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Abstract

In their study of the densest jammed configurations for theater models,
Krapivsky and Luck observe that two classes of permutations have the
same cardinalities and ask for a bijection between them. In this note we
show that the Foata correspondence provides the desired bijection.

Krapivsky and Luck (2019) introduced the theater model as a variant of
directed random sequential adsorption, where spectators sequentially select a
seat in a row of L seats, with the constraint that they cannot go past a cluster
of b or more consecutive occupied seats. Configurations where all the seats are
eventually occupied are parametrized by permutations σ of {1, . . . , L} such that
for any i between 1 and L, one cannot find b consecutive integers j+1, . . . , j+ b
with j + b < i and σ(j + k) > σ(i) for all k between 1 and b. Krapivsky
and Luck (2019) showed that the number D(b)

L of such permutations satisfies a
linear recurrence relation which implies that they have the same cardinality as
the permutations of L elements with cycles of lengths at most b. The authors
then asked for a bijective proof of this fact.

The goal of this note is to show that the Foata correspondence provides such
a bijection. In Section 1 we recall the Foata correspondence and in Section 2
we show that it provides the desired bijection.

1 The Foata correspondence
Let SL be the group of permutations of {1, . . . , L}. We will represent permu-
tations in SL by words with L distinct letters in {1, . . . , L}. For example 1423
denotes the permutation s ∈ S4 such that s(1) = 1, s(2) = 4, s(3) = 2 and
s(4) = 3.

One can associate to every permutation in SL its cycle decomposition. In-
cluding the fixed points in that decomposition, the above s ∈ S4 has cycle
decomposition [1][243]. This way of writing is however not unique for two rea-
sons:

• each cycle of length d can be written in d different ways (one can freely
choose what element to put first) ;

• if a permutation has k cycles (including singletons corresponding to fixed
points) one can have them appear in k! different orders.
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The Foata correspondence (Foata (1968); Lothaire (1983)) describes a canonical
choice of writing such a cycle decomposition. Firstly we write every cycle by
starting by its maximal element. We call the maximal element of a cycle the
cycle head. For example [243] is written [432]. Secondly, we write the cycles in
increasing order of their cycle heads. For example, the cycle head of [1] is 1 and
the cycle head of [432] is 4 so we write [1][432]. Removing the brackets, we obtain
the word 1432 which can be seen as a permutation. The Foata correspondence
associates to any permutation s ∈ SL the permutation F (s) obtained by writing
the cycle decomposition of s in the above way and removing the brackets.
Remark 1.1. The largest letter to the left of a given letter a in F (s) corresponds
to the cycle head of the cycle to which a belongs in the cycle decomposition of
s. This observation will be used later.

2 Cycle lengths and b-anomalies
Definition 2.1. Let b ≥ 1 be an integer. Let a1 · · · aL denote a permutation
in SL, with L ≥ 1. A consecutive subword ai+1 · · · ai+b is called a b-anomaly if
there exists 1 ≤ j ≤ i such that aj > max(ai+1, . . . , ai+b).

If we draw the point diagram associated with a permutation (which is just
a plot of the graph of the corresponding function from {1, . . . , L} to itself), a
b-anomaly corresponds to b points with consecutive abscissae for which one can
find a point strictly above and to the left of all the b points.

The following result relates the cycle lengths of a permutation s to the b-
anomalies of its image F (s) under the Foata correspondence.

Proposition 2.2. Let b ≥ 1, L ≥ 1 and s ∈ SL. Then s has a cycle of length
at least b+ 1 if and only if F (s) has a b-anomaly.

Proof. Assume s has a cycle of length d ≥ b+ 1. We write it [c1c2 · · · cd] with c1
being the cycle head, that is, the largest element of the cycle. Then the subword
c2 · · · cd of F (s) forms a (d− 1)-anomaly. Any consecutive subword of length b
of this (d− 1)-anomaly provides a b-anomaly.

Conversely, assume F (s) = a1 · · · aL has a b-anomaly ai+1 · · · ai+b. By defi-
nition of the b-anomaly, the set

Xs
i := {j ≤ i|aj > max(ai+1, . . . , ai+b)}

is non-empty, so maxj∈Xs
i
aj is well-defined and equal to some ah. Then by

Remark 1.1, in the cycle decomposition of s, ah is the head of the cycle to
which each ai+k with 1 ≤ k ≤ b belongs, so there are at least b+ 1 elements in
that cycle in s.

As a consequence of Proposition 2.2, in order to obtain the bijection re-
quested by Krapivsky and Luck (2019), it suffices to compose the Foata cor-
respondence with the involution sending every permutation s ∈ SL to s̃ ∈ SL

defined by s̃(i) = L+ 1− s(L+ 1− i) for every i, whereby the point diagram is
rotated by 180 degrees.
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PSL University, 45 rue d’Ulm, 75005 Paris, France

E-mail address: sanjay.ramassamy at ens.fr

3


