromatic, and all other 

stationary points also bear a weak aromatic character. 

In principle, oxaziridine 6 can also undergo an oxygen walk rearrangement to yield oxirane 

9, which could then undergo an electrocyclic ring opening to give oxadiazepine 10 (see 

Scheme 2). The barrier calculated for the reaction 6 → 9 is significant, ruling out that this 

reaction would happen on the ground state hypersurface. However, species 9/10 could also be 

formed directly on the excited state hypersurface, possibly via a conical intersection of similar 

geometry as the TS of the ground-state oxygen walk rearrangement. Such biradical-type 

structures have previously been postulated for a related system.6 We have optimized (M06/cc-

pVTZ and MP3/cc-pVTZ) the stationary points along the reaction coordinate 6 → 9 → 10, 

and find that the barrier for the oxygen walk rearrangement 6 → 9 far exceeds the very small 

barrier for the electrocyclic ring opening 6 → 7 (8). Oxirane 9, once formed, should undergo 

an extremely rapid electrocyclic ring opening reaction, yielding 1,3,4-oxadiazepine 10 with a 

very small barrier of ∆Hǂ = 0.4 kcal mol-1 (MP3: 2.5 kcal mol-1).  The latter species 10, on the 

other hand, is predicted to be very stable. A TS for the rearrangement of 9 to diazo compound 

8 could be localized, but the barrier is prohibitively high (∆Hǂ = 30.7 kcal mol-1 (M06) from 

10 via 9). An alternative ring opening reaction to yield singlet carbene 16, which is calculated 

to have a vibrational spectrum very similar to 8, is predicted to be significantly endothermic. 
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Figure 10 shows calculated enthalpies of the stationary points along the reaction coordinate 

involving 9 and 10. For optimized geometries please see the SI. 
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Figure 10. Enthalpies (kcal mol-1) (normal font: M06/cc-pVTZ; underlined: MP3/cc-pVTZ) 

of stationary points related to the reaction coordinates 6 → 9 → 10 → 16. Please note that the 

(very facile) formation of 8 via 7 has been omitted in this Figure.  

 

We note that calculations indicate that correlated ab initio calculations on 9 / 10 result in 

similar trends as observed for calculations on 6 and 7. Thus, employing MP2/cc-pVTZ, 9 was 

not found to be a minimum structure, whereas the stability of 10 towards ring-opening to 16 

was calculated to be very similar to the result using M06/cc-pVTZ (MP2: ∆Hǂ = 22.8 kcal 

mol-1; M06: ∆Hǂ = 21.4 kcal mol-1). MP3 theory, on the other hand, largely confirmed the 

results obtained by M06, with a small barrier for the electrocyclic ring opening reaction 9 → 

10.  

 

Conclusion 

Photolysis of pyridazine N-oxide 5 yields three rearrangement products.  TR3 measurements 

in combination with calculated Raman spectra allow for the clear identification of the short-

lived transient as oxaziridine 6, formed via the S1 state of 5. Oxaziridine 6 decays to diazo 

compound 8 on a timescale of hundreds of nanoseconds. A second species observed in the ns-

TR3 experiments is assigned to 1,3,4-oxadiazepine 10, which is stable on the timescale of our 

experiment. Seven-membered ring 10 is formed via the very short-lived oxirane 9 (not 

observed), which in turn likely is formed from the S1 state of 5 via a conical intersection 

resembling the TS of the oxygen walk rearrangement 6 → 9. The results presented raise 
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several important issues. Firstly, the experimentally determined activation energy for decay of 

6 (7.1 + 0.5 kcal mol-1) is far higher than the barrier calculated for this reaction, with any of 

the methods employed that include dynamic electron correlation. Secondly, a series of 

geometry optimizations on the electrocyclic ring-opening of oxaziridine 6, using increasingly 

higher correlated methods, also indicate that no convergence had been reached (both in terms 

of geometries of 6 and TS 6/7, and in terms of activation energies), even when employing a 

CCSD(T) optimization. This divergence observed in the properties of 6 leads us to believe 

that the description of 7 at the same levels of theory, 7 by most methods not being predicted to 

be a stationary point, might also be flawed. We therefore suggest that the stationary points 

along the reaction coordinate 6 → 7 → 8 represent excellent and challenging candidate 

molecules for theoretical chemists and method developers to fine-tune their computational 

methodology, as methods beyond CCSD(T), such as CCSDT(Q), currently are far too 

demanding in terms of CPU time and memory requirements to be feasible for systems such as 

6 and 7, at least as far as geometry optimizations are concerned. 

 

Experimental 

Pyridazine N-oxide 5 was synthesized according to a literature procedure15 or obtained from 

Aldrich. Triethylphosphite (Kodak Eastman) was freshly distilled prior to use. Acetonitrile 

(BDH Omnisolv) was used as received; fluorotrichloromethane (freon 11, Aldrich) was 

passed twice over an alumina column.  

Laser Flash Photolysis with UV/Vis detection (University of Ottawa): The LFP system 

employed in this study has been described in previous publications.16 5 was photolyzed using 

a Lumonics EX-510 excimer laser operated with Xe/HCl/Ne (308 nm, ca. 5 ns, ca. 100 mJ / 

pulse). As 5 is rapidly depleted upon LFP, a rapid flow of fresh sample solution had to be 

maintained during experiments.  

Time-Resolved Infrared (TRIR) Experiments (NRC, Ottawa): Solutions for the TRIR 

measurements (prepared to give an optical density of 0.3 at 308 nm) were flowed through a 1 

mm path length CaF2 cell. The excitation source was a Lumonics Excimer-500 laser (XeCl; 

308 nm; 10 ns pulse width); the IR probe source was a Mutek Model MPS-1000 diode laser 

(1540 – 2280 cm-1). Kinetic traces at a particular IR frequency were obtained by measuring 

the IR intensity through the sample before, during, and after absorption of the UV laser pulse. 

The response time of the detector was ca. 250 ns. Absorption of the excitation pulse caused a 

shockwave in the kinetic traces, which was dependent on the solution and path length. All 

kinetic traces were therefore corrected by subtracting the shockwave measured at an IR 



16 
 

frequency at which no transient was observed. Spectra were obtained by measuring the 

individual kinetic traces at 4 – 10 cm-1 increments throughout the region of interest, and 

plotting ∆ OD vs. wavenumber for a fixed time after the 308 nm pulse. Full details of the 

TRIR system have been given elsewhere.17 

ps-TR3 and ns-TR3 Experiments: The ps-TR3 and ns-TR3 experiments were performed in 

our lab at the University of Hong Kong with the methods described previously,18 and a short 

description is given. A 266 nm pump wavelength and a 365 nm probe wavelength were used 

in the ps-TR3 experiments.  A 266 nm pump wavelength and the 355 nm probe wavelength 

were used in the ns-TR3 experiments. Sample concentrations were ∼5 × 10−4 M. 

Calculations: All calculations were performed using the Gaussian 09 suite of programs,19 

except for the CCSD and CCSD(T) geometry optimizations, and the calculation of the MP3 

Raman spectra, which were performed employing ORCA Vers. 3.20 All minima and transition 

states except the stationary points optimized at the CCSD(T)/cc-pVTZ level of theory were 

characterized as such by performing a vibrational analysis. The effects of solvation were 

accounted for by employing a polarizable continuum model (scrf=pcm).21,22 Calculations 

were performed using the B3LYP,23 M06,24 and M06-2X,25 functionals, Hartree-Fock 

theory,25 second-order,26 third-order,27 and fourth-order Møller-Plesset perturbation theory,28 

coupled-cluster theory with single and double excitations (CCSD),29 and coupled cluster 

theory with single and double excitations with perturbational treatment of triple excitations 

(CCSD(T)).30 As a multireference method, CASSCF31 was employed, using an active space of 

eight electrons in eight orbitals (CASSCF(8,8)). Basis sets used include the standard 6-

31G(d)32 and cc-pVTZ33 basis sets. 
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Experimental ns-TR3 spectra observed after different time intervals after laser excitation of 5. 

Table S1 listing the absolute electronic energies and relative electronic energies of stationary 

points in the reaction sequence 6 → 7 → 8, obtained by various methods. Electronic energies 

of stationary points in the reaction coordinates involving 6, 8 , 9, 10, 16. A .xyz file 

containing the geometries of all stationary points optimized. 
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