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Abstract

Background: Directed acyclic graphs (DAGs) are popular tools for identifying appropriate

adjustment strategies for epidemiological analysis. However, a lack of direction on how to

build them is problematic. As a solution, we propose using a combination of evidence syn-

thesis strategies and causal inference principles to integrate the DAG-building exercise

within the review stages of research projects. We demonstrate this idea by introducing a

novel protocol: ‘Evidence Synthesis for Constructing Directed Acyclic Graphs’ (ESC-DAGs)’.

Methods: ESC-DAGs operates on empirical studies identified by a literature search, ide-

ally a novel systematic review or review of systematic reviews. It involves three key

stages: (i) the conclusions of each study are ‘mapped’ into a DAG; (ii) the causal struc-

tures in these DAGs are systematically assessed using several causal inference principles

and are corrected accordingly; (iii) the resulting DAGs are then synthesised into one or

more ‘integrated DAGs’. This demonstration article didactically applies ESC-DAGs to the

literature on parental influences on offspring alcohol use during adolescence.

Conclusions: ESC-DAGs is a practical, systematic and transparent approach for developing

DAGs from background knowledge. These DAGs can then direct primary data analysis and

DAG-based sensitivity analysis. ESC-DAGs has a modular design to allow researchers who

are experienced DAG users to both use and improve upon the approach. It is also accessible

to researchers with limited experience of DAGs or evidence synthesis.
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Background

Causal inference methods are popular in observational re-

search, with directed acyclic graphs (DAGs) being notably

prominent.1 A DAG posits causal relationships between

variables as arrows between nodes. Absence of an arrow

between nodes indicates no causal effect, and nodes can be

measured or unmeasured.2–4 Any variable that influences

at least two others should be included. DAGs use the

‘backdoor criterion’, a mathematical ruleset, to determine

which variables should be controlled for when estimating

the effect of one on another. DAGs are thus valuable tools

for guiding analysis5 (see Supplementary Appendix 1,

available as Supplementary data at IJE online, for more de-

tail on basic DAG concepts). However, applied DAG use

has often been problematic. In a recent review of use,

Tennant et al. note a ‘huge variation in practice’,6 finding

that: DAGs are often overly simplistic; are altered to fit

available data; and are regularly not presented in studies

using them.7 They conclude that there is a lack of ‘guide-

lines for best practice’ for DAG construction and use, echo-

ing earlier calls for ‘a disciplined approach to developing

DAGs’.8

While no systematic guidelines for DAG construction

currently exist, there is loose consensus on at least three

points. First, that theory and ‘background knowledge’

should have a central role in DAG construction.8,9 Key

authors in causal inference have strongly argued the impor-

tance of ‘background knowledge’ for constructing

DAGs.10–13 Second, no connection between two nodes in a

DAG (claiming no relationship) is a stronger assertion than

including one.4 This implies that researchers should ‘work

backwards’ from a ‘saturated’ DAG—one in which all var-

iables are inter-connected—and only delete connections

that are thought impossible.6 Third, while data-driven

methods such as stepwise selection are widely used and

may offer value to building DAGs, they can induce bias by

mistakenly adjusting for mediators or colliders.14

This article introduces ‘Evidence Synthesis for

Constructing Directed Acyclic Graphs’ (ESC-DAGs), a

novel review methodology proposing a principled ap-

proach to DAG construction. It marries the rigorous sys-

temisation of evidence synthesis protocols (e.g. Cochrane

systematic reviews15–19) with causal thinking as expressed

in the potential outcomes framework (POF).2 ESC-DAGs

systemises how background knowledge is used for deter-

mining which variables and connections between variables

are included (working backwards from a saturated DAG).

The approach leverages the empirical literature, first trans-

lating empirical findings into DAGs, and then synthesising

these into one or more ‘integrated’ DAGs.

As a review method, ESC-DAGs is applied to studies

identified by a literature search. Research projects using

ESC-DAGs will already have completed a literature search

corresponding to a well-defined research question (for ex-

ample, according to PICO/PECO guidelines of Population,

Intervention/Exposure(s), Comparison, Outcome20).

Ideally, this would be a novel systematic review or a review

of systematic reviews. However, because ESC-DAGs can

produce highly complex DAGs with dozens of variables,

systematic searches should be limited to the research ques-

tion’s focal relationship(s) (e.g. exposure–outcome etc.).

ESC-DAGs is designed to be useful to researchers with lim-

ited to advanced experience of DAGs. This article demon-

strates ESC-DAGs didactically with examples of

hypothetical and real studies from literature on adolescent

alcohol use.

ESC-DAGs methodology

Table 1 summarises the protocol for ESC-DAGs. Each

study identified from a literature search goes through core

processes of ‘mapping’, ‘translation’ and ‘integration’. The

mapping process produces a DAG representing the conclu-

sion of the study. Translation involves assessing the causal

Key Messages

• We present a novel method—Evidence Synthesis for Constructing Directed Acyclic Graphs (ESC-DAGs)—to answer

the call for a systematic approach to building DAGs.

• ESC-DAGs is a theory-driven approach to building DAGs from the empirical literature with a strong emphasis on

transparency.

• DAGs produced from ESC-DAGs are summative representations of the literature that can be used to direct data analy-

sis, and for DAG-based sensitivity analysis.

• This demonstration article is accessible to researchers with limited to advanced experience of DAGs.

• ESC-DAGs has a modular design allowing experienced DAG users to both apply and improve upon the approach in-

crementally.

International Journal of Epidemiology, 2020, Vol. 49, No. 1 323

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article-abstract/49/1/322/5536330 by guest on 06 April 2020

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyz150#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyz150#supplementary-data


characteristics of each connection (referred to as ‘directed

edges’ in the literature) of this DAG. Directed edges are

compiled into an index (Supplementary Appendix 2,

available as Supplementary data at IJE online). The inte-

gration stage combines directed edges from the index into

one diagram. The final output of the process is one or

Table 1. Summary of ESC-DAGs protocol

Stage Purpose Process

Mapping To apply graph theory to the conclusions of each study.

This creates an ‘implied graph’ (IG) which acts as a

transparent structural template for translation into a DAG.

1. Outcome variable of interest is set as DAG outcome(s).

2. Exposure variable(s) of interest is set as DAG exposure(s).

3. A directed edge is drawn originating from the exposure(s),

terminating at the outcome(s).

4. All control variables are entered as unassigned variables.

5. A directed edge is drawn originating from each control to

the exposure(s) and outcome(s).

6. Mediators, instrumental variables etc. are mapped as per

the study’s conclusions.

7. The IG is saturated by drawing directed or undirected

edges between all confounders (direction does not matter

until the translation stage). The recombination process can

be performed at this stage to help simplify an overly com-

plex IG.

Translation To apply causal theory to each relationship in the IG.

This creates the DAG for the study. Each relationship in the

IG is assessed under sequential causal criteria and a coun-

terfactual thought experiment (See causal criteria sections

in the text for detailed discussion).

The posited relationship and its reverse are both assessed.

Edges may be retained as posited, reversed, or as bi-directional.

If not, they are deleted. All retained edges are entered into the

directed edge index.

1. Temporality—does the posited cause precede effect? (If

‘yes’, proceed to next criterion. If not, assess reverse

relationship.)

2. Face-validity—is the posited relationship plausible? (If

‘yes’, proceed to next criterion. If not, assess reverse

relationship.)

3. Recourse to theory—is the posited relationship supported

by theory? (Always proceed to the counterfactual thought

experiment.)

4. Counterfactual thought experiment—is the posited rela-

tionship supported by a systematic thought experiment in-

formed by the POF? (Once completed, always assess the

reverse relationship unless already assessed.)

Integration 1:

synthesis

To combine the translated DAGs into one by synthesising

all indexed directed edges.

1. A new DAG is created to serve as the integrated DAG (I-

DAG).

2. The focal relationship is added to the I-DAG (as per map-

ping steps 1–3).

3. Each indexed directed edge pertaining to the focal relation-

ship (including its corresponding node) is added to the

diagram.

4. Each indexed directed edge pertaining to other nodes is

added (e.g. between confounders).

5. Conceptually similar nodes should be grouped together in

virtual space to aid the recombination process.

Integration 2:

recombination

To combine nodes for either practical reasons (i.e. to reduce

complexity) or substantive reasons (i.e. to establish

consistency).

1. Is there theoretical support for combining two variables/

nodes?

2. Do the conceptually related nodes have similar inputs and

outputs (i.e. do they ‘send to’ and ‘receive from’ the same

nodes)?
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more ‘integrated DAGs’ (I-DAGs). Decision-making is

recorded in a ‘decision log’, to be provided as an appendix

to ESC-DAGs (Supplementary Appendix 3, available as

Supplementary data at IJE online). In this article: the term

‘study’ refers to published articles included in the ESC-

DAGs process; ‘researcher(s)’ to the authors of those stud-

ies; and ‘reviewer(s)’ to ESC-DAGs users.

Mapping

The mapping process is intended to produce a DAG that

corresponds to the conclusions of the study under review

(accurate or otherwise) and is ‘saturated’ with an edge be-

tween all pairs of nodes. We refer to the output as that

study’s ‘implied graph’ (IG). Table 1 describes how the

mapping procedure converts study conclusions into DAGs.

Worked example

Take a hypothetical study where researchers were inter-

ested in effects of historical parental alcohol use on their

offspring’s adolescent alcohol use and controlled for ado-

lescent sex and substance use. Based on regression coeffi-

cients and confidence intervals, the researchers concluded

that historical parental alcohol use was associated with ad-

olescent alcohol use. The mapping process begins by enter-

ing the exposure (historical parental alcohol use) and

outcome (adolescent alcohol use) into the diagram and

then draws a directed edge from exposure to outcome.

Next, the study’s control variables are added to the IG and

directed edges are drawn from both to the exposure and

outcome, assigning them as mutual causes of the exposure

and outcome—confounders. This is because the POF defi-

nition of what should be controlled is a node that opens a

backdoor path from the outcome to the exposure,2,3 and a

confounder is the simplest way to represent this in an IG.

The mapping process is intended to build a saturated

DAG, so edges should also be drawn between all con-

founders, although directionality of inter-confounder edges

is not important at this stage. The mapping stage is thus

completed and the IG for the study is shown in

Figure 1(A). Note that the recombination processes de-

scribed below can also be applied at this stage if IGs be-

come overly complex.

Translation

With the IG formulated, reviewers next assess whether

each posited connection is feasible, thus ‘translating’ the

IG into a DAG. Numerous approaches are possible. Here,

we propose and demonstrate a sequential causal criteria

approach culminating in a counterfactual thought experi-

ment. We recommend that alternative approaches place

similar emphasis on explicating reviewers’ causal thinking

in a structured and transparent way. Extensive discussion

on the utility of causal criteria is available elsewhere.21–23

Each directed edge in the IG is assessed for three causal

criteria: temporality; face-validity; and recourse to theory.

They are primarily informed by the classic Bradford Hill

viewpoints,24 and are compatible with the ‘inference to the

best explanation’ approach advocated by Krieger and

Davey Smith.1 If a relationship is determined to possess

each criterion, a counterfactual thought experiment

Figure 1. ESC-DAGs translation processes.
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derived from the POF is used to further explicate the

reviewers’ assumptions.25 The translation process thus

combines ‘classic’ and ‘modern’ causal thinking and under-

stands DAGs as ‘conceptual tools’1 for exploring causa-

tion, rather than substitutes for careful causal thinking.

The ESC-DAGs causal criteria operate sequentially,

with each criterion designed to elaborate over the previous.

If any criterion on the edge is not present, the edge can be

deleted. The exception is the recourse to theory criterion—

absence of theory in the study or according to the reviewer

does not equate to absence of effect.26 The counterfactual

thought experiment is performed after assessing all criteria.

All retained directed edges are entered into the directed

edge index. However, each edge should be tested in both

directions (i.e. with the head and tail of the arrow

swapped). If the posited and reverse edges are both

retained, then the relationship should be noted as bi-

directional in the directed edge index. Reviewers can also

note low confidence in particular directed edges.

Causal criterion 1—temporality

Of the Bradford Hill criteria, temporality is the only one

not requiring extensive qualification or not yet dispro-

ven.27 It states that effect cannot precede cause. For exam-

ple, in Figure 1(A), adolescent substance use cannot

precede historical parental alcohol use, so the relationship

would not be temporal. Unless the directed edge is not tem-

poral, we proceed to causal criterion 2.

Causal criterion 2—face-validity

Face-validity is related to the Bradford Hill criterion of (bi-

ologic) plausibility. Nested within the wider causal criteria

scheme, the face-validity criterion is a rapid means of using

reviewer background knowledge to identify implausible

relationships, given the temporality established in criterion

1. For example, in Figure 1(A) it is plausible that directed

edges originate from sex, but implausible that historical

parental alcohol use could influence adolescent sex assign-

ment despite temporal ordering.

Causal criterion 3—recourse to theory

The recourse to theory criterion considers background and

expert knowledge more overtly. It subsumes the temporal-

ity and face-validity criteria and continues to cement a

platform for the counterfactual thought experiment.

Where the face-validity criterion is concerned with the

researcher’s own knowledge, the step assesses whether

there is formal theoretical support for the relationship. The

decision log for this criterion requires the reviewer to state

briefly what theory applies (if any) with space for a refer-

ence. As noted above, lack of theory does not equate to

lack of effect. As such the purpose of this criterion is not so

much falsification as preparation for the next step.

Counterfactual thought experiment

Fundamentally, potential outcomes compare the outcome

that would have occurred if all of the sample had been ex-

posed, with the outcome that would have occurred if all of

the sample had not been exposed.3,4,25 The counterfactual

thought experiment employs this heuristic in a formulaic and

transparent way, comparing two or more ‘counterfactual

exposures’ and considering whether their potential outcomes

would be different, given the causal criteria. The original

study’s measurement of variables should be emulated.

Take the example of the effect of adolescent sex on ado-

lescent alcohol use from Figure 1(A). Sex is the exposure

node in this example and is a binary variable with values

1 (male) and 0 (female). The counterfactual exposure

would therefore be all participants ‘set’ to male (or fe-

male). The study measures the outcome of adolescent

drinking as frequency of use. The counterfactual thought

experiment then hinges on the question of whether we

would expect equivalent average scores between the poten-

tial outcome for counterfactual exposure 1 (male) and the

potential outcome for counterfactual exposure 0 (female).

Based on the temporality, face-validity, recourse to theory,

and causal thinking encouraged by the counterfactual

thought experiment, we hypothesise that the frequency of

alcohol consumption (the potential outcomes), would dif-

fer between the two counterfactual exposures (sex) and so

draw a directed edge from sex to adolescent alcohol use.

Discussion on using counterfactuals for non-modifiable

risk factors is available elsewhere.2,28

The directed edge from adolescent sex to adolescent al-

cohol use would be retained and indexed. This is the most

common result. Directed edges can also be reversed or

deleted (see Supplementary Appendix 2, available as

Supplementary data at IJE online, for an example of how to

structure counterfactual thought experiments in a decision

log). For each study, the final DAG is produced once each

directed edge (and its reverse) from the IG has been assessed

under the causal criteria and counterfactual thought experi-

ment, and the IG has been altered accordingly. In the case

of this hypothetical example, the DAG would be equivalent

to Figure 1(B). All directed edges included in the DAG are

indexed for use during the integration process.

This simple example illustrates how the translation pro-

cess retains, reverses and deletes directed edges implied by

the assessed studies. The IG in Figure 1(A) is typical of

many studies in that it over-controls some covariates.

Firstly, adolescent sex does not confound the relationship

between historical parental alcohol use and adolescent al-

cohol use, rather it is a risk factor on another pathway
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(thus, adjusting for it may increase the precision of the esti-

mate, rather than remove any bias). More consequential

would be controlling for adolescent substance use as a medi-

ator, as this controls for part of the effect we are trying to

estimate.29 Note that it would induce collider bias between

historical parental alcohol use and adolescent sex.2–4

Integration 1—synthesis

Synthesis integrates each directed edge from the directed

edge index rather than combining the DAGs themselves.

Once a DAG has been produced for all studies, each di-

rected edge and its corresponding nodes are added to a

blank DAG until the directed edge index is exhausted. The

output is the I-DAG for the research question. Several prac-

ticalities are worth noting. First, the order in which directed

edges are synthesised is not important—the I-DAG will be

equivalent. Second, with each new node that is introduced,

some directed edges that are not yet in the index will be-

come possible and these should be assessed using the same

procedures as were used during the translation process.

Last, once the directed edge index has been exhausted, any

variables that were not identified in the literature search

but are believed to be important by the reviewers should be

added as new nodes to the I-DAG. The mapping and trans-

lation steps should then be applied to these variables in the

context of the I-DAG, as opposed to a new IG.

Synthesis is illustrated here on the DAG from the hypo-

thetical study above and an empirical study by Seljamo

et al.30 They were interested in parental predictors of adoles-

cent alcohol use. They used multiple regression models with

early adolescent alcohol initiation, family structure, adoles-

cent sex, and historical parental alcohol use as explanatory

variables. The DAG produced from the corresponding IG is

presented in Figure 1(C). Each directed edge was entered into

the directed edge index. Figure 1(D) is the I-DAG for the hy-

pothetical and Seljamo studies. Each directed edge from both

studies was entered into a new diagram. This DAG was then

saturated, and all ‘new’ relationships were put through the

translation process (for example the relationship between

family structure and adolescent sex was rejected whereas age

of alcohol initiation was hypothesised to cause other sub-

stance use). This I-DAG determines that the exposure–out-

come relationship of historical parental alcohol use on

adolescent alcohol use is unconfounded by any of the sug-

gested covariates. In practice I-DAGs are likely to be much

more complex than this simple demonstrative example.

Integration 2—recombination

As the I-DAG grows more complex through further synthe-

sis, it may be efficient to consider ‘recombining’ multiple

similar nodes. This is possible because different studies com-

monly conceptualise the same construct in similar ways.

There are at least two indications that recombination may

be acceptable for any two nodes. The first is theoretical sup-

port, e.g. if both nodes are categories of another concept

(parental monitoring and autonomy granting as categories

of parenting practice) or if they are used interchangeably in

the literature. A second indication is if nodes have identical

directed edge input and output (i.e. receive from/send to the

same nodes). If they feature different directed edges, then

there is less support for recombining them.

Discussion

Perhaps the most obvious strength of ESC-DAGs is how

the resulting I-DAGs closely align with the fundamental

purpose of DAG-based analysis—to identify appropriate

adjustment strategies.3,4 I-DAGs may be used to direct

analysis in an immediate sense. For mediation analysis, for

example, they identify which confounders can be adjusted

for conventionally and which require more advanced

techniques (e.g. exposure-induced mediator-outcome con-

founders31–33). I-DAGs can also direct sensitivity analysis

by testing the robustness of results to changes in the pres-

ence or direction of specific edges in the I-DAG. Clear

candidates include relationships in which reviewers have

less confidence or that were marked as bi-directional in the

directed edge index. Another key strength is how the trans-

lation process balances the need for rigorous scrutiny with

time and resource efficiency.

ESC-DAGs has been designed to work as a discrete

but modular application. The above translation strategy—

sequential causal criteria culminating in a counterfactual

thought experiment—is far from definitive. There are

numerous viable alternatives that can be ‘swapped in’; of

particular note are the ROBINS-I and upcoming ROBINS-

E tools.34 Relatedly, as with any evidence synthesis

method, the role of subjectivity demands careful thought.

The approach laid out in the ESC-DAGs methodology is to

make the completion and later presentation of a decision

log a key part of the process—in other words to emphasise

transparency in lieu of objectivity.

The approach is not without limitations. For example,

no matter what method is used for building a DAG from

observational studies, the true causal structures may be

missed. Relatedly, it must be noted that I-DAGs rely on

theory more than evidence for much of the confounding

structure. Further, even with the modular design, conduct-

ing an ESC-DAGs review is far from a trivial task.

Moreover, several valuable extensions to the method are

possible but would add further to an already labour-

intensive set of tasks.
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One extension could be further development of ESC-

DAGs as the basis for systematic sensitivity analysis. For

example, integrating one of the many tools available for

assessing risk of bias in observational studies could help

systemise the level of confidence reviewers have in particu-

lar relationships.35 Further, an I-DAG can be refined with

algorithmic and data-driven techniques. For example,

DAGitty (web-based software for creating, editing and

analysing causal models) can be set to estimate either total

or direct effects, indicating directed edges that might be su-

perfluous to estimating the exposure’s effect on the out-

come, and the R-DAGitty package uses partial correlations

to test the conditional and unconditional independencies in

a DAG to evaluate how consistent a DAG is with the data-

set it is intended to represent.36 Additionally, the emphasis

on transparency aligns neatly with the growing open sci-

ence movement. For example, the decision log and code

for the I-DAGs (i.e. from DAGitty.net) could be uploaded

to version-control platforms, such as ‘github’.37

Conclusion

Lack of direction in how DAGs are built has been identified

as cause for concern.1,6,8 We have suggested that evidence

synthesis approaches can be used during the review stages of

epidemiological studies to lend consistency and rigour to the

DAG-building process. We have introduced and demon-

strated ESC-DAGs as one such method. Modern and classic

approaches to causal inference are combined to generate in-

dividual DAGs per reviewed study, and to subsequently syn-

thesise them into an integrated DAG that then directs data

analysis, including sensitivity analysis. ESC-DAGs is accessi-

ble to researchers with limited experience of DAGs, whereas

experienced DAG users will benefit from the method’s

modular design, in both using and improving upon the ap-

proach. We hope that ESC-DAGs, as a systematic, transpar-

ent, and efficient approach to building DAGs, will stimulate

further debate on how researchers can use DAGs to improve

population health research.

Supplementary data

Supplementary data are available at IJE online.

Funding

This work was supported by the Medical Research Council

[1732344 to K.D.F., MC_UU_12017/11, MC_UU_12017/13,

MC_UU_12017/14, MC_UU_12017/15], the Chief Scientist Office

[SCAF/15/02 to S.V.K.] and the National Institute for Health

Research [11/3005/40 to S.V.K.].

Conflict of interest: None declared.

References

1. Krieger N, Davey Smith G. The tale wagged by the DAG: broad-

ening the scope of causal inference and explanation for epidemi-

ology. Int J Epidemiol 2016;45:1787–808.

2. Pearl J, Causality. New York: Cambridge University Press, 2009.

3. Pearl J, Glymour M, Jewell NP. Causal Inference in Statistics: A

Primer. Chichester: Wiley, 2016.

4. Morgan SL, Winship C, Counterfactuals and Causal Inference:

Methods and Principles for Social Research. New York:

Cambridge University Press, 2007.

5. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemio-

logic research. Epidemiology 1999;10:37–48.

6. Tennant PWG, Textor J, Gilthorpe MS, Ellison G. OP87 Dagitty and

directed acyclic graphs in observational research: a critical review. J

Epidemiol Community Health 2017;71:A43.2–A.

7. Textor J, Hardt J, Knuppel S. DAGitty: a graphical tool for ana-

lyzing causal diagrams. Epidemiology 2011;22:745.

8. Sauer BC, Brookhart MA, Roy J, VanderWeele T. A review of

covariate selection for non-experimental comparative effective-

ness research. Pharmacoepidemiol Drug Saf 2013;22:1139–45.

9. Hernan MA, Hernandez-Diaz S, Werler MM, Mitchell AA.

Causal knowledge as a prerequisite for confounding evaluation:

an application to birth defects epidemiology. Am J Epidemiol

2002;155:176–84.

10. Hernan MA, Hernandez-Diaz S, Robins JM. A structural ap-

proach to selection bias. Epidemiology 2004;15:615–25.

11. Robins JM, Wasserman L. On the impossibility of inferring cau-

sation from association without background knowledge. In:

Cooper GF and Glymour C. (eds). Computation, Causation, and

Discovery. Cambridge: MIT Press, 1999, pp. 305–21.

12. Robins JM. Data, design, and background knowledge in etio-

logic inference. Epidemiology 2001;12:313–20.

13. Rubin DB. For objective causal inference, design trumps analy-

sis. Ann Appl Stat 2008;2:808–40.

14. Shrier I, Platt RW. Reducing bias through directed acyclic

graphs. BMC Med Res Methodol 2008;8:70.

15. Green H. Cochrane Handbook for Systematic Reviews of

Interventions. The Cochrane Collaboration, 2011. www.hand

book.cochrane.org.

16. Sutton AJ, Cooper NJ, Jones DR. Evidence synthesis as the key

to more coherent and efficient research. BMC Med Res

Methodol 2009;9:29.

17. Hanley P, Chambers B, Haslam J. Reassessing RCTs as the ‘gold

standard’: synergy not separatism in evaluation designs. Int J Res

Method Educ 2016;39:287–98.

18. Murad MH, Asi N, Alsawas M, Alahdab F. New evidence pyra-

mid. Evid Based Med 2016;21:125–7.

19. Sackett DL, Rosenberg WM, Gray JM, Haynes RB, Richardson

WS. Evidence Based Medicine: what It Is and What It Isn’t. BMJ

1996;312:71–72.

20. Methley AM, Campbell S, Chew-Graham C, McNally R,

Cheraghi-Sohi S. PICO, PICOS and SPIDER: a comparison study

of specificity and sensitivity in three search tools for qualitative

systematic reviews. BMC Health Serv Res 2014;14:579.

21. Rothman KJ, Greenland S. Causation and causal inference in ep-

idemiology. Am J Public Health 2005;95(Suppl 1):S144–50.

22. Kundi M. Causality and the interpretation of epidemiologic evi-

dence. Environ Health Perspect 2006;114:969–74.

328 International Journal of Epidemiology, 2020, Vol. 49, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article-abstract/49/1/322/5536330 by guest on 06 April 2020

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyz150#supplementary-data
http://www.handbook.cochrane.org
http://www.handbook.cochrane.org


23. Davey Smith G. Commentary: Behind the Broad Street pump:

aetiology, epidemiology and prevention of cholera in mid-19th

century Britain. Int J Epidemiol 2002;31:920–32.

24. Hill AB. The environment and disease: association or causation?

Proc R Soc Med 1965;58:295–300.

25. Hernan MA. The C-word: scientific euphemisms do not improve

causal inference from observational data. Am J Public Health

2018;108:616–9.

26. Smith GCS, Pell JP. Parachute use to prevent death and major

trauma related to gravitational challenge: systematic review of

randomised controlled trials. Br Med J 2003;327:1459–61.

27. Glass TA, Goodman SN, Hernan MA, Samet JM. Causal infer-

ence in public health. Annu Rev Public Health 2013;34:61–75.

28. Vandenbroucke JP, Broadbent A, Pearce N. Causality and causal

inference in epidemiology: the need for a pluralistic approach.

Int J Epidemiol 2016;45:1776–86.

29. Westreich D, Greenland S. The table 2 fallacy: presenting

and interpreting confounder and modifier coefficients. Am J

Epidemiol 2013;177:292–8.

30. Seljamo S, Aromaa M, Koivusilta L et al. Alcohol use in families: a

15-year prospective follow-up study. Addiction 2006;101:984–92.

31. Daniel RM, De Stavola BL, Cousens SN. gformula: estimating

causal effects in the presence of time-varying confounding or

mediation using the g-computation formula. Stata J 2011;11:

479–517.

32. Vansteelandt S, Daniel RM. Interventional effects for mediation

analysis with multiple mediators. Epidemiology 2017;28:

258–65.

33. De Stavola BL, Daniel RM, Ploubidis GB, Micali N. Mediation

analysis with intermediate confounding: structural equation

modeling viewed through the causal inference lens. Am J

Epidemiol 2015;181:64–80.

34. Sterne JA, Hernan MA, Reeves BC et al. ROBINS-I: a tool for

assessing risk of bias in non-randomised studies of interventions.

BMJ 2016;355:i4919.

35. Sanderson S, Tatt ID, Higgins JP. Tools for assessing quality and

susceptibility to bias in observational studies in epidemiology: a

systematic review and annotated bibliography. Int J Epidemiol

2007;36:666–76.

36. Textor J, van der Zander B, Gilthorpe MS, Liskiewicz M, Ellison

GT. Robust causal inference using directed acyclic graphs: the R

package ‘dagitty’. Int J Epidemiol 2016;45:1887–94.

37. Dabbish L, Stuart C, Tsay J, Herbsleb J (eds). Social coding in

GitHub: transparency and collaboration in an open software re-

pository. Proceedings of the ACM 2012 Conference on

Computer Supported Cooperative Work. ACM, 2012.

International Journal of Epidemiology, 2020, Vol. 49, No. 1 329

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article-abstract/49/1/322/5536330 by guest on 06 April 2020


