

Experimental and theoretical study of bumped characteristics obtained with cylindrical Langmuir probe in magnetized Helium plasma

J Ledig, E. Faudot, J. Moritz, S. Heuraux, N Lemoine, M Usoltceva

► To cite this version:

J Ledig, E. Faudot, J. Moritz, S. Heuraux, N Lemoine, et al.. Experimental and theoretical study of bumped characteristics obtained with cylindrical Langmuir probe in magnetized Helium plasma. Plasma Sources Science and Technology, IOP Publishing, 2020, 29 (3), pp.035007. 10.1088/1361-6595/ab56d2 . hal-02171921

HAL Id: hal-02171921 https://hal.archives-ouvertes.fr/hal-02171921

Submitted on 3 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

¹ Experimental and theoretical study of bumped characteristics ² obtained with cylindrical Langmuir probe in magnetized Helium

3 plasma

J. Ledig,¹ E. Faudot,¹ J. Moritz,¹ S. Heuraux,¹ N. Lemoine,¹ and M. Usoltceva^{1, 2} ¹⁾Université de Lorraine – Institut Jean Lamour, Campus Artem 2 allée André Guinier - BP 50840,

- 54011 NANCY Cedex, France 6
- ²⁾Max Planck Institut für Plasmaphysik Boltzmannstr. 2, 85 748, Garching,
- Germany

Cylindrical Langmuir probe measurements in a Helium plasma were performed and analysed in the presence of a magnetic field. The plasma is generated in the ALINE device, a cylindrical vessel 1 m long and 30 cm in diameter using a direct coupled RF antenna ($v_{RF} = 25$ MHz). The density and temperature are of the order of 10^{16} m⁻³ and 1.5 eV, respectively, for 1.2 Pa Helium pressure and 200 W RF power. The axial magnetic field can be set from 0 up to 0.1 T, and the plasma diagnostic is a RF compensated Langmuir probe, which can be tilted with respect to the magnetic field lines. In the presence of a magnetic field, I(V) characteristics look like asymmetrical double probe ones (tanh-shape), which is due to the trapping of charged particles inside a flux tube connected to the probe on one side and to the wall on the other side. At low tilting angle, high magnetic field amplitude, power magnitude and low He pressure, which are the parameters scanned in our study, a bump can appear on the I(V) in the plasma potential range. We then compare different models for deducing plasma parameters from such unusual bumped curves. Finally, using a fluid model, the bump rising on the characteristics can be explained, assuming a density depletion in the flux tube, and emphasizing the role of the perpendicular transport of ions.

INTRODUCTION 9 I.

Cylindrical Langmuir probes are one of the sim-10 ¹¹ plest device to investigate plasma properties as they ¹² consist of a small metallic wire of length L_p and ¹³ radius r_p , usually made of tungsten, immersed into ¹⁴ the plasma, and submitted to a ramp of voltage. The ¹⁵ collected current by the tip vs. the applied voltage ¹⁶ yields an I(V) probe characteristics, from which ¹⁷ electron density n_e , ion density n_i and temperature ¹⁸ T_e can be derived.

An I(V) curve can be divided in three parts : 19 20 the "ion saturation current" part, the "electron sat-²¹ uration current" and the exponential part^{1,2}. For $_{22}$ strongly negative potentials V applied to the probe 23 (with respect to plasma potential ϕ_n) electrons are ²⁴ repelled and ions accelerated towards the probe, the ²⁵ collected current being the ion saturation current I_i . ²⁶ In the opposite case, $V \gg \phi_p$, only electrons are 27 collected and the measured current at the probe is ²⁸ the electron saturation one I_e . These regions are so 29 called "saturation current" because their mean ve- $_{\rm 30}$ locities saturate at $\langle v \rangle_{\rm max},$ deduced from their veloc-³¹ ity distribution. Actually even in the saturation part, $_{32}$ I keeps on increasing with V, because the sheath ³³ surrounding the probe is growing with the applied ³⁴ potential. Thus, the collecting surface for the accel-³⁵ erated species in the sheath is not the probe surface, ³⁶ but the sheath one. Within the transition region, ³⁷ electrons are repelled according to the Boltzmann ₃₈ factor and $n_e e^{-E/k_B T_e}$, with $E = -e(V - \phi_p)$. An-40 the floating potential, $\phi_{\rm fl}$, defined as the probe po- $_{73} I(V)$ curve, leading to an uncertainty on the deter-

41 tential for which the same amount of ion and elec-⁴² tron are collected, *i.e.* for I = 0. Note that the con-43 vention is to count ion current as negative, and elec-⁴⁴ tron current as positive on I(V) plots.

Determining the plasma parameters on differ-45 46 ent regions listed above requires to use the most 47 appropriate theory for each species. Mott-Smith ⁴⁸ and Langmuir³ proposed the first model to extract ⁴⁹ temperature and density from characteristics using 50 the OML theory (Orbital Motion Limited). This 51 theory exploits mainly the ion part of the charac-52 teristics and was developed with the assumption ⁵³ of large sheaths $(r_p/\lambda_D \ll 1)$, for λ_D the Debye 54 length of the repelled species), large ion mean-free-⁵⁵ path $(\lambda_{i,\text{mfp}}/L_p \ll 1)$ and cold ions $(T_i/T_e \rightarrow 0)$. ⁵⁶ Allen and Bernstein^{4–6} improved this theory, solv-57 ing the Poisson equation within the sheath, which 58 was omitted in the OML theory. But it can lead to ⁵⁹ an overestimation of the ion density by a factor of ⁶⁰ ten⁷. Laframboise extended the model assuming a ⁶¹ velocity distribution function for ions⁸, but this so-62 phisticated approach does not improve the fits of the 63 experimental ion current with respect to the ABR ⁶⁴ (Allen Boyd Reynolds) model⁵.

The presence of a magnetic field changes 65 66 strongly the way particles are collected on the 67 probe: the motion of charged particles can be di- $_{68}$ vided into a longitudinal ($\| \mathbf{B} \rangle$) and a perpendic-⁶⁹ ular (\perp **B**) components, with their own tempera-70 ture. In such magnetized conditions, OML the- $_{71}$ ory still holds⁹⁻¹¹ for ions, but the electron part is ³⁹ other important point of the I(V) characteristic is ⁷² hardly interpretable¹² due to the distortion of the

FIG. 1. Illustration of the double probe model : the widening of the flux tube is here to model the fact that at the end of the vessel magnetic field lines drive away each other.

⁷⁴ mination of ϕ_p and, thus, to a wrong T_e and n_e . Sev-⁷⁵ eral authors^{11,13} emphasized the distortion of the ⁷⁶ characteristics in the presence of **B**, showing that $_{77}$ I_e is much lower compared to the unmagnetized 78 case, because electrons are stuck along magnetic 79 field lines, with a low level of perpendicular trans-⁸⁰ port due to collisions¹⁴ and drain diffusion¹¹ for in-81 stance.

In several papers it was also reported that, in 82 83 some cases, a bump on the characteristics can ex- 123 Introducing the electron saturation current as sturation part¹⁵⁻¹⁸. It was assumed that the bump $_{125} k_B T_e \ln(J_i/J_{e,sat.})/e$, eq.(2) becomes : ⁸⁶ was caused by a density depletion of the flux tube 87 during the probing. Dote developed an OML-like 88 model to explain the presence of the bump^{19,20} and ⁸⁹ suggested the plasma potential to be the bump posi-₉₀ tion; his model however does not match quite well $_{126}$ where $\Sigma = S_{w.}/S_{pr.}$. Finally, the collected current on ⁹¹ with experimental results.

The shape of a I(V) characteristic in a mag-92 93 netized plasma can be approached, excluding the ⁹⁴ eventual bump, by a double probe model: the per- $_{95}$ fectly confined flux tube (which is $\| \mathbf{B} \|$) is connected ⁹⁶ to one hand to the probe, and on the other hand, to ⁹⁷ the wall of the reactor as shown in Fig. 1.

The collected electron current is mainly parallel to \mathbf{B} while the ion current is perpendicular to 99 ¹⁰⁰ **B** so that the lateral surface of the flux tube plays 101 the role of the wall in a classic unmagnetized dis-¹⁰² charge. The magnetized double probe model can ¹⁰⁴ model without magnetic field²¹. The effect of these ¹⁰⁵ ionic perpendicular currents both in $DC^{22,23}$ and in $_{106}$ RF^{24,25} have already been studied for planar probes. ¹⁰⁹ that I-Vs are really sensitive to the r_p/r_L ratio.

110 ¹¹⁶ side is $S_{w.}$, and the section at the probe is $S_{pr.}$ with ¹⁴⁵ the RF–power input in sect.III C, the probe position

¹¹⁷ $S_{\rm pr.} \leq S_{\rm w.}$. We assume constant density in the tube, n_t , and no loss in the perpendicular direction. Thus, ¹¹⁹ the stationary ($\partial_t n = 0$) continuity equation writes :

$$\nabla \cdot \mathbf{J}_{\text{Tot.}} = 0$$
 where $\mathbf{J}_{\text{Tot.}} = \mathbf{J}_e + \mathbf{J}_i$ (1)

120 For homogeneous current density across both ends, ¹²¹ using Gauss's theorem by integrating eq.(1) over 122 the whole flux tube gives :

$$J_{\text{Tot.}}(z=0) \times S_{\text{pr.}} + J_{\text{Tot.}}(z=L_t) \times S_{\text{w.}} = 0$$
 (2)

Ion current density is the Bohm flux,

$$J_i = 0.61 \times en_t c_s$$
 where $c_s = \sqrt{\frac{k_B T_e}{m_i}}$,

and for electron it is given the Boltzmann equilibrium with the local potential,

$$J_e = -\frac{1}{4}en_t \langle v_e \rangle \times \exp\left[e\frac{\phi(z) - \phi_t}{k_B T_e}\right]$$

where $\langle v_e \rangle = \sqrt{\frac{8k_B T_e}{\pi m_e}}$.

st between the exponential part and the electron $_{124} J_{e,sat.} = en_t \langle v_e \rangle / 4$ and the floating potential, $\phi_{fl.} =$

$$\phi_t = \frac{k_B T_e}{e} \ln \left[\frac{\Sigma + \exp(eV/k_B T_e)}{\Sigma + 1} \right] - \phi_{\text{fl.}}, \quad (3)$$

127 the probe is

$$J_{\text{pr.}}(V) = J_{e,\text{sat.}} \exp\left[e\frac{V - \phi_t(V)}{k_B T_e}\right] - J_i. \quad (4)$$

¹²⁸ Thus, using eq.(3) in eq.(4) one will get :

$$J_{\text{pr.}}(V) = J_i \times \frac{\exp(eV/k_B T_e) - 1}{1 + \frac{1}{\Sigma}\exp(eV/k_B T_e)}$$
(5)

¹²⁹ The asymmetric double probe I(V) characteristics 130 from eq.(5) is plotted in fig.2.

131 In this paper, we investigate the general be-103 then be seen as a classic asymmetric double pobe 132 haviour of "bumped characteristics" with respect 133 to several parameters, such as the amplitude of the 134 magnetic field, the gas pressure or the RF power ¹³⁵ input. We also propose a new explanation of ¹⁰⁷ It was shown that the shape of the I(V) curve was ¹³⁶ the bump, with the aim of a better understanding 108 changed by feeding or pumping the flux tube and 137 of Langmuir probe measurements in magnetized 138 plasma. In the first part sect.II, the experimental Here simple asymmetric model is 1D in the z di- 139 set-up and the plasma parameters (mean free paths, 111 rection (see sketch fig.1), the probe is located at 140 Larmor radii, etc.) are detailed. Then the main ex $z_{pr.} = 0$ and the wall at $z_{w.} = L_t$, the length of the z_{41} perimental results are shown in section III, where ¹¹³ flux tube is then L_t and $\mathbf{B} = B \mathbf{e}_z$. The probe po-¹⁴² the behaviour of the bumps was studied with respect ¹¹⁴ tential is at V, the space potential is ϕ_t and the wall ¹⁴³ to the amplitude of the magnetic field in sect.III A, ¹¹⁵ is grounded. The section of the tube on the wall ¹⁴⁴ the angle ϑ between the probe and **B** in sect.III B,

FIG. 2. Theoritical and normalized double probe characteristics for several values of Σ . For $\Sigma \neq 1$ the characteristics are called "assymetric", and for $\Sigma \rightarrow \infty$ they are very similar to classical Langmuir characteristics (S_w is the surface of the whole vessel in that case).

146 with respect to the RF-antenna in sect.III D and fi-147 nally the He pressure in sect.III E. In the follow-¹⁴⁸ ing, sect.III, a method is proposed to determine the 149 plasma temperature and density with conventional 150 methods (when no magnetic field is present). Fi-¹⁵¹ nally, the origin of the bump characteristics is ex-¹⁵² plained thanks to a fluid model in the last section.

EXPERIMENTAL SETUP 153 **II.**

Experiments were performed in the ALINE^{26,27} 154 155 (A LINEar plasma device) reactor (see figure 3 and ¹⁵⁶ 4). The cylindrical chamber is 1 m long and 30 cm 157 diameter. The typical discharges presented here are ¹⁵⁸ generated by a RF-antenna at $v_{\rm RF} = 25$ MHz (but 159 the amplifier frequency can be tuned from 10kHz 160 to 250 MHz), and the RF-power is in the range 20 200 W (though 0 to 600 W is achievable). The 161 ¹⁶² amplifier is directly connected to the antenna (direct ¹⁶³ coupling, so the average potential on the antenna is ¹⁶⁴ 0 V). The cathode is at the center of the vessel has ¹⁶⁵ a radius of 4 cm and is 1 cm thick.

Six circular coils generate an axial magnetic field 166 167 from 0 to about 100 mT (the current in the coils is ¹⁶⁸ in the range 0–200 A). Helium gas was used for ¹⁸⁴ All measurements were performed at z = -60 mm ¹⁶⁹ all discharges with a pressure in the range between ¹⁸⁵ along the axis of the cylindrical chamber and y = 401.2 and 40 Pa for this study, which allows the study 170 ¹⁷¹ from collisionless to collisional regimes.

172 ¹⁷³ used in measurements has a length L_p of 1 cm and a ¹⁸⁹ field lines (see fig.5). $\vartheta \in [0, 6, 12, 18, 40, 94]^{\circ}$ anradius r_p of 75 microns. To enable measurements in 190 gles were used for the study. ¹⁷⁵ a RF plasma, the probe is RF-compensated^{7,28}. For ¹⁹¹ $_{176}$ each I(V) characteristics, a voltage ramp from -70 $_{192}$ to move the probe tip inside a volume (see the red 177 to 70 V is swept 20 times at a frequency of the or- 193 dashed box in figure 6) to get three-dimensional 178 der of 65 kHz. Hence, the measurement frequency 194 measurements of plasma parameters. Solving Biot-179 is much slower than RF-oscillations and all plasma 195 Savart law in the whole vessel gives the magnetic 180 frequencies (ω_c and ω_p), and thus, can be seen as 196 field topology. Figure 6 shows the result of the 181 182

FIG. 3. Photograph of the ALINE plasma device. The cylindrical vessel (2) is 1m long and 30 cm diameter. Six coils (in red) are placed equidistantly along the axis, around the chamber to generate a quasi-homogeneous and uniaxial magnetic field along the axis of the cylinder. The power supplies for the coils and the RF antenna are placed in the rack (1). The antenna is in the middle of the vessel. The arm (3) holding the Hidden Langmuir probe along the vessel's axis was developed by Cryoscan and is able to perform 3D translations (along the axis, up/down and left/right). Note that the arm is always parallel to the axis of the cylinder.

℃RYOSCAN

FIG. 4. Schematic representation of the plasma device designed by Cryoscan. The gas inlet is on the top-right end of the device (on the opposite of the pump).

¹⁸⁶ mm above the antenna. The arm holding the probe 187 is parallel to the axis of the cylindrical vessel, and The cylindrical Langmuir probe Tungsten tip $_{188}$ only the tip is tilted ϑ with respect to the magnetic

Moreover, the arm (see (3) in figure 3) is able "stationary" with respect to the plasma dynamics. 197 computation. Let $\langle B \rangle_{\text{meas}}$ be the averaged modulus The position of the probe tip is given with re- 198 inside the workable volume : in this paper we as-183 spect to the middle of the antenna (y = 0 and z = 0). 199 sume uniaxial (along z, the axis of the reactor) and

FIG. 5. Tilted cylindrical Langmuir probe with an angle $\vartheta = 12^{\circ}$ with respect to **B** (which is assumed homogeneous and constant in the whole probed volume, $\mathbf{B} = \mathbf{Cte}$). The position of the probe is z = 0 and y = 5 mm on this photograph. The value of the angle with respect to the antenna was measured thanks to the open source GeoGebra software.

FIG. 6. Magnetic topology in the ALINE plasma device. The gray rectangle at the bottom represents the RF cathode, the long black rectangle and the narrow line at its end at r = 4 cm represents the probe and its arm at probing position (x, y, z) = (0, 40, -60) mm. The red dashed box delimits the workable volume. White arrows represent the local magnetic field vectors.

201 eraged value being less than 3% in the probed vol- 238 pressure gauge, thus the RF coupled power which ²⁰² ume). In the following $B = ||\mathbf{B}|| = \langle B \rangle_{\text{meas.}}$, and ²³⁹ is sensitive to the pressure may not be exactly the 203 **B** = $B e_7$.

In low pressure conditions, p = 1.2 Pa, the 241 ²⁰⁶ plasma can be considered as collisionless. Indeed ²⁴² presence of a magnetic field as depicted in fig.7-207 after the values listed in table I, electron mean 243 (b) to (d). The slope of the exponential part and 208 free path is greater than the probe dimensions⁶, 244 the electron saturation current one as well as the ra-209 *i.e.* $\lambda_{e,\text{mfp}} \gg r_p$ and L_p . Ions can be consid- 245 tio I_e/I_i are strongly affected by the addition of a ²¹⁰ ered as unmagnetized for the probe since $\rho_{ci} \gg r_p$. ²⁴⁶ magnetic field¹¹. Note that the increase of I_e with ²¹¹ Note that an electron needs a parallel velocity over ²⁴⁷ the magnetic field is due to a better coupling of the $_{212} L_p \omega_{ce}/2\pi \approx 2.8 \times 10^7$ m/s to overfly the probe $_{248}$ RF power and to better confinements. More gen-213 without completing a cyclotron period : at this ve- 249 erally, it can be seen that the overall shape of the $f_{e}(\mathbf{v}) \sim 0$, which means that almost all $f_{e}(\mathbf{v}) \sim 0$, which means that almost all $f_{e}(\mathbf{v}) \sim 0$, which means that almost all $f_{e}(\mathbf{v}) \sim 0$, which means that almost all $f_{e}(\mathbf{v}) \sim 0$, which means that almost all $f_{e}(\mathbf{v}) \sim 0$, which means that almost all $f_{e}(\mathbf{v}) \sim 0$, which means that almost all $f_{e}(\mathbf{v}) \sim 0$. ²¹⁵ electrons complete an entire turn over the length of ²⁵¹ ble probe/tanh-shape ones modelled by eq.(5). For $_{216}$ the probe. The electron collection can thus be seen $_{252}$ small angles ($\vartheta \le 12^{\circ}$), the characteristics even dis-²¹⁷ as the intersection of the "cyclotron disk" ($\pi \rho_{ce}^2$) ²⁵³ play a bump between the exponential and the satu-²¹⁸ with the probe for parallel inclination in collision-²⁵⁴ ration parts. The bump's overshoot amplitude and 219 less regimes.

TABLE I. Plasma parameters for $||\mathbf{B}|| = 100 \text{ mT}$ and p = 1.2 Pa. Note that probe dimensions are $r_p = 75$ μ m and $L_p = 1$ cm, ρ_c is the Larmor radius, λ_{mfp} is the mean-free-path for charged particle/neutral collisions, v_c the cyclotron frequency ($\omega_c/2\pi$), v_p the plasma frequency and v_{col}^N the charged particle/neutral collision frequency^{29,30}.

Quantity		Ions He ⁺	Electrons e ⁻
Т	(eV)	0.026	2 - 4
n	(m^{-3})	$5-50\times10^{15}$	$5-50 imes10^{15}$
ρ_c	(µm)	400	37 - 83
$\lambda_{ m mfp}$	(cm)	1.50	2 - 4.5
v_c	(Hz)	380×10^{3}	3×10^{9}
v_p	(Hz)	$7-23 imes10^6$	$635 - 2000 \times 10^{6}$
$v_{\rm col.}^N$	(Hz)	88×10^3	$38-85 imes10^6$

EXPERIMENTAL STUDY 220

Scans over B, ϑ , RF-power, y-position and pres-221 222 sure were performed and main results are presented ²²³ here. If not specified the probe tip position is set ₂₂₄ by default at y = 40 mm and z = -60 mm, and the 225 pressure at 1.2 Pa.

226 **A**. Influence of the magnetic field

I(V) Characteristics for all inclinations of the 227 228 probe tip have been plotted for several values of $_{229}$ ||**B**|| and for a 200 W-RF power input in fig.7. With-₂₃₀ out magnetic field (fig.7-(a)), the "classical" I(V)²³¹ is recovered, because the plasma is an isotropic 232 medium and the orientation of the probe unimpor-²³³ tant. The slight differences between all six curves 234 come from small variations on the plasma condi-235 tions, due to the fact that the change of inclination 236 requested to open the chamber between each mea-200 constant magnetic field (the deviation from the av- 237 surement (uncertainties within 5% due to the gas 240 same).

> The shape of the I(V) changes drastically in the ²⁵⁵ the change in the slope between the exponential part

FIG. 7. Evolution of the I(V) characteristics at 200 W-RF power, at position y = 40/z = -60 mm with increasing $||\mathbf{B}||$ from 0 (a) to 95 mT (d) for all six ϑ inclinations, 1.2 Pa He. Potential range of the measurements were -70 to +70 V, but the purpose of the study is not the ion part so only the range [0, 70] V is displayed here. Note that the current range changes for each graphs.

256 and the electron saturation regime is emphasized ²⁵⁷ and steeper with larger ||**B**||.

Influence of probe inclination 258 **B**.

259 260 characteristic looks like the "tanh-shape" as ex- 315 figure 9-(b): in the presence of a magnetic field, and ²⁶¹ plained previously. For higher inclination angle, the ³¹⁶ if there is a bump on the characteristic, the density ₂₆₂ electron current does not saturate (due to sheath ex- ₃₁₇ is lower than in the absence of a bump (going from

pansion) and for lower inclination angle, there is a 263 264 bump. The only difference between all these dif-²⁶⁵ ferent cases is the width of the flux tube that scales $_{266}$ as $\sim L_p \sin \vartheta$. The probe area facing magnetic field 267 lines (see fig.5) is written as follows :

$$S_{\text{face}} = \pi r_p^2 \cos \vartheta + \pi L_p r_p \sin \vartheta \tag{6}$$

 $_{^{268}}$ which can be scaled as $S_{
m face} \sim \sin artheta$ because $L_p \gg$ 269 r_p .

For $\vartheta = 0^{\circ}$ at 100 mT, $r_p \approx 2\rho_{ce}$, therefore, the 270 271 probe surface facing the magnetic flux tube is com-²⁷² parable to the "cyclotron area" ($S_{ce} = \pi \rho_{ce}^2$) : in 273 this case of grazing incidence, a bump arises on 274 the measured characteristics. By increasing the an-275 gle, the facing surface increases (whereas the cy-276 clotron area remains constant) and the amplitude of 277 the bump decreases, and even disappears for larger 278 angles. One can suggests that the flux tube nar-279 rowness comparable to the cyclotron area could ex-₂₈₀ plain the bump. However, it remains even if $S_{\text{face}} \gg$ $_{281}$ S_{ce} (when $\vartheta > 5^{\circ}$), therefore another mechanism 282 should be invoked in order to explain the presence 283 of the hump.

We performed a series of experiments with a 284 285 power input in the range 20 - 200 W in order to 286 quantify the evolution of the characteristics with re- $_{287}$ spect to ϑ . Fig.8 shows the evolution of the current ²⁸⁸ at 70 V, $I(V = V_{max} = 70 \text{ V})$ or the "end-current", $_{289}$ against sin ϑ . This end value is used, because the ²⁹⁰ plasma potential is actually unknown, so the com-²⁹¹ parison of the current at plasma potential is not pos-292 sible for now.

293 Without magnetic field (fig.8-(a)), the end*current* is constant for any inclination as explained 294 ²⁹⁵ previously. Moreover by increasing the RF-power, 296 the overall collected end-current also increases, be-297 cause the power also increases the plasma density ²⁹⁸ ($I \propto n_e$) as expected.

In the presence of a magnetic field of 95 mT 299 300 (fig.8-(b)) two regimes are evidenced : the region 301 where there is a bump ($\vartheta \le 12^\circ \Leftrightarrow \sin \vartheta \le 0.21$) 302 and the region with an asymmetric double probe $_{303}$ behaviour (above 12°). In the former region, the $_{304}$ end current is proportional to $\sin\vartheta$, as the width 305 of the magnetic flux tube : the sine dependence of 306 the current collection is verified. But in the "bump 307 region", the collected end-current remains approximatively constant with ϑ for any RF-power. Since ³⁰⁹ the collected current is proportional to the product $_{310}$ of the density with the collecting surface, $n_e S_{\text{coll.}}$ ³¹¹ (assuming $\langle v_e \rangle \sim \langle v_{e,\parallel} \rangle \approx$ Cte.), the increase of the ³¹² angle also increases $S_{\text{coll.}}$, so to keep constant col-313 lected current, the electron density in the flux tube For a probe inclination of 18° , the measured $I(V)_{314}$ should decrease. This is in a good agreement with

FIG. 8. Evolution of the collected current at 70 V with the sine of the inclination angle ϑ without magnetic field (a), and with magnetic field (b) of amplitude 95 mT, 1.2 Pa He. The left region is the "bump region", where a bump is measured ($\vartheta \le 12^{\circ} \Leftrightarrow \sin \vartheta \le 0.21$). The line is a guide for the eye.

FIG. 9. Evolution of the density measured with the method described in the next section, in same conditions as in figure 8 with magnetic field (a) and without magnetic field (b) of 95 mT. As expected, the density is kept approximatively constant in the absence of magnetic field, but we notice a sharp change in the density between the "bump-" and the "no-bump-region" in the presence of magnetic field at higher power. The line is a guide for the eye.

FIG. 10. Evolution of the computed electron temperature (see next section for the used algorithm) with respect to the inclination of the probe at 95 mT magnetic field amplitude. The line is a guide for the eye.

³¹⁸ $n_e \approx 5 \times 10^{15} \text{ m}^{-3}$ with a bump to $n_e \approx 15 \times 10^{15}$ ³¹⁹ m⁻³ without a bump at 200 W RF power). This ³²⁰ density difference is enhanced for higher power. ³²¹ However, for lower power the density remains ap-³²² proximatively constant at all inclinations.

However, the evolution of the electron temper-323 ature with respect to the inclination angle (figure 324 ³²⁵ 10) is impossible to explain straightforwardly. In-326 deed the electron flow collected by the probe is the 327 combination of two populations: the parallel and 328 the perpendicular to B flow, having each its own ³²⁹ temperature (i.e. $T_{e\parallel}$ and $T_{e\perp}$ resp.). Our method 330 gives a kind of average of both. Unfortunately, the ³³¹ electron energy distribution function, which could ³³² help us to understand the plot, is too noisy to be ex-³³³ ploited (even after some filtering such as Stavitzky ³³⁴ Golay, or Fourier analysis). The explanation of this ³³⁵ plot is still an opened question for further studies.

Nevertheless, constant end-current in bump region can also mean there is a surrounding electron
sheath assuming the probe potential is higher than
the plasma potential, and then the effective collecting radius is higher than the probe radius.

341 C. Influence of the RF-power

As shown in the last subsection, increasing RF-³⁴³ power also increases the overall density. To track ³⁴⁴ the bump evolution with RF-power regardless to ³⁴⁵ the density change, it is convenient to normalize ³⁴⁶ the I(V) to the end-current value I(V)/I(70 V). In ³⁴⁷ fig.11 are depicted the normalized probe character-³⁴⁸ istics at $||\mathbf{B}|| = 95 \text{ mT}$ for all inclinations and for ³⁴⁹ several input RF-power, fig.11-(a) to (c).

Although the end current is proportional to the solution of the end current is proportional to the solution control of the end to the solution of the end to the solution removes this dependence and all angles can be compared. The electron saturation part, directly connected to the sheath extension, is then the same solution for every angles, as shown in fig.11 . In fig.11-(a),

FIG. 11. Normalized $I(V)/I(V_{max})$ characteristics at 95 mT, for every inclination angles, 1.2 Pa He. RF-power is fixed at (a) 20 W, (b) 80 W and (c) 200 W. On each graph is also plotted (on dashed lines) the mean saturation linear curve with its slope.

³⁵⁶ for 20 W there is no bump at 12°, contrary to fig.11-357 (b) for 80 W. The current at the bump position is ³⁵⁸ also larger than the end-current in fig.11-(c). More-³⁵⁹ over, the increase of the power increases the ampli-³⁶⁰ tude of the bump and its width.

One can suppose the existence of perpendicu-361 ³⁶² lar (to **B**) RF currents, pumping the flux tube con-³⁶³ nected to the probe: this idea is used to derive ⁴⁰⁰ the plasma and the floating probe potential for cold ³⁶⁴ a fluid model in section IV to recover the bump ³⁶⁵ analytically. In addition, as depicted in fig.8-(b), ³⁶⁶ increasing the power does not increase the end-367 current in the "bump region", corroborating the for-³⁶⁸ mer assumption. These RF currents, when averaged 369 over one RF period, exhibit a net DC perpendicu-³⁷⁰ lar contribution³¹, acting as perpendicular DC cur-⁴⁰² $_{371}$ rents, which have already been investigated in pre- $_{403}$ (z = -60 mm, y = 40 mm), using the approxima-³⁷² vious models^{22,23} to explain the depletion and satu-⁴⁰⁴ tion $\phi_p \approx V_{\text{bump}}$ gives $T_e \approx 1.30 \text{ eV}$ (which is a typ-³⁷³ ration currents of biased flux tubes.

FIG. 12. Photograph from 1.2 Pa He pressure plasma around the RF antenna operating at 100 W with $||\mathbf{B}|| = 80$ mT magnetic field. The magnetic confinement generates this double player plasma aspect around the probe. Far enough from the antenna the density is homogeneous.

374 **D.** Influence of the probe position

The position of the probe is also an important 376 parameter. It is initially placed relatively far from 377 the antenna to have a homogeneous plasma around $_{378}$ the probe. Indeed, near the antenna, the **E** × **B** ef-³⁷⁹ fect is larger and the plasma denser. That is why, 380 there is a thin plasma layer above, and below the ³⁸¹ antenna (see photograph in fig.12). Moreover, at 382 this RF-pulsation ions do not react to the quick potential change near the antenna, whereas electrons 383 $do^{32} (\omega_{pe} > \omega_{RF} > \omega_{pi}).$ 384

To make sure that the inclination of the probe 385 386 does not scan different slices of plasma (i.e. that ³⁸⁷ the plasma is homogeneous in a range of $\pm L_n \sin \vartheta$ ³⁸⁸ around the probing position in the y direction), mea-³⁸⁹ surements along the *y* axis were performed at fixed ³⁹⁰ z = -60 mm position and for $\vartheta = 0^{\circ}$. Power was ³⁹¹ fixed at 100 W-RF, $||\mathbf{B}|| = 80$ mT in 1.2 Pa He plasma. All characteristics in Fig.13 depicted a 392 ³⁹³ bump, where the plotted parameters are the float-³⁹⁴ ing potential $\phi_{\rm fl.}$, the bump potential $V_{\rm bump}$ and the ³⁹⁵ bump current I_{bump} . Dote suggested the bump po- $_{396}$ tential to be near the plasma one 15,19,20 . According ³⁹⁷ to Dote's assumption and using the combined po-³⁹⁸ tential drops in the sheath and the collisionless pre-³⁹⁹ sheath¹, one can write the potential drop between 401 ions $(T_i/T_e \rightarrow 0)$ as:

$$\phi_p - \phi_{\mathrm{fl.}} = \frac{T_e}{2e} \ln\left[\frac{m_i}{2\pi m_e}\right] + \frac{T_e}{2e} = 4.03 \times T_e, \quad (7)$$

with T_e in eV. For all previous measurements at ⁴⁰⁵ ical value in ALINE magnetized, plasma^{26,27}).

FIG. 13. Evolution of measured parameters (floatting potential $\phi_{\text{fl.}}$, bump potential V_{bump} and bump current I_{bump}) along the y axis at z = -60 mm, 100 W-RF, 80 mT and 1.2 Pa (see double arrow \leftrightarrow in fig.12). The gray region represents the region where the probe faces the antenna (antenna extension is $z \in [-40, 40]$ mm and $y \in [-10,0]$ mm), the purple regions represent the denser plasma region (see photograph in fig.12). For comparison $T_e \propto V_{\text{bump}} - \phi_{\text{fl.}}$ is also plotted.

The tilting of the probe does not scan "different 407 408 slices" of plasma and different inclination angles 409 can be compared as shown in fig.13: 1 cm around $_{410}$ the y = 40 mm position, all cited parameters are 411 almost constant. Therefore, the homogeneity hy-412 pothesis (almost constant T_e and n_e in the probing ⁴¹³ area) can be applied in the experimental conditions. ⁴¹⁴ Finally, this last figure also highlights the fact that 415 current and temperature (as defined in eq. 7) in- $_{416}$ creases by a factor of \sim 7 in the bright regions (see ⁴¹⁷ photograph depicted in fig.12), near the antenna.

418 **E.** Influence of the pressure

419 ⁴²⁰ power of 80 W-RF, measurements were performed 422 He pressure range from 1.2 to 40 Pa. All character-423 istics are plotted Fig. 14.

When pressure increases, the bump gets narrower 424 425 and its amplitude diminishes. Above 9.32 Pa, the ⁴²⁶ bumps disappear and the I(V) characteristic turns into an asymmetric double probe one. 427

That's why one can separate the pressure range 428 429 in 2 regimes :

The low collisionnal regime from 1 Pa to 10 430 431 Pa. At these pressures the electron-neutral col- $_{432}$ lision frequency $v_{col.}^{eN}$ is lower than the electron $_{467}$ ⁴³³ plasma frequency v_{pe} , and lower than the electron ⁴⁶⁸ that, when the pressure is increased by a factor of 434 cyclotron frequency v_{ce} (see table I) and of the same 469 40, the maximal current at probe position only in-435 order than the RF frequency. For example at 1 Pa 470 creases by a factor 2. This behaviour denotes a good $_{436}$ $v_{col.}^{eN} \approx 17$ MHz²⁹. In the same way the ion-neutral $_{471}$ confinement of the plasma around the antenna by $_{437}$ collision frequency $v_{col.}^{iN}$ is much lower than the ion $_{472}$ the magnetic field. Indeed, increasing the pressure ⁴³⁸ plasma frequency v_{pi} , and lower than the ion cy-⁴⁷³ brightens the plasma shown in fig.12; however out- $_{439}$ clotron frequency v_{ci} up to 4 Pa so that ions are $_{474}$ side this region the plasma remains more or less the 440 considered as magnetized in the first half of the low 475 same. The only thing that changes is the collision ⁴⁴¹ collisionnal pressure range. In this range the classi-⁴⁷⁶ rate with neutrals at higher density.

FIG. 14. Tridimensionnal representation of the I(V) characteristics in all considered He pressures from 1.2 to 40 Pa for 80 W-RF power and $||\mathbf{B}|| = 80$ mT. In the V = 80V plane are plotted the end currents at ± 70 V and the bump current. In the I = -3 mA plane are plotted the floating and the bump potentials. Last bump is measured at 9.32 Pa. If no bump is measured, I_{bump} corresponds to the point where $dI/dV = \max(dI/dV)$, i.e. the current at "classical" plasma potential.

442 cal perpendicular diffusion falls down and perpen-443 dicular currents are able to deplete strongly the flux 444 tube while the typical scale length of these current 445 is higher than the radius of the probe, which is the 446 case here because $\rho_{ci} \gg r_p$. In a quiet plasma, as 447 we have in ALINE, such a behaviour can be seen, 448 while in Tokamak edge plasma anomalous transport 449 can still prevent the biased flux tubes to deplete.

In the collisionnal regime (P > 10 Pa), $v_{col.}^{eN}$ re-mains lower than v_{ce} and v_{pe} , but much higher than 452 the RF frequency. RF electron current are then low-⁴⁵³ ered by collisions. And ions are no more magne-⁴⁵⁴ tized because $v_{\text{col.}}^{iN} > v_{ci}$, which favours their per-For a magnetic field of 80 mT, and an input 455 pendicular diffusion while ion perpendicular cur-⁴⁵⁶ rent are lowered in the same time, filling the lack ⁴²¹ with a probe parallel to the field line ($\vartheta = 0^{\circ}$) in a ⁴⁵⁷ of density caused by the probe collection and can-458 celling the bump on the characteristics. For the 459 highest pressures, the flux tube for ions disappears 460 and the I(V) looks like an unmagnetized one¹⁴.

> In the intermediate case of partially magnetized 461 ⁴⁶² ions, the I(V) looks like a double symmetric probe 463 characteristics. The electron saturation current col-⁴⁶⁴ lected by the probe depends also on the competition 465 between perpendicular DC and RF currents and the 466 cross diffusion of ions due to collisions.

Another remarkable result depicted in fig.14 is

THEORETICAL APPROACHS 477 IV.

In the first part of this section, we provide a quan-478 479 titative comparison of three different methods used 480 to extract both n_e and T_e from bumped character-481 istics. In a second part, we show by using a fluid 482 model that, the bump in the I(V) curves in a pres-⁴⁸³ ence of a magnetic field, can be explained by mean ⁴⁸⁴ of density depletion within the tube flux connected ⁴⁸⁵ to the probe and to the opposite wall of the reactor.

Density and temperature data processing 486

Extracting electron density and temperature from 487 $_{488}$ I(V) characteristics is far from simple. But if 489 the measurements are done in the presence of ⁴⁹⁰ a magnetic field, the exploitation are even more ⁴⁹¹ difficult. The challenge lies on the presence of 492 the bump, whose existence, shape, location and ⁴⁹³ amplitude depend on several plasma parameters ⁴⁹⁴ ($||\mathbf{B}||, \vartheta, \text{Pwr.}, y, p$) (see sections III A to III E).

The first problem with bumped characteristics is 495 ⁴⁹⁶ the uncertainty on the position of the plasma po-⁴⁹⁷ tential. It is usually found by assuming that, at the ⁴⁹⁸ plasma potential $V = \phi_p$, $dI/dV|_{\phi_p} = \max(dI/dV)$, which is equivalent to $d^2 I/dV^2|_{\phi_p} = 0^{2,3}$ (this is 499 ⁵⁰⁰ called the "classical method" in the following). An-⁵⁰¹ other method based on the intersection of the linear 502 fits of the exponential part and the electron satura-⁵⁰³ tion one has also been suggested and used in a pre-⁵⁰⁴ vious study¹⁷. It was finally suggested that, in the 505 context of bumped characteristics, the bump poten-⁵⁰⁶ tial is at the plasma potential^{15,19}. Thus, three meth-507 ods are available, in order to determine the plasma ⁵⁰⁸ potential and we propose to compare them, for dif-⁵⁰⁹ ferent inclinations, in a single 100 W-RF plasma, sin with $||\mathbf{B}|| = 80$ mT and p = 1.2 Pa, whose charac-⁵¹¹ teristics are depicted in fig.15-(a).

We assume that the best method is the one which 512 ⁵¹³ would exhibit the lowest deviation of the plasma pa-⁵¹⁴ rameters with respect to ϑ . We suppose indeed that 515 the probed plasma slice is the same for all inclina-516 tions.

517 518 we linearised the exponential growth as $I(V) \approx$ 530 the current at plasma potential I_p , floating poten-⁵¹⁹ $a_{\exp}V + b_{\exp}$, and fitted the electron saturation cur- ⁵³¹ tial ϕ_{fl} , magnetic field and probe inclination as 520 rent with the formula:

$$I_e(V) \approx a_{\text{sat.}}V + b_{\text{sat.}} + c_{\text{sat.}}\sqrt{V}.$$
 (8)

⁵²² proach, which gives a relatively good fit with ex- ⁵³⁷ this electron temperature value allows a computa-⁵²³ perimental curves. This equation is only able to fit ⁵³⁸ tion of a gross value of n_e since, at plasma potential, ⁵²⁴ the saturation part, *i.e.* the end of the I(V) — far ⁵³⁹ $I_p = en_e \langle v \rangle S_e/4$. The value of S_e is not the probe 525 from the bump potential range. Only the last 20 540 surface, even at plasma potential (where there is no s26 volts of each I(V) were used for the fitting, see fig. 541 sheath), because of the cyclotron motion. That is 527 15-(a).

FIG. 15. Results of the electron temperature and density calculation on bumped characteristics with the described iterative model : (a) I(V) of plasma at 100 W-RF, 80 mT and 1.2 Pa for different probe inclinations and all methods are represented for the position of ϕ_p (+ classical, \bigstar intersection, \Box bump). The dashed line is the fit of the electron saturation current with respect to equation (8) – (b) and (c) T_e and n_e against inclination angle with collecting surface correction – (d) and (e) T_e and n_e against inclination angle without collecting surface correction, $S_{\text{coll.}} = S_{\text{probe}}$ (T_e remains the same though).

528 We used an iterative method, in order to deter-In the context of the "intersection method" 529 mine both n_e and T_e with the plasma potential ϕ_p , ⁵³² input parameters. First, a raw approximation of signal electron temperature is done, supposing $I \sim I_e \propto$ $_{534} \exp(eV/k_BT_e)$ for $V \le \phi_p$ in the exponential part. 535 Applying a linear fit on $\ln I(V)$ one will find a first ⁵²¹ with the \sqrt{V} term similar to one of the OML ap- ⁵³⁶ value of T_e . From now one starts the iterative loops: ⁵⁴² why it is assumed that the collecting surface is the

⁵⁴³ probe surface facing **B** plus a layer thick of $N_{\rm elr.}\rho_{ce}$ 544 (i.e. some Larmor radii – $N_{\rm elr.}$ being the number of 545 electron Larmor radii connected to the probe):

$$S_e = \pi \cos \vartheta \times (r_p + N_{\text{elr.}}\rho_{ce})^2 + \pi L_p \sin \vartheta \times (r_p + N_{\text{elr.}}\rho_{ce})$$
(9)

546 by replacing $r_p \rightarrow r_p + N_{\rm elr.} \rho_{ce}$ in eq.(6). It is as-547 sumed that this equation takes into account the per-548 pendicular motion of electrons along the magnetic 549 field lines connected to the probe.

With T_e and n_e , it is possible to compute the elec-550 ⁵⁵¹ tron Debye length λ_{De} and the ion sheath thickness using the Child-Langmuir law (since $\rho_{ci} \gg r_p \sim \rho_{ce}$ ⁵⁵³ and that Zhu's corrections³³ for cylindrical geome-554 try only bring minor changes in opposition to its 555 complexity), knowing,

$$\ell_{\rm CL} = \frac{\sqrt{2}}{3} \lambda_{\rm De} \left(2e \frac{|\phi_p - V|}{k_B T_e} \right)^{3/4} \tag{10}$$

⁵⁵⁶ for $V \leq \phi_p$. Since ions are supposed unmagnetized, 557 the collecting area for ions is

$$S_i = \pi (r_p + \ell_{\rm CL})^2 + 2\pi L_p (r_p + \ell_{\rm CL}).$$
(11)

It is then possible to compute the ion current 558 559 for $V \leq \phi_p$, using the Bohm flux formula, $I_i =$ $_{560}$ 0.61 × $en_ec_sS_i$. So, the updated electron current $_{601}$ bump on I(V) characteristics could be induced by $_{561}$ $I_e = I(V) - I_i$ can be calculated. Taking again the $_{602}$ density depletion within the flux tube. ⁵⁶² log-scale of this new electron current gives a new ⁵⁶³ more accurate value of T_e . The loop starts over ₆₀₄ probe to the reactor's wall is filled by electrons us- $|T_e^{\text{new}} - T_e^{\text{old}}| \le \varepsilon, \varepsilon$ being given by the user).

⁵⁶⁷ resp.) take into account the sheath extension for $_{608}$ thanks to collisions with neutrals. During a I(V)₅₆₈ magnetized electrons and unmagnetized ions. To ₆₀₉ measurement for $V > \phi_p$, one pumps the electrons 569 take into account the inclination of the probe, and 610 inside the flux tube, which makes the local elec-570 find reliable plasma parameters, one should also 611 tron density decreases. If the pumped electron cur-⁵⁷¹ multiply the total current by a geometric factor of ⁶¹² rent is larger than the refill perpendicular one, then $_{572} \pi r_p^2/S_{\text{face}}$ from eq.(6) giving a dimensionless fac- $_{613}$ the collected current at the probe decreases with $_{573}$ tor of $1/(\cos\vartheta + [L_p/r_p] \times \sin\vartheta)$. This allows the $_{614}$ phi (the bump origin). But when the probe poten-574 recovering of the same amplitude for all bumped 615 tial is increased further, the sheath extent around it $_{575}$ I(V). The extracted values of n_e and T_e are plot- $_{616}$ also increases, which artificially makes the cylindri-576 ted in fig.15-(b) and (c) using this correction, and 617 cal flux tube diameter wider. Consequently, when 577 plotted in fig.15-(d) and (e) without the correc- $_{618} V \gg \phi_D$, the electron perpendicular current com- $_{578}$ tion (n_e strongly decreases with the angle). From $_{619}$ pensate the pumped one and the collected current ⁵⁷⁹ Fig. 15-(b) and (c) it is clear that the classical ϕ_{p} - ⁶²⁰ increases again. Now for larger incidences, the per-580 determination method gives the more reliable val- 621 pendicular current always overcomes the pumped $_{581}$ ues of temperature and density (the deviation of T_e_{622} one, which explains the experimentally observed ⁵⁸² values between each inclination is negligible com-⁶²³ disappearance of the bump for $\vartheta > 12^{\circ}$. ⁵⁸³ pared to other methods). We have then $T_e \approx 1.2 \text{ eV}$ ⁶²⁴ In the meantime, there is another mechanism inmodel) and $T_e^{\text{OML}} = 2.69 \text{ eV}$, which are overesti- 629 been invoked to explain the early electron satura-⁵⁸⁹ mated compared to the previous method.

FIG. 16. Sketch of the fluid model. The flux tube is delimited by the dashed line. The inclination ϑ is 0° .

590 By comparison, in the absence of magnetic field, ⁵⁹¹ the bump method to find the plasma potential makes ⁵⁹² no sense (since there is no bump) and both classi-⁵⁹³ cal and intersection methods are alike and give the ⁵⁹⁴ same value of the plasma potential. Therefore the 595 self-consistent algorithm gives an electron density $_{596}\,$ of the order of $5.32 \times 10^{15}~m^{-3}$ and an electron tem-597 perature of 3.47 eV (for the same discharge param-⁵⁹⁸ eters as with $||\mathbf{B}|| \neq 0$).

599 **B.** Fluid model approach

As suggested by Mihaila and Rozhansky^{16,23}, the 600

603 The cylindrical flux tube connected from the 564 again, and ends if temperature values converge (i.e. 605 ing a single channel, which is the lateral area of ⁶⁰⁶ the cylinder. Due to magnetic confinement and for Equations giving S_e and S_i (eqs. (9) and (11) 607 grazing incidences, the perpendicular current arises

⁵⁸⁴ and $n_e \approx 1.3 \times 10^{16}$ m⁻³. Since the OML model ₆₂₅ volving mainly ions: it is the plasma pumping via ⁵⁸⁴ and $n_e \approx 1.5 \times 10^{-11}$ m⁻¹. Since the other model ⁶²⁵ vorting manny tons, it is the product product of the positive bias-⁵⁸⁵ remains valid in RF-plasmas³⁴, and that ions are ⁶²⁶ perpendicular ion current due to the positive bias-⁵⁸⁶ unmagnetized, we extracted $n_i^{OML} = 1.74 \times 10^{17}$ ⁶²⁷ ing of the flux tube with respect to the surround-⁶²⁷ ing of the flux tube with respect to the surround-⁶²⁸ bias-⁶²⁷ ing of the flux tube with respect to the surround-⁶²⁸ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁰ bias-⁶²⁰ bias-⁶²⁰ bias-⁶²⁰ bias-⁶²⁰ bias-⁶²¹ bias-⁶²² bias-⁶²² bias-⁶²³ bias-⁶²⁴ bias-⁶²⁵ bias-⁶²⁵ bias-⁶²⁶ bias-⁶²⁶ bias-⁶²⁷ bias-⁶²⁷ bias-⁶²⁸ bias-⁶²⁸ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁹ bias-⁶²⁰ bias-⁶²⁰ bias-⁶²⁰ bias-⁶²¹ bias-⁶²² bias-⁶²² bias-⁶²³ bias-⁶²⁴ bias-⁶²⁵ bias-⁶²⁵ bias-⁶²⁶ bias-⁶²⁶ bias-⁶²⁷ bias-⁶²⁷ bias-⁶²⁸ bias-⁶²⁸ bias-⁶²⁹ bias- $_{587}$ m⁻³ (which is within the typical errorbar for OML $_{628}$ ing plasma potential. This mechanism has already ₆₃₀ tion of the I(V) characteristics in the case of planar

 $_{631}$ probe²³ in magnetized plasmas. The typical scale $_{683}$ contains the electron flux tube of radius $\rho_{ce} \ll \rho_{ci}$). 632 length of these perpendicular ion currents is the ion 684 Due to their cyclotron motion, electrons are trapped 633 gyroradius. To explain the bump, this mechanism 685 in both ion and electron tubes and can only leave 634 can be divided in three regimes occurring when the 686 them through the ends, producing a parallel net cur-635 probe potential overcomes the plasma potential:

- 636 ion current is lower than the electron sat-637 uration current collected by the probe, the 638 space charge of the sheath is electropositive 639 and consequently the flux tube potential "fol-640 lows" the probe potential. The density deple-641 tion can first appear in that regime. 642
- 2. When the transverse ion current is exactly 643 equal to the electron saturation current col-644 lected by the probe, the sheath between the 645 probe and the flux tube disappears and the 646 collected current can decrease because the 647 flux tube density decreases with the probe po-648 tential. 649
- 3. Finally when the transverse ion current is 650 higher than the electron saturation current 651 collected by the probe, electrons must be ac-652 celerated in the sheath to balance the ion cur-653 rent and thus the sheath drop is reversed. The 654 sheath space charge becomes electronegative 655 and the flux tube potential tends to saturate 656 compared to the probe potential. This regime 657 accounts for long and thin flux tube. 658

Nevertheless, plasma diffusion is more and more 659 ⁶⁶⁰ efficient as the flux tube is widening. So in the third regime, with the saturation of the flux tube poten-661 662 tial, the pumping also saturates and the density de-663 pletion can be cancelled resulting in a classical in-₆₆₄ crease of the current in the last part of the I(V) char-665 acteristics (beyond the bump).

Finally there is an optimum point for which the 666 ⁶⁶⁷ pumping is maximum compared to cross diffusion, and this is at this working point the bump appears to ⁶⁶⁹ be the higher because of the strong negative slope 670 just following the maximum of the bump. Actu-671 ally, the bump does not mean there is an increase of $_{672}$ current compared to an I(V) characteristics with no 673 bump, on the contrary it means a decrease of cur-674 rent.

The complexity of the phenomenon can only be 675 676 explained by a mass and current conservation tak-677 ing into account the growing of the flux tube radius 678 with the potential.

The model: 679

⁶⁸⁷ rent of $J_{e,\text{sat.}} \times \pi R_0^2$. To ensure current and quasi-688 neutrality conservation in the ion tube, there must 1. When the transverse (perpendicular to \mathbf{B}) 689 be a perpendicular ion flux through the cylindrical ⁶⁹⁰ surface so that, $J_{i,\text{sat.}} \times 2\pi R_0 L \approx J_{e,\text{sat.}} \times \pi R_0^2$. In ⁶⁹¹ this regime, where the perpendicular current can ⁶⁹² be higher than the electron saturation current on ⁶⁹³ the probe, the potential gap can reverse in front ⁶⁹⁴ of the probe (electronegative sheath) accelerating 695 electrons and repelling ions. Thus, one can ne-⁶⁹⁶ glect the parallel ion flux on the probe side (in the ⁶⁹⁷ case of an electropositive sheath, the ion current on ⁶⁹⁸ the probe surface can also be neglected compared 699 to electron current, still assuming that the electron ⁷⁰⁰ current is close to its saturation value).

> 701 In the following we use current continuity for ⁷⁰² ions in order to obtain a first order ODE that gives ⁷⁰³ the density of the flux tube with respect to the probe 704 potential. Using Laframboise's theory, this tube 705 density (or "local plasma density") gives the elec-706 tron fraction that will be collected by the probe re-707 garding its potential V. An analytic expression of ⁷⁰⁸ the collected current can be then provided.

> As shown in the last sections, the pumping is 709 710 enhanced by perpendicular (to B) RF and DC 711 currents^{21,22}. But periodic RF current can be re-712 duced to an averaged DC over one a period. That is 713 why the model is steady state, and only DC quan-714 tities are considered. Finally, to prevent the tube 715 density to drop to zero, we assume the presence of ⁷¹⁶ a source term S_0 , so that,

$$\iiint_{\text{tube}} S_0 \, \mathrm{d}\tau = 2 \times \pi R_0^2 \times \frac{1}{2} n_0 \langle v_e \rangle, \qquad (12)$$

⁷¹⁷ where n_0 is the bulk plasma density (outside the ion ⁷¹⁸ flux tube region) and n_t , the ion flux tube density $_{719}$ $(n_0 \ge n_t)$. This term fills the tube at the same rate 720 electrons leave it from both ends (which is an overestimation of the "real" S_0 source term).

From the stationary ion continuity equation, we 722 ⁷²³ have $\nabla \cdot \Gamma_i \sim \nabla \cdot \Gamma_{i,\perp} = S_0$. Perpendicular ion flux ⁷²⁴ is separated in two parts : lateral mobility $-\mu_i n_t \nabla \phi$ ⁷²⁵ and the diffusion flux $-D_{\perp}\nabla n_t$. Integration of all 726 ion fluxes through the whole tube using Gauss's law 727 gives:

$$\frac{n_0 \langle v_e \rangle}{2L} R_0 = -\left(D_\perp \left. \frac{\partial n_t}{\partial r} \right|_{R_0} + n_t \mu_i \times \left. \frac{\partial \phi}{\partial r} \right|_{R_0} \right)$$
(13)

728 In the presence of a strong radial electric field (and 729 especially in a cold plasma), the ion drift veloc-Rozhansky *et al.*²³ showed that the ion flux tube ⁷³⁰ ity is larger than the thermal velocity, thus $\rho_{ci} = \frac{1}{2}$ has a characteristic radius of $R_0 \sim \rho_{ci}$, and a length ⁷³¹ $\nu_{\perp}/\omega_{ci} = (v_{\text{drift}}^2 + v_{i,\text{Th.}}^2)^{1/2}/\omega_{ci} \sim |v_{\text{drift}}|/\omega_{ci} = \frac{1}{2} L$ (this ion flux tube connected to the probe also ⁷³² $-\partial_r \phi / B\omega_{ci}$ (all at R_0). Recalling that $R_0 \sim \rho_{ci}$,

733 equation (13) rewrites as,

$$\frac{n_0 \langle v_e \rangle}{2LB\omega_{ci}} \times \frac{\partial \phi}{\partial r} \Big|_{R_0} = \left(D_\perp \left. \frac{\partial n_l}{\partial r} \right|_{R_0} + n_l \mu_l \times \left. \frac{\partial \phi}{\partial r} \right|_{R_0} \right)$$
(14)

⁷³⁴ Now using the chain rule, $\partial n_t / \partial r |_{R_0} = \partial n_t / \partial \phi \times$ $_{735} \partial \phi / \partial r |_{R_0}$, one will get the following first order ⁷³⁶ ODE at the radius $r = R_0$:

$$\frac{\partial n_t}{\partial \phi} = -\frac{\mu_i}{D_\perp} n_t + \frac{n_0 \langle v_e \rangle}{2\omega_{ci} B L D_\perp}$$
(15)

737 The perpendicular mobility can also be written as a 738 conductivity depending on the current nature (col-739 lision, inertial, viscosity, anomalous,...). With the ⁷⁴⁰ initial condition of $n_t(\phi = \phi_p) = n_e$ since there is ⁷⁷⁴ 741 no sheath nor spatial potential variation at plasma 775 data in figure 17 for a magnetic field of 57, 70 and 742 potential, one will get :

$$n_t(V) = n_{\infty} + (n_0 - n_{\infty}) \exp\left[\frac{\mu_i}{D_{\perp}}(V - \phi_p)\right],$$
 (16)

⁷⁴³ where V is the probe potential and $n_{\infty} = n_0 \times \tau_{\text{FI}}$ to 5 with increasing $||\mathbf{B}||$ in Eq. (9). The limit den- $_{744} \langle v_e \rangle / 2\mu_i B\omega_{ci} L$. Here we assumed that the flux tube $_{782}$ sity in the flux tube, n_{∞} is close to $n_0/10$: that 745 potential equals the probe one. Although generally, 783 means that the measurement heavily depletes the 746 $\phi_t = f(V) \ge V > \phi_p$.

747 748 density with V. This strong depletion of the flux 786 as proposed by Dote and Mihaila : the pumping ⁷⁴⁹ tube as soon as the biased potential of the tube ⁷⁸⁷ mechanism starts when $V > \phi_p$ according to the 750 is higher than the surrounding plasma potential is 788 theory. Since electrons are way much mobile than $_{751}$ needed to see the bump rising. For lower decay $_{789}$ ions along *B*, as soon as the probe potential is above ₇₅₂ (for ex. $\sim 1/(V - \phi_p)$ or $\sim 1/(V - \phi_p)^2$) the bump ₇₉₀ the plasma potential, electrons of the flux tube are 753 does not appear because of the expansion of the 791 flushed towards the probe. Moreover, as pointed out ⁷⁵⁴ sheath which increases the lateral surface of the flux ⁷⁹² by eq.(3), the flux tube itself has its own potential 755 tube and hence the total perpendicular current more 793 (slightly above the bulk plasma potential) since it is ⁷⁵⁶ rapidly that the density is depleted. This also ex- ⁷⁹⁴ connected to the probe and thus somehow biased. 757 plains why at higher probe potential value, when 795 ⁷⁵⁸ the exponential decay saturates, the current rises up ⁷⁹⁶ eter is actually the probe surface facing the mag-759 again due to sheath expansion. Actually there is a 797 netic field lines (i.e. the width of the magnetic flux $_{760}$ competition between the diffusion D_{\perp} accross the $_{798}$ tube). Therefore, a bump could appear on a plane 761 lateral surface of the tube versus the perpendicular 799 probe characteristics or a spherical probe character- $_{762}$ current due to ion mobility μ_i as it can be seen in $_{800}$ istics as well, if the facing surface is small enough 763 equation 16.

Next to fit the sheath expansion above V_p in a $_{802}$ a radius of the order of ρ_{ce} . 764 765 magnetic field parallel to the probe, one uses the ⁷⁶⁶ Laframboise⁹ model which showed that the portion 767 of plasma density actually touching a probe and 803 V. CONCLUSION ⁷⁶⁸ thus collected, $n_{\rm eff.}$, is given by the relation,

$$n_{\rm eff.}(\xi) = \frac{2n_t(\xi)}{\sqrt{\pi}} \left[\sqrt{\xi} + \frac{\sqrt{\pi}}{2} e^{\xi} {\rm erfc} \sqrt{\xi} \right] \quad (17)$$

770 rent on the probe is simply given by

$$I_e(V) = \frac{1}{2} e n_{\text{eff.}}(V) \times \langle v_e \rangle S_e$$
(18)

 $_{772}$ tron Larmor radii ($N_{elr.}$) is given as fitting parame- $_{813}$ charge parameters (magnetic field amplitude, probe 773 ter.

FIG. 17. Comparaison of the 1D fluid model with the experiment. Probe had $\vartheta = 0^{\circ}$ inclination angle in 200 W-RF plasma at 1.2 Pa for several ||**B**||.

This model is compared with the experimental 776 100 mT in a 200 W-RF and 1.2 Pa Helium plasma (the probe was parallel to **B**). For $V < \phi_p$ the expo-778 nential $J_{e, \mathrm{sat.}} imes \exp(e(V-\phi_p)/k_BT_e)S_e$ part of the 779 electronic current is considered.

The number of Larmor radii, $N_{\rm elr.}$ goes from 0.1 780 784 magnetic flux tube. Moreover, the model suggests Equation 16 exhibits an exponential decay of the 785 that the plasma potential is on the top of the bump

> Finally, according to this theory, the prior param-801 corresponding more or less to a disk surface having

Langmuir probe measurements in the presence of 804 ⁸⁰⁵ a magnetic field are of a paramount importance in ⁸⁰⁶ plasma physics. Understanding and exploiting I(V)T69 for $\xi = e(V - \phi_p)/k_B T_e$. Finally, the collected cur- 807 characteristics from a cylindrical Langmuir probe ⁸⁰⁸ in such conditions is difficult, especially due to the ⁸⁰⁹ presence of a bump in the curves for grazing inci-⁸¹⁰ dences of the cylindrical probe with respect to the ⁸¹¹ magnetic field lines. In this paper, the evolution of $_{771}$ where S_e is given by eq.(9), and the number of elec- $_{812}$ the I(V) characteristics with respect to several dis-814 inclination, and pressure) was studied, in order to

⁸¹⁵ provide a better understanding of cylindrical Lang-⁸⁷¹ ACKNOWLEDGEMENTS ⁸¹⁶ muir probe measurements in magnetized plasmas.

We showed that the presence of the magnetic 872 817 sill field changes the general shape of the I(V) curves, ⁸¹⁹ because of the breaking-up of the plasma isotropy: ⁸²⁰ the particles are not collected by the probe from all possible directions anymore but from a flux tube, 821 connected to it from one end, and to the reactor's 822 wall to the other. That is why the general shape 823 824 of the characteristics tends to an asymmetric dou-⁸²⁵ ble probe (or tanh-shaped) one. We also showed 826 that for grazing incidences of the probe with respect to *B*, a bump arises between the exponential 827 part and the electron saturation current one. The 828 bump vanishes as the probe inclination is increased, 829 or if the magnetic field amplitude is reduced. It 830 ⁸³¹ is also dependent on collisional processes, because ⁸³² its amplitude decreases, when the gas pressure in-⁸³³ creases. Finally, increasing the RF-power at the an-⁸³⁴ tenna heightens the bump amplitude, and can even ⁸³⁵ make one appearing on the characteristics.

We argued that a probe measurement pumps 836 837 electrons from their flux tube while ions are ex-⁸³⁸ pelled in the perpendicular direction (the electron ⁸³⁹ current is mainly parallel to magnetic field lines). This density depletion as soon as probe potential 840 *V* overcomes the plasma one ϕ_p (*i.e.* as the probe 841 ⁸⁴² starts to attract electrons) can explain the presence ⁸⁴³ of the bump. This hypothesis is strengthened by ⁸⁴⁴ the pressure effects on the probe measurements: ⁸⁴⁵ increasing the gas pressure (thus increasing collisions and therefore, perpendicular diffusion fluxes), 846 makes the bump vanish. By using a fluid model, 847 we corroborated the pumping mechanism of den-848 ⁸⁴⁹ sity (due to a competition between mobility and ⁸⁵⁰ diffusion) and validated the assumption of density 851 depletion in the flux tube connected to the probe. ⁸⁵² Nevertheless this assumption is not enough to make ⁸⁵³ appear the bump, the density decay in the flux tube ⁸⁵⁴ must be stronger than the perpendicular expansion $_{855}$ of the flux tube with V, that is why the exponential 856 decay from our model is needed.

We have finally compared different methods for 857 extracting both n_e and T_e from bumped characteristics, which are not very usual in the con-859 ⁸⁶⁰ text of probe measurements. We showed that the classical method of plasma potential determination 861 (where dI/dV is maximum) stays the most repro-862 ⁸⁶³ ducible method to access this important parameter, ⁸⁶⁴ although previous studies argued that the plasma ⁸⁶⁵ potential coincides with the bump one. A lot of ⁸⁶⁶ work is still needed to provide a complete theory ⁸⁶⁷ that exploits bumped characteristics, especially to ⁸⁶⁸ know the good collecting surfaces of the probe, and the good mobility and diffusion parameters to put 933 ²⁵P. Verplancke, R. Chodura, J. Noterdaeme, and M. Weinlich, 870 in the model.

This work has been carried out within the frame-873 work of the French Federation for Magnetic Fusion 874 Studies (FR-FCM) and of the Eurofusion consor-875 tium, and has received funding from the Euratom 876 research and training programme 2014-2018 and 877 2019-2020 under grant agreement No 633053. The 878 views and opinions expressed herein do not neces-⁸⁷⁹ sarily reflect those of the European Commission.

- ¹M. A. Lieberman and A. J. Lichtenberg, Principles Of Plasma 880 Discharges And Materials Processing, edited by Wiley (Wiley 881 - Interscience, 2005).
- ²F. Chen, Introduction to Plasma Physics and Controlled Fu-883
- sion, edited by N. Y. Academic Press Inc. (Springer US, 1984). 884 885 ³H. M. Mott-Smith and I. Langmuir, Physical Review 28, 727 886 (1926).
- ⁴J. Allen, R. Boyd, and P. Reynolds, Plasma Sources Science 887 And Technology 18, 035012 (2009). 888
- ⁵J. Allen, Physica Scripta **45**, 497 (1992). 889
- ⁶I. B. Bernstein and I. N. Rabinowitz, Physics Of Fluids 2, 119 890 (1959). 891
- ⁷I. D. Sudit and R. C. Woods, Journal of Applied Physics 76, 892 4488 (1994). 893
- ⁸J. Laframboise, UTIAS Report 10, 1 (1966). 894
- ⁹J. G. Laframboise and L. W. Parker, Physics Of Fluid 16, 629 895 (1973).
- ¹⁰J. G. Laframboise and J. Rubinstein, Physics Of Fluid **19**, 1900 897 898 (1976).
- ¹¹D. Bohm, E. Burhop, and H. Massey, "The use of probes for 899 plasma exploration in strong magnetic fields," (MCGraw-Hill, 900
 - New York, 1949) Chap. 2.
- ¹²F. Chen, C. Etievant, and D. Mosher, Physics Of Fluids 11, 811 (1968). 903
 - ¹³T. K. Popov, M. Dimitrova, P. Ivanova, J. Kovacic, T. Gyer-
- gyek, R. Dejarnac, J. Stocke, M. A. Pedrosa, D. Lopez-Bruna, 905 and C. Hidalgo, Plasma Sources Science and Technology 25,
- 033001 (2016). 907
- ¹⁴J. Moritz, E. Faudot, S. Devaux, and S. Heuraux, Physics Of 008 Plasmas 25, 013534 (2018). 909
- ¹⁵T. Dote and H. Amemiya, Journal Of The Physical Society Of Japan 19, 1915 (1964). 911
- ¹⁶I. Mihaila, M. Solomom, C. Costin, and G. Popa, Contribution Of Plasma Physics 53, 96 (2013). 913
- ¹⁷M. Usoltceva, E. Faudot, S. Devaux, S. Heuraux, J. Ledig, 914
- G. V. Zadvitskiy, R. Ochoukov, K. Crombe, and J.-M. Noter-915 daeme, Physics of Plasmas 25, 063518 (2018). 916
- ¹⁸M. Usoltceva, E. Faudot, J. Ledig, S. Devaux, S. Heuraux, 917
- G. V. Zadvitskiy, R. Ochoukov, J. Moritz, K. Crombe, and J.-918
- M. Noterdaeme, Review of Scientific Instruments 86, 10J124 919
 - (2018).
- ¹⁹T. Dote and H. Amemiya, Journal Of The Physical Society Of 921 Japan 22, 270 (1967). 922
- ²⁰T. Dote and H. Amemiya, Japan Journal Applied Physics 8, 818 (1969) 924
- 925 ²¹E. Faudot, Plasma Physics and Controlled Fusion **22**, 083506 (2015).926
- ²²K. Gunther and A. Carlson, Contribution On Plasma Physics 927 34, 484 (1994). 928
- ²³V. Rozhansky, A. Ushakov, and S. Voskoboynikov, Nuclear 929 Fusion 39, 613 (1999). 930
- ²⁴A. Nedospasov and D. Uzdensky, Contributions To Plasma Physics 34, 478 (1994). 932
- Contributions To Plasma Physics 36, 145 (1996).

- 938 ²⁷S.Devaux, E.Faudot, J.Moritz, and S.Heuraux, Nuclear Mate-939 rials and Energy 12, 908 (2017).
- 940 ²⁸P. A. Chatterton, J. Rees, W. Wu, and K. Al-Assadi, Vacuum 952
- 42, 489 (1991). 941 ²⁹F. Gerhard, Low Pressure Plasmas and Microstructuring Tech-⁹⁵⁴ ³³Y. B. Zhu, P. Zhang, A. Valfells, L. K. Ang, and Y. Lau, Phys-
- nology, edited by Springer (Springer-Verlag Berlin Heidel- 955 943
- berg,, 2009). 944
- 945 ³⁰L. Viehland, T. Skaist, C. Adhikari, and W. Siems, Contribu- 957
- tions To Plasma Physics 20, 1 (2017), scattering He ion/He 946
- neutral obtained from https://fr.lxcat.net (visited November 11th 2018). 948
- ⁹⁴⁹ ³¹E. Faudot, S. Heuraux, M. Kubic, J. Gunn, and L. Colas, Physics Of Plasmas 20, 043514 (2013). 950
- ⁹⁵¹ ³²P. Chabert and N. Braithwaite, *Physics Of Radio-Frequency*
- Plasmas, edited by C. U. Press (Cambridge University Press, 2011). 953
 - ical Review Letters 110, 265007 (2013).
- ⁹⁵⁶ ³⁴F. Chen, Proceedings of the Physical Society. Section B 70, 297 (1957).