Laminations of a graph on a pair of pants

Sanjay Ramassamy

To cite this version:

Sanjay Ramassamy. Laminations of a graph on a pair of pants. 2019. ensl-01759975v2

HAL Id: ensl-01759975 https://hal-ens-lyon.archives-ouvertes.fr/ensl-01759975v2

Preprint submitted on 25 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Laminations of a graph on a pair of pants

Sanjay Ramassamy

December 14, 2018

Abstract

A lamination of a graph embedded on a surface is a collection of pairwise disjoint non-contractible simple closed curves drawn on the graph. In the case when the surface is a sphere with three punctures (a.k.a. a pair of pants), we first identify the lamination space of a graph embedded on that surface as a lattice polytope, then we characterize the polytopes that arise as the lamination space of some graph on a pair of pants. This characterizes the image of a purely topological version of the spectral map for the vector bundle Laplacian for a flat connection on a pair of pants. The proof uses a graph exploration technique akin to the peeling of planar maps.

1 Introduction

The combinatorial study of the determinant of the vector bundle Laplacian on graphs was initiated by Forman [5] followed by Kenyon [7] as a generalization of the classical matrix-tree theorem [12]. While the (reduced) determinant of the usual Laplacian operator on a graph enumerates spanning trees of this graph, the determinant of the vector bundle Laplacian enumerates cycle-rooted spanning forests (CRSFs), which are spanning forests where each connected component is a unicycle (a connected graph with as many vertices as edges). The weight of a CRSF is the product over its cycles of a quantity related to the monodromy of the connection along each cycle.

Of particular interest is the case of a flat $S U(2, \mathbb{C})$ connection on a graph embedded on a surface [7], namely the case when the parallel transports are in $S U(2, \mathbb{C})$ and the monodromy of the connection along each cycle of the graph which is contractible on the surface has to be trivial. In that case, the only CRSFs which contribute to the determinant of the vector bundle Laplacian are those which have no contractible cycles. Such CRSFs are called incompressible CRSFs and the cycles of an incompressible CRSF form a lamination of the surface, i.e. a collection of pairwise disjoint non-contractible simple loops. The determinant of the vector bundle Laplacian in the flat connection case can be written as a polynomial in variables of the form $2-\operatorname{Tr}(w)$, where w is the monodromy along a non-contractible cycle on the surface [7]. Moreover these variables are free [3].

The most basic non-simply connected surfaces to consider are the annulus and the torus and was done in $[7,8,6,11,9]$. The next simplest case is probably the one of the pair of pants (aka three-holed sphere), briefly mentioned in [7]. It is one of the simplest surfaces for which the fundamental group is non abelian.

A non-contractible cycle on a pair of pants can be of three possible topological types, thus the determinant of the vector-bundle Laplacian associated with a flat $S U(2, \mathbb{C})$ connection on a graph embedded on that surface is a polynomial $P(X, Y, Z)$ of three independent variables.

The map which to a graph on a pair of pants associates the polynomial $P(X, Y, Z)$ is interesting to understand. We shall call it the spectral map, extending the terminology of the torus case [8] (this is a slight abuse of terminology, since the image of a graph under the spectral map should be the zero-locus of the polynomial together with a certain divisor on that algebraic variety [6]). Important questions include determining the image of the spectral map as well as the fiber of the spectral map above a given polynomial. This provides information about the probabilistic model associated with the uniform measure on incompressible CRSFs on the graph [7]. The polynomial $P(X, Y, Z)$ also plays an important role in relation with integrable systems, where it serves as the generating function of the integrals of motion [6]. The case of the annulus and the torus have been thoroughly investigated by Kenyon [7, 8]. For a different probabilistic model, the dimer model on bipartite graphs, the spectral map in the torus case is completely understood $[10,6,4]$.

To any polynomial in n variables one can associate its Newton polytope, which is the convex hull in \mathbb{Z}^{n} of the n-tuples of integers $\left(i_{1}, \ldots, i_{n}\right)$ such that the monomial $X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}$ has a nonzero coefficient in the polynomial. We define the topological spectral map, which to a graph on a surface associates the Newton polytope of the polynomial produced by applying the spectral map. While the image under the spectral map depends on some weights that the edges of the graph may carry, the image under the topological spectral map only depends on the topological graph. The same questions can be asked about the topological spectral map: what is its image and what is the fiber above a given polytope ? These questions were answered in the case of the annulus and the torus $[7,8,6]$. In this article, we characterize the image of the topological spectral map for the pair of pants. The answer is much more involved than the annulus and torus cases. The next step would be to understand the fiber of this topological spectral map above a given polytope. Answering these questions for the spectral map itself in the pair of pants case seems to be much harder.

A monomial $X^{i} Y^{j} Z^{k}$ appears in the determinant $P(X, Y, Z)$ of the vector bundle Laplacian of a graph G on a pair of pants if and only if G has a lamination of type (i, j, k), that is a lamination with i cycles around the first hole, j cycles around the second and k cycles around the third. Hence the image under the topological spectral map of G is the lamination space of G, i.e. the set of all (i, j, k) such that G admits a lamination of type (i, j, k). The polytopes that arise in the image of the topological spectral map are exactly those that correspond to the lamination space of some graph on a pair of pants. The remainder of the paper will be formulated only in terms of laminations, no longer in terms of the determinant of the vector-bundle Laplacian, but the reader should keep in mind that the motivation behind this work comes from the spectral map associated with the vector-bundle Laplacian.

Organization of the paper

We introduce the relevant definitions and state our main results in Section 2. In Section 3 we describe an exploration process of a graph on a pair of pants and
use it to realize the lamination space of that graph as a polytope. In passing we define three collections of special loops and study their properties. In Section 4 we derive some necessary conditions for the polytopes arising as the lamination space of some graph. We show in Section 5 that these conditions are sufficient by constructing a class of graphs having as a lamination space a given polytope satisfying the aforementioned conditions.

2 Main results

We consider the three-holed sphere Σ obtained by removing from the sphere \mathbb{S}^{2} three distinct points P_{1}, P_{2} and P_{3}. Every simple closed curve C on \mathbb{S}^{2} which does not pass through the points P_{i} separates \mathbb{S}^{2} into two hemispheres. For every $1 \leq i \leq 3$, we denote by $H_{i}(C)$ (resp. $H_{i}^{\prime}(C)$) the connected component of $\mathbb{S}^{2} \backslash C$ which contains P_{i} (resp. which does not contain P_{i}). A simple closed curve C is called of type i for $1 \leq i \leq 3$ if one of the hemispheres defined by C contains P_{i} and the other hemisphere contains the other two points, i.e. if

$$
H_{i}(C)=H_{i+1}^{\prime}(C)=H_{i+2}^{\prime}(C) .
$$

In the previous equalities, as well as in the remainder of this article, the indices $1 \leq i \leq 3$ should be considered modulo 3 . We will also denote by $\overline{H_{i}}(C)$ and $\overline{H_{i}^{\prime}}(C)$ the closed hemispheres (containing C this time).

Let G be a connected nonempty graph embedded in \mathbb{S}^{2}. The connected components of $\mathbb{S}^{2} \backslash G$ are topological disks, they are called the faces of G and we denote by \mathcal{F} the set of faces of G. We say that G is a Σ-graph if there exist three distinct faces $\left(F_{1}, F_{2}, F_{3}\right) \in \mathcal{F}$ (called marked faces) such that P_{i} is in the interior of F_{i} for all $1 \leq i \leq 3$. A Σ-graph is more than just a graph embedded in Σ because we require that the graph actually separates the three punctures. A lamination of the Σ-graph G is a collection L of pairwise disjoint simple loops on G such that each loop in L is non-contractible on Σ. By disjoint we mean having no vertex in common. For any non-negative integers m_{1}, m_{2} and m_{3}, a lamination is said to be of type $\left(m_{1}, m_{2}, m_{3}\right)$ if for any $1 \leq i \leq 3$ it contains m_{i} loops of type i. The lamination space $\mathcal{L}(G)$ of a Σ-graph G is defined to be the set of all $\left(m_{1}, m_{2}, m_{3}\right) \in\left(\mathbb{Z}_{+}\right)^{3}$ such that G admits a lamination of type $\left(m_{1}, m_{2}, m_{3}\right)$. Below we will describe the lamination space of a given Σ-graph G as the integer points of a lattice polytope defined in terms of some geometric characteristics of G.

In order to simplify the inequalities defining the lamination space, we have allowed a lamination to be empty, in which case its topological type is $(0,0,0)$. Note however that the polynomials $P(X, Y, Z)$ arising in the image of the spectral map have no constant term, so the only difference between the image of a graph G under the topological spectral map and the lamination space of G will be the presence or absence of the point $(0,0,0)$.

We define a distance function d_{G} on \mathcal{F} such that any two faces sharing a vertex are at distance 1 for d_{G}. Let G^{*} be the dual graph of G (seen as a graph in \mathbb{S}^{2}). Construct $\widetilde{G^{*}}$ by adding to G^{*} a dual edge between any two dual vertices such that the corresponding two primal faces share a primal vertex. The distance d_{G} is defined to be the usual graph distance on the vertex set of $\widetilde{G^{*}}$, which is canonically in bijection with \mathcal{F}. In the special case when all the vertices of G have degree 3 , then $\widetilde{G^{*}}=G^{*}$ and d_{G} is the classical distance
between two faces corresponding to the graph distance on the dual graph. From now on, whenever we mention the distance between two faces of G, the distance function will implicitly be d_{G}.

Define $d_{1}(G):=d_{G}\left(F_{2}, F_{3}\right), d_{2}(G):=d_{G}\left(F_{1}, F_{3}\right)$ and $d_{3}(G):=d_{G}\left(F_{1}, F_{2}\right)$. Also, for any $1 \leq i \leq 3$, define $M_{i}(G)$ to be the maximal number of pairwise disjoint simple loops of type i one can simultaneously draw on G. Given a Σ-graph G, we define the sextuple

$$
\sigma(G):=\left(M_{1}(G), M_{2}(G), M_{3}(G), d_{1}(G), d_{2}(G), d_{3}(G)\right) \in\left(\mathbb{Z}_{+}\right)^{3} \times \mathbb{N}^{3}
$$

See Figure 1 for an example.

Figure 1: A Σ-graph G with each face labelled by its distance to the marked face F_{1}. For this graph, $\sigma(G)=(4,1,1,1,4,5)$

Given a sextuple of integers $\tau=(a, b, c, d, e, f) \in\left(\mathbb{Z}_{+}\right)^{3} \times \mathbb{N}^{3}$, we define the convex lattice polytope \mathcal{P}_{τ} by
$\mathcal{P}_{\tau}:=\left\{(x, y, z) \in\left(\mathbb{Z}_{+}\right)^{3} \mid x \leq a, y \leq b, z \leq c, y+z \leq d, x+z \leq e, x+y \leq f\right\}$.
Proposition 2.1. For any Σ-graph G, its lamination space $\mathcal{L}(G)$ is the polytope $\mathcal{P}_{\sigma(G)}$.

Proposition 2.1 is proved in Section 3.
Remark 2.2. The inequalities $m_{i} \leq M_{i}(G)$ are not redundant with the inequalities $m_{i}+m_{i+1} \leq d_{i+2}(G)$, as illustrated by Figure 2 . On that picture, $d_{1}(G)=d_{2}(G)=d_{3}(G)=2$ and $M_{1}(G)=M_{2}(G)=M_{3}(G)=1$. The triple $\left(m_{1}, m_{2}, m_{3}\right)=(2,0,0)$ verifies the inequalities $m_{i}+m_{i+1} \leq d_{i+2}$, but that graph has no lamination of type $(2,0,0)$. This proposition corrects a statement made in [7], where the inequalities $m_{i} \leq M_{i}(G)$ were missing.

We can now characterize all the convex lattice polytopes that arise as the lamination space of some Σ-graph. By the previous proposition, it suffices to characterize the sextuples τ that arise as some $\sigma(G)$

Theorem 2.3. Fix $\tau=\left(\mu_{1}, \mu_{2}, \mu_{3}, \delta_{1}, \delta_{2}, \delta_{3}\right) \in\left(\mathbb{Z}_{+}\right)^{3} \times \mathbb{N}^{3}$. There exists a Σ-graph G such that $\sigma(G)=\tau$ if and only if the following inequalities hold for all $1 \leq i \leq 3$:
$\left(T_{1}\right) \max \left(\mu_{i+1}, \mu_{i+2}\right) \leq \delta_{i} \leq \mu_{i+1}+\mu_{i+2} ;$
$\left(T_{2}\right) \delta_{i+1}+\delta_{i+2} \leq 2 \mu_{i}+\delta_{i}+1$.

Figure 2: An example of a graph G illustrating the need to require the inequalities $m_{i} \leq M_{i}(G)$ in order to characterize the types of laminations that can arise.

The fact that conditions $\left(T_{1}\right)$ and $\left(T_{2}\right)$ are necessary is proved in Section 4, while the fact that they are sufficient is proved in Section 5 by explicitly constructing a Σ-graph G such that $\sigma(G)=\tau$ whenever τ satisfies the two conditions.

Remark 2.4. Setting $\nu_{i}=\mu_{i+1}+\mu_{i+2}-\delta_{i}$ for every $1 \leq i \leq 3$, conditions $\left(T_{1}\right)$ and $\left(T_{2}\right)$ can be rewritten in the following compact form: for every $1 \leq i \leq 3$,

$$
\begin{equation*}
0 \leq \nu_{i} \leq \min \left(\mu_{i+1}, \mu_{i+2}, \nu_{i+1}+\nu_{i+2}+1\right) \tag{2.1}
\end{equation*}
$$

The quantity ν_{i} will acquire a geometric meaning in Section 3 , as the depth of intersection between two collections of special loops around P_{i+1} and P_{i+2}.

In order to prove Proposition 2.1 and the necessity of the conditions $\left(T_{1}\right)$ and $\left(T_{2}\right)$ in Theorem 2.3, we will explore any Σ-graph G starting from the face F_{1}, discover a first layer consisting of the faces at distance 1 from F_{1}, then a second layer consisting of the faces at distance 2 , etc. We will perform the same exploration starting from the faces F_{2} and F_{3} and understand how the boundaries of the layers arising in each of these three explorations interact with each other. In the case of simple triangulations, our construction is very similar to the layer decomposition of Krikun [13]. More generally, this construction resembles the peeling process for planar maps (see for example [2]). The difference is that here we use a distance which differs slightly from the graph distance on the dual graph. Instead of peeling an edge by discovering the face on the other side of the edge, we are peeling a vertex, by discovering all the unknown faces containing a vertex which is on the boundary of what we have already explored.

3 Special loops around a puncture

In this section we first describe an exploration process of a Σ-graph G starting from a marked face, which will trace out a collection of special loops on G centered around a marked face. Then we will study how two collections of special loops intersect each other and deduce from this a proof of Proposition 2.1.

3.1 A collection of special loops around a puncture

We start by an elementary observation, which we will be using several times. Let G be a connected planar graph and \widetilde{G} be a subgraph of G. One defines the distance function $d_{\widetilde{G}}$ on the set of the connected components of $\mathbb{S}^{2} \backslash \widetilde{G}$ in exactly the same way as the distance d_{G} was defined on the faces of G. Note that the
connected components of $\mathbb{S}^{2} \backslash \widetilde{G}$ do not have to be topological disks, they may be disks with multiple punctures or even the whole sphere is \widetilde{G} is empty. Then we have the following result, the proof of which is easy and omitted.

Lemma 3.1. Let G be a connected planar graph and \widetilde{G} be a subgraph of G. Let F and $F_{\widetilde{\prime}}^{\prime}$ be two faces of G and let \widetilde{F} and $\widetilde{F^{\prime}}$ be the two connected components of $\mathbb{S}^{2} \backslash \widetilde{G}$ containing respectively F and F^{\prime}. Then $d_{\widetilde{G}}\left(\widetilde{F}, \widetilde{F^{\prime}}\right) \leq d_{G}\left(F, F^{\prime}\right)$.

Let G be a Σ-graph. For any $k \geq 0$ and $1 \leq i \leq 3$, define

$$
\begin{equation*}
A_{i}^{k}=\left\{F \in \mathcal{F} \mid d_{G}\left(F, F_{i}\right)=k\right\} . \tag{3.1}
\end{equation*}
$$

For any $k \geq 1$ and $1 \leq i \leq 3$ such that A_{i}^{k} is nonempty, define B_{i}^{k} to be the boundary of the set $\bigcup_{j=0}^{k-1} A_{i}^{j}$ of faces that are at distance less than k to F_{i}. Each B_{i}^{k} is the union of simple loops that are pairwise edge-disjoint but not necessarily pairwise vertex-disjoint. The case when B_{i}^{k} consists in the union of several loops corresponds to a branching event in the peeling terminology, see e.g. [1]. The following lemma describes structural properties of the simple loops in B_{i}^{k} and will be used repeatedly in the remainder of the article.

Lemma 3.2. Let G be a Σ-graph, let $1 \leq i \leq 3$ and let $k \geq 1$ be such that B_{i}^{k} is defined. Then, we have

$$
\begin{equation*}
\bigcup_{j \geq k} A_{i}^{j}=\bigcup_{\substack{C \subset B_{i}^{k} \\ C \text { simple loop }}} \overline{H_{i}^{\prime}}(C) \tag{3.2}
\end{equation*}
$$

Furthermore, if C and C^{\prime} are two distinct simple loops contained in B_{i}^{k}, then $\underline{H_{i}^{\prime}}(C) \cap H_{i}^{\prime}\left(C^{\prime}\right)=\emptyset$. Finally, if $C \subset B_{i}^{k}$ is a simple loop, then the faces in $\overline{H_{i}}(C)$ sharing an edge with C are in A_{i}^{k-1}.

Proof. Let $C \subset B_{i}^{k}$ be a simple loop and assume there is a face $F \subset \overline{H_{i}^{\prime}}(C)$ such that $d_{G}\left(F_{i}, F\right) \leq k-1$. Then one can find a sequence $\left(F^{0}, \ldots, F^{n}\right)$ of faces such that $n=\bar{d}_{G}\left(F_{i}, F\right), F^{0}=F_{i}, F^{n}=F$ and for every $1 \leq j \leq n$, the faces F^{j-1} and F^{j} share a vertex. By construction we have that for every $1 \leq j \leq n, d_{G}\left(F_{i}, F^{j}\right)=j$. Denoting by k^{\prime} the largest j such that $F^{j} \subset \overline{H_{i}}(C)$, we have that $d_{G}\left(F_{i}, F^{k^{\prime}}\right) \leq k-2$ and by connectedness of the path of faces from the hemisphere $H_{i}(C)$ to the hemisphere $H_{i}^{\prime}(C), F^{k^{\prime}}$ shares a vertex v with C. This yields a contradiction because all the faces containing the vertex v are at distance at most $k-1$ of F_{i}, hence B_{i}^{k} cannot pass through v so v cannot lie on C. We deduce from this that

$$
\bigcup_{\substack{C \subset B_{i}^{k} \\ C \text { simple loop }}} \overline{H_{i}^{\prime}}(C) \subset \bigcup_{j \geq k} A_{i}^{j}
$$

Furthermore, by construction, every edge in B_{i}^{k} has on one side a face in A_{i}^{k-1} and on the other side a face in A_{i}^{k}. This implies that all the faces in $\overline{H_{i}}(C)$ that contain an edge in C must be in A_{i}^{k-1}.

If C and C^{\prime} are two distinct simple loops contained in B_{i}^{k} and $H_{i}^{\prime}(C) \cap$ $H_{i}^{\prime}\left(C^{\prime}\right) \neq \emptyset$ then we can find a face F which satisfies one of the following two conditions:

1. $F \subset \overline{H_{i}}(C) \cap \overline{H_{i}^{\prime}}\left(C^{\prime}\right)$ and F shares an edge with C;
2. $F \subset \overline{H_{i}}\left(C^{\prime}\right) \cap \overline{H_{i}^{\prime}}(C)$ and F shares an edge with C^{\prime}.

This yields a contradiction because it implies on the one hand that $d_{G}\left(F, F_{i}\right)=$ $k-1$ and on the other hand that $d_{G}\left(F, F_{i}\right) \geq k$. Thus $H_{i}^{\prime}(C)$ and $H_{i}^{\prime}\left(C^{\prime}\right)$ must be disjoint.

Finally, let F be a face in A_{i}^{j} with $j \geq k$. We construct F^{c} the connected component of $\bigcup_{j \geq k} A_{i}^{j}$ containing F as follows. We say that two faces in $\bigcup_{j \geq k} A_{i}^{j}$ are neighbors if they share an edge (not just a vertex) and F^{c} is the set of all faces in $\bigcup_{j \geq k} A_{i}^{j}$ that are reachable from F by walking across neighboring faces (these intermediate faces on the path must also lie in $\bigcup_{j \geq k} A_{i}^{j}$). Then F^{c} is a connected set, with boundary denoted by B^{c}. There exists a simple loop $C \subset B^{c}$ such that $F^{c} \subset \overline{H_{i}^{\prime}}(C)$. By construction of B^{c}, for every edge e of C, the face adjacent to e in the hemisphere $\overline{H_{i}}(C)$ is in A_{i}^{k-1} and the face adjacent to e in the hemisphere $\overline{H_{i}^{\prime}}(C)$ is in A_{i}^{k}. Hence $C \subset B_{i}^{k}$. We conclude that

$$
\bigcup_{j \geq k} A_{i}^{j} \subset \bigcup_{\substack{C \subset B_{i}^{k} \\ C \text { simple loop }}} \overline{H_{i}^{\prime}}(C)
$$

Fix $1 \leq i \leq 3$ and recall that the indices $i+1$ and $i+2$ are considered modulo 3. Since $\bar{d}_{G}\left(\bar{F}_{i}, F_{i+1}\right)=d_{i+2}(G)$, Lemma 3.2 implies for any $1 \leq k \leq d_{i+2}(G)$ the existence of a unique simple loop $C_{i, i+1}^{k} \subset B_{i}^{k}$ such that $F_{i+1} \subset \overline{H_{i}^{\prime}}\left(C_{i, i+1}^{k}\right)$. Similarly, for any $1 \leq k \leq d_{i+1}(G)$ there exists a unique simple loop $C_{i, i+2}^{k} \subset$ B_{i}^{k} such that $F_{i+2} \subset \overline{H_{i}^{\prime}}\left(C_{i, i+2}^{k}\right)$. For $1 \leq k \leq \min \left(d_{i+1}(G), d_{i+2}(G)\right)-1$, if $C_{i, i+1}^{k} \neq C_{i, i+2}^{k}$, then $C_{i, i+1}^{k+1} \neq C_{i, i+2}^{k+1}$ by Lemma 3.2. Thus there exists a unique integer $\widetilde{M}_{i} \geq 0$ such that for any $1 \leq k \leq \widetilde{M}_{i}$ we have $C_{i, i+1}^{k}=C_{i, i+2}^{k}$ and for any $\widetilde{M}_{i}+1 \leq k \leq \min \left(d_{i+1}(G), d_{i+2}(G)\right)$ we have $C_{i, i+1}^{k} \neq C_{i, i+2}^{k}$. If $1 \leq k \leq \widetilde{M}_{i}$ we denote simply by C_{i}^{k} the simple loop $C_{i, i+1}^{k}=C_{i, i+2}^{k}$. The following lemma gives the value of \widetilde{M}_{i}.
Lemma 3.3. Let G be a Σ-graph. For any $1 \leq i \leq 3$, we have $\widetilde{M}_{i}=M_{i}(G)$. Furthermore, for any fixed $1 \leq i \leq 3$, the loops $\left(C_{i}^{k}\right)_{1 \leq k \leq M_{i}(G)}$ are pairwise disjoint.
Proof. Fix $1 \leq i \leq 3$. Consider C_{i}^{k} and $C_{i}^{k^{\prime}}$ for some $1 \leq k<k^{\prime} \leq \widetilde{M}_{i}$. First observe that these loops are nested, i.e. $H_{i}\left(C_{i}^{k}\right) \subset H_{i}\left(C_{i}^{k^{\prime}}\right)$. If there exists a vertex v lying on both these loops, denoting by e an edge of C_{i}^{k} containing v and by F the face containing e and lying in $\overline{H_{i}}\left(C_{i}^{k}\right)$, it follows from Lemma 3.2 that $d_{G}\left(F, F_{i}\right)=k-1$, which contradicts the fact that F shares the vertex v with some face F^{\prime} lying in $\overline{H_{i}^{\prime}}\left(C_{i}^{k^{\prime}}\right)$ because $d_{G}\left(F^{\prime}, F_{i}\right) \geq k^{\prime}>k$ again by Lemma 3.2. So the loops $\left(C_{i}^{k}\right)_{1 \leq k \leq \widetilde{M}_{i}}$ are pairwise disjoint.

It remains to prove that $\widetilde{M}_{i}=M_{i}(G)$. Since the simple loops C_{i}^{k} of type i are pairwise disjoint for $1 \leqq k \leq \widetilde{M}_{i}$, their union constitutes a lamination with \widetilde{M}_{i} loops of type i hence $\widetilde{M}_{i} \leq M_{i}(G)$.

Let L be a lamination consisting in $M_{i}(G)$ simple loops of type i denoted by $C^{k}, 1 \leq k \leq M_{i}(G)$, which are nested in such a way that for any $1 \leq k \leq$
$M_{i}(G)-1, H_{i}\left(C^{k}\right) \subset H_{i}\left(C^{k+1}\right)$. If F is a face in $\overline{H_{i}^{\prime}}\left(C^{k}\right)$ for some $1 \leq k \leq$ $M_{i}(G)$, then by Lemma 3.1, we have that $d_{G}\left(F_{i}, F\right) \geq k$ hence

$$
\begin{equation*}
\overline{H_{i}^{\prime}}\left(C^{k}\right) \subset \bigcup_{j \geq k} A_{i}^{j} \tag{3.3}
\end{equation*}
$$

This implies that

$$
\bigcup_{j=0}^{k-1} A_{i}^{j} \subset \overline{H_{i}}\left(C^{k}\right)
$$

Recalling that B_{i}^{k} is defined as the boundary of $\bigcup_{j=0}^{k-1} A_{i}^{j}$, we deduce that B_{i}^{k} is well-defined for all $1 \leq k \leq M_{i}(G)$ and that $B_{i}^{k} \subset \overline{H_{i}}\left(C^{k}\right)$. Since C^{k} is of type i, this implies that any simple loop contained in B_{i}^{k} is either contractible or of type i. So $k \leq \widetilde{M}_{i}$. This statement holds for every $1 \leq k \leq M_{i}(G)$ so $M_{i}(G) \leq \widetilde{M}_{i}$.

Remark 3.4. For any $1 \leq k \leq M_{i}(G)$, the simple loop C_{i}^{k} is of type i, for any $M_{i}(G)+1 \leq k \leq d_{i+1}(G)$ the simple loop $C_{i, i+1}^{k}$ is of type $i+1$ and for any $M_{i}(G)+1 \leq k \leq d_{i+2}(G)$ the simple loop $C_{i, i+2}^{k}$ is of type $i+2$.

The loops C_{i}^{k} are called special loops of type i. These special loops are optimal if one wants to pack as many disjoint simple loops of a given type as possible. For example C_{i}^{1} is the "tightest" simple loop of type i one can draw, C_{i}^{2} is the "tightest" simple loop of type i one can draw which would be disjoint from C_{i}^{1}, etc. See Figure 3 for an illustration.

Figure 3: Representation in bold of the special loops C_{1}^{k} for the graph G of Figure 1.

3.2 Intersection of two collections of special loops

We will now describe how two collections of special loops of two different types intersect each other.

Lemma 3.5. Let G be a Σ-graph and let $1 \leq i \leq 3$. Fix two integers $1 \leq j \leq$ $d_{i}(G)$ and $1 \leq k \leq d_{i}(G)$. Then $C_{i+1}^{k} \cap C_{i+2}^{j}=\emptyset$ if and only if $j+k \leq d_{i}(G)$. Furthermore, $H_{i+1}\left(C_{i+1}^{k}\right) \cap H_{i+2}\left(C_{i+2}^{d_{i}(G)+1-k}\right)=\emptyset$.

Proof. Assume that $C_{i+1}^{k} \cap C_{i+2}^{j} \neq \emptyset$. Let v be a vertex in $C_{i+1}^{k} \cap C_{i+2}^{j}$, e be an edge in C_{i+1}^{k} containing v, e^{\prime} be an edge in C_{i+2}^{j}, F be the face in
$\overline{H_{i+1}}\left(C_{i+1}^{k}\right)$ containing e and F^{\prime} be the face in $\overline{H_{i+2}}\left(C_{i+2}^{j}\right)$ containing e^{\prime}. Then by Lemma 3.2, $d_{G}\left(F_{i+1}, F\right)=k-1$ and $d_{G}\left(F_{i+2}, F^{\prime}\right)=j-1$. Since F and F^{\prime} share the vertex v, we also have $d_{G}\left(F, F^{\prime}\right)=1$. By the triangle inequality, we conclude that $d_{G}\left(F_{i+1}, F_{i+2}\right) \leq j+k-1$. Thus $j+k>d_{i}(G)$.

Conversely, assume that $C_{i+1}^{\bar{k}} \cap C_{i+2}^{j}=\emptyset$. Then either $C_{i+2}^{j} \subset H_{i+2}\left(C_{i+1}^{k}\right)$ or $C_{i+2}^{j} \subset H_{i+1}\left(C_{i+1}^{k}\right)$. The latter alternative cannot be true, otherwise we would have $F_{i} \subset H_{i}\left(C_{i+1}^{k}\right)=H_{i+2}\left(C_{i+1}^{k}\right) \subset H_{i+2}\left(C_{i+2}^{j}\right)$, which would entail that C_{i+2}^{j} is either contractible or of type $i+1$. Hence $C_{i+2}^{j} \subset H_{i+2}\left(C_{i+1}^{k}\right)$. Furthermore, as observed in the proof of Lemma 3.3, the special loops of a given type are nested and disjoint, which implies that the loops $C_{i+1}^{1}, \ldots, C_{i+1}^{k}, C_{i+2}^{1}, \ldots, C_{i+2}^{j}$) are pairwise disjoint, thus they form a lamination L. Let F_{i+1}^{\prime} (resp. F_{i+2}^{\prime}) denote the connected component of $\mathbb{S}^{2} \backslash L$ containing $P_{i+1}\left(\right.$ resp. $\left.P_{i+2}\right)$ Then by Lemma 3.1, since L is a subgraph of G, we have $d_{i}(G)=d_{G}\left(F_{i+1}, F_{i+2}\right) \geq$ $d_{L}\left(F_{i+1}^{\prime}, F_{i+2}^{\prime}\right)=j+k$.

Finally, assume that $H_{i+1}\left(C_{i+1}^{k}\right) \cap H_{i+2}\left(C_{i+2}^{d_{i}(G)+1-k}\right) \neq \emptyset$. Then we can find a face $F \subset \overline{H_{i+1}}\left(C_{i+1}^{k}\right) \cap \overline{H_{i+2}}\left(C_{i+2}^{d_{i}(G)+1-k}\right)$ which has at least one edge in common with C_{i+2}^{j}. By Lemma 3.2, we have $F \in A_{i+2}^{d_{i}(G)-k}$ so $B_{i+2}^{d_{i}(G)-k}$ intersects F (this intersection may be just a single vertex). On the other hand, it follows from Lemma 3.2 that $A_{i+2}^{d_{i}(G)-k-1} \subset H_{i+2}\left(C_{i+2}^{d_{i}(G)-k}\right)$ so $B_{i+2}^{d_{i}(G)-k} \subset$ $\overline{H_{i+2}}\left(C_{i+2}^{d_{i}(G)-k}\right)$. Thus we obtain that $\overline{H_{i+1}}\left(C_{i+1}^{k}\right) \cap \overline{H_{i+2}}\left(C_{i+2}^{d_{i}(G)-k}\right) \neq \emptyset$, and the previous paragraph would entail that $k+\left(d_{i}(G)-k\right)>d_{i}(G)$. This is the desired contradiction, hence $H_{i+1}\left(C_{i+1}^{k}\right) \cap H_{i+2}\left(C_{i+2}^{d_{i}(G)+1-k}\right)=\emptyset$.

It follows from Lemma 3.5 that the nonnegative integer $n_{i}(G):=M_{i+1}(G)+$ $M_{i+2}(G)-d_{i}(G)$ counts the number of special loops of type $i+1$ (resp. $i+2$) which intersect some special loop of type $i+2$ (resp. $i+1$). For every $1 \leq i \leq 3$, we will call this integer $n_{i}(G)$ the depth of intersection of the special loops of types $i+1$ and $i+2$.

We use the properties of these special loops to prove Proposition 2.1.
Proof of Proposition 2.1. Assume G has a lamination L of type $\left(m_{1}, m_{2}, m_{3}\right)$. Let $1 \leq i \leq 3$. Then $m_{i} \leq M_{i}(G)$ by definition of $M_{i}(G)$. Furthermore, as in the proof of Lemma 3.5, we have $m_{i+1}+m_{i+2} \leq d_{i}(G)$. Thus $\left(m_{1}, m_{2}, m_{3}\right) \in \mathcal{P}_{\sigma(G)}$

Conversely, assume that we have a triple of integers (m_{1}, m_{2}, m_{3}) satisfying the six inequalities defining $\mathcal{P}_{\sigma(G)}$. Set

$$
L=\left\{C_{1}^{1}, \ldots, C_{1}^{m_{1}}, C_{2}^{1}, \ldots, C_{2}^{m_{2}}, C_{3}^{1}, \ldots, C_{3}^{m_{3}}\right\}
$$

Observe that for every $1 \leq i \leq 3, C_{i}^{k}$ is well-defined because $k \leq m_{i} \leq M_{i}(G)$. By Lemma 3.5, the fact that $m_{i+1}+m_{i+2} \leq d_{i}(G)$ for every i implies that these loops are pairwise disjoint. So L is a lamination and its type is $\left(m_{1}, m_{2}, m_{3}\right)$ by construction.

4 Necessity of conditions (T_{1}) and (T_{2})

In this section, we prove one direction of Theorem 2.3. Let G be a Σ-graph. In order to alleviate notation, we will drop the dependency of M_{i}, d_{i} and n_{i} on G in this section. We will show that the six components of $\sigma(G)$ satisfy the
inequalities $\left(T_{1}\right)$ and $\left(T_{2}\right)$ of Theorem 2.3. By symmetry it suffices to consider the case $i=1$.

4.1 Inequalities $\left(T_{1}\right)$ are verified

The inequalities $M_{2} \leq d_{1}$ and $M_{3} \leq d_{1}$ follow from Lemma 3.3, thus

$$
\max \left(M_{2}, M_{3}\right) \leq d_{1}
$$

To prove the other inequality, we distinguish several cases.
Case when $M_{2} \geq 1, M_{3} \geq 1$ and $C_{2}^{M_{2}} \cap C_{3}^{M_{3}} \neq \emptyset$.
Let v be a vertex in that intersection. Then one can find two faces F and F^{\prime} containing v and such that $F \subset \overline{H_{2}}\left(C_{2}^{M_{2}}\right), F$ shares an edge with $C_{2}^{M_{2}}$, $F^{\prime} \subset \overline{H_{3}}\left(C_{3}^{M_{3}}\right)$ and F^{\prime} shares an edge with $C_{3}^{M_{3}}$. By the triangle inequality and Lemma 3.2 we have

$$
d_{G}\left(F_{2}, F_{3}\right) \leq d_{G}\left(F_{2}, F\right)+d_{G}\left(F, F^{\prime}\right)+d_{G}\left(F^{\prime}, F_{3}\right) \leq\left(M_{2}-1\right)+1+\left(M_{3}-1\right)
$$

thus, $d_{1} \leq M_{2}+M_{3}-1$ in that case.
Case when $M_{2} \geq 1, M_{3} \geq 1$ and $C_{2}^{M_{2}} \cap C_{3}^{M_{3}}=\emptyset$.
In that case $d_{G}\left(\overline{H_{2}}\left(C_{2}^{M_{2}}\right), \overline{H_{3}}\left(C_{3}^{M_{3}}\right)\right) \geq 1$, and since by Lemma 3.2 we have that

$$
\bigcup_{j \leq M_{3}-1} A_{3}^{j} \subset \overline{H_{3}}\left(C_{3}^{M_{3}}\right),
$$

we deduce that $d_{G}\left(\overline{H_{2}}\left(C_{2}^{M_{2}}\right), \bigcup_{j \leq M_{3}-1} A_{3}^{j}\right) \geq 1$. So

$$
\begin{equation*}
\bigcup_{j \leq M_{3}} A_{3}^{j} \subset \overline{H_{2}^{\prime}}\left(C_{2}^{M_{2}}\right) \tag{4.1}
\end{equation*}
$$

and since $M_{2} \geq 1$, we have that $B_{3}^{M_{3}+1}$ is non-empty. By Lemma 3.2 there exists a simple loop $C \subset B_{3}^{M_{3}+1}$ such that $F_{2} \subset \overline{H_{3}^{\prime}}(C)$. Thus $\overline{H_{3}^{\prime}}(C)=\overline{H_{2}}(C)$, and relation (4.1) implies that $\overline{H_{2}}\left(C_{2}^{M_{2}}\right) \subset \overline{H_{2}}(C)$. Since C is disjoint from all the C_{3}^{k} with $1 \leq k \leq M_{3}$, it cannot be of type 3 (this would contradict the fact that M_{3} is the maximal number of disjoint simple loops of type 3), thus $F_{1} \subset \overline{H_{3}}(C)$. So C is of type 2 , hence has to intersect $C_{2}^{M_{2}}$, otherwise this would contradict the fact that M_{2} is the maximal number of disjoint simple loops of type 2. Considering the two non-disjoint simple loops $C \subset B_{3}^{M_{3}+1}$ and $C_{2}^{M_{2}} \subset B_{2}^{M_{2}}$, one concludes by selecting two appropriate faces F and F^{\prime} as in the previous case and applying Lemma 3.2 , which yields $d_{1} \leq M_{2}+M_{3}$.

Case when $M_{2}=0$ or $M_{3}=0$.
We first show that M_{2} and M_{3} cannot be both zero.
Lemma 4.1. If $M_{2}=0$ then $M_{1} \geq 1$ and $M_{3} \geq 1$.

Proof. Assume that $M_{2}=0$. The boundary B_{2}^{1} of F_{2} is nonempty even though it contains no simple loop of type 2 . Since $d_{G}\left(F_{3}, F_{2}\right) \geq 1$ and $d_{G}\left(F_{1}, F_{2}\right) \geq 1$, by Lemma 3.2, there exist two simple loops C and C^{\prime} contained in B_{2}^{1} such that $F_{3} \subset \overline{H_{2}^{\prime}}(C)$ and $F_{1} \subset \overline{H_{2}^{\prime}}\left(C^{\prime}\right)$. Furthermore, $C \neq C^{\prime}$ otherwise C would be of type 2. By Lemma 3.2, this implies that $H_{2}^{\prime}(C) \cap H_{2}^{\prime}\left(C^{\prime}\right)=\emptyset$, so C is a simple loop of type 3 and C^{\prime} is a simple loop of type 1 . Thus $M_{3} \geq 1$ and $M_{1} \geq 1$.

In the remainder of the proof we assume that $M_{2}=0$. As in the proof of Lemma 4.1, pick $C \subset B_{2}^{1}$ a simple loop of type 3 . Since $C \subset \overline{F_{2}} \subset \overline{H_{3}^{\prime}}\left(C_{3}^{M_{3}}\right)$, the special loop $C_{3}^{M_{3}}$ must intersect C in at least a vertex v, otherwise C would be an $\left(M_{3}+1\right)$-st simple loop of type 3 which is disjoint from all the special loops C_{3}^{k} with $1 \leq k \leq M_{3}$. Let e be an edge of $C_{3}^{M_{3}}$ containing the vertex v and let F be the face in $\overline{H_{3}}\left(C_{3}^{M_{3}}\right)$ containing e. Then $d_{G}\left(F_{3}, F\right)=M_{3}-1$ and $d_{G}\left(F, F_{2}\right)=1$ so $d_{1}=d_{G}\left(F_{2}, F_{3}\right) \leq M_{3}$.

4.2 Inequality $\left(T_{2}\right)$ is verified

By definition of n_{3}, we have that $d_{3}+1-M_{1}=M_{2}+1-n_{3}$. Hence it follows from Lemma 3.5 that $H_{1}\left(C_{1}^{M_{1}}\right) \cap H_{2}\left(C_{2}^{M_{2}+1-n_{3}}\right)=\emptyset$. Since both these hemispheres are open, we even have $\overline{H_{1}}\left(C_{1}^{M_{1}}\right) \cap H_{2}\left(C_{2}^{M_{2}+1-n_{3}}\right)=\emptyset$, thus $C_{1}^{M_{1}}$ is disjoint from $H_{2}\left(C_{2}^{M_{2}+1-n_{3}}\right)$. Similarly $C_{1}^{M_{1}}$ is disjoint from $H_{3}\left(C_{3}^{M_{3}+1-n_{2}}\right)$. The nesting of the special loops implies that $C_{2}^{M_{2}-n_{3}} \cup C_{3}^{M_{3}-n_{2}}$ is contained in $H_{1}^{\prime}\left(C_{1}^{M_{1}}\right)$.

Case when $\min \left(M_{2}-n_{3}, M_{3}-n_{2}\right) \geq 1$ and $\max \left(M_{2}-n_{3}, M_{3}-n_{2}\right) \geq 2$.
We reason by contradiction and assume that $n_{1}>n_{2}+n_{3}+1$. Without loss of generality assume that $M_{2}-n_{3} \geq 1$ and $M_{3}-n_{2} \geq 2$, hence $M_{2}-n_{3}$ and $M_{3}-n_{2}-1$ are both at least 1. By Lemma 3.5, since $M_{2}-n_{3}+M_{3}-n_{2}-1>d_{1}$, we have that $C_{2}^{M_{2}-n_{3}} \cap C_{3}^{M_{3}-n_{2}-1} \neq \emptyset$. Thus $C_{2}^{M_{2}-n_{3}} \cap H_{3}\left(C_{3}^{M_{3}-n_{2}}\right) \neq \emptyset$ and we can draw from $C_{2}^{M_{2}-n_{3}}$ and $C_{3}^{M_{3}-n_{2}}$ a simple closed curve of type 1 contained inside $H_{1}^{\prime}\left(C_{1}^{M_{1}}\right)$, which produces an $\left(M_{1}+1\right)$-th disjoint curve of type 1, contradiction.

Case when $M_{2}=n_{3}$ or $M_{3}=n_{2}$.
Without loss of generality assume that $M_{2}=n_{3}$. Then

$$
n_{1} \leq M_{2} \leq n_{3} \leq n_{2}+n_{3}+1
$$

Case when $M_{2}-n_{3}=M_{3}-n_{2}=1$.
Then $n_{1}=n_{3}+1+n_{2}+1-d_{1} \leq n_{2}+n_{3}+1$.

5 Graphs achieving any $\sigma(G)$

In this section, given $\tau=\left(\mu_{1}, \mu_{2}, \mu_{3}, \delta_{1}, \delta_{2}, \delta_{3}\right) \in\left(\mathbb{Z}_{+}\right)^{3} \times \mathbb{N}^{3}$ satisfying inequalities $\left(T_{1}\right)$ and $\left(T_{2}\right)$, we construct a graph G such that $\sigma(G)=\tau$. In the generic case, the graphs G will be constructed by gluing together several building blocks, most of which will be Young diagrams. Recall that the Young diagram $Y_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}$ associated with the partition $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 1$ is (in French notation)
the diagram consisting in n rows of left-aligned square boxes where the i-th row counted from the bottom contains λ_{i} boxes.

5.1 A class of graphs

To any sextuple $t=\left(l_{1}, l_{2}, l_{3}, n_{1}, n_{2}, n_{3}\right) \in \mathbb{Z}_{+}^{6}$ such that $n_{i} \leq \min \left(l_{i+1}, l_{i+2}\right)$ for all $1 \leq i \leq 3$, we will first associate a graph Γ_{t} which has the topology of the disk. We will then obtain G_{t} by gluing two identical copies of Γ_{t} along their boundaries, like the construction of a pillowcase, which is topologically a sphere. However, we will only glue three disjoint arcs of the boundary of one graph with three disjoint arcs of the boundary of the other graph, hence the result will be a three-holed sphere.

We first define the following building blocks:

- the connector K, which is a triangle with edges called (in cyclic order) e_{1}^{\prime}, e_{2}^{\prime} and e_{3}^{\prime}. See Figure 4a.
- for every $1 \leq i \leq 3$, the Young diagram $Y_{\left(l_{i}\right)}$ consisting in a single row, called a leg. We denote its vertical left edge by E_{i}, its vertical right edge by e_{i}, its bottom (resp. top) horizontal edges from right to left by $f_{i, i+1}^{1}, \ldots, f_{i, i+1}^{l_{i}}\left(\right.$ resp. $\left.f_{i, i-1}^{1}, \ldots, f_{i, i-1}^{l_{i}}\right)$. See Figure 4b.
- for every $1 \leq i \leq 3$, the Young diagram $Y_{\left(n_{i}, n_{i}-1, \ldots, 2,1\right)}$ consisting in n_{i} rows, called a web. We denote its horizontal edges on the bottom boundary from left to right by $f_{i+1, i+2}^{\prime 1}, \ldots, f_{i+1, i+2}^{\prime n_{i}}$ and its vertical edges on the left boundary from bottom to top by $f_{i+2, i+1}^{\prime 1}, \ldots, f_{i+2, i+1}^{\prime n_{i}}$. See Figure 4c.

Next, for every $1 \leq i \leq 3$, we glue the edges e_{i} with e_{i}^{\prime} and for every $1 \leq k \leq n_{i}$ we glue $f_{i+1, i+2}^{k}$ with $f_{i+1, i+2}^{\prime k}$ and $f_{i+2, i+1}^{k}$ with $f_{i+2, i+1}^{\prime k}$. After gluing two edges together, the result is a single edge. See Figure 5 for an example. We call the resulting graph Γ_{t}. It has the topology of the disk, with three distinguished edges E_{1}, E_{2} and E_{3} on its boundary.

Let Γ_{t}^{\prime} be an identical copy of Γ_{t}. Each edge of the boundary of Γ_{t}^{\prime} is in canonical correspondence with an edge of the boundary of Γ_{t}. In particular, Γ_{t}^{\prime} has three distinguished edges $E_{1}^{\prime}, E_{2}^{\prime}$ and E_{3}^{\prime} on its boundary. We glue together each pair of corresponding edges, except the three pairs containing the distinguished edges. We call the resulting graph G_{t}. For every $1 \leq i \leq 3$ we denote by F_{i} the digon with edges E_{i} and E_{i}^{\prime}.

One can compute the components of $\sigma\left(G_{t}\right)$ explicitly.
Lemma 5.1. Let $t=\left(l_{1}, l_{2}, l_{3}, n_{1}, n_{2}, n_{3}\right) \in \mathbb{Z}_{+}^{6}$ such that $n_{i} \leq \min \left(l_{i+1}, l_{i+2}\right)$ for all $1 \leq i \leq 3$. Then for any $1 \leq i \leq 3$,

$$
\begin{align*}
M_{i}\left(G_{t}\right) & =1+l_{i}+\max \left(0,\left\lfloor\frac{n_{i}-\max \left(n_{i+1}, n_{i+2}\right)}{2}\right\rfloor\right) \tag{5.1}\\
d_{i}\left(G_{t}\right) & =1+l_{i+1}+l_{i+2}-n_{i} \tag{5.2}
\end{align*}
$$

Proof. The proof consists in exploring G_{t} layer by layer from a face F_{i} and constructing explicitly the special loops defined in Section 3. Looking at the type of each loop yields the desired conclusion. By symmetry of the graph G_{t}, it actually suffices to explore the graph Γ_{t} layer by layer starting from an edge E_{i} and draw the arcs corresponding to the boundary of each layer. Considering

Figure 4: The different types of building blocks for the graph Γ_{t}.

Figure 5: The graph Γ_{t} for $t=(4,3,2,0,1,3)$. The arcs of the boundary that will be glued to the corresponding arcs of an identical copy appear in bold stroke.
the endpoints of these arcs on the boundary of Γ_{t} reveals their type when they are glued with a symmetric copy of themselves to form loops in G_{t}.

5.2 End of the proof of Theorem 2.3

Fix $\tau=\left(\mu_{1}, \mu_{2}, \mu_{3}, \delta_{1}, \delta_{2}, \delta_{3}\right) \in\left(\mathbb{Z}_{+}\right)^{3} \times \mathbb{N}^{3}$ satisfying $\left(T_{1}\right)$ and $\left(T_{2}\right)$. Equivalently one can define $\nu_{i}:=\mu_{i+1}+\mu_{i+2}-\delta_{i}$, use the μ_{i} and ν_{i} as variables and require that they satisfy (2.1). Up to permuting the indices, one may assume that $\nu_{3} \leq \nu_{2} \leq \nu_{1}$. We will construct a Σ-graph G such that $\sigma(G)=\tau$. For this we need to distinguish several cases.

Case when $\nu_{2}<\nu_{1} \leq \mu_{1}+\nu_{2}$.
Define $t=\left(l_{1}, l_{2}, l_{3}, n_{1}, n_{2}, n_{3}\right)$ by:

$$
\begin{align*}
l_{1} & =\nu_{2}-\nu_{1}+\mu_{1} \tag{5.3}\\
l_{2} & =\mu_{2}-1 \tag{5.4}\\
l_{3} & =\mu_{3}-1 \tag{5.5}\\
n_{1} & =\nu_{1}-1 \tag{5.6}\\
n_{2} & =2 \nu_{2}-\nu_{1} \tag{5.7}\\
n_{3} & =\nu_{2}+\nu_{3}-\nu_{1} . \tag{5.8}
\end{align*}
$$

Then $t \in \mathbb{Z}_{+}^{6}$ and $n_{i} \leq \max \left(l_{i+1}, l_{i+2}\right)$ for all $1 \leq i \leq 3$. Furthermore, by Lemma 5.1, $\sigma\left(G_{t}\right)=\tau$.

Case when $\nu_{1}=\nu_{2}$ and $\nu_{3} \geq 1$.
Define $t=\left(l_{1}, l_{2}, l_{3}, n_{1}, n_{2}, n_{3}\right)$ by $l_{i}=\mu_{i}-1$ and $n_{i}=\nu_{i}-1$ for all $1 \leq i \leq 3$. Then $t \in \mathbb{Z}_{+}^{6}$ and $n_{i} \leq \max \left(l_{i+1}, l_{i+2}\right)$ for all $1 \leq i \leq 3$. Furthermore, by Lemma 5.1, $\sigma\left(G_{t}\right)=\tau$.

Case when $\nu_{1}=\nu_{2}, \nu_{3}=0$ and $\mu_{3} \geq 1$.
We construct G as on Figure 6 by drawing μ_{i} nested loops around each hole i such that:

- the loops around hole 1 are disjoint from the loops around hole 2 ;
- the outermost ν_{1} (resp. ν_{2}) loops around hole 2 (resp. around hole 1) intersect the outermost ν_{1} (resp. ν_{2}) loops around hole 3 .

We also add line segments to make the graph G connected. Then $\sigma(G)=\tau$.

Figure 6: The graph G achieving $\tau=(4,3,4,4,5,7)$. Here $\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=(3,3,0)$.

Case when $\nu_{1}=\nu_{2}, \nu_{3}=0$ and $\mu_{3}=0$.
In that case, by the inequalities (2.1), we have that $\nu_{1}=\nu_{2}=\nu_{3}=\mu_{3}=0$. We construct G by drawing μ_{1} nested loops around hole 1 and μ_{2} nested loops around hole 2 such that the two collections of loops are disjoint and we add a segment to each collection of nested loops to make them connected. Finally we add a single loop surrounding each collection and touching the outermost loop of each collection at a single point, see Figure 7.

Figure 7: The graph G achieving $\tau=(2,3,0,3,2,5)$. Here $\nu_{1}=\nu_{2}=\nu_{3}=0$.

Case when $\nu_{1}>\mu_{1}+\nu_{2}$.
It follows from (2.1) that

$$
\nu_{2}+\mu_{1}-\nu_{1} \geq \mu_{1}-\nu_{3}-1 \geq-1
$$

Hence in the present case, we have $\nu_{1}=\mu_{1}+\nu_{2}+1$ and $\nu_{3}=\mu_{1}$. It also follows from (2.1) and the fact that $\nu_{2} \geq \nu_{3}$ that $\nu_{2}=\mu_{1}$. So $\nu_{1}=2 \mu_{1}+1$ and $\nu_{2}=\nu_{3}=\mu_{1}$.

We construct G by drawing two collections of μ_{2} nested loops around hole 2 and μ_{3} nested loops around hole 3 with intersection depth equal to ν_{1} and adding two line segments to make the graph connected. See Figure 8 for an illustration. Then we have $\sigma(G)=\tau$.

Figure 8: The graph G achieving $\tau=(2,7,6,8,6,7)$. Here $\left(\nu_{1}, \nu_{2}, \nu_{3}\right)=(5,2,2)$.

Acknowledgements

I thank Richard Kenyon for numerous valuable discussions throughout the course of this project, Adrien Kassel for several useful discussions and comments on an early draft of this paper and Pierre Tarrago for a fruitful conversation. I acknowledge the support of the Fondation Simone et Cino Del Duca and the Fondation Sciences Mathématiques de Paris during the completion of this work, as well as the hospitality of the Mathematical Sciences Research Institute in Berkeley, where this work was started during the program on "Random spatial processes".

References

[1] Jean Bertoin, Nicolas Curien, and Igor Kortchemski. Random planar maps and growth-fragmentations. Ann. Probab., 46(1):207-260, 2018.
[2] Nicolas Curien. Peeling random planar maps, 2016. Cours Peccot lecture notes, available at https://www.math.u-psud.fr/~ curien/cours/peccot.pdf.
[3] Vladimir Fock and Alexander Goncharov. Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci., (103):1-211, 2006.
[4] Vladimir V. Fock. Inverse spectral problem for GK integrable system. arXiv preprint arXiv:1503.00289, 2015.
[5] Robin Forman. Determinants of Laplacians on graphs. Topology, 32(1):3546, 1993.
[6] Alexander B. Goncharov and Richard Kenyon. Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. (4), 46(5):747-813, 2013.
[7] Richard Kenyon. Spanning forests and the vector bundle Laplacian. Ann. Probab., 39(5):1983-2017, 2011.
[8] Richard Kenyon. The Laplacian on planar graphs and graphs on surfaces. In Current developments in mathematics, 2011, pages 1-55. Int. Press, Somerville, MA, 2012.
[9] Richard Kenyon. Determinantal spanning forests on planar graphs. Ann. Probab., 2019. To appear.
[10] Richard Kenyon and Andrei Okounkov. Planar dimers and Harnack curves. Duke Math. J., 131(3):499-524, 2006.
[11] Richard W. Kenyon and David B. Wilson. Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs. J. Amer. Math. Soc., 28(4):985-1030, 2015.
[12] Gustav Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys., 148(12):497-508, 1847.
[13] Maxim A. Krikun. Uniform infinite planar triangulation and related timereversed critical branching process. J. Math. Sci., 131(2):5520-5537, 2005.

Département de Mathématiques et Applications, École normale supérieure, 45 rue d’Ulm, 75005 Paris, France

E-mail address: sanjay.ramassamy@ens.fr

