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Abstract. M. Sellmann showed that CP-based Lagrangian relaxation
gave good results but the interactions between the two techniques were
quite di�cult to understand. There are two main reasons for this: the best
multipliers do not lead to the best �ltering and each �ltering disrupts the
Lagrangian multiplier problem (LMP) to be solved. As the resolution of
the TSP in CP is mainly based on a Lagrangian relaxation, we propose to
study in detail these interactions for this particular problem. This article
experimentally con�rms the above statements and shows that it is very
di�cult to establish any relationship between �ltering and the method
used to solve the LMP in practice. Thus, it seems very di�cult to select
a priori the best method suited for a given instance. We propose to use
a multi-armed bandit algorithm to �nd the best possible method to use.
The experimental results show the advantages of our approach.

Keywords: Lagrangian Relaxation · Filtering Algorithms · TSP

1 Introduction

Lagrangian relaxation (LR) is a relaxation method which approximates a di�cult
problem of constrained optimization by a simpler problem [4]. It consists in
removing di�cult constraints by integrating them into the objective function.
It is therefore appropriate for solving problems where the constraints can be
partitioned into two parts: a set of constraints that can be easily solved and a
set that contains the other constraints. The constraints of the second group are
moved to the objective, so it remains only constraints that are easy to solve.
The satisfaction of di�cult constraints is achieved by penalizing them in the
objective by introducing a cost for each constraint that measures the distance
to satisfaction and by multiplying this cost by a multiplier. For each set of
multipliers the optimal solution of the LR is a lower bound of the optimal solution
of P , the initial problem, and there is a multiplier set for which this lower bound
is equal of the optimal value of P . Thus, an optimal solution of P can be found
by searching for some multipliers of LR. We can also use the lower bounds
produced by the LR to accelerate the search for an optimal solution of P by
more traditional means such as the use of a branch-and-bound algorithm.

LR is an e�ective method to solve many combinatorial optimization prob-
lems. In particular, it has proven its e�ciency in solving the Traveling Salesman
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Problem (TSP), which consists of �nding a simple cycle of minimum weight
traversing all the nodes of a graph [14]. The LR of the TSP can be de�ned as
follows. The TSP can be seen as the search for a 1-tree (i.e. a node associated
with two arcs joining a spanning tree) of minimum weight such that each node
of the 1-tree has a 2 degree. The search for a minimum weight 1-tree is equiv-
alent to the search for a minimum spanning tree. This problem can be solved
in polynomial time and therefore forms a constraint that we know how to solve.
However, we do not know how to e�ectively combine it with the constraint on
degrees, since the TSP is NP-Complete. The Lagrangian relaxation transfers
these degree constraints into the objective. Thus for each node v, the expression
µi(degree(v)− 2) with µ ≥ 0 is added to the objective, where the degree of v is
expressed as the sum of the arcs taken with v as an endpoint.

The fact that for any set of multipliers µ, the optimal value of the LR is
a lower bound of the optimal value of P can be e�ciently used for removing
some values of variables. Consider UB, an upper bound of the optimal solution
of P (for example any solution of P , therefore not necessarily optimal), and
x = a an assignment, if for x = a the optimal value of the LR is greater than
UB then we can remove a from D(x) since we know that x=a does not belong
to the optimal solution. From this idea, Fahle and Sellmann introduced the
CP-based Lagrangian relaxation [22] which has been used successfully to solve
many problems [23�25, 15, 17, 11, 6�8]. It consists in modeling the problem so
that one or more cost based �ltering algorithms can be used on the easy part of
the problem. Di�cult constraints are moved to the objective function and these
�ltering algorithms are used when looking for good multipliers.

Sellmann then became more interested in the relationship between the LR
and �ltering algorithms [21]. He made two important observations:

� Suboptimal multipliers can be more e�cient for �ltering than the optimal
multipliers for the original problems. Since the search for good multipliers is
important for determining good lower bound, it is necessary to do it. Thus,
it makes sense to perform cost-based �ltering during the optimization of
Lagrangian multipliers.

� It is not clear whether domain reduction should actually take place during
the optimization of the Lagrangian multipliers (i.e. as early as possible or
not?), because the standard approach for the optimization of the Lagrangian
multipliers are not guaranteed to be robust enough to enable a change of the
underlying subproblem during the optimization.

In this paper, we study the impact of suboptimal multipliers on �ltering
algorithms for the TSP, and propose an approach to determine relevant ones.

We can immediately make another observation for the CP-based Lagrangian
relaxation approach. The optimal solution of the initial problem is obtained
by using a branch-and-bound algorithm, thus we are mainly interested in good
lower bounds given by the LR and not by the optimal solutions. In addition, since
we need suboptimal multipliers, we can accept to not compute (or even to not
converge to) the optimal multipliers. This means that it is reasonable to consider
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subgradient optimization algorithms for determining multipliers, because they
give access to suboptimal multipliers and are fast.

Subgradient algorithms work in steps and reoptimize locally the multipliers
according to a certain precision. Thus, determining the appropriate multipliers
is the same as determining the type of precision and the number of internal
multiplier recomputations we want, that is two parameters.

We start by showing that the permanent use of �ltering algorithms does not
lead to good results and reveals a rather disturbing property. Normally, in CP,
when F2, a �ltering algorithm, is added to F1, another �ltering algorithm, all
values eliminated by F1 are also eliminated by the combination of F1 and F2.
However, it turns out that this is not the case when �ltering algorithms are
called more often with CP based-Lagrangian relaxation. This does not help in
determining the right level of �ltering to use! In addition, we show that the
number of values eliminated by �ltering algorithm is, in fact, rather erratic. In
other words, introducing more precision, or making more internal recalculations,
is sometimes better and sometimes worse. This therefore seems to eliminate any
a priori determination of the criteria. Also, we introduce a multi-armed bandit
algorithm to learn the right combination of criteria during solving. The results we
obtain with this method are quite good since they improve the best combination
of parameters that could be obtained globally on a set of instances and are
competitive with the best method for each instance.

The article is organized as follows. We recall some de�nitions. Then we
present the subgradient algorithm we used. We then show the erratic side of
the results we obtain. Next, we introduce the multi-armed bandit algorithm. Fi-
nally, we conclude. Many experimental results are given throughout this article.

2 Preliminaries

Most of the presentations come from [1, 21].

Lagrangian Relaxation. The Lagrangian relaxation (LR) procedure uses the
idea of relaxing some di�cult constraints by bringing them into the objective
function with associated Lagrangian multipliers µ ≥ 0. The application of LR
to a mixed integer program can be de�ned as follows.

Z = min c·x ZLR(µ) = min c·x+ µ(A1·xn− b1)

s.t.

A1·x ≤ b1
A2·x ≤ b2
x ∈ X

−→ s.t.

{
A2·x ≤ b2
x ∈ X

We will denote by LR(P ) the Lagrangian relaxation of the problem P and
by LR(P, µ) the LR of P associated with the multiplier set µ.

Assume that the constraint A1·x ≤ b1 is di�cult to solve whereas constraint
A2·x ≤ b2 is easy. LR moves the �rst one into the objective. If A1·x ≤ b1 is
violated then A1·x > b1 and so d = A1·x − b1 > 0. This value d measures
the distance to the satisfaction of this constraint. The further away the d value
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is from satisfaction, the more the solution must be penalized, so the more the
value of the objective must be increased. On the contrary, the closer it is to
satisfaction, the less the objective should be penalized. As we consider a prob-
lem of minimization, penalizing the objective means increasing it. This result is
obtained by adding the value (A1x− b1) in the objective. Lagrangian relaxation
proposes to use a positive or zero multiplier µ for each constraint introduced in
the objective. The interest of the multipliers is shown by the following property:

Property 1 For any vector µ, the value of ZLR(µ) is a lower bound of Z.

The Lagrangian multiplier problem (LMP) consists of searching for the best
multipliers. The two most popular types of methods for solving it are the subgra-
dient and the bundle methods [12]. This second type of method converges faster
than the previous one. Since we need to use suboptimal multipliers to �lter we
will focus our attention on the �rst type.

CP-based Lagrangian Relaxation. According to Sellmann [21] CP based LR
consists in the following procedure: Assuming we are given a linear optimization
problem that consists in the conjunction of two constraint families A and B
for which an e�cient �ltering algorithm prop(B) is known, we try to optimize
Lagrangian multipliers for A and use prop(B) for �ltering in each Lagrangian
subproblem LR(P, µ).

It is not necessary for constraints A or B to be linear (something that is
not imposed in CP). We need to ensure that the relaxation we calculate for any
multiplier set is a P relaxation. So we just need to be able to make sure that
prop(B) remains valid when the objective becomes that of the LR.

Sellmann de�ned a particular consistency based on the continuous relaxation
of P , but it does not matter in this paper. He also de�ned the following property:

Property 2 Suboptimal multipliers can be more e�cient for �ltering than the

optimal multipliers for the original problems.

This property is explained by the fact that a value x = a can be removed
when the optimal value of P ∧ (x = a) is greater than UB, a given upper bound.
By considering the Lagrangian relaxation we consider the problem LR(P ) and
not LR(P ∧ (x = a)) and there is no reason why the best multipliers for LR(P )
should also be the best for LR(P ∧ (x = a)).

In CP, it is also possible to express the violation of the constraint in di�erent
ways, we can also decide not to measures the distance to the violation. Fontaine
et al. have proposed to avoid counting any value of a relaxed constraint when it
is satis�ed [11]. This is an interesting idea, but since we will relax only equality
constraints we will not detail it here.

TSP model. The TSP consists of the searching for an Hamiltonian path whose
the sum of the cost of its edges is minimum.

The model we use is based on the weighted circuit constraint (WCC) [5] with
some additional structural constraints [2]. The circuit constraint is based on the
famous Held and Karp Lagrangian relaxation of the TSP [14]:
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A 1-tree of a graph G is formed by a node x, two edges having x as an
extremity and a spanning tree of G − x (the graph G in which x has been
removed). Held and Karp proposed to represent the TSP as the search for a
1-tree whose all vertices have a degree two and whose sum of the costs of the
edges it contains is minimum. Searching for a minimum 1-tree is an easy task
because it is related to the search for a minimum spanning tree. However, the
constraints on the degree modify the complexity of the problem. Held and Karp
proposed to use the Lagrangian relaxation on these constraints (the degree of a
node x is expressed as the sum of the arcs taken with x as an endpoint).

Decomman et al. [9] tested di�erent models and concluded that the weighted
circuit constrained gave the best results for the TSP.

Fages et al. [10] tested di�erent strategies and concluded that three strategies
gave similar results that are better than the others. Among them, the best strat-
egy with the additional structural constraints is LCFirstMinReplacementCost.
It consists in selecting the edges by their increasing replacement costs [5] with
the LCFirst policy, which keeps one of the two extremities of the last branch-
ing edge and selects the edges from the neighborhood of the kept node by their
increasing replacement costs.

It can therefore reasonably be considered that the WCC constraint with
structural side constraints used in conjunction with the LCFirstMinReplace-
mentCost strategy is the state of the art of TSP modeling by the CP-based
Lagrangian Relaxation.

Experiments. The algorithms have been implemented in Java 11 in a locally
developed CP solver. The experiments were performed on a Windows 10 machine
using an Intel Core i7-3930K CPU @ 3.20 GHz and 64 GB of RAM. The reference
instances are from the TSPLib [20], a library of reference graphs for the TSP
and the set of instances is the same as in [10]. All instances considered are
symmetrical graphs. The name of each instance is su�xed by its number of
nodes.

3 Subgradient algorithm

As mentioned above, we are trying to calculate multipliers that allow �ltering
algorithms to prune values. Also, we decided to base our study on the search for
multipliers by the subgradient method.

We need to have a �ne control of the subgradient method in order to be able
to study the relationship between multipliers and �ltering algorithms. This is
why we propose a particular calculation of multipliers that is strongly inspired
by the Beasley algorithm [4] which is one of the most widely used. This algorithm
is depicted in Algorithm 1.

In order to be able to measure the impact of subgradient optimization, we
propose to simplify this algorithm, in particular the di�erent loops, and to make
it parametric. The algorithm will be used with a branch-and-bound procedure,
so we do not need to �nd the optimal multipliers.
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Algorithm 1: subgradientSolve algorithm of Beasley
subgradientSolve(LR(P ), Zub)

π ← 2 // subgradient agility
k ← 0; noImprovedCount← 0; ∀r ∈ R : µ0

r ← 0
Zmax ← −∞ // best lower bound so far
do

xk ← solve LR(P, µ) to optimality

Zk ← obj(xk) +
∑

r∈R
µkrobjr(x

k) // optimal value of LR(P )

∆k ← π(Zub−Z
k)∑

r∈R
(objr(xk))2

// compute step

∀r ∈ R : µk+1
r ← max(0, µkr +∆k × objr(xk)) // update multipliers

if Zk > Zmax then

Zmax ← Zk; noImproveCount← 0
if Zmax = Zub then return Zmax //the optimum has been found

else noImproveCount← noImproveCount+ 1
if noImproveCount > 30 then

π ← π/2; noImproveCount← 0

k ← k + 1

while π > 0.005
return Zmax

After many tests, we propose Function parametrizedSubgradient (See
Algorithm 2) which has only two simple loops. The main loop (variable i) deals
with the subgradient agility: at each iteration the parameter is divided by 4.
The number of iterations is given by the n parameter. Inside this loop, so for an
agility value, multipliers are calculated and the �ltering algorithms are called,
via Funtion runPropagation of the solver. It is during the calculation of these
multipliers that a second loop is used (variable j). The content of this loop is a
classical application of the subgradient optimization. The number of iterations
performed is de�ned by the m parameter. It is important to note that during
these calculations the �ltering algorithms are not called. By using the m value
we can determine when to call the �ltering. If m = 1 then the �ltering will be
called systematically after calculating multipliers, whereas with a higher value
we will do calculations without �ltering, so without changing the problem for
which the multipliers are calculated.

The subgradient algorithm (FLR) used by Fages et al [10] in their experi-
ments corresponds to the values of the parameters n = 5 and m = 30 of Algo-
rithm 2 and makes the agility di�erent since it uses the following update formula:
π ← π/β; β ← β/2 with β = 1/2 at initialization. It should also be noted that
Fages et al. repeats the call to the algorithm as long as the lower bound of the
1-tree is increased, which we do not do, as no experiment has shown a signi�cant
gain with this additional repetition.

Table 1 shows that our approach produces much better results. We reproduce
here the best combination of pair (n,m). The gain potential is quite high since
we gain on average a factor of 5.5 in time and 9 in number of backtracks if the
best combination of parameters is found.

We therefore propose to focus on the determination of e�ective parameters.
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Algorithm 2: parameterizedSubgradient algorithm
parameterizedSubgradient(P ,Zub,µ,n,m)

π ← 2 // subgradient agility
k ← 0
∀r ∈ R : µ0

r ← µr // We start with the current values of multipliers
Zmax ← computeLowerBound(LR(P ), µ)
for each i = 1..n do

for each j = 1..m do

xk ← solve LR(P, µ) to optimality

Zk ← obj(xk) +
∑

r∈R
µkrobjr(x

k) // optimal value of LR(P )

∆k ← π(Zub−Z
k)∑

r∈R
(objr(xk))2

// compute step

∀r ∈ R : µk+1
r ← max(0, µkr +∆k × objr(xk)) // update multipliers

if Zk > Zmax then Zmax ← Zk

if Zmax = Zub then return xk

k ← k + 1

runPropagation(P, xk−1, Zub, µ) // trigger the �ltering algorithms
if solver failed then return nil
π ← π/4

return nil

FLR parameterized
Instance time (ms) #bk time #bk

gr96 3113 1372 931 152
rat99 278 46 185 12

kroA100 7305 3726 1792 830
kroB100 23181 10812 1489 622
kroC100 4451 2070 592 90
kroD100 778 240 283 46
kroE100 5604 2316 2684 1112

eil101 337 74 176 18
pr107 9 10 873 90
gr120 1791 578 815 88
pr124 2387 582 1325 374

bier127 728 180 728 88
ch130 10243 3682 1586 394
pr136 160126 48370 68198 10736
gr137 13664 4208 2225 618
pr144 1892 316 941 62
ch150 12350 3514 3110 574

kroA150 63307 17526 5865 1744
kroB150 1194191 319360 335182 79648
brg180 56323 267004 428 30
rat195 732018 178312 78353 13550
d198 93713 24048 32374 2184

kroB200 1393679 288336 134291 16522
gr202 7073 1906 2492 444
pr264 7194 278 6629 326
mean 151829 47155 27342 5214

geo mean 8681 2761 2734 426
sum 3795735 1178866 683457 130354

Table 1. Comparison between LR based on FLR's subgradient algorithm and LR based
on parameterizedSubgradient algorithm; #bk stands for the number of backtracks

The subgradient algorithm (FLR) used by Fages et al [10] in their experi-
ments corresponds to the values of the parameters n = 5 and m = 30 of Algo-
rithm 2 and makes the agility di�erent since it uses the following update formula:
π ← π/β; β ← β/2 with β = 1/2 at initialization. It should also be noted that



8 N. Isoart and J-C. Régin

Fages et al. repeats the call to the algorithm as long as the lower bound of the
1-tree is increased, which we do not do, as no experiment has shown a signi�cant
gain with this additional repetition.

Table 1 shows that our approach produces much better results. We reproduce
here the best combination of pair (n,m). The gain potential is quite high since
we gain on average a factor of 5.5 in time and 9 in number of backtracks if the
best combination of parameters is found.

We therefore propose to focus on the determination of e�ective parameters.

4 LR and �ltering

The parameterizedSubgradient algorithm allow us to study the relationship be-
tween the calculation of multipliers and �ltering by de�ning the parameters n
and m and by observing the solving time and the number of backtracks obtained
to solve the instances of the TSP problems we considered. After some tests it
became clear that we can restrict the values of the parameters n and m to the
set of values {6, 9, 12, 15}. This means that 16 pairs are possible. Surprisingly,
values below 6 do not seem interesting, as well as values above 15 (we often �nd
n = 5 and m = 30 in the literature).

Consider instance ch150 of the TSPLib. If Algorithm 2 with n = 6 andm = 9
is used in conjunction with a static strategy (the arcs are assigned according
to the decreasing value of their cost) then 1778 backtracks are needed to �nd
the optimal solution and to prove the optimality. If the �ltering algorithms are
used all the time, that is when Function runPropagation is called after each
computation of multipliers in Algorithm 2, then 1868 backtracks. This result
shows that using systematically the �ltering algorithms can degrade

the performance in term of pruned values! (The time increases from 4,011
to 12,504 ms). This is counter-intuitive (although explicable in this case) because
usually when you add one �lter to another �lter you potentially eliminate more
values.

The question now is: can a clear relationship between the parameters n and
m and solving time and the number of backtracks be de�ned?

First, we can compute for each pair (n,m) the mean and geometric mean for
all the instances. The following table does not show any particular trend:

n m mean geo n m mean geo
6 6 49987 4100 12 6 30628 3775
6 9 33765 3569 12 9 25195 3690
6 12 33517 3804 12 12 28061 3994
6 15 46999 4037 12 15 29833 3917
9 6 45493 4084 15 6 15134 3268
9 9 23838 3166 15 9 22440 4529
9 12 30855 3775 15 12 20268 4095
9 15 32782 3622 15 15 21554 3847
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Fig. 1. Solving times (in ms with a logarithmic scale) for di�erent instances when:
(top) n = 6 and m ∈ {6, 9, 12, 15}; (bottom) n ∈ {6, 9, 12, 15} and m = 9.

We can also study the impact of some parameters problem by problem (See
Fig. 1). Again, no particular behavior seems to be describable.

The best pair value for each problem is given in Table 2. All pairs appear
to be the best combination for at least one instance. All these observations lead
us to deduce that the behavior of the CP-based Lagrangian relaxation

seems erratic.



10 N. Isoart and J-C. Régin

time (ms) #bk best
Instance min max min max n m

gr96 931 4855 152 1320 15 12
rat99 185 305 12 26 9 6

kroA100 1792 7949 830 2610 6 9
kroB100 1489 6945 622 1914 6 12
kroC100 592 2447 90 376 12 12
kroD100 283 673 46 72 6 12
kroE100 2684 9796 1112 3818 6 15

eil101 176 354 18 50 12 15
pr107 873 1848 90 186 6 12
gr120 815 2024 88 358 15 15
pr124 1325 3932 374 530 6 6

bier127 728 5124 88 1042 9 15
ch130 1586 6230 394 1414 9 9
pr136 68198 134391 10736 25898 15 9
gr137 2225 7310 618 1458 6 12
pr144 941 2292 62 246 9 12
ch150 3110 14050 574 2186 12 6

kroA150 5865 22593 1744 3542 6 6
kroB150 335182 901294 79648 138884 9 9
brg180 428 2010 30 3106 6 15
rat195 78353 243035 13550 36710 9 6
d198 32374 200688 2184 25566 15 15

kroB200 134291 318964 16522 35638 15 6
gr202 2492 12224 444 1164 6 6
pr264 6629 16866 326 508 6 15
mean 27342 77128 5214 11545

geo mean 2734 9086 426 1507
sum 683547 1928199 130354 288622

Table 2. Min and max results and best pairs of parameters for each instance.

5 Multi-armed bandit approach

Since we cannot determine which pair (n,m) will lead to the most value deletion
in Function parameterizedSubgradient, we propose a Multi-Armed Bandit
(MAB) approach, similar to the one proposed by Palmieri et al. [18], to determine
a good pair (n,m).

The Multi-Armed Bandit selector is based on a model de�ned on a set of k
arms and a set of rewards Ri(j), where Ri(j) is the reward delivered when an arm
i has been chosen at time j. A reward re�ects the performance of choosing that
arm. The selection value is based on this reward and the sequence of previous
trials. Usually, the arm having the largest selection value is selected. Two rules
should be respected: if a bad choice is made then the selection value should
prevent us to make this choice at the next step; and if we made good choice then
the selection should help us to make the same choice.

In our case, each pair (n,m) corresponds to an arm. Since n ∈ {6, 9, 12, 15}
and m ∈ {6, 9, 12, 15} there are 16 possibles pairs and so 16 arms. The reward
function is related to the number of deleted values, which correspond to our goal.
We propose to use the UCB1 policy de�ned in [3], which selects the arm i that

maximizes a(i) = Ri +
√

2ln(s)
si

, where s is the current number of selection, si

the number of times i has been selected and Ri is the mean of the past rewards
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of the i arm. This policy prefers the most rewarded arm but also biases the
selection toward less frequently selected arms (this bias factor increases along
the iterations).

The main di�culty is the de�nition of the reward function. We adapt the
one of Gagliolo and Schmidhuber [13] which is designed for resource allocation

and de�ned by: ln(tmax)−ln(ti)
ln(tmax)−ln(tmin)

, where tmax and tmin are respectively the max-

imum and minimum solving time and ti is the time for solving problem i. The
logarithms help to moderate extreme cases.

Experimentally, we obtained the best results with the reward function:

Ri =
ln(pmax)− ln(pi)

ln(pmax)− ln(pmin)
(1)

where

� pi is the number of pruned values if it is greater than 0; otherwise it is equal
to pmax, in order to obtain a reward equals to 0.

� p is the mean of the computed pi.
� pmax = 10 p
� pmin = p/10

The extreme values pmin and pmax are de�ned in relation to the mean because
fewer and fewer values are deleted as variables are instantiated during the search.
Factor 10 was empirically determined.

The detailed results obtained by this algorithm are given in Table 3. The
best and worst pairs are considered per instance and not globally.

Fig. 2 compares the number of backtracks for the parameter pair that gives
the best results on average (i.e. n = 6 and m = 9) with the MAB approach.
Results are given in term of ratio. The gain is clear (a factor 1.5 for the number
of backtracks). However, the solving times gain according to the best pair for
each instance is weaker (around 10%; See Fig. 3). It is important to note that
we know that the pair (6, 9) gives the best results only after we have done all
the experiments. This pair is the best for this given set of instances and it
seems di�cult to generalize this result. The MAB approach does not make any
assumption a priori and can be used for any set of instances. Thus, being able
to obtain results improving the best possible global method without making any
assumption is quite interesting.

The di�erence in gain between the number of backtracks and the solving time
shows that the MAB approach is too focused on the number of pruned values
and sometimes �ltering is not necessary. The combination of solving time and
pruned values is not easy to manage because giving weight to time locally causes
the bandit to select more values with a lower �ltering potential. We have not
found a satisfactory solution combining these two aspects.

Finally, Table 4 compares this part with the LR proposed in Fages et al. [10]
which is the current state of the art. Except for the pr107 instance which is re-
solved very quickly with both approaches, a factor of 4.7 is gained for the average
time and 7.3 for the average number of backtracks with the MAB approach.
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Ratios w.r.t. Ratios w.r.t.
best pair worst pair

Instance time #bk time #bk time #bk
gr96 1454 588 0.6 0.3 3.3 2.2
rat99 172 24 1.1 0.5 1.8 1.1

kroA100 5830 2592 0.3 0.3 1.4 1.0
kroB100 2795 1088 0.5 0.6 2.5 1.8
kroC100 555 128 1.1 0.7 4.4 2.9
kroD100 302 50 0.9 0.9 2.2 1.4
kroE100 6440 2700 0.4 0.4 1.5 1.4

eil101 197 42 0.9 0.4 1.8 1.2
pr107 957 100 0.9 0.9 1.9 1.9
gr120 994 220 0.8 0.4 2.0 1.6
pr124 1763 400 0.4 0.2 2.9 2.6

bier127 1327 270 1.0 1.4 3.0 2.0
ch130 2797 672 0.6 0.6 2.2 2.1
pr136 75592 19376 0.9 0.6 1.8 1.3
gr137 2268 512 1.0 1.2 3.2 2.8
pr144 1354 196 0.7 0.3 1.7 1.3
ch150 4814 1022 0.6 0.6 2.9 2.1

kroA150 9867 2134 0.6 0.8 2.3 1.7
kroB150 344632 78552 1.0 1.0 2.6 1.8
brg180 505 54 0.8 0.6 4.0 57.5
rat195 110230 18474 0.7 0.7 2.2 2.0
d198 59912 9070 0.5 0.2 3.3 2.8

kroB200 156220 23108 0.9 0.7 2.0 1.5
gr202 2339 336 1.1 1.3 5.2 3.5
pr264 9302 508 0.7 0.6 1.8 1.0
mean 32105 6489 0.9 0.8 2.4 1.8

geo mean 3755 741 0.7 0.6 2.4 2.0
sum 802618 162216 1.2 0.8 2.4 1.8

Table 3. Multi-arm bandit approach results.

FLR MAB
time #bk time #bk time ratio #bk ratio

gr96 3113 1372 1454 588 2.1 2.3
rat99 278 46 172 24 1.6 1.9

kroA100 7305 3726 5830 2592 1.3 1.4
kroB100 23181 10812 2795 1088 8.3 9.9
kroC100 4451 2070 555 128 8.0 16.2
kroD100 778 240 302 50 2.6 4.8
kroE100 5604 2316 6440 2700 0.9 0.9

eil101 337 74 197 42 1.7 1.8
pr107 9 10 957 100 0.0 0.1
gr120 1791 578 994 220 1.8 2.6
pr124 2387 582 1763 400 1.4 1.5

bier127 728 180 1327 270 0.5 0.7
ch130 10243 3682 2797 672 3.7 5.5
pr136 160126 48370 75592 19376 2.1 2.5
gr137 13664 4208 2268 512 6.0 8.2
pr144 1892 316 1354 196 1.4 1.6
ch150 12350 3514 4814 1022 2.6 3.4

kroA150 63307 17526 9867 2134 6.4 8.2
kroB150 1194191 319360 344632 78552 3.5 4.1
brg180 56323 267004 505 54 111.5 4944.5
rat195 732018 178312 110230 18474 6.6 9.7
d198 93713 24048 59912 9070 1.6 2.7

kroB200 1393679 288336 156220 23108 8.9 12.5
gr202 7073 1906 2339 336 3.0 5.7
pr264 7194 278 9302 508 0.8 0.5
mean 151829 47155 32105 6489 4.7 7.3

geo mean 8681 2761 3755 741 2.3 3.7
sum 3795735 1178866 802618 162216 4.7 7.3

Table 4. Comparison between FLR and Multi-arm bandit.
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Fig. 2. Comparison of number of backtracks ratio between best and worst pairs and:
(top) n=6 and m=9 (in blue); (bottom) the multi-armed bandit approach (in blue).
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Fig. 3. Comparison of time ratio between the best and worst pairs and: (top) n=6 and
m=9 (in blue); (bottom) the multi-armed bandit approach (in blue).
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6 Related work

The best set of parameters for the subgradient algorithm could also have been
determined with a sampling method similar to Parallel Search Strategy [18]
which aims to determine a priori the best search strategy. This method proposes
to decompose the initial problem into a large number of subproblems consistent
with the propagation, as does the Embarrassingly Parallel Search (EPS) method
[19, 16]. Then, it proceeds by sampling: it randomly draws a set of subproblems.
Then, these subproblems are solved in parallel by setting a timeout correspond-
ing to twice the time of the best method in order to limit the time spent with
"bad" strategies. A Wilcoxon test is �nally applied to eliminate the statistically
worse strategies. All remaining strategies being equivalent, one is chosen that
will be used by EPS to solve the other subproblems.

This approach is di�cult to implement in our case because of the large num-
ber of subproblems it requires. Consider we have k methods to compare and we
set a factor of 2 as timeout. With a con�dence level of 95% and sample size equal
to 30, which is not a good value in general but could be �ne for our purpose,
and if you accept to spend t % of the solving time in the selection of the best
method then it means that the minimum number of elements in the population
should be: pop = 2×30×k

t . For t = 3% and k = 16 we have pop = 32, 000. Unfor-
tunately, it requires a lot of time to decompose some TSP instances into 32,000
subproblems. For instance, the decomposition of kroB150 in more than 30,000
subproblems requires more than 100s, whereas the solving time is around 350s.
This prevent us from using this method in practice for a lot of instances or a
new way to decompose the instances should be found.

The MAB approach can be more easily combined with other approaches.
Here we use the bandit with Lagrangian relaxation, but we could also make
a bandit with the choice of strategy or a bandit linked to another part of the
model without any extra cost brought by the bandit algorithm. This is more
complicated to do with sampling because each sampling takes a certain amount of
time. In addition, the sampling combinations also require increasing the sampling
size to stay within acceptable con�dence intervals.

7 Conclusion

In this article we are interested in the CP-based Lagrangian relaxation and
more particularly in the relationship between Lagrangian multiplying and �l-
tering algorithms. We proposed a parameterized subgradient algorithm, thanks
to which we compared Sellmann's results and observed that the relationship be-
tween multipliers and �ltering seems erratic. We then used an approach based on
a multi-armed bandit algorithm to calculate the best combination of parameters
for each instance. Compared to the best choice that can be made a priori, the
gain in number of backtracks is high, that in time a little less. Compared to the
state of the art, the improvements are strong since we gain on average almost a
factor of 5 in time and more than a factor of 7 in the number of backtracks.
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