

Sadarangani, K. P., Cabanas-Sánchez, V., Von Oetinger, A., Cristi-Montero, C., Celis-Morales, C., Aguilar-Farías, N., Higueras-Fresnillo, S., De la Cámara, M. A., Suarez-Villadat, B. and Martínez-Gómez, D. (2019) Substituting sedentary time with physical activity domains: an isotemporal substitution analysis in Chile. *Journal of Transport and Health*, 14, 100593. (doi: <u>10.1016/j.jth.2019.100593</u>)

The material cannot be used for any other purpose without further permission of the publisher and is for private use only.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/190194/

Deposited on 11 July 2019

Enlighten – Research publications by members of the University of Glasgow <u>http://eprints.gla.ac.uk</u> Substituting sedentary time with physical activity domains: an isotemporal substitution analysis in Chile

Kabir P. Sadarangani, MSc ^{a,b,*}; Verónica Cabanas-Sánchez, PhD ^a; Astrid Von Oetinger MSc ^{c,d}; Carlos Cristi-Montero, PhD ^e; Carlos Celis-Morales, PhD ^f; Nicolás Aguilar-Farías, PhD ^g; Sara Higueras-Fresnillo, MSc ^a; Miguel A. De la Cámara, MSc ^a; Borja Suarez-Villadat, MSc ^a; David Martínez-Gómez, PhD ^{a,h}

^a Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid 28049, Spain

^b Universidad Autónoma de Chile, Chile.

^c School of Physiotherapy, Faculty of Health Sciences, Universidad San Sebastian, Lota 2465, Santiago
 7510157, Chile

^d Escuela de Kinesiología, Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile ^e IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

^fBHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom

^g Department of Physical Education, Sports, and Recreation, Universidad de La Frontera; UFRO Activate Research Group, Chile

^h IMDEA Food Institute, CEI UAM + CSIC, Madrid 28049, Spain

* Corresponding author: Kabir P. Sadarangani, Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Madrid 28049, Spain, +56979872855, E-mail address: kabir.sadarangani@gmail.com

Word Counts

Abstract: 299 Manuscript: 3578 Tables: 4

Appendix Table: 1

Author Disclosures

No potential conflicts of interest was reported by Kabir P. Sadarangani No potential conflicts of interest was reported by Verónica Cabanas-Sánchez No potential conflicts of interest was reported by Astrid Von Oetinger No potential conflicts of interest was reported by Carlos Cristi-Montero No potential conflicts of interest was reported by Carlos Celis-Morales No potential conflicts of interest was reported by Nicolás Aguilar-Farías No potential conflicts of interest was reported by Sara Higueras-Fresnillo No potential conflicts of interest was reported by Miguel A. De la Cámara No potential conflicts of interest was reported by Borja Suarez-Villadat No potential conflicts of interest was reported by Borja Suarez-Villadat

Funding Statement

This research did not receive any specific grant from funding agencies in the public, commercial, or notfor-profit sectors.

Kabir P. Sadarangani has no financial disclosures Verónica Cabanas-Sánchez has no financial disclosures Astrid Von Oetinger has no financial disclosures Carlos Cristi-Montero has no financial disclosures Carlos Celis-Morales has no financial disclosures Nicolás Aguilar-Farías has no financial disclosures Sara Higueras-Fresnillo has no financial disclosures Miguel A. De la Cámara has no financial disclosures Borja Suarez-Villadat has no financial disclosures David Martínez-Gómez has no financial disclosures

1 Abstract

2 Introduction

Sedentary behavior (SB), physical inactivity and obesity are main risk factors for noncommunicable diseases. However, it is unknow whether reallocating SB time with physical activity (PA) domains related to travel, occupational and leisure activities is associated with lower levels of adiposity. The aim of this study, therefore, was to examine independent associations and theoretical reallocations of SB and physical activity (PA) domains with obesity indicators in a nationally representative sample from Chile.

9

10 Methods

Randomly selected participants were enrolled in the 2009–2010 Chilean National Health Survey.
Cross-sectional self-reported SB and PA domains were collected using the Global PA Questionnaire. Isotemporal substitution modeling was applied to examine the potential effects of reallocating 10 min/day of SB with occupational or travel or LTPA in relation to Body Mass Index (BMI) and Waist Circumference (WC).

- 16
- 17 Results

18 3552 participants aged between 15-65 years [mean (standard deviation); age=40.2 (14.07) years, 19 BMI=27.7 (5.38) kg/m2, WC=91.2 (24.09) cm] reported an overall sitting time of 196.3 min/day 20 and spent 15.4 min/day in LTPA. LTPA was negatively associated to both BMI and WC 21 independently of SB. Substituting 10 min/day of SB with an equal amount of travel PA resulted 22 in lower BMI (B=-0.033 95% CI: -0.055; -0.011) and WC (B=-0.089 95% CI: -0.172; -0.007) 23 independent of sociodemographic variables and sleep time. Notably, the strongest association with 24 obesity indicators was observed when SB time was reallocated for LTPA (BMI B=-0.080 95% CI: 25 -0.122; -0.037 and WC: (B=-0.373 95% CI: -0.500; -0.245).

26

27 Conclusion

28 Replacing SB not only with LTPA but also travel PA appears to be favorably associated with lower

29 levels of obesity indicators. Walking and cycling as part of our travel PA may be a more feasible

30 way of increasing PA levels than moderate or vigorous intensities PA in the overall population, at

31 lower costs and environmentally friendly.

1.1 Introduction

34	Worldwide in 2016, 39% (1.9 billion) of adults were overweight and 13% (650 million) were
35	obese (World Health Organization, 2018a). Overall, Latin America and the Caribbean leads with
36	the highest prevalence within regions with 58% (360 million) of their adults living with
37	overweight and 23% (140 million) with obesity (Food and Agriculture Organization of the
38	United Nations and Pan American Health Organization, 2017). Moreover, according to the
39	Organization and Economic Co-operation and Development, Chile in 2016 had the highest rates
40	of excessive weight (74.2%) in population aged 15 and over (Organization and Economic Co-
41	operation and Development, 2018), and this burden is projected to cost on average US\$1 billion
42	per year (United Nations. Economic Commission for Latin America and the Caribbean. World
43	Food Programme, 2017).
44	Intervention strategies preventing and treating obesity includes modification of dietary and
45	lifestyle habits such as reducing; portions, energy-dense food, and time spent watching
46	television, among others (Grundy et al., 1999). However, regular physical activity (PA) arises as
47	the cornerstone favouring energy expenditure, curving the obesity pandemic (Jakicic and Otto,
48	2005). Time-use components such as sleep, sedentary behavior (SB), light intensity physical
49	activity (LIPA) and moderate-to-vigorous PA (MVPA) distributes across a 24-hour day.
50	Although, previous studies have reported associations of these components with CVD risk
51	factors in isolation (Buman et al., 2014; Healy et al., 2008; Larsen et al., 2014; Rosique-Esteban
52	et al., 2017; Stamatakis et al., 2009; Whitaker et al., 2018; Wijndaele et al., 2010), time is
53	restricted and finite for all individuals, and participation in one activity necessary displaces in
54	some measure, one or more co-dependent activities. One of the statistical methods that enables to
55	estimate the association of substituting time spent in one activity with another, while holding

56	total time constant, is the Isotemporal Substitution Modeling (ISM) analysis (Mekary et al.,
57	2009). This ISM paradigm has recently been used by researchers exploring associations between
58	reallocating activity components and health outcomes such as, mortality, cardiometabolic
59	biomarkers, and obesity indicators, among others (Buman et al., 2014; Colley et al., 2018;
60	Fishman et al., 2016; Gupta et al., 2016; Hamer et al., 2014; Rosique-Esteban et al., 2017; Van
61	Der Berg et al., 2017; Whitaker et al., 2018). Although there is existing evidence that suggest
62	that displacing SB by MVPA is associated with lower adiposity levels, none of the previous
63	studies has investigated the potential health-related association of reallocating time in different
64	PA domains (occupational, travel and leisure-time) with overall and abdominal obesity
65	indicators. Moreover, most of these information has been derived using accelerometers (Grgic et
66	al., 2018), and, accelerometers do not allow us to estimate PA levels related to different domains
67	such as work, leisure and travel-related PA. Taken this into account, the aims of this study were
68	(i) to examine the independent association of daily activities components (SB, occupational PA,
69	travel PA and leisure-time PA [LTPA]) with overall and abdominal obesity indicators (body
70	mass index [BMI] and waist circumference [WC], respectively) and (ii) to examine how
71	reallocating time between these daily activities components is associated with these obesity
72	indicators, in the Chilean population.
73	
74	
75	
76	
77	
78	
79	

80 **1.2 Material and Methods**

81

82 *1.2.1 Study Sample*

83 This cross-sectional study included 3552 participants recruited from the Chilean National Health 84 Survey (CNHS) 2009 – 2010 (Ministerio de Salud, 2009). The CNHS cohort comprised 5412 85 participant's ≥ 15 years old, from both urban and rural areas and utilized stratified multistage 86 probability sampling (Ministerio de Salud, 2009). Furthermore, the CNHS is conducted every 6 87 vears and obtains biological, lifestyle, dietary and health data (Ministerio de Salud, 2009). 88 Data was collected, in accordance with standardized protocols, by trained interviewers and 89 nurses in a two-part face-to-face interview (Ministerio de Salud, 2009). Interviews were carried 90 out in the homes of participants, with the interviewers obtaining information on participant 91 physical and mental health, household income and socio-economic status (Ministerio de Salud, 92 2009). Following on from this, the second part of the interview involved the administration of 93 CNHS validated questionnaires and collection of anthropometric measurements, such as BMI 94 and WC (Ministerio de Salud, 2009). 95 Only participants who were aged 15–65 years, with BMI and WC measurements were 96 considered for this study (n=3960). Participants were excluded if they reported >960 minutes/day 97 (16 hours/day) in SB (n=44), >960 minutes/day of either occupational PA, travel PA, LTPA 98 (n=55), and total activity time (n=125), defined as the sum of each component (SB + 99 occupational PA + travel PA + LTPA). Additionally, participants were also excluded if data for 100 the outcomes, exposure and covariates used in this study (n=184) were missing, leading to a total 101 sample of 3552 subjects. 102 The CNHS 2009-2010 was funded by the Chilean Ministry of Health and led by the Department

103 of Public Health from the Pontificia Universidad Católica de Chile (PUC). The study protocol

104	was approved by the Ethics Research Committee of the faculty of medicine at the PUC and
105	carried out in accordance with The Code of Ethics of the World Medical Association
106	(Declaration of Helsinky). All participants provided written informed consent prior to
107	participation.
108	
109	1.2.2 Socio-demographic
110	Participants were classified according to: gender; age (15-29; 30-44; 45-65 years); region of
111	residence (north: I-IV and XV, central: V-VIII and XIII, and south: IX-XII and XIV); and
112	educational level (low: <8 schooling years, intermediate: 8-12 schooling years, and high >12
113	schooling years).
114	
115	1.2.3 Physical Activity
116	The Global Physical Activity Questionnaire (GPAQ) is a useful tool by which levels of PA and
117	SB are measured (Bull et al., 2009). It was developed by the World Health Organization, with
118	version 2 being utilized in the 2009-2010 CNHS (World Health Organization, 2009). The GPAQ
119	has been identified as a valid and reliable instrument, which has been utilized to assess other
120	population's levels of PA and SB (Bull et al., 2009).
121	Total occupational PA, travel PA and LTPA can be ascertained from the GPAQ (World Health
122	Organization, 2009). Travel PA refers to commuting between destinations by either walking or
123	cycling (non-motorized), while LTPA represents participants doing sports, fitness and
124	recreational activities. Occupational PA instead, indicates participations in household chores,
125	carrying or lifting heavy loads, harvesting food/crops, etc To account for the energy
126	expenditure related to different PA domains, the total amount of PA and MVPA was reported as
127	Metabolic Equivalents (METS), which is the ratio of a person's working metabolic rate relative

128	to the resting metabolic rate (1 kcal/kg/hour) (Jetté et al., 1990; World Health Organization,
129	2009). Both, leisure-time and occupational domains are considered as MVPA intensity domains
130	(>4METs), while travel PA is contemplated as a moderate intensity activity (4-8 METs) only.
131	Noteworthy, all domains emphasize in a continuous 10-minutes minimum bout of time for the
132	activity to be performed, in order to meet the current PA guidelines (World Health Organization,
133	2010). On the other hand, SB was calculated by using the following question: "How much time
134	do you usually spend sitting or reclining on a typical day?" Examples were provided, such as
135	sitting at a desk, sitting with friends, reading, watching television were valid, excepting time
136	spent sleeping.
137	Total minutes per day (min/day) were derived from SB, while MVPA and moderate min/day
138	calculated from leisure-time, occupational and travel PA domains separately, respectively.
139	
140	1.2.4 Obesity Indicators
141	Weight and height were measured in light clothing and without shoes, according to a standardized
142	method (Ministerio de Salud, 2009). Weight and height were measured to the nearest 0.1kg and
143	0.1cm, respectively. BMI was calculated as weight (kg) divided by the height in squared meters
144	(m ²).
145	Waist circumference was registered with a unextendible tape to the nearest 0.1cm, and measured
146	in the mid axillary line at the midpoint between the lower margin of the last detectable rib and
147	the top of the iliac crest, after normal exhalation (Ministerio de Salud, 2009).
148	
149	1.2.5 Other Potential Confounding Variables
150	Sleep time (min/day) was derived multiplying by 60 the following question: "how many hours of
151	sleep do you usually take during weekdays?" Also, self-reported health (poor/fair/good/very

152	good/excellent), diabetes (fasting plasma glucose \geq 126mg/dl or self-reported physician-
153	diagnosed) and hypertension (systolic blood pressure ≥140mmHg and/or diastolic blood pressure
154	≥90 mmHg, plus normotensive participants with pharmacological treatment) were registered
155	(Ministerio de Salud, 2009).
156	
157	1.2.6 Statistical Analysis
158	All analyses were weighted for CNHS 2009 - 2010 design using the command 'svy' in STATA
159	v.13 (StataCorp LP). Continues variables were summarized as mean and standard deviations
160	(SD), and as frequencies (percentages) for categorical variables.
161	Bivariate correlations were used to determine the relationship among PA domains and SB.
162	Three different multiple linear regression models (single activity, partitioned and isotemporal
163	substitution) were used to assess the magnitude of the associations between 10 minutes time
164	units SB, occupational PA, travel PA and LTPA, and the two obesity indicators (BMI and WC).
165	All models were first adjusted for sex, age groups, educational level and region of residence
166	(model A), then additionally controlled for sleep time (model B), and finally, adjustments for
167	diabetes, hypertension and self-reported health (model C) were also accounted. Confounders
168	were retained via backwards elimination as significantly associated with the outcomes at p-
169	values<0.2.
170	First, a single activity model was fitted to assess each component separately (SB, occupational,
171	travel and LTPA) with BMI and WC, without taking into account the other activity types.
172	Moreover, to precisely assess the independent effect of an activity (SB or each PA domain),
173	further adjustments for total PA (occupational PA + travel PA + LTPA) and SB were accounted,
174	respectively (model D and E).

175	Second, partition models were fitted to estimate the "unique associations" of each component
176	(SB, occupational PA, travel PA and LTPA) with BMI and WC, independent of confounders and
177	other activity types. Thus, represents the effect of adding rather than substituting and activity
178	type by entering simultaneously each component without adjusting for total activity time.
179	Third, an ISM analysis, examined the theoretical effect of replacing a preset amount of time
180	in one activity component with the same amount in another activity (e.g., reallocating 10
181	min/day of SB to 10 min/day of travel PA), while holding total activity time (SB + occupational
182	PA + travel PA + LTPA) constant. Including total activity time variable in the model permits for
183	direct associations to be made among independent variables and obesity indicators (Buman et al.,
184	2014). Thus, an ISM analysis that examines the effect of replacing SB (behavior of interest) with
185	other PA domains includes: occupational PA, travel PA, LTPA, covariates plus total activity
186	time entered simultaneously into the model. By dropping SB, the remaining coefficients
187	(occupational PA, travel PA, LTPA) represent the consequence of substituting 10 min/day of that
188	PA domain instead of SB while holding other activity types constant.
189	As all interactions (by age, sex, and region of residence) were not statistically significant, pooled
190	analysis with unstandardized regression coefficients are presented. Statistical significance level
191	was 2-sided and set at $P < .05$.
192	
193	
194	
195	
196	
197	
198	

199 1	1.3 R	lesul	ts
-------	-------	-------	----

- 201 The analysis included 3552 participants, mean age 40.2 (SD=14.07), mean BMI 27.7 (SD=5.38)
- and mean WC 91.2 (SD=24.09). Moreover, 60.2% were women and most of the population had
- 8-12 years of education (60.6%), lived in the central region (41.5%), and reported good overall
- health (42.9%). On average, participants spent 196.3 min/day in SB and participation in
- 205 occupational PA (133.3 min/day) was highest among other domains (travel PA= 48.6 min/day

and LTPA= 15.4 min/day). Sample characteristics are presented in Table 1.

- Table A.1 summarizes bivariate correlations between daily minutes spent in SB and the different
 PA domains (all r<0.3).
- 209 The results of the single activity and partition models for BMI and WC is represented in table 2.
- 210 In the single models, every 10 minutes bout of SB was associated with a significant increase for

211 BMI (B =0.016; 95% CI: 0.005; 0.027) and WC (B=0.044; 95% CI: 0.005; 0.083) after

- adjusting for sociodemographic and sleep time. Conversely, LTPA and travel PA were
- associated with a significant decrease for same obesity indicators. Moreover, LTPA showed an

214 independent association with BMI and WC after adjusting for SB (model D).

215 In the partition models, where the time in each of the activities was held constant, LTPA domain

remained favorably associated with BMI (B = -0.063; 95% CI: -0.104; -0.022) and WC (B = -

 $217 \quad 0.342$; 95% CI: -0.469 ; -0.215). However, SB was only negatively associated with BMI (B =

218 0.016; 95% CI: 0.005 ; 0.028) after controlling for sociodemographic characteristics. Findings

219 slightly attenuated but remained significant in the fully adjusted model (model C).

220

221 The isotemporal substitution models suggest that replacing a 10-min/day bout in travel PA or

LTPA for 10 min/day increase in SB is significantly associated with greater BMI (Table 3),

223	while holding total time constant. Similar results were obtained when travel PA was replaced
224	with occupational PA (B = 0.026 ; 95% CI: 0.003 ; 0.048). Also, the estimates of WC increased
225	significantly when any PA domain was replaced with SB bouts (Table 4). Moreover, replacing
226	10 min/day of LTPA with 10 min/day increase in occupational PA was adversely associated with
227	WC (B = 0.323; 95% CI: 0.198 ; 0.448).
228	Lastly, for both isotemporal substitution models, reallocating 10 min/day bout of SB,
229	occupational PA or travel PA with 10 min/day in LTPA was associated with favorable effects in
230	all obesity indicators.
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	
243	
244	
245	
246	

1.4 Discussion

249	This cross-sectional study examined the associations of activity components with obesity
250	indicators in a national representative sample participating in the 2009-2010 CNHS. One of the
251	main findings in this paper is that 10 min/day spent in LTPA was independently associated with
252	lower levels of BMI and WC, however the magnitude of the association was higher for WC than
253	BMI. Whereas 10 min/day time spent in SB was independently associated with higher BMI but
254	not WC. Secondly, the Isotemporal substitution analyses revealed slightly stronger beneficial
255	effects for BMI (β -0.06, p<0.001) and WC (β -0.04, p=0.015), when we theoretically replaced
256	10 min/day of SB with equal amounts of LTPA. Furthermore, it was also shown that replacing
257	SB with travel PA was associated with lower levels of obesity indicators however the magnitude
258	of the effect was smaller than those observed for LTPA (BMI= β -0.05, p=0.003 and WC= β -
259	0.04, p=0.031).
260	The present findings seem to be consistent with other research which found that LTPA is
261	independently and favorably associated with lower obesity indicators (Du et al., 2013; Jakes et
262	al., 2003; Martínez-González et al., 1999; Stamatakis et al., 2009). In addition, a recent study
263	conducted in Spain (PREDIMED PLUS-Trial) found that adults engaging 1 hour/day in
264	moderate-to-vigorous LTPA was independently associated with 5% and 3% lower prevalence of
265	overall obesity (RR=0.95; 95% CI: 0.93 ; 0.97) and abdominal obesity (RR=0.97; 95% CI: 0.96 ;
266	0.98), respectively (Rosique-Esteban et al., 2017). However, this study conducted in Spain, had
267	older participants (65±4.9 years), higher proportion of males (51.9%), higher sitting time
268	(294±138 min/day) and LTPA (66.8 min/day) than our sample (Rosique-Esteban et al., 2017).
269	

270	In accordance with the present results, previous studies have demonstrated that SB is
271	independently associated with BMI (Jakes et al., 2003; Su et al., 2017). Moreover, a major study
272	conducted in 15 European member states (n=15239) found that for each 1 hour/week increase in
273	time spent sitting was independently associated with higher BMI in males and females,
274	equivalent to 0.026 grams and 0.065 grams, respectively (Martínez-González et al., 1999).
275	Despite our findings, some studies have found independent associations with WC (Healy et al.,
276	2008; Whitaker et al., 2018; Wijndaele et al., 2010), while others for both obesity indicators (Du
277	et al., 2013; Stamatakis et al., 2009). These discrepancies could be attributed to the unexplained
278	mechanisms responsible for determining the location of fat distribution. In addition to this, a
279	study conducted in United States, showed no association between sitting time and intra-thoracic,
280	subcutaneous, visceral, and intermuscular fat measured by computed tomography (Larsen et al.,
281	2014). However, 1 hour/day increase of daily sitting was associated with 3.94cm ² greater
282	pericardial fat (Larsen et al., 2014), highlighting its association with cardiovascular morbidity
283	and mortality (Mahabadi et al., 2008; Rosito et al., 2008).
284	
285	Compelling evidence from epidemiological studies suggests that reallocating time from SB to
286	MVPA has significant beneficial associations with obesity indicators (Colley et al., 2018; Dahl-

Petersen et al., 2017; Grgic et al., 2018; Gupta et al., 2016; Hamer et al., 2014; Mekary et al.,

288 2009). Also, a recent meta-analysis which included 10 studies using objective-assessment found

that replacing 30 minutes of sedentary time with MVPA was associated with reductions in BMI

290 (β = -1.07; 95% CI: -1.80; -0.35) and WC (β = -2.95; 95% CI: -3.88; -2.03) (del Pozo-Cruz et al.,

2018). Differences in magnitudes for BMI and WC between studies could be due to the methods

assessing PA; as questionnaires tend to overestimate the amount of PA needed to reduce obesity

indicators, and underestimated the benefits of PA. However, previous studies have not dealt with

294	theoretical substitutions among different PA domains and most of the evidence been based to
295	reallocations of SB with LTPA (Mekary et al., 2009; Rosique-Esteban et al., 2017). An example
296	of this is the cross-sectional study conducted in 5776 Spanish adults were substituting 1 hour/day
297	of LTPA for same amount of TV-viewing time, resulted in 8% (RR=0.92; 95% CI: 0.90 – 0.94)
298	and 3% (RR=0.97; 95% CI: 0.96 – 0.98) lower prevalence of overall and abdominal obesity,
299	respectively (Rosique-Esteban et al., 2017). In the present study, the results for obesity indicators
300	of replacing 10 min/day of SB with LTPA are less than the observed in Rosique-Esteban and
301	colleagues study (Rosique-Esteban et al., 2017), probably due to greater benefits in energy
302	expenditure with MVPA in older individuals with higher BMI and WC (Colley et al., 2018).
303	Moreover, another possible explanation could be that screen time has a more negative
304	association with obesity indicators than other SB such as reading, doing paperwork, car travel
305	and phone utilization (Whitaker et al., 2018).
306	
307	Nonetheless, realistic reallocations of SB to LTPA might be limited, including common
308	impediments such as insufficient time, costs, lack of confidence, encouragement (Withall et al.,
309	2011). Hence, travel PA would act as a keystone in the substitution model, providing an
310	alternative opportunity to overcoming traditional barriers associated to lack of PA (Furie and
311	Desai, 2012). Moreover, this type of PA practiced at lower-intensities seems easier to
312	incorporate into a daily routine, and previous studies have shown negative associations with

313 CVD risk factors and mortality (Hamer and Chida, 2008; Saunders et al., 2013), inclusively in

314 Chilean population (Sadarangani et al., 2018).

315

Consistent with our results, international public health approaches such as the global action planon PA and strategies like "Move more, Sit less", have advocated for ideal reallocation of time for

318 health, decreasing time in less active behaviors and engaging into more MVPA (Salmon, 2016; 319 World Health Organization, 2018b). Moreover, the present findings suggest that cross-sectoral 320 collaboration and integrated decision making between Health, Transport and Environment 321 should be decisive for achieving sustainable transport patterns. Promotion of safe cycling and 322 walking offers reductions in traffic congestion, noise, carbon dioxide and pollutants emissions 323 (Dombois et al., 2006). Moreover, it would increase population PA levels, energy efficiency and 324 quality of urban life (Dombois et al., 2006). However, for this to happen environmental and 325 transportation infrastructure are needed, such as green spaces, park and playgrounds, street 326 connectivity offering multi-modal transportation, pedestrians sidewalks and bicycle lanes 327 separated from traffic, etc... taking advantage from the recent road harmony modification law 328 and speed limit reduction (50 km/hour) in urban areas (de Nazelle et al., 2011; Dombois et al., 329 2006; Telecomunicaciones, 2018).

330

331 *1.4.1 Strengths and Limitations*

332 Strengths of this study includes a large random representative sample (urban, rural and regional) 333 with low refusal rates (12%) (Ministerio de Salud, 2009). Trained nurses and standard operating 334 procedures used for anthropometric measures. However, a number of important limitations need 335 to be considered. First, the cross-sectional design of our study does not allow to assume causality 336 and reverse causality cannot be excluded. However, sensitive analysis was performed excluding 337 those who reported a history of stroke, deep vein thrombosis or myocardial infarction (n=3398) 338 and results remained significant when substituting 10 min/day of SB with travel PA and LTPA. 339 Second, despite examining a potential effect of a large set of confounders, residual confounding 340 factors remains as a possibility, such as not controlling for diet could influence obesity 341 indicators. Third, self-reported measure of PA and SB is not always reliable and can incur bias.

342	Moreover, the GPAQ instrument only include PA bouts of at least 10-minute duration, so by not
343	accounting for bouts of MVPA below 10-min our analyses could underestimating the
344	associations observed. Due to this, objective devices (accelerometers and Global Positioning
345	System) complemented with a PA diary should be used to deliver reliable information plus
346	differentiate between SB and PA types, standing and LIPA. Nevertheless, the GPAQ has shown
347	good criterion validity against 343 accelerometers in this population (Aguilar-Farías, Nicolás;
348	Leppe, 2014). Forth, our isotemporal analysis did not consider LIPA (not measured in this
349	survey) thus, it is unclear how these activities relate with obesity indicators.
350	
351	1.5 Conclusion
352	
353	In conclusion, this study is the first to our knowledge to examine the associations of replacing
354	time spent in SB with time spent in different PA domains and obesity indicators. Our findings
355	demonstrate that replacing SB not only with LTPA but also with travel PA was associated with
356	lower levels of BMI and WC. These findings may hold important public health relevance as
357	engaging in travel PA would be beneficial even for those less able to tolerate higher-intensity
358	activities, and at lower cost. Further work including interventional studies are needed to better
359	understand the relationship between PA domains and obesity indicators, in order to assess for
360	causal relationships and clarify possible mechanisms involved.
361	
362	

366	Acknowledgements
367	Authors Contributions Statement
368	KS and VCS did the statistical analysis; KS prepared the first draft and VCS, AV, CCM, CCM,
369	NAF, SHF, MDC, BSV and DMG re-wrote parts of the manuscript; all authors review critically
370	several drafts of the manuscript and approved the final version before submission.
371	Author Disclosures
372	Conflict of interest: None declared.
373	Funding Sources
374	This research did not receive any specific grant from funding agencies in the public, commercial,
375	or not-for-profit sectors.
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401	

403 **References**

- 404 Aguilar-Farías, Nicolás; Leppe, J., 2014. F-27 Free Communication/Poster Epidemiology of
- 405 Physical Activity and Health in Adults. Medicine & Science in Sports & Exercise 46, 769–

406 787. doi:10.1249/01.mss.0000451266.56304.a3

- 407 Bull, F.C., Maslin, T.S., Armstrong, T., 2009. Global physical activity questionnaire (GPAQ):
- 408 nine country reliability and validity study. Journal of physical activity & health 6, 790–804.
- 409 Buman, M.P., Winkler, E.A.H., Kurka, J.M., Hekler, E.B., Baldwin, C.M., Owen, N., Ainsworth,
- 410 B.E., Healy, G.N., Gardiner, P.A., 2014. Reallocating Time to Sleep, Sedentary Behaviors,
- 411 or Active Behaviors: Associations With Cardiovascular Disease Risk Biomarkers,
- 412 NHANES 2005–2006. American Journal of Epidemiology 179, 323–334.
- 413 doi:10.1093/aje/kwt292
- 414 Colley, R.C., Michaud, I., Garriguet, D., 2018. Reallocating time between sleep, sedentary and

415 active behaviours: Associations with obesity and health in Canadian adults. Health reports
416 29, 3–13.

- 417 Dahl-Petersen, I.K., Brage, S., Bjerregaard, P., Tolstrup, J.S., Jorgensen, M.E., 2017. Physical
- 418 Activity and Abdominal Fat Distribution in Greenland. Medicine & Science in Sports &

419 Exercise 49, 2064–2070. doi:10.1249/MSS.00000000001337

- 420 de Nazelle, A., Nieuwenhuijsen, M.J., Antó, J.M., Brauer, M., Briggs, D., Braun-Fahrlander, C.,
- 421 Cavill, N., Cooper, A.R., Desqueyroux, H., Fruin, S., Hoek, G., Panis, L.I., Janssen, N.,
- 422 Jerrett, M., Joffe, M., Andersen, Z.J., van Kempen, E., Kingham, S., Kubesch, N., Leyden,
- 423 K.M., Marshall, J.D., Matamala, J., Mellios, G., Mendez, M., Nassif, H., Ogilvie, D., Peiró,
- 424 R., Pérez, K., Rabl, A., Ragettli, M., Rodríguez, D., Rojas, D., Ruiz, P., Sallis, J.F.,
- 425 Terwoert, J., Toussaint, J.-F., Tuomisto, J., Zuurbier, M., Lebret, E., 2011. Improving health
- 426 through policies that promote active travel: A review of evidence to support integrated

- 427 health impact assessment. Environment International 37, 766–777.
- 428 doi:10.1016/j.envint.2011.02.003
- del Pozo-Cruz, J., García-Hermoso, A., Alfonso-Rosa, R.M., Alvarez-Barbosa, F., Owen, N.,
- 430 Chastin, S., del Pozo-Cruz, B., 2018. Replacing Sedentary Time: Meta-analysis of
- 431 Objective-Assessment Studies. American Journal of Preventive Medicine 55, 395–402.
- 432 doi:10.1016/j.amepre.2018.04.042
- 433 Dombois, O.T., Kahlmeier, S., Martin-Diener, E., Martin, B., Racioppi, F., Braun-Fahrländer,

434 C., 2006. Collaboration between the Health and Transport sectors in promoting Physical

- 435 Activity: Examples from European Countries.
- 436 Du, H., Bennett, D., Li, L., Whitlock, G., Guo, Y., Collins, R., Chen, J., Bian, Z., Hong, L.-S.,
- 437 Feng, S., Chen, X., Chen, L., Zhou, R., Mao, E., Peto, R., Chen, Z., 2013. Physical activity
- 438 and sedentary leisure time and their associations with BMI, waist circumference, and
- 439 percentage body fat in 0.5 million adults: the China Kadoorie Biobank study. The American

440 Journal of Clinical Nutrition 97, 487–496. doi:10.3945/ajcn.112.046854

- 441 Fishman, E.I., Steeves, J.A., Zipunnikov, V., Koster, A., Berrigan, D., Harris, T.A., Murphy, R.,
- 442 2016. Association between Objectively Measured Physical Activity and Mortality in
- 443 NHANES. Medicine & Science in Sports & Exercise 48, 1303–1311.
- 444 doi:10.1249/MSS.00000000000885
- 445 Food and Agriculture Organization of the United Nations and Pan American Health
- 446 Organization, 2017. Panorama of Food and Nutrition Security in Latin America and the447 Caribbean. Santiago.
- 448 Furie, G.L., Desai, M.M., 2012. Active transportation and cardiovascular disease risk factors in
- 449 U.S. adults. American journal of preventive medicine 43, 621–8.
- 450 doi:10.1016/j.amepre.2012.06.034

451	Grgic, J., Dumuid, D., Bengoechea, E.G., Shrestha, N., Bauman, A., Olds, T., Pedisic, Z., 2018.
452	Health outcomes associated with reallocations of time between sleep, sedentary behaviour,
453	and physical activity: a systematic scoping review of isotemporal substitution studies.
454	International Journal of Behavioral Nutrition and Physical Activity 15, 69.
455	doi:10.1186/s12966-018-0691-3
456	Grundy, S.M., Blackburn, G., Higgins, M., Lauer, R., Perri, M.G., Ryan, D., 1999. Physical
457	activity in the prevention and treatment of obesity and its comorbidities. Medicine and
458	science in sports and exercise 31, S502-8.
459	Gupta, N., Heiden, M., Aadahl, M., Korshøj, M., Jørgensen, M.B., Holtermann, A., 2016. What
460	Is the Effect on Obesity Indicators from Replacing Prolonged Sedentary Time with Brief
461	Sedentary Bouts, Standing and Different Types of Physical Activity during Working Days?
462	A Cross-Sectional Accelerometer-Based Study among Blue-Collar Workers. PLOS ONE
463	11, e0154935. doi:10.1371/journal.pone.0154935
464	Hamer, M., Chida, Y., 2008. Active commuting and cardiovascular risk: A meta-analytic review.
465	Preventive Medicine 46, 9–13. doi:10.1016/j.ypmed.2007.03.006
466	Hamer, M., Stamatakis, E., Steptoe, A., 2014. Effects of Substituting Sedentary Time with
467	Physical Activity on Metabolic Risk. Medicine & Science in Sports & Exercise 46, 1946-
468	1950. doi:10.1249/MSS.00000000000317
469	Healy, G.N., Wijndaele, K., Dunstan, D.W., Shaw, J.E., Salmon, J., Zimmet, P.Z., Owen, N.,
470	2008. Objectively Measured Sedentary Time, Physical Activity, and Metabolic Risk: The
471	Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 31, 369-371.
472	doi:10.2337/dc07-1795
473	Jakes, R.W., Day, N.E., Khaw, KT., Luben, R., Oakes, S., Welch, A., Bingham, S., Wareham,
474	N.J., 2003. Original Communication Television viewing and low participation in vigorous

- 20
- 475 recreation are independently associated with obesity and markers of cardiovascular disease
- 476 risk: EPIC-Norfolk population-based study. European Journal of Clinical Nutrition 57,
- 477 1089–1096. doi:10.1038/sj.ejcn.1601648
- 478 Jakicic, J.M., Otto, A.D., 2005. Physical activity considerations for the treatment and prevention
- 479 of obesity. The American Journal of Clinical Nutrition 82, 226S–229S.
- 480 doi:10.1093/ajcn/82.1.226S
- 481 Jetté, M., Sidney, K., Blümchen, G., 1990. Metabolic equivalents (METS) in exercise testing,
- 482 exercise prescription, and evaluation of functional capacity. Clinical Cardiology 13, 555–
- 483 565. doi:10.1002/clc.4960130809
- 484 Larsen, B.A., Allison, M.A., Kang, E., Saad, S., Laughlin, G.A., Araneta, M.R.G., Barrett-
- 485 Connor, E., Wassel, C.L., 2014. Associations of Physical Activity and Sedentary Behavior
- 486 with Regional Fat Deposition. Medicine & Science in Sports & Exercise 46, 520–528.
- 487 doi:10.1249/MSS.0b013e3182a77220
- 488 Mahabadi, A.A., Massaro, J.M., Rosito, G.A., Levy, D., Murabito, J.M., Wolf, P.A., O'Donnell,
- 489 C.J., Fox, C.S., Hoffmann, U., 2008. Association of pericardial fat, intrathoracic fat, and
- 490 visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study.
- 491 European Heart Journal 30, 850–856. doi:10.1093/eurheartj/ehn573
- 492 Martínez-González, M.A., Martínez, J.A., Hu, F.B., Gibney, M.J., Kearney, J., 1999. Physical
- inactivity, sedentary lifestyle and obesity in the European Union. International journal of
- 494 obesity and related metabolic disorders : journal of the International Association for the
- 495 Study of Obesity 23, 1192–201.
- 496 Mekary, R.A., Willett, W.C., Hu, F.B., Ding, E.L., 2009. Isotemporal Substitution Paradigm for
- 497 Physical Activity Epidemiology and Weight Change. American Journal of Epidemiology
- 498 170, 519–527. doi:10.1093/aje/kwp163

499	Ministerio de Salud, 2009. Encuesta Nacional de Salud 2009-2010. Santiago, Chile.
500	Organization and Economic Co-operation and Development, 2018. Overweight or obese
501	population [WWW Document]. doi:doi: 10.1787/86583552
502	Rosique-Esteban, N., Díaz-López, A., Martínez-González, M.A., Corella, D., Goday, A.,
503	Martínez, J.A., Romaguera, D., Vioque, J., Arós, F., Garcia-Rios, A., Tinahones, F.,
504	Estruch, R., Fernández-García, J.C., Lapetra, J., Serra-Majem, L., Pinto, X., Tur, J.A.,
505	Bueno-Cavanillas, A., Vidal, J., Delgado-Rodríguez, M., Daimiel, L., Vázquez, C., Rubio,
506	M.Á., Ros, E., Salas-Salvadó, J., investigators, PP., 2017. Leisure-time physical activity,
507	sedentary behaviors, sleep, and cardiometabolic risk factors at baseline in the PREDIMED-
508	PLUS intervention trial: A cross-sectional analysis. PLOS ONE 12, e0172253.
509	doi:10.1371/journal.pone.0172253
510	Rosito, G.A., Massaro, J.M., Hoffmann, U., Ruberg, F.L., Mahabadi, A.A., Vasan, R.S.,
511	O'Donnell, C.J., Fox, C.S., 2008. Pericardial Fat, Visceral Abdominal Fat, Cardiovascular
512	Disease Risk Factors, and Vascular Calcification in a Community-Based Sample: The
513	Framingham Heart Study. Circulation 117, 605–613.
514	doi:10.1161/CIRCULATIONAHA.107.743062
515	Sadarangani, K.P., Von Oetinger, A., Cristi-Montero, C., Cortínez-O'Ryan, A., Aguilar-Farías,
516	N., Martínez-Gómez, D., 2018. Beneficial association between active travel and metabolic
517	syndrome in Latin-America: A cross-sectional analysis from the Chilean National Health
518	Survey 2009–2010. Preventive Medicine 107, 8–13. doi:10.1016/j.ypmed.2017.12.005
519	Salmon, J., 2016. Move more, sit less! Time for a national physical activity action plan. The
520	Medical Journal of Australia 205, 100. doi:10.5694/mja16.00592
521	Saunders, L.E., Green, J.M., Petticrew, M.P., Steinbach, R., Roberts, H., 2013. What Are the

522 Health Benefits of Active Travel? A Systematic Review of Trials and Cohort Studies. PLoS

523	ONE 8, e69912. doi:10.1371/journal.pone.0069912
524	Stamatakis, E., Hirani, V., Rennie, K., 2009. Moderate-to-vigorous physical activity and
525	sedentary behaviours in relation to body mass index-defined and waist circumference-
526	defined obesity. British Journal of Nutrition 101, 765. doi:10.1017/S0007114508035939
527	Su, C., Jia, X.F., Wang, Z.H., Wang, H.J., Ouyang, Y.F., Zhang, B., 2017. Longitudinal
528	association of leisure time physical activity and sedentary behaviors with body weight
529	among Chinese adults from China Health and Nutrition Survey 2004–2011. European
530	Journal of Clinical Nutrition 71, 383-388. doi:10.1038/ejcn.2016.262
531	Telecomunicaciones, M. de T. y, 2018. Diario Oficial I Sección Leyes, Reglamentos, Decretos y
532	Resoluciones de Orden Genera Normas Generales.
533	United Nations. Economic Commission for Latin America and the Caribbean. World Food
534	Programme, 2017. The cost of the double burden of malnutrition: Social and economic
535	impact.
536	Van Der Berg, J.D., Van Der Velde, J.H.P.M., De Waard, E.A.C., Bosma, H., Savelberg,
537	H.H.C.M., Schaper, N.C., Vand Den Bergh, J.P.W., Geusens, P.P.M.M., Schram, M.T.,
538	Sep, S.J.S., Van der Kallen, C.J.H., Henry, R.M.A., Dagnelie, P.C., Eussen, S.J.P.M., Van
539	Dongen, M.C.J.M., Kohler, S., Kroon, A.A., Stehouwer, C.D.A., Koster, A., 2017.
540	Replacement Effects of Sedentary Time on Metabolic Outcomes. Medicine & Science in
541	Sports & Exercise 49, 1351–1358. doi:10.1249/MSS.000000000001248
542	Whitaker, K.M., Buman, M.P., Odegaard, A.O., Carpenter, K.C., Jacobs, D.R., Sidney, S.,
543	Pereira, M.A., 2018. Sedentary Behaviors and Cardiometabolic Risk: An Isotemporal
544	Substitution Analysis. American Journal of Epidemiology 187, 181–189.
545	doi:10.1093/aje/kwx209
546	Wijndaele, K., Healy, G.N., Dunstan, D.W., Barnett, A.G., Salmon, J., Shaw, J.E., Zimmet, P.Z.,

- 547 Owen, N., 2010. Increased Cardiometabolic Risk Is Associated with Increased TV Viewing
- 548 Time. Medicine & Science in Sports & Exercise 42, 1511–1518.
- 549 doi:10.1249/MSS.0b013e3181d322ac
- 550 Withall, J., Jago, R., Fox, K.R., 2011. Why some do but most don't. Barriers and enablers to
- engaging low-income groups in physical activity programmes: a mixed methods study.
- 552 BMC public health 11, 507. doi:10.1186/1471-2458-11-507
- 553 World Health Organization, 2018a. Obesity and overweight.
- 554 World Health Organization, 2018b. Seventy-First World Health Assembly A71/18 Provisional
- agenda item 12.2 Physical activity for health More active people for a healthier world: draft
- global action plan on physical activity 2018-2030 Report by the Director-General.
- 557 World Health Organization, 2010. Global recommendations on physical activity for health,
- 558 WHO. World Health Organization, Geneva.
- 559 World Health Organization, 2009. Global Physical Activity Questionnaire (GPAQ). Geneva.
- 560
- 561

Table 1 Socio-demographic, anthropometric, clinical and physical activity characteristics of the study population, Chilean NationalHealth Survey 2009-2010 (n=3552)

	All	
		n=3552
		Mean (SD)
Age (years)		40.2 (14.07)
Body Mass Index (kg/	/m ²)	27.7 (5.38)
Waist Circumference	(cm)	91.2 (24.09)
Sleep (min/day)		439.7 (95.97)
Sedentary Behavior (r	nin/day)	196.3 (158.49)
Travel Physical Activ	ity (min/day)	48.6 (83.70)
Occupational Physical	l Activity (min/day)	133.3 (176.55)
Leisure Time Physica	l Activity (min/day)	15.4 (42.55)
		n (%)
Sex	Male	1415 (39.8)
	Female	2137 (60.2)
Region of Residence	North (I – IV and XV)	1065 (30.0)
	Central (V- VIII and XIII)	1475 (41.5)
	South (IX – XII and XIV)	1012 (28.5)
Educational Level	Low (< 8 years of education)	613 (17.3)
	Middle $(8 - 12 \text{ years of education})$	2154 (60.6)
	High (>12 years of education)	785 (22.1)
Self-Rated Health	Excellent	174 (4.9)
	Very Good	310 (8.7)
	Good	1523 (42.9)
	Fair	1323 (37.3)
	Poor	222 (6.2)
Diabetes ^a	No	3259 (91.7)
	Yes	293 (8.3)
Hypertension ^b	No	2785 (78.4)
	Yes	767 (21.6)

^a Diabetes: Fasting plasma glucose ≥126 mg/dl or self-reported physician-diagnosed ^b Hypertension: systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg, plus normotensive participants with pharmacological treatment

Table 2 Associations of each 10 min/day of sedentary behavior and physical activity domains with body mass index and waistcircumference, Chilean National Health Survey 2009-2010 (n=3552)

Analysis Method: Single Activity Models					
Body Mass Index (kg/m ²)					
	Sedentary Behavior	Occupational PA ^a	Travel PA ^a	Leisure-Time PA ^a	
	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	
Model A	0.015 (0.004 ; 0.026)*	0.006 (-0.004 ; 0.016)	-0.023 (-0.043 ; -0.003)***	-0.069 (-0.110 ; -0.029)*	
Model B	0.016 (0.005 ; 0.027)*	0.006 (-0.004 ; 0.015)	-0.023 (-0.043; -0.002)***	-0.069 (-0.110 ; -0.028)*	
Model C	0.013 (0.002 ; 0.024)***	0.005 (-0.004 ; 0.015)	-0.015 (-0.035 ; 0.005)	-0.063 (-0.103 ; -0.024)*	
Model D	-	0.009 (-0.001 ; 0.019)	-0.012 (-0.032 ; 0.008)	-0.062 (-0.102 ; -0.022)*	
Model E	0.014 (0.003 ; 0.025)***	-	-	-	
		Waist Circumference ((cm)		
	Sedentary Behavior	Occupational PA ^a	Travel PA ^a	Leisure-Time PA ^a	
	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	
Model A	0.042 (0.002 ; 0.081)***	-0.017 (-0.053 ; 0.019)	-0.108 (-0.191 ; -0.025)**	-0.362 (-0.490 ; -0.234)*	
Model B	0.044 (0.005 ; 0.083)***	-0.021 (-0.058 ; 0.015)	-0.104 (-0.185 ; -0.023)**	-0.361 (-0.489 ; -0.233)*	
Model C	0.047 (0.007 ; 0.087)***	-0.029 (-0.063 ; 0.006)	-0.091 (-0.170 ; -0.012)***	-0.327 (-0.453 ; -0.201)*	
Model D	-	-0.020 (-0.057 ; 0.017)	-0.080 (-0.161 ; 0.001)	-0.320 (-0.444 ; -0.196)*	
Model E	0.034 (-0.008 ; 0.075)	-	-	-	
Analysis Method: Partition Models					
	Body Mass Index (kg/m ²)				
	Sedentary Behavior	Occupational PA ^a	Travel PA ^a	Leisure-Time PA ^a	
	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	
Model A	0.016 (0.005 ; 0.028)*	0.009 (-0.012 ; 0.019)	-0.017 (-0.037 ; 0.004)	-0.063 (-0.104 ; -0.022)*	
Model B	0.016 (0.005 ; 0.027)*	0.009 (-0.002 ; 0.019)	-0.017 (-0.037 ; 0.004)	-0.063 (-0.104 ; -0.022)*	
Model C	0.014 (0.003 ; 0.025)*	0.008 (-0.002 ; 0.018)	-0.010 (-0.030 ; 0.010)	-0.059 (-0.099 ; -0.019)*	
		Waist Circumference ((cm)		
	Sedentary Behavior	Occupational PA ^a	Travel PA ^a	Leisure-Time PA ^a	
	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	
Model A	0.031 (-0.010 ; 0.072)	-0.018 (-0.055 ; 0.020)	-0.062 (-0.145 ; 0.020)	-0.342 (-0.469 ; -0.215)*	

Model B	0.033 (-0.008 ; 0.074)	-0.021 (-0.060 ; 0.017)	-0.057 (-0.137; 0.024)	-0.344 (-0.471 ; -0.218)*
Model C	0.034 (-0.007 ; 0.076)	-0.027 (-0.064 ; 0.009)	-0.047 (-0.125 ; 0.032)	-0.315 (-0.438 ; -0.191)*

Data presented as unstandardized regression coefficients (β)

^a PA: Physical Activity

Model A: Adjusted for age, sex, educational level (low, middle, high) and region of residence (north, center, south)

Model B: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south) and sleep time.

Model C: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, self-reported health, diabetes and hypertension.

Model D: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, self-reported health, diabetes, hypertension and Sedentary Behavior.

Model E: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, self-reported health, diabetes, hypertension and Total Physical Activity (Occupational, Travel and Leisure-Time).

Boldface indicates statistical significance: *p<0.001 **p<0.01 ***p<0.05

Table 3 Isotemporal substitution models examining the relation between 10 min/day changes in time spent in sedentary behavior, occupation, travel and leisure-time physical activity and body mass index, Chilean National Health Survey 2009-2010 (n=3552).

Analysis Method	Sedentary Behavior β (95% CI)	Occupational PA ^a β (95% CI)	Travel PA ^a β (95% CI)	Leisure-Time PA ^a β (95% CI)
Isotemporal				
Substitution of Activity to				
Replace Sedentary	Dropped			
Behaviour				
Model A		-0.007 (-0.021 ; 0.006)	-0.033 (-0.055 ; -0.011)**	-0.080 (-0.122 ; -0.037)*
Model B		-0.008 (-0.021; 0.006)	-0.033 (-0.055 ; -0.011)**	-0.080 (-0.122 ; -0.037)*
Model C		-0.006 (-0.019 ; 0.007)	-0.024 (-0.045 ; -0.002)***	-0.073 (-0.114 ; -0.032)*
Substitution of Activity to				
Replace Occupational PA ^a		Dropped		
Model A	0.007 (-0.006 ; 0.021)		-0.026 (-0.048 ; -0.003)***	-0.072 (-0.114 ; -0.031)*
Model B	0.008 (-0.006 ; 0.021)		-0.025 (-0.048 ; -0.003)***	-0.072 (-0.113 ; -0.030)*
Model C	0.006 (-0.007 ; 0.019)		-0.018 (-0.040 ; 0.005)	-0.067 (-0.107 ; -0.026)*
Substitution of Activity to				
Replace Travel PA ^a			Dropped	
Model A	0.033 (0.011; 0.055)**	0.026 (0.003 ; 0.048)***		-0.046 (-0.093 ; 0.000)
Model B	0.033 (0.011 ; 0.055)**	0.025 (0.003 ; 0.048)***		-0.047 (-0.094 ; 0.000)
Model C	0.024 (0.002 ; 0.045)***	0.018 (-0.005 ; 0.040)		-0.049 (-0.095 ; -0.003)***
Substitution of Activity to				
Replace Leisure-Time PA ^a				Dropped
Model A	0.080 (0.037 ; 0.122)*	0.072 (0.031 ; 0.114)*	0.046 (-0.000 ; 0.093)	
Model B	0.080 (0.037 ; 0.122)*	0.072 (0.030 ; 0.113)*	0.047 (-0.001 ; 0.094)	
Model C	0.073 (0.032 ; 0.114)*	0.067 (0.026 ; 0.107)*	0.049 (0.003 ; 0.095)***	

Data presented as unstandardized regression coefficients (β)

^a PA: Physical Activity

Model A: Adjusted for age, sex, educational level (low, middle, high) and region of residence (north, center, south)

Model B: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south) and sleep time.

Model C: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, selfreported health, diabetes and hypertension. Boldface indicates statistical significance: *p<0.001 **p<0.01 ***p<0.05

Analysis Method	Sedentary Behavior	Occupational PA ^a	Travel PA ^a	Leisure-Time PA ^a
	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)
Isotemporal				
Substitution of Activity to				
Replace Sedentary	Dropped			
Behaviour				
Model A		-0.048 (-0.094 ; -0.003)***	-0.093 (-0.177 ; -0.010)***	-0.373 (-0.500 ; -0.245)*
Model B		-0.054 (-0.100; -0.008)***	-0.089 (-0.172 ; -0.007)***	-0.377 (-0.505 ; -0.249)*
Model C		-0.062 (-0.107 ; -0.016)**	-0.081 (-0.161 ; -0.001)***	-0.349 (-0.476 ; -0.222)*
Substitution of Activity to				
Replace Occupational PA ^a		Dropped		
Model A	0.048 (0.003 ; 0.094)***		-0.045 (-0.136 ; 0.047)	-0.324 (-0.449 ; -0.200)*
Model B	0.054 (0.008 ; 0.100)***		-0.035 (-0.125 ; 0.054)	-0.323 (-0.448 ; -0.198)*
Model C	0.062 (0.016 ; 0.107)**		-0.019 (-0.106 ; 0.067)	-0.288 (-0.411 ; -0.164)*
Substitution of Activity to				
Replace Travel PA ^a			Dropped	
Model A	0.093 (0.010 ; 0.176)***	0.045 (-0.047 ; 0.136)		-0.280 (-0.434 ; -0.125)*
Model B	0.089 (0.007 ; 0.172)***	0.035 (-0.054 ; 0.125)		-0.288 (-0.442 ; -0.134)*
Model C	0.081 (0.001 ; 0.161)***	0.019 (-0.067 ; 0.106)		-0.268 (-0.419 ; -0.117)*
Substitution of Activity to				
Replace Leisure-Time PA ^a				Dropped
Model A	0.373 (0.245 ; 0.500)*	0.324 (0.200 ; 0.449)*	0.280 (0.125 ; 0.434)*	
Model B	0.377 (0.249 ; 0.505)*	0.323 (0.198 ; 0.448)*	0.288 (0.134 ; 0.442)*	
Model C	0.349 (0.222 ; 0.476)*	0.288 (0.164 ; 0.411)	0.268 (0.117 ; 0.419)*	

Table 4 Isotemporal substitution models examining the relation between 10 min/day changes in time spent in sedentary behavior, occupation, travel and leisure-time physical activity and waist circumference, Chilean National Health Survey 2009-2010 (n=3552).

Data presented as unstandardized regression coefficients (β)

^a PA: Physical Activity

Model A: Adjusted for age, sex, educational level (low, middle, high) and region of residence (north, center, south)

Model B: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south) and sleep time.

Model C: Adjusted for age, sex, educational level (low, middle, high), region of residence (north, center, south), sleep time, self-reported health, diabetes and hypertension.

Boldface indicates statistical significance: *p<0.001 **p<0.01 ***p<0.05

Appendix Table 1

Pearson correlations coefficients between daily activities components, Chilean National Health Survey 2009-2010 (n=3552).

	Sedentary Behavior	Travel PA ^a	Occupational PA ^a	Leisure-Time PA ^a
Sedentary Behaviour	1.0			
Travel PA ^a	-0.141*	1.0		
Occupational PA ^a	-0.245*	0.131*	1.0	
Leisure-Time PA ^a	0.046**	0.124*	-0.007	1.0

^aPA: Physical Activity Boldface indicates statistical significance: *p<0.001 **p<0.01