Sadarangani, K. P., Cabanas-Sánchez, V., Von Oetinger, A., Cristi-
Montero, C., Celis-Morales, C. , Aguilar-Farías, N., Higueras-Fresnillo, S., De la Cámara, M. A., Suarez-Villadat, B. and Martínez-Gómez, D. (2019) Substituting sedentary time with physical activity domains: an isotemporal substitution analysis in Chile. Journal of Transport and Health, 14, 100593. (doi: 10.1016/j.jth.2019.100593)

The material cannot be used for any other purpose without further permission of the publisher and is for private use only.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/190194/

Deposited on 11 July 2019

Enlighten - Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Substituting sedentary time with physical activity domains: an isotemporal substitution analysis in Chile

Kabir P. Sadarangani, MSc a,b,"; Verónica Cabanas-Sánchez, PhD ${ }^{\text {a }}$; Astrid Von Oetinger MSc ${ }^{\text {c,d }}$; Carlos Cristi-Montero, $\mathrm{PhD}^{\mathrm{e}}$; Carlos Celis-Morales, $\mathrm{PhD}^{\mathrm{f}}$; Nicolás Aguilar-Farías, $\mathrm{PhD}^{\mathrm{g}}$; Sara HiguerasFresnillo, MSc ${ }^{\text {a }}$; Miguel A. De la Cámara, MSc ${ }^{\text {a }}$; Borja Suarez-Villadat, MSc ${ }^{\text {as }}$; David MartínezGómez, $\mathrm{PhD}{ }^{\text {a,h }}$
${ }^{\text {a }}$ Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid 28049, Spain
${ }^{\mathrm{b}}$ Universidad Autónoma de Chile, Chile.
${ }^{\text {c }}$ School of Physiotherapy, Faculty of Health Sciences, Universidad San Sebastian, Lota 2465, Santiago 7510157, Chile
${ }^{\text {d Escuela de Kinesiología, Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile }}$
${ }^{\mathrm{e}}$ IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
${ }^{\mathrm{f}}$ BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow. Glasgow, United Kingdom
${ }^{g}$ Department of Physical Education, Sports, and Recreation, Universidad de La Frontera; UFRO Activate Research Group, Chile
${ }^{\mathrm{h}}$ IMDEA Food Institute, CEI UAM + CSIC, Madrid 28049, Spain

* Corresponding author: Kabir P. Sadarangani, Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid 28049, Spain, +56979872855, E-mail address: kabir.sadarangani@gmail.com

Word Counts

Abstract: 299
Manuscript: 3578
Tables: 4
Appendix Table: 1

Author Disclosures

No potential conflicts of interest was reported by Kabir P. Sadarangani No potential conflicts of interest was reported by Verónica Cabanas-Sánchez No potential conflicts of interest was reported by Astrid Von Oetinger No potential conflicts of interest was reported by Carlos Cristi-Montero No potential conflicts of interest was reported by Carlos Celis-Morales No potential conflicts of interest was reported by Nicolás Aguilar-Farías No potential conflicts of interest was reported by Sara Higueras-Fresnillo No potential conflicts of interest was reported by Miguel A. De la Cámara No potential conflicts of interest was reported by Borja Suarez-Villadat No potential conflicts of interest was reported by David Martínez-Gómez

Funding Statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Kabir P. Sadarangani has no financial disclosures
Verónica Cabanas-Sánchez has no financial disclosures
Astrid Von Oetinger has no financial disclosures
Carlos Cristi-Montero has no financial disclosures
Carlos Celis-Morales has no financial disclosures
Nicolás Aguilar-Farías has no financial disclosures
Sara Higueras-Fresnillo has no financial disclosures
Miguel A. De la Cámara has no financial disclosures
Borja Suarez-Villadat has no financial disclosures
David Martínez-Gómez has no financial disclosures

Abstract
 Introduction

Sedentary behavior (SB), physical inactivity and obesity are main risk factors for noncommunicable diseases. However, it is unknow whether reallocating SB time with physical activity (PA) domains related to travel, occupational and leisure activities is associated with lower levels of adiposity. The aim of this study, therefore, was to examine independent associations and theoretical reallocations of SB and physical activity (PA) domains with obesity indicators in a nationally representative sample from Chile.

Methods

Randomly selected participants were enrolled in the 2009-2010 Chilean National Health Survey. Cross-sectional self-reported SB and PA domains were collected using the Global PA Questionnaire. Isotemporal substitution modeling was applied to examine the potential effects of reallocating 10 min /day of SB with occupational or travel or LTPA in relation to Body Mass Index (BMI) and Waist Circumference (WC).

Results

3552 participants aged between 15-65 years [mean (standard deviation); age=40.2 (14.07) years, $\mathrm{BMI}=27.7(5.38) \mathrm{kg} / \mathrm{m} 2, \mathrm{WC}=91.2(24.09) \mathrm{cm}]$ reported an overall sitting time of $196.3 \mathrm{~min} /$ day and spent $15.4 \mathrm{~min} /$ day in LTPA. LTPA was negatively associated to both BMI and WC independently of SB. Substituting $10 \mathrm{~min} /$ day of SB with an equal amount of travel PA resulted in lower BMI ($\mathrm{B}=-0.033$ 95\% CI: -0.055; -0.011) and WC ($\mathrm{B}=-0.089$ 95\% CI: -0.172; -0.007) independent of sociodemographic variables and sleep time. Notably, the strongest association with obesity indicators was observed when SB time was reallocated for LTPA (BMI B=-0.080 95\% CI: -0.122; -0.037 and WC: ($\mathrm{B}=-0.373$ 95\% CI: -0.500; -0.245).

Conclusion

Replacing SB not only with LTPA but also travel PA appears to be favorably associated with lower levels of obesity indicators. Walking and cycling as part of our travel PA may be a more feasible way of increasing PA levels than moderate or vigorous intensities PA in the overall population, at lower costs and environmentally friendly.

1.1 Introduction

Worldwide in 2016, 39\% (1.9 billion) of adults were overweight and 13\% (650 million) were obese (World Health Organization, 2018a). Overall, Latin America and the Caribbean leads with the highest prevalence within regions with 58% (360 million) of their adults living with overweight and 23\% (140 million) with obesity (Food and Agriculture Organization of the United Nations and Pan American Health Organization, 2017). Moreover, according to the Organization and Economic Co-operation and Development, Chile in 2016 had the highest rates of excessive weight (74.2\%) in population aged 15 and over (Organization and Economic Cooperation and Development, 2018), and this burden is projected to cost on average US\$1 billion per year (United Nations. Economic Commission for Latin America and the Caribbean. World Food Programme, 2017).

Intervention strategies preventing and treating obesity includes modification of dietary and lifestyle habits such as reducing; portions, energy-dense food, and time spent watching television, among others (Grundy et al., 1999). However, regular physical activity (PA) arises as the cornerstone favouring energy expenditure, curving the obesity pandemic (Jakicic and Otto, 2005). Time-use components such as sleep, sedentary behavior (SB), light intensity physical activity (LIPA) and moderate-to-vigorous PA (MVPA) distributes across a 24 -hour day. Although, previous studies have reported associations of these components with CVD risk factors in isolation (Buman et al., 2014; Healy et al., 2008; Larsen et al., 2014; Rosique-Esteban et al., 2017; Stamatakis et al., 2009; Whitaker et al., 2018; Wijndaele et al., 2010), time is restricted and finite for all individuals, and participation in one activity necessary displaces in some measure, one or more co-dependent activities. One of the statistical methods that enables to estimate the association of substituting time spent in one activity with another, while holding
total time constant, is the Isotemporal Substitution Modeling (ISM) analysis (Mekary et al., 2009). This ISM paradigm has recently been used by researchers exploring associations between reallocating activity components and health outcomes such as, mortality, cardiometabolic biomarkers, and obesity indicators, among others (Buman et al., 2014; Colley et al., 2018; Fishman et al., 2016; Gupta et al., 2016; Hamer et al., 2014; Rosique-Esteban et al., 2017; Van Der Berg et al., 2017; Whitaker et al., 2018). Although there is existing evidence that suggest that displacing SB by MVPA is associated with lower adiposity levels, none of the previous studies has investigated the potential health-related association of reallocating time in different PA domains (occupational, travel and leisure-time) with overall and abdominal obesity indicators. Moreover, most of these information has been derived using accelerometers (Grgic et al., 2018), and, accelerometers do not allow us to estimate PA levels related to different domains such as work, leisure and travel-related PA. Taken this into account, the aims of this study were (i) to examine the independent association of daily activities components (SB, occupational PA, travel PA and leisure-time PA [LTPA]) with overall and abdominal obesity indicators (body mass index [BMI] and waist circumference [WC], respectively) and (ii) to examine how reallocating time between these daily activities components is associated with these obesity indicators, in the Chilean population.

1.2 Material and Methods

1.2.1 Study Sample

This cross-sectional study included 3552 participants recruited from the Chilean National Health Survey (CNHS) 2009-2010 (Ministerio de Salud, 2009). The CNHS cohort comprised 5412 participant's ≥ 15 years old, from both urban and rural areas and utilized stratified multistage probability sampling (Ministerio de Salud, 2009). Furthermore, the CNHS is conducted every 6 years and obtains biological, lifestyle, dietary and health data (Ministerio de Salud, 2009). Data was collected, in accordance with standardized protocols, by trained interviewers and nurses in a two-part face-to-face interview (Ministerio de Salud, 2009). Interviews were carried out in the homes of participants, with the interviewers obtaining information on participant physical and mental health, household income and socio-economic status (Ministerio de Salud, 2009). Following on from this, the second part of the interview involved the administration of CNHS validated questionnaires and collection of anthropometric measurements, such as BMI and WC (Ministerio de Salud, 2009).

Only participants who were aged 15-65 years, with BMI and WC measurements were considered for this study ($n=3960$). Participants were excluded if they reported >960 minutes/day (16 hours/day) in SB ($\mathrm{n}=44$), >960 minutes/day of either occupational PA, travel PA, LTPA $(\mathrm{n}=55)$, and total activity time $(\mathrm{n}=125)$, defined as the sum of each component $(\mathrm{SB}+$ occupational PA + travel PA + LTPA). Additionally, participants were also excluded if data for the outcomes, exposure and covariates used in this study ($\mathrm{n}=184$) were missing, leading to a total sample of 3552 subjects.

The CNHS 2009-2010 was funded by the Chilean Ministry of Health and led by the Department of Public Health from the Pontificia Universidad Católica de Chile (PUC). The study protocol
was approved by the Ethics Research Committee of the faculty of medicine at the PUC and carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinky). All participants provided written informed consent prior to participation.

1.2.2 Socio-demographic

Participants were classified according to: gender, age (15-29; 30-44; 45-65 years); region of residence (north: I-IV and XV, central: V-VIII and XIII, and south: IX-XII and XIV); and educational level (low: <8 schooling years, intermediate: $8-12$ schooling years, and high >12 schooling years).

1.2.3 Physical Activity

The Global Physical Activity Questionnaire (GPAQ) is a useful tool by which levels of PA and SB are measured (Bull et al., 2009). It was developed by the World Health Organization, with version 2 being utilized in the 2009-2010 CNHS (World Health Organization, 2009). The GPAQ has been identified as a valid and reliable instrument, which has been utilized to assess other population's levels of PA and SB (Bull et al., 2009).

Total occupational PA, travel PA and LTPA can be ascertained from the GPAQ (World Health Organization, 2009). Travel PA refers to commuting between destinations by either walking or cycling (non-motorized), while LTPA represents participants doing sports, fitness and recreational activities. Occupational PA instead, indicates participations in household chores, carrying or lifting heavy loads, harvesting food/crops, etc.... To account for the energy expenditure related to different PA domains, the total amount of PA and MVPA was reported as Metabolic Equivalents (METS), which is the ratio of a person's working metabolic rate relative
to the resting metabolic rate ($1 \mathrm{kcal} / \mathrm{kg} / \mathrm{hour}$) (Jetté et al., 1990; World Health Organization, 2009). Both, leisure-time and occupational domains are considered as MVPA intensity domains ($>4 \mathrm{METs}$), while travel PA is contemplated as a moderate intensity activity (4-8 METs) only. Noteworthy, all domains emphasize in a continuous 10-minutes minimum bout of time for the activity to be performed, in order to meet the current PA guidelines (World Health Organization, 2010). On the other hand, SB was calculated by using the following question: "How much time do you usually spend sitting or reclining on a typical day?" Examples were provided, such as sitting at a desk, sitting with friends, reading, watching television were valid, excepting time spent sleeping.

Total minutes per day (min/day) were derived from SB, while MVPA and moderate min/day calculated from leisure-time, occupational and travel PA domains separately, respectively.

1.2.4 Obesity Indicators

Weight and height were measured in light clothing and without shoes, according to a standardized method (Ministerio de Salud, 2009). Weight and height were measured to the nearest 0.1 kg and 0.1 cm , respectively. BMI was calculated as weight (kg) divided by the height in squared meters $\left(\mathrm{m}^{2}\right)$.

Waist circumference was registered with a unextendible tape to the nearest 0.1 cm , and measured in the mid axillary line at the midpoint between the lower margin of the last detectable rib and the top of the iliac crest, after normal exhalation (Ministerio de Salud, 2009).

1.2.5 Other Potential Confounding Variables

Sleep time (min/day) was derived multiplying by 60 the following question: "how many hours of sleep do you usually take during weekdays?" Also, self-reported health (poor/fair/good/very
good/excellent), diabetes (fasting plasma glucose $\geq 126 \mathrm{mg} / \mathrm{dl}$ or self-reported physiciandiagnosed) and hypertension (systolic blood pressure $\geq 140 \mathrm{mmHg}$ and/or diastolic blood pressure $\geq 90 \mathrm{mmHg}$, plus normotensive participants with pharmacological treatment) were registered (Ministerio de Salud, 2009).

1.2.6 Statistical Analysis

All analyses were weighted for CNHS 2009-2010 design using the command 'svy' in STATA v. 13 (StataCorp LP). Continues variables were summarized as mean and standard deviations (SD), and as frequencies (percentages) for categorical variables.

Bivariate correlations were used to determine the relationship among PA domains and SB. Three different multiple linear regression models (single activity, partitioned and isotemporal substitution) were used to assess the magnitude of the associations between 10 minutes time units SB , occupational PA, travel PA and LTPA, and the two obesity indicators (BMI and WC). All models were first adjusted for sex, age groups, educational level and region of residence (model A), then additionally controlled for sleep time (model B), and finally, adjustments for diabetes, hypertension and self-reported health (model C) were also accounted. Confounders were retained via backwards elimination as significantly associated with the outcomes at p values <0.2.

First, a single activity model was fitted to assess each component separately (SB, occupational, travel and LTPA) with BMI and WC, without taking into account the other activity types. Moreover, to precisely assess the independent effect of an activity (SB or each PA domain), further adjustments for total PA (occupational PA + travel PA + LTPA) and SB were accounted, respectively (model D and E).

Second, partition models were fitted to estimate the "unique associations" of each component (SB, occupational PA, travel PA and LTPA) with BMI and WC, independent of confounders and other activity types. Thus, represents the effect of adding rather than substituting and activity type by entering simultaneously each component without adjusting for total activity time. Third, an ISM analysis, examined the theoretical effect of replacing a preset amount of time in one activity component with the same amount in another activity (e.g., reallocating 10 $\mathrm{min} /$ day of SB to $10 \mathrm{~min} /$ day of travel PA), while holding total activity time ($\mathrm{SB}+$ occupational PA + travel PA + LTPA) constant. Including total activity time variable in the model permits for direct associations to be made among independent variables and obesity indicators (Buman et al., 2014). Thus, an ISM analysis that examines the effect of replacing SB (behavior of interest) with other PA domains includes: occupational PA, travel PA, LTPA, covariates plus total activity time entered simultaneously into the model. By dropping SB, the remaining coefficients (occupational PA, travel PA, LTPA) represent the consequence of substituting $10 \mathrm{~min} /$ day of that PA domain instead of SB while holding other activity types constant.

As all interactions (by age, sex, and region of residence) were not statistically significant, pooled analysis with unstandardized regression coefficients are presented. Statistical significance level was 2-sided and set at $\mathrm{P}<.05$.

1.3 Results

The analysis included 3552 participants, mean age 40.2 ($\mathrm{SD}=14.07$), mean BMI 27.7 ($\mathrm{SD}=5.38$) and mean WC $91.2(\mathrm{SD}=24.09)$. Moreover, 60.2% were women and most of the population had 8-12 years of education (60.6\%), lived in the central region (41.5\%), and reported good overall health (42.9%). On average, participants spent $196.3 \mathrm{~min} /$ day in SB and participation in occupational PA (133.3 min/day) was highest among other domains (travel PA= $48.6 \mathrm{~min} /$ day and LTPA $=15.4 \mathrm{~min} /$ day). Sample characteristics are presented in Table 1.

Table A. 1 summarizes bivariate correlations between daily minutes spent in SB and the different PA domains (all $\mathrm{r}<0.3$).

The results of the single activity and partition models for BMI and WC is represented in table 2 . In the single models, every 10 minutes bout of SB was associated with a significant increase for BMI ($\mathrm{B}=0.016 ; 95 \% \mathrm{CI}: 0.005 ; 0.027$) and WC ($\mathrm{B}=0.044 ; 95 \% \mathrm{CI}: 0.005 ; 0.083$) after adjusting for sociodemographic and sleep time. Conversely, LTPA and travel PA were associated with a significant decrease for same obesity indicators. Moreover, LTPA showed an independent association with BMI and WC after adjusting for SB (model D).

In the partition models, where the time in each of the activities was held constant, LTPA domain remained favorably associated with $\mathrm{BMI}(\mathrm{B}=-0.063 ; 95 \% \mathrm{CI}:-0.104 ;-0.022)$ and $\mathrm{WC}(\mathrm{B}=-$ $0.342 ; 95 \%$ CI: -0.469 ; -0.215). However, SB was only negatively associated with BMI (B = $0.016 ; 95 \%$ CI: $0.005 ; 0.028)$ after controlling for sociodemographic characteristics. Findings slightly attenuated but remained significant in the fully adjusted model (model C).

The isotemporal substitution models suggest that replacing a $10-\mathrm{min} /$ day bout in travel PA or LTPA for $10 \mathrm{~min} /$ day increase in SB is significantly associated with greater BMI (Table 3),
while holding total time constant. Similar results were obtained when travel PA was replaced with occupational PA $(B=0.026 ; 95 \% \mathrm{CI}: 0.003 ; 0.048)$. Also, the estimates of WC increased significantly when any PA domain was replaced with SB bouts (Table 4). Moreover, replacing $10 \mathrm{~min} /$ day of LTPA with $10 \mathrm{~min} /$ day increase in occupational PA was adversely associated with WC ($\mathrm{B}=0.323 ; 95 \% \mathrm{CI}: 0.198 ; 0.448)$.

Lastly, for both isotemporal substitution models, reallocating $10 \mathrm{~min} /$ day bout of SB , occupational PA or travel PA with $10 \mathrm{~min} /$ day in LTPA was associated with favorable effects in all obesity indicators.

1.4 Discussion

This cross-sectional study examined the associations of activity components with obesity indicators in a national representative sample participating in the 2009-2010 CNHS. One of the main findings in this paper is that $10 \mathrm{~min} /$ day spent in LTPA was independently associated with lower levels of BMI and WC, however the magnitude of the association was higher for WC than BMI. Whereas $10 \mathrm{~min} /$ day time spent in SB was independently associated with higher BMI but not WC. Secondly, the Isotemporal substitution analyses revealed slightly stronger beneficial effects for BMI ($\beta-0.06, \mathrm{p}<0.001$) and $\mathrm{WC}(\beta-0.04, \mathrm{p}=0.015)$, when we theoretically replaced $10 \mathrm{~min} /$ day of SB with equal amounts of LTPA. Furthermore, it was also shown that replacing SB with travel PA was associated with lower levels of obesity indicators however the magnitude of the effect was smaller than those observed for LTPA $(B M I=\beta-0.05, p=0.003$ and $W C=\beta-$ $0.04, \mathrm{p}=0.031$).

The present findings seem to be consistent with other research which found that LTPA is independently and favorably associated with lower obesity indicators (Du et al., 2013; Jakes et al., 2003; Martínez-González et al., 1999; Stamatakis et al., 2009). In addition, a recent study conducted in Spain (PREDIMED PLUS-Trial) found that adults engaging 1 hour/day in moderate-to-vigorous LTPA was independently associated with 5% and 3% lower prevalence of overall obesity ($\mathrm{RR}=0.95 ; 95 \% \mathrm{CI}: 0.93$; 0.97) and abdominal obesity ($\mathrm{RR}=0.97 ; 95 \% \mathrm{CI}: 0.96$; 0.98), respectively (Rosique-Esteban et al., 2017). However, this study conducted in Spain, had older participants (65 ± 4.9 years), higher proportion of males (51.9\%), higher sitting time ($294 \pm 138 \mathrm{~min} /$ day) and LTPA ($66.8 \mathrm{~min} /$ day) than our sample (Rosique-Esteban et al., 2017).

In accordance with the present results, previous studies have demonstrated that SB is independently associated with BMI (Jakes et al., 2003; Su et al., 2017). Moreover, a major study conducted in 15 European member states $(\mathrm{n}=15239)$ found that for each 1 hour/week increase in time spent sitting was independently associated with higher BMI in males and females, equivalent to 0.026 grams and 0.065 grams, respectively (Martínez-González et al., 1999). Despite our findings, some studies have found independent associations with WC (Healy et al., 2008; Whitaker et al., 2018; Wijndaele et al., 2010), while others for both obesity indicators (Du et al., 2013; Stamatakis et al., 2009). These discrepancies could be attributed to the unexplained mechanisms responsible for determining the location of fat distribution. In addition to this, a study conducted in United States, showed no association between sitting time and intra-thoracic, subcutaneous, visceral, and intermuscular fat measured by computed tomography (Larsen et al., 2014). However, 1 hour/day increase of daily sitting was associated with $3.94 \mathrm{~cm}^{2}$ greater pericardial fat (Larsen et al., 2014), highlighting its association with cardiovascular morbidity and mortality (Mahabadi et al., 2008; Rosito et al., 2008).

Compelling evidence from epidemiological studies suggests that reallocating time from SB to MVPA has significant beneficial associations with obesity indicators (Colley et al., 2018; DahlPetersen et al., 2017; Grgic et al., 2018; Gupta et al., 2016; Hamer et al., 2014; Mekary et al., 2009). Also, a recent meta-analysis which included 10 studies using objective-assessment found that replacing 30 minutes of sedentary time with MVPA was associated with reductions in BMI ($\beta=-1.07 ; 95 \%$ CI: $-1.80 ;-0.35$) and WC ($\beta=-2.95 ; 95 \%$ CI: $-3.88 ;-2.03$) (del Pozo-Cruz et al., 2018). Differences in magnitudes for BMI and WC between studies could be due to the methods assessing PA; as questionnaires tend to overestimate the amount of PA needed to reduce obesity indicators, and underestimated the benefits of PA. However, previous studies have not dealt with
theoretical substitutions among different PA domains and most of the evidence been based to reallocations of SB with LTPA (Mekary et al., 2009; Rosique-Esteban et al., 2017). An example of this is the cross-sectional study conducted in 5776 Spanish adults were substituting 1 hour/day of LTPA for same amount of TV-viewing time, resulted in $8 \%(R R=0.92 ; 95 \%$ CI: $0.90-0.94)$ and $3 \%(R R=0.97 ; 95 \%$ CI: $0.96-0.98)$ lower prevalence of overall and abdominal obesity, respectively (Rosique-Esteban et al., 2017). In the present study, the results for obesity indicators of replacing $10 \mathrm{~min} /$ day of SB with LTPA are less than the observed in Rosique-Esteban and colleagues study (Rosique-Esteban et al., 2017), probably due to greater benefits in energy expenditure with MVPA in older individuals with higher BMI and WC (Colley et al., 2018). Moreover, another possible explanation could be that screen time has a more negative association with obesity indicators than other SB such as reading, doing paperwork, car travel and phone utilization (Whitaker et al., 2018).

Nonetheless, realistic reallocations of SB to LTPA might be limited, including common impediments such as insufficient time, costs, lack of confidence, encouragement (Withall et al., 2011). Hence, travel PA would act as a keystone in the substitution model, providing an alternative opportunity to overcoming traditional barriers associated to lack of PA (Furie and Desai, 2012). Moreover, this type of PA practiced at lower-intensities seems easier to incorporate into a daily routine, and previous studies have shown negative associations with CVD risk factors and mortality (Hamer and Chida, 2008; Saunders et al., 2013), inclusively in Chilean population (Sadarangani et al., 2018).

Consistent with our results, international public health approaches such as the global action plan on PA and strategies like "Move more, Sit less", have advocated for ideal reallocation of time for
health, decreasing time in less active behaviors and engaging into more MVPA (Salmon, 2016; World Health Organization, 2018b). Moreover, the present findings suggest that cross-sectoral collaboration and integrated decision making between Health, Transport and Environment should be decisive for achieving sustainable transport patterns. Promotion of safe cycling and walking offers reductions in traffic congestion, noise, carbon dioxide and pollutants emissions (Dombois et al., 2006). Moreover, it would increase population PA levels, energy efficiency and quality of urban life (Dombois et al., 2006). However, for this to happen environmental and transportation infrastructure are needed, such as green spaces, park and playgrounds, street connectivity offering multi-modal transportation, pedestrians sidewalks and bicycle lanes separated from traffic, etc... taking advantage from the recent road harmony modification law and speed limit reduction ($50 \mathrm{~km} / \mathrm{hour}$) in urban areas (de Nazelle et al., 2011; Dombois et al., 2006; Telecomunicaciones, 2018).

1.4.1 Strengths and Limitations

Strengths of this study includes a large random representative sample (urban, rural and regional) with low refusal rates (12\%) (Ministerio de Salud, 2009). Trained nurses and standard operating procedures used for anthropometric measures. However, a number of important limitations need to be considered. First, the cross-sectional design of our study does not allow to assume causality and reverse causality cannot be excluded. However, sensitive analysis was performed excluding those who reported a history of stroke, deep vein thrombosis or myocardial infarction ($\mathrm{n}=3398$) and results remained significant when substituting $10 \mathrm{~min} /$ day of SB with travel PA and LTPA. Second, despite examining a potential effect of a large set of confounders, residual confounding factors remains as a possibility, such as not controlling for diet could influence obesity indicators. Third, self-reported measure of PA and SB is not always reliable and can incur bias.

Moreover, the GPAQ instrument only include PA bouts of at least 10 -minute duration, so by not accounting for bouts of MVPA below 10-min our analyses could underestimating the associations observed. Due to this, objective devices (accelerometers and Global Positioning System) complemented with a PA diary should be used to deliver reliable information plus differentiate between SB and PA types, standing and LIPA. Nevertheless, the GPAQ has shown good criterion validity against 343 accelerometers in this population (Aguilar-Farías, Nicolás; Leppe, 2014). Forth, our isotemporal analysis did not consider LIPA (not measured in this survey) thus, it is unclear how these activities relate with obesity indicators.

1.5 Conclusion

In conclusion, this study is the first to our knowledge to examine the associations of replacing time spent in SB with time spent in different PA domains and obesity indicators. Our findings demonstrate that replacing SB not only with LTPA but also with travel PA was associated with lower levels of BMI and WC. These findings may hold important public health relevance as engaging in travel PA would be beneficial even for those less able to tolerate higher-intensity activities, and at lower cost. Further work including interventional studies are needed to better understand the relationship between PA domains and obesity indicators, in order to assess for causal relationships and clarify possible mechanisms involved.

Acknowledgements

Authors Contributions Statement

KS and VCS did the statistical analysis; KS prepared the first draft and VCS, AV, CCM, CCM, NAF, SHF, MDC, BSV and DMG re-wrote parts of the manuscript; all authors review critically several drafts of the manuscript and approved the final version before submission.

Author Disclosures
Conflict of interest: None declared.

Funding Sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Aguilar-Farías, Nicolás; Leppe, J., 2014. F-27 Free Communication/Poster - Epidemiology of Physical Activity and Health in Adults. Medicine \& Science in Sports \& Exercise 46, 769787. doi:10.1249/01.mss.0000451266.56304.a3

Bull, F.C., Maslin, T.S., Armstrong, T., 2009. Global physical activity questionnaire (GPAQ): nine country reliability and validity study. Journal of physical activity \& health 6, 790-804.

Buman, M.P., Winkler, E.A.H., Kurka, J.M., Hekler, E.B., Baldwin, C.M., Owen, N., Ainsworth, B.E., Healy, G.N., Gardiner, P.A., 2014. Reallocating Time to Sleep, Sedentary Behaviors, or Active Behaviors: Associations With Cardiovascular Disease Risk Biomarkers, NHANES 2005-2006. American Journal of Epidemiology 179, 323-334. doi:10.1093/aje/kwt292

Colley, R.C., Michaud, I., Garriguet, D., 2018. Reallocating time between sleep, sedentary and active behaviours: Associations with obesity and health in Canadian adults. Health reports 29, 3-13.

Dahl-Petersen, I.K., Brage, S., Bjerregaard, P., Tolstrup, J.S., Jorgensen, M.E., 2017. Physical Activity and Abdominal Fat Distribution in Greenland. Medicine \& Science in Sports \& Exercise 49, 2064-2070. doi:10.1249/MSS. 0000000000001337
de Nazelle, A., Nieuwenhuijsen, M.J., Antó, J.M., Brauer, M., Briggs, D., Braun-Fahrlander, C., Cavill, N., Cooper, A.R., Desqueyroux, H., Fruin, S., Hoek, G., Panis, L.I., Janssen, N., Jerrett, M., Joffe, M., Andersen, Z.J., van Kempen, E., Kingham, S., Kubesch, N., Leyden, K.M., Marshall, J.D., Matamala, J., Mellios, G., Mendez, M., Nassif, H., Ogilvie, D., Peiró, R., Pérez, K., Rabl, A., Ragettli, M., Rodríguez, D., Rojas, D., Ruiz, P., Sallis, J.F., Terwoert, J., Toussaint, J.-F., Tuomisto, J., Zuurbier, M., Lebret, E., 2011. Improving health through policies that promote active travel: A review of evidence to support integrated
health impact assessment. Environment International 37, 766-777.
doi:10.1016/j.envint.2011.02.003
del Pozo-Cruz, J., García-Hermoso, A., Alfonso-Rosa, R.M., Alvarez-Barbosa, F., Owen, N., Chastin, S., del Pozo-Cruz, B., 2018. Replacing Sedentary Time: Meta-analysis of Objective-Assessment Studies. American Journal of Preventive Medicine 55, 395-402. doi:10.1016/j.amepre.2018.04.042

Dombois, O.T., Kahlmeier, S., Martin-Diener, E., Martin, B., Racioppi, F., Braun-Fahrländer, C., 2006. Collaboration between the Health and Transport sectors in promoting Physical Activity: Examples from European Countries.

Du, H., Bennett, D., Li, L., Whitlock, G., Guo, Y., Collins, R., Chen, J., Bian, Z., Hong, L.-S., Feng, S., Chen, X., Chen, L., Zhou, R., Mao, E., Peto, R., Chen, Z., 2013. Physical activity and sedentary leisure time and their associations with BMI, waist circumference, and percentage body fat in 0.5 million adults: the China Kadoorie Biobank study. The American Journal of Clinical Nutrition 97, 487-496. doi:10.3945/ajen.112.046854

Fishman, E.I., Steeves, J.A., Zipunnikov, V., Koster, A., Berrigan, D., Harris, T.A., Murphy, R., 2016. Association between Objectively Measured Physical Activity and Mortality in NHANES. Medicine \& Science in Sports \& Exercise 48, 1303-1311. doi:10.1249/MSS. 0000000000000885

Food and Agriculture Organization of the United Nations and Pan American Health Organization, 2017. Panorama of Food and Nutrition Security in Latin America and the Caribbean. Santiago.

Furie, G.L., Desai, M.M., 2012. Active transportation and cardiovascular disease risk factors in U.S. adults. American journal of preventive medicine 43, 621-8. doi:10.1016/j.amepre.2012.06.034

Grgic, J., Dumuid, D., Bengoechea, E.G., Shrestha, N., Bauman, A., Olds, T., Pedisic, Z., 2018. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies. International Journal of Behavioral Nutrition and Physical Activity 15, 69. doi:10.1186/s12966-018-0691-3

Grundy, S.M., Blackburn, G., Higgins, M., Lauer, R., Perri, M.G., Ryan, D., 1999. Physical activity in the prevention and treatment of obesity and its comorbidities. Medicine and science in sports and exercise 31, S502-8.

Gupta, N., Heiden, M., Aadahl, M., Korshøj, M., Jørgensen, M.B., Holtermann, A., 2016. What Is the Effect on Obesity Indicators from Replacing Prolonged Sedentary Time with Brief Sedentary Bouts, Standing and Different Types of Physical Activity during Working Days? A Cross-Sectional Accelerometer-Based Study among Blue-Collar Workers. PLOS ONE 11, e0154935. doi:10.1371/journal.pone. 0154935

Hamer, M., Chida, Y., 2008. Active commuting and cardiovascular risk: A meta-analytic review. Preventive Medicine 46, 9-13. doi:10.1016/j.ypmed.2007.03.006

Hamer, M., Stamatakis, E., Steptoe, A., 2014. Effects of Substituting Sedentary Time with Physical Activity on Metabolic Risk. Medicine \& Science in Sports \& Exercise 46, 19461950. doi:10.1249/MSS. 0000000000000317

Healy, G.N., Wijndaele, K., Dunstan, D.W., Shaw, J.E., Salmon, J., Zimmet, P.Z., Owen, N., 2008. Objectively Measured Sedentary Time, Physical Activity, and Metabolic Risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 31, 369-371. doi:10.2337/dc07-1795

Jakes, R.W., Day, N.E., Khaw, K.-T., Luben, R., Oakes, S., Welch, A., Bingham, S., Wareham, N.J., 2003. Original Communication Television viewing and low participation in vigorous
recreation are independently associated with obesity and markers of cardiovascular disease risk: EPIC-Norfolk population-based study. European Journal of Clinical Nutrition 57, 1089-1096. doi:10.1038/sj.ejcn. 1601648

Jakicic, J.M., Otto, A.D., 2005. Physical activity considerations for the treatment and prevention of obesity. The American Journal of Clinical Nutrition 82, 226S-229S. doi:10.1093/ajen/82.1.226S

Jetté, M., Sidney, K., Blümchen, G., 1990. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clinical Cardiology 13, 555565. doi:10.1002/clc. 4960130809

Larsen, B.A., Allison, M.A., Kang, E., Saad, S., Laughlin, G.A., Araneta, M.R.G., BarrettConnor, E., Wassel, C.L., 2014. Associations of Physical Activity and Sedentary Behavior with Regional Fat Deposition. Medicine \& Science in Sports \& Exercise 46, 520-528. doi:10.1249/MSS.0b013e3182a77220

Mahabadi, A.A., Massaro, J.M., Rosito, G.A., Levy, D., Murabito, J.M., Wolf, P.A., O’Donnell, C.J., Fox, C.S., Hoffmann, U., 2008. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. European Heart Journal 30, 850-856. doi:10.1093/eurheartj/ehn573

Martínez-González, M.A., Martínez, J.A., Hu, F.B., Gibney, M.J., Kearney, J., 1999. Physical inactivity, sedentary lifestyle and obesity in the European Union. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 23, 1192-201.

Mekary, R.A., Willett, W.C., Hu, F.B., Ding, E.L., 2009. Isotemporal Substitution Paradigm for Physical Activity Epidemiology and Weight Change. American Journal of Epidemiology 170, 519-527. doi:10.1093/aje/kwp163

Ministerio de Salud, 2009. Encuesta Nacional de Salud 2009-2010. Santiago, Chile.
Organization and Economic Co-operation and Development, 2018. Overweight or obese population [WWW Document]. doi:doi: 10.1787/86583552

Rosique-Esteban, N., Díaz-López, A., Martínez-González, M.A., Corella, D., Goday, A., Martínez, J.A., Romaguera, D., Vioque, J., Arós, F., Garcia-Rios, A., Tinahones, F., Estruch, R., Fernández-García, J.C., Lapetra, J., Serra-Majem, L., Pinto, X., Tur, J.A., Bueno-Cavanillas, A., Vidal, J., Delgado-Rodríguez, M., Daimiel, L., Vázquez, C., Rubio, M.Á., Ros, E., Salas-Salvadó, J., investigators, P.-P., 2017. Leisure-time physical activity, sedentary behaviors, sleep, and cardiometabolic risk factors at baseline in the PREDIMEDPLUS intervention trial: A cross-sectional analysis. PLOS ONE 12, e0172253. doi:10.1371/journal.pone. 0172253

Rosito, G.A., Massaro, J.M., Hoffmann, U., Ruberg, F.L., Mahabadi, A.A., Vasan, R.S., O’Donnell, C.J., Fox, C.S., 2008. Pericardial Fat, Visceral Abdominal Fat, Cardiovascular Disease Risk Factors, and Vascular Calcification in a Community-Based Sample: The Framingham Heart Study. Circulation 117, 605-613. doi:10.1161/CIRCULATIONAHA.107.743062

Sadarangani, K.P., Von Oetinger, A., Cristi-Montero, C., Cortínez-O'Ryan, A., Aguilar-Farías, N., Martínez-Gómez, D., 2018. Beneficial association between active travel and metabolic syndrome in Latin-America: A cross-sectional analysis from the Chilean National Health Survey 2009-2010. Preventive Medicine 107, 8-13. doi:10.1016/j.ypmed.2017.12.005

Salmon, J., 2016. Move more, sit less! Time for a national physical activity action plan. The Medical Journal of Australia 205, 100. doi:10.5694/mja16.00592

Saunders, L.E., Green, J.M., Petticrew, M.P., Steinbach, R., Roberts, H., 2013. What Are the Health Benefits of Active Travel? A Systematic Review of Trials and Cohort Studies. PLoS

ONE 8, e69912. doi:10.1371/journal.pone. 0069912
Stamatakis, E., Hirani, V., Rennie, K., 2009. Moderate-to-vigorous physical activity and sedentary behaviours in relation to body mass index-defined and waist circumferencedefined obesity. British Journal of Nutrition 101, 765. doi:10.1017/S0007114508035939

Su, C., Jia, X.F., Wang, Z.H., Wang, H.J., Ouyang, Y.F., Zhang, B., 2017. Longitudinal association of leisure time physical activity and sedentary behaviors with body weight among Chinese adults from China Health and Nutrition Survey 2004-2011. European Journal of Clinical Nutrition 71, 383-388. doi:10.1038/ejcn.2016.262

Telecomunicaciones, M. de T. y, 2018. Diario Oficial I Sección Leyes, Reglamentos, Decretos y Resoluciones de Orden Genera Normas Generales.

United Nations. Economic Commission for Latin America and the Caribbean. World Food Programme, 2017. The cost of the double burden of malnutrition: Social and economic impact.

Van Der Berg, J.D., Van Der Velde, J.H.P.M., De Waard, E.A.C., Bosma, H., Savelberg, H.H.C.M., Schaper, N.C., Vand Den Bergh, J.P.W., Geusens, P.P.M.M., Schram, M.T., Sep, S.J.S., Van der Kallen, C.J.H., Henry, R.M.A., Dagnelie, P.C., Eussen, S.J.P.M., Van Dongen, M.C.J.M., Kohler, S., Kroon, A.A., Stehouwer, C.D.A., Koster, A., 2017. Replacement Effects of Sedentary Time on Metabolic Outcomes. Medicine \& Science in Sports \& Exercise 49, 1351-1358. doi:10.1249/MSS. 0000000000001248

Whitaker, K.M., Buman, M.P., Odegaard, A.O., Carpenter, K.C., Jacobs, D.R., Sidney, S., Pereira, M.A., 2018. Sedentary Behaviors and Cardiometabolic Risk: An Isotemporal Substitution Analysis. American Journal of Epidemiology 187, 181-189. doi:10.1093/aje/kwx209

Wijndaele, K., Healy, G.N., Dunstan, D.W., Barnett, A.G., Salmon, J., Shaw, J.E., Zimmet, P.Z.,

Owen, N., 2010. Increased Cardiometabolic Risk Is Associated with Increased TV Viewing Time. Medicine \& Science in Sports \& Exercise 42, 1511-1518.
doi:10.1249/MSS.0b013e3181d322ac
Withall, J., Jago, R., Fox, K.R., 2011. Why some do but most don't. Barriers and enablers to engaging low-income groups in physical activity programmes: a mixed methods study. BMC public health 11, 507. doi:10.1186/1471-2458-11-507

World Health Organization, 2018a. Obesity and overweight.
World Health Organization, 2018b. Seventy-First World Health Assembly A71/18 Provisional agenda item 12.2 Physical activity for health More active people for a healthier world: draft global action plan on physical activity 2018-2030 Report by the Director-General.

World Health Organization, 2010. Global recommendations on physical activity for health, WHO. World Health Organization, Geneva.

World Health Organization, 2009. Global Physical Activity Questionnaire (GPAQ). Geneva.

Table 1 Socio-demographic, anthropometric, clinical and physical activity characteristics of the study population, Chilean National Health Survey 2009-2010 ($\mathrm{n}=3552$)

Variable	$\begin{array}{c}\text { All } \\ \text { n } \\ \hline\end{array}$
	Mean (SD)

${ }^{\text {a }}$ Diabetes: Fasting plasma glucose $\geq 126 \mathrm{mg} / \mathrm{dl}$ or self-reported physician-diagnosed
${ }^{\text {b }}$ Hypertension: systolic blood pressure $\geq 140 \mathrm{mmHg}$ and/or diastolic blood pressure $\geq 90 \mathrm{mmHg}$, plus normotensive participants with pharmacological treatment

Table 2 Associations of each $10 \mathrm{~min} /$ day of sedentary behavior and physical activity domains with body mass index and waist circumference, Chilean National Health Survey 2009-2010 ($\mathrm{n}=3552$)

Analysis Method: Single Activity Models				
Body Mass Index (kg/m²)				
	Sedentary Behavior $\beta(95 \% \mathrm{CI})$	$\begin{aligned} & \text { Occupational PA }{ }^{\text {a }} \\ & \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{~ C I}) \end{aligned}$	$\begin{aligned} & \text { Travel PA }{ }^{\text {a }} \\ & \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{C I}) \end{aligned}$	$\begin{aligned} & \text { Leisure-Time PA }{ }^{\mathrm{a}} \\ & \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{C I}) \end{aligned}$
Model A	0.015 (0.004; 0.026)*	$0.006(-0.004 ; 0.016)$	-0.023 (-0.043; -0.003)***	-0.069 (-0.110; -0.029)*
Model B	0.016 (0.005; 0.027)*	$0.006(-0.004 ; 0.015)$	-0.023 (-0.043; -0.002)***	-0.069 (-0.110; -0.028)*
Model C	0.013 (0.002; 0.024)***	$0.005(-0.004 ; 0.015)$	-0.015 (-0.035; 0.005)	-0.063 (-0.103; -0.024)*
Model D	-	$0.009(-0.001 ; 0.019)$	-0.012 (-0.032; 0.008)	-0.062 (-0.102; -0.022)*
Model E	0.014 (0.003; 0.025)***	-	-	-
Waist Circumference (cm)				
	Sedentary Behavior $\beta(95 \% \mathrm{CI})$	$\begin{gathered} \text { Occupational PA }{ }^{\text {a }} \\ \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{~ C I}) \end{gathered}$	$\begin{gathered} \text { Travel PA }{ }^{\text {a }} \\ \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{C I}) \end{gathered}$	Leisure-Time PA^{a} $\beta(95 \% \mathrm{CI})$
Model A	0.042 (0.002; 0.081)***	-0.017 (-0.053; 0.019)	-0.108 (-0.191; -0.025)**	-0.362 (-0.490; -0.234)*
Model B	0.044 (0.005; 0.083)***	-0.021 (-0.058; 0.015)	-0.104 (-0.185; -0.023)**	-0.361 (-0.489; -0.233)*
Model C	0.047 (0.007; 0.087)***	-0.029 (-0.063; 0.006)	-0.091 (-0.170 ; -0.012)***	-0.327 (-0.453 ; -0.201)*
Model D	-	-0.020 (-0.057; 0.017)	$-0.080(-0.161 ; 0.001)$	-0.320 (-0.444; -0.196)*
Model E	0.034 (-0.008; 0.075)	-	-	-
Analysis Method: Partition Models				
Body Mass Index (kg/m²)				
	Sedentary Behavior $\boldsymbol{\beta}(\mathbf{9 5 \%}$ CI)	Occupational PA ${ }^{\mathrm{a}}$ $\beta(95 \% \mathrm{CI})$	$\begin{gathered} \text { Travel PA }{ }^{\text {a }} \\ \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{C I}) \end{gathered}$	Leisure-Time PA^{a} $\beta(95 \% \mathrm{CI})$
Model A	0.016 (0.005; 0.028)*	0.009 (-0.012; 0.019)	-0.017 (-0.037; 0.004)	-0.063 (-0.104; -0.022)*
Model B	0.016 (0.005; 0.027)*	$0.009(-0.002 ; 0.019)$	-0.017 (-0.037; 0.004)	-0.063 (-0.104; -0.022)*
Model C	0.014 (0.003; 0.025)*	0.008 (-0.002; 0.018)	$-0.010(-0.030 ; 0.010)$	-0.059 (-0.099; -0.019)*
Waist Circumference (cm)				
	Sedentary Behavior $\beta(95 \% \mathrm{CI})$	Occupational PA^{a} $\beta(95 \% \mathrm{CI})$	$\begin{gathered} \text { Travel PA }{ }^{\text {a }} \\ \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{C I}) \end{gathered}$	$\begin{aligned} & \text { Leisure-Time PA }{ }^{\text {a }} \\ & \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{~ C I}) \\ & \hline \end{aligned}$
Model A	0.031 (-0.010; 0.072)	-0.018 (-0.055; 0.020)	-0.062 (-0.145; 0.020)	-0.342 (-0.469; -0.215)*

Model B	$0.033(-0.008 ; 0.074)$	$-0.021(-0.060 ; 0.017)$	$-0.057(-0.137 ; 0.024)$	$-\mathbf{- 0 . 3 4 4 (\mathbf { (- 0 . 4 7 1 } ; - \mathbf { - 0 . 2 1 8 }) ^ { * }}$
Model C	$0.034(-0.007 ; 0.076)$	$-0.027(-0.064 ; 0.009)$	$-0.047(-0.125 ; 0.032)$	$\mathbf{- 0 . 3 1 5 (\mathbf { (- . 4 3 8 } ; \mathbf { - 0 . 1 9 1 }) ^ { * }}$

Data presented as unstandardized regression coefficients (β)

${ }^{\text {a PA: Physical Activity }}$

Model A: Adjusted for age, sex, educational level (low, middle, high) and region of residence (north, center, south)
Model B: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south) and sleep time.
Model C: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, selfreported health, diabetes and hypertension.
Model D: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, selfreported health, diabetes, hypertension and Sedentary Behavior.
Model E: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, selfreported health, diabetes, hypertension and Total Physical Activity (Occupational, Travel and Leisure-Time).
Boldface indicates statistical significance: *p $<0.001{ }^{* *} \mathrm{p}<0.01{ }^{* * *} \mathrm{p}<0.05$

Table 3 Isotemporal substitution models examining the relation between $10 \mathrm{~min} /$ day changes in time spent in sedentary behavior, occupation, travel and leisure-time physical activity and body mass index, Chilean National Health Survey 2009-2010 ($\mathrm{n}=3552$).

Analysis Method	Sedentary Behavior $\beta(95 \% \mathrm{CI})$	Occupational PA^{a} $\beta(95 \% \mathrm{CI})$	$\begin{aligned} & \text { Travel PA }{ }^{a} \\ & \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{C I}) \end{aligned}$	$\begin{aligned} & \text { Leisure-Time PA }{ }^{\text {a }} \\ & \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{~ C I}) \end{aligned}$
Isotemporal				
Substitution of Activity to Replace Sedentary Behaviour	Dropped			
Model A		-0.007 (-0.021; 0.006)	-0.033 (-0.055 ; -0.011)**	-0.080 (-0.122; -0.037)*
Model B		-0.008 (-0.021; 0.006)	-0.033 (-0.055 ; -0.011)**	-0.080 (-0.122; -0.037)*
Model C		-0.006 (-0.019; 0.007)	-0.024 (-0.045; -0.002)***	-0.073 (-0.114; -0.032)*
Substitution of Activity to Replace Occupational PA ${ }^{\text {a }}$		Dropped		
Model A	0.007 (-0.006; 0.021)		-0.026 (-0.048; -0.003)***	-0.072 (-0.114; -0.031)*
Model B	$0.008(-0.006 ; 0.021)$		-0.025 (-0.048; -0.003)***	-0.072 (-0.113; -0.030)*
Model C	$0.006(-0.007 ; 0.019)$		-0.018 (-0.040; 0.005)	-0.067 (-0.107; -0.026)*
Substitution of Activity to Replace Travel PA ${ }^{\text {a }}$			Dropped	
Model A	0.033 (0.011; 0.055)**	0.026 (0.003; 0.048)***		-0.046 (-0.093; 0.000)
Model B	0.033 (0.011; 0.055)**	0.025 (0.003; 0.048)***		-0.047 (-0.094; 0.000)
Model C	$0.024(0.002 ; 0.045) * * *$	0.018 (-0.005; 0.040)		-0.049 (-0.095; -0.003)***
Substitution of Activity to Replace Leisure-Time PA ${ }^{\text {a }}$				Dropped
Model A	0.080 (0.037; 0.122)*	0.072 (0.031 ; 0.114)*	0.046 (-0.000 ; 0.093)	
Model B	0.080 (0.037; 0.122)*	$0.072(0.030 ; 0.113) *$	0.047 (-0.001; 0.094)	
Model C	0.073 (0.032; 0.114)*	0.067 (0.026; 0.107)*	0.049 (0.003; 0.095)***	

Data presented as unstandardized regression coefficients (β)
${ }^{\text {a PA: Physical Activity }}$
Model A: Adjusted for age, sex, educational level (low, middle, high) and region of residence (north, center, south)
Model B: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south) and sleep time.

Model C: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, selfreported health, diabetes and hypertension.
Boldface indicates statistical significance: ${ }^{*} \mathrm{p}<0.001{ }^{* *} \mathrm{p}<0.01{ }^{* * *} \mathrm{p}<0.05$

Table 4 Isotemporal substitution models examining the relation between $10 \mathrm{~min} /$ day changes in time spent in sedentary behavior, occupation, travel and leisure-time physical activity and waist circumference, Chilean National Health Survey 2009-2010 (n=3552).

Analysis Method	Sedentary Behavior $\beta(95 \% \mathrm{CI})$	Occupational PA^{a} $\beta(95 \% \mathrm{CI})$	$\begin{aligned} & \text { Travel PA }{ }^{\mathrm{a}} \\ & \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{~ C I}) \end{aligned}$	$\begin{aligned} & \text { Leisure-Time PA }{ }^{\text {a }} \\ & \boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{~ C I}) \end{aligned}$
Isotemporal				
Substitution of Activity to Replace Sedentary Behaviour	Dropped			
Model A		-0.048 (-0.094; -0.003)***	-0.093 (-0.177; -0.010)***	-0.373 (-0.500; -0.245)*
Model B		-0.054 (-0.100; -0.008)***	-0.089 (-0.172 ; -0.007)***	-0.377 (-0.505; -0.249)*
Model C		-0.062 (-0.107; -0.016)**	-0.081 (-0.161; -0.001)***	-0.349 (-0.476; -0.222)*
Substitution of Activity to Replace Occupational PA ${ }^{\text {a }}$		Dropped		
Model A	0.048 (0.003; 0.094)***		-0.045 (-0.136; 0.047)	-0.324 (-0.449 ; -0.200)*
Model B	$0.054(0.008 ; 0.100) * * *$		-0.035 (-0.125; 0.054)	-0.323 (-0.448; -0.198)*
Model C	0.062 (0.016; 0.107)**		-0.019 (-0.106; 0.067)	-0.288 (-0.411; -0.164)*
Substitution of Activity to Replace Travel PA ${ }^{\text {a }}$			Dropped	
Model A	$0.093(0.010 ; 0.176)^{* * *}$	0.045 (-0.047; 0.136)		-0.280 (-0.434; -0.125)*
Model B	0.089 (0.007; 0.172)***	$0.035(-0.054 ; 0.125)$		-0.288 (-0.442; -0.134)*
Model C	0.081 (0.001; 0.161)***	0.019 (-0.067; 0.106)		-0.268 (-0.419; -0.117)*
Substitution of Activity to Replace Leisure-Time PA ${ }^{a}$				Dropped
Model A	0.373 (0.245; 0.500)*	0.324 (0.200; 0.449)*	0.280 (0.125; 0.434)*	
Model B	0.377 (0.249; 0.505)*	0.323 (0.198; 0.448)*	0.288 (0.134; 0.442)*	
Model C	0.349 (0.222; 0.476)*	0.288 (0.164; 0.411)	0.268 (0.117; 0.419)*	
Data presented as unstandardized regression coefficients (β) ${ }^{a}$ PA: Physical Activity				
Model A: Adjusted for age, sex, educational level (low, middle, high) and region of residence (north, center, south) Model B: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south) and sleep time. Model C: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, selfreported health, diabetes and hypertension.				

Boldface indicates statistical significance: ${ }^{*} \mathrm{p}<0.001{ }^{* *} \mathrm{p}<0.01 * * * \mathrm{p}<0.05$

Appendix Table 1

Pearson correlations coefficients between daily activities components, Chilean National Health Survey 2009-2010 ($\mathrm{n}=3552$).

	Sedentary Behavior	Travel PA		
Sedentary Behaviour	1.0	Occupational PA	Leisure-Time PA ${ }^{\mathrm{a}}$	
Travel PA				
Occupational PA	-0.141^{*}	-0.245^{*}	1.0	
Leisure-Time PA $^{\mathrm{a}}$	$0.046^{* *}$	0.131^{*}	1.0	

${ }^{\text {a }}$ PA: Physical Activity
Boldface indicates statistical significance: ${ }^{*} \mathrm{p}<0.001 * * \mathrm{p}<0.01$

