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Schur-positivity via products of grid classes

Sergi Elizalde1† and Yuval Roichman2‡

1Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
2Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel

Abstract. Characterizing sets of permutations whose associated quasisymmetric function is symmetric and Schur-
positive is a long-standing problem in algebraic combinatorics. In this paper we present a general method to construct
Schur-positive sets and multisets, based on geometric grid classes and the product operation. Our approach produces
many new instances of Schur-positive sets, and provides a broad framework that explains the existence of known such
sets that until now were sporadic cases.

Résumé. La caractérisation des ensembles de permutations dont la fonction quasisymmetrique associée est symétrique
et Schur-positive est un problème de longue date dans la combinatoire algébrique. Dans cet article, nous présentons
une méthode générale pour construire des ensembles et multiensembles Schur-positifs, basée sur des grid classes
géométriques et l’opération de multiplication. Notre approche produit beaucoup de nouveaux cas d’ensembles Schur-
positifs, et elle fournit un cadre général qui explique l’existence de tels ensembles qui jusqu’à maintenant étaient des
cas sporadiques.

Keywords. Schur-positivity, descent, symmetric group, grid class, Kronecker product, arc permutation, quasi-
symmetric function

1 Introduction
Given any subset A of the symmetric group Sn, define the quasi-symmetric function

Q(A) :=
∑
π∈A

Fn,Des(π),

where Des(π) := {i : π(i) > π(i + 1)} is the descent set of π and Fn,Des(π) is Gessel’s fundamental
quasi-symmetric function defined by

Fn,D(x) :=
∑

i1≤i2≤...≤in
ij<ij+1 if j∈D

xi1xi2 · · ·xin .

The following long-standing problem was first posed in [10].
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Problem 1.1 For which subsets of permutations A ⊆ Sn is Q(A) symmetric?

A symmetric function is called Schur-positive if all coefficients in its expansion in the Schur basis are
nonnegative. The problem of determining whether a given symmetric function is Schur-positive is a major
problem in contemporary algebraic combinatorics [18].

By analogy, a set (or, more generally, a multiset) A of permutations in Sn is called Schur-positive if
Q(A) is symmetric and Schur-positive. Classical examples of Schur-positive sets of permutations include
inverse descent classes and Knuth classes [9], conjugacy classes [10, Theorem 5.5] and permutations of
fixed inversion number [3, Prop. 9.5].

An exotic example of a Schur-positive set, different from all the above ones, was recently found: the set
of arc permutations, which may be characterized as those avoiding the patterns {σ ∈ S4 : |σ(1)−σ(2)| =
2}. A bijective proof of its Schur-positivity is given in [6]. Inspired by this example, Woo and Sagan raised
the problem of finding other Schur-positive pattern-avoiding sets [13]. Our goal in this paper is to provide
a conceptual approach that explains the existing results and produces new examples of Schur-positive
pattern-avoiding sets of permutations. An important tool in our approach will be to consider products of
geometric grid classes.

A geometric grid class (introduced by Albert et al. [4]) consists of those permutations that can be drawn
on a specified set of line segments of slope±1, whose locations and slopes are determined by the positions
of the corresponding non-zero entries in a matrix M with entries in {0, 1,−1}. We use the term grid to
refer to this set of line segments.

Let Gn(M) be the set of permutations in Sn that can be obtained by placing n dots on the grid in such
a way that there are no two dots on the same vertical or horizontal line, labeling the dots with 1, 2, . . . , n
by increasing y-coordinate, and then reading them by increasing x-coordinate.

Let G(M) =
⋃
n≥0 Gn(M). We call G(M) a geometric grid class, or simply a grid class for short (all

grid classes that appear in this paper are geometric grid classes). Since removing dots from the drawing of
a permutation on a grid yields drawings of the permutations that it contains, it is clear that every geometric
grid class is closed under pattern containment, and so it is characterized by its set of minimal forbidden
patterns, which is always finite, as shown in [4].

Example 1.2 Left-unimodal permutations, defined as those for which every prefix forms an interval in Z,
are those in the grid class

L := G
(

1
−1

)
.

A drawing of the permutation 4532617 on this grid is shown on the left of Figure 1.

In general, the product of Schur-positive subsets of Sn does not give a Schur-positive multiset or set.
We are interested in finding families of subsets whose product is Schur-positive, either as a multiset or as
a set.

Let [n] := {1, 2, . . . , n}. The descent set of a permutation π ∈ Sn is defined by Des(π) := {i : π(i) >
π(i + 1)}. For each J ⊆ {1, . . . , n − 1}, define the descent class Dn,J := {π ∈ Sn : Des(π) = J},
and its inverse D−1

n,J := {π−1 : π ∈ Dn,J}. Our first main result about products of Schur-positive
sets is Theorem 4.5, where we prove that for every Schur-positive set B ⊆ Sn and every J ⊆ [n − 1],
the multiset product BD−1

n,J is Schur-positive. Even though the proof details are not included in this
extended abstract due to lack of space, they appear in the full version of this paper [8], where we provide
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a representation-theoretic proof that involves Solomon’s descent representations, Kronecker products of
symmetric functions and Stanley’s shuffling theorem.

If instead of considering multiset products we are interested in the underlying sets being Schur-positive,
we have a more restricted theorem (Theorem 5.7): for every J ⊆ [n − 2], the set product D−1

n−1,JCn is
Schur-positive, where Cn = 〈c〉 = {ck : 0 ≤ k < n} is the cyclic subgroup generated by the n-cycle
c = (1, 2, . . . , n), and D−1

n−1,J is interpreted as a subset of Sn by identifying Sn−1 as the set of the
permutations in Sn that fix n. The proof combines a descent-set-preserving bijection together with sieve
methods and representation theoretic arguments.

Schur-positivity of various set and multiset products of grid classes follows from the above two results.
In Section 5 we discuss applications to vertical and horizontal rotations of grids, of which arc permutations
are a special case, and thus we obtain a short proof of their Schur-positivity. As another application, we
prove Schur-positivity of certain multiple-column grid classes, including the grid G(Mk) obtained by
vertical rotation of a one-column grid all of whose slopes are positive (see the drawing of the grid G(M3)
in Fig. 2).

The paper concludes with a list of some open problems, questions, conjectures, and ideas for further
work in Section 6.

2 Preliminaries
2.1 Zigzag tableaux and classes of permutations
For a skew shape λ/µ, let SYT(λ/µ) be the set of standard Young tableaux of shape λ/µ. We use the
English notation in which row indices increase from top to bottom. For T ∈ SYT(λ/µ), define its descent
set by Des(T ) := {i : i+ 1 lies southwest of i in T}.

A zigzag shape is a path-connected skew shape that does not contain a 2×2 square. For example, every
hook is a zigzag shape. There is a natural bijection between the set of all subsets of [n− 1] and the set of
all zigzag shapes of size n, where the size is defined to be the number of cells.

Definition 2.1 Given a subset J ⊆ [n − 1], let Zn,J be the zigzag shape with n cells labeled 1, . . . , n
increasing in the northeast direction, where cell i+1 is immediately above cell i if i ∈ J , and immediately
to the right of cell i otherwise.

For example, if n = 9 and J = {1, 3, 5, 6}, then

Zn,J = .

Consider the map from the set of standard Young tableaux (SYT for short) of all zigzag shapes of size
n to permutations in Sn defined by listing the entries of the SYT, starting from the southwest corner and
moving along the shape. The restriction of this map to the set SYT(Zn,J) of tableaux of a fixed zigzag
shape Zn,J is a bijection to permutations in Sn with descent set J . This bijection has the property that the
descent set of the SYT becomes the descent set of the inverse of the associated permutation.

The well-known Robinson–Schensted correspondence maps each permutation π ∈ Sn to a pair (Pπ, Qπ)
of standard Young tableaux of the same shape λ ` n. The Knuth class corresponding to a standard Young
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tableau T of size n is the set of permutations π ∈ Sn such that Pπ = T . It is known that inverse descent
classes are disjoint unions of Knuth classes.

For sets A and B of permutations on disjoint finite sets of letters, denote by A � B the set of all
shuffles of a permutation in A with a permutation in B. For example, if A = {12, 21} and B = {43},
then A� B = {1243, 1423, 1432, 4123, 4132, 4312, 2143, 2413, 2431, 4213, 4231, 4321}. Shuffles will
play an important role in Section 4.

For partitions µ ` k and ν ` n − k, let (µ, ν) be the skew Young diagram obtained by placing Young
diagrams of shape µ and ν so that the northeast (NE) corner of the Young diagram of shape µ coincides
with the southwest (SW) corner of the Young diagram of shape ν.

The following result is well known, and some generalizations of it can be found in [5, 12].

Theorem 2.2 Let A be a Knuth class of shape µ on the letters 1, . . . , k and B a Knuth class of shape ν
on the letters k+ 1, . . . , n then A�B is a union of Knuth classes, and the distribution of Des is the same
over A�B and over SYT(µ, ν).

The following result, due to Stanley, will be used in Section 4. For bijective proofs, see [11, 15].

Proposition 2.3 ([16, Ex. 3.161]) Given two permutations σ and τ of disjoint sets of integers, the distri-
bution of the descent set over all shuffles of σ and τ depends only on Des(σ) and Des(τ).

2.2 Quasi-symmetric functions and Schur-positivity
The Frobenius image of an Sn-character χ =

∑
λ`n

cλχ
λ is the symmetric function ch(χ) :=

∑
λ`n

cλsλ.

The quasi-symmetric functionQ(A) from Section 1 may be naturally extended to multisets of permuta-
tions. We say that a (multi)set of permutations B in Sn is Schur-positive for a complex Sn-representation
ρ if

Q(B) = ch(χρ).

It was recently shown that B is Schur positive for ρ if and only if χρ may be evaluated by a certain
{−1, 0, 1}-weighted enumeration of B [3, Theorem 1.5] [1, Theorem 3.2].

The following variation of Problem 1.1 was proposed in [3].

Problem 2.4 For which subsets of permutations A ⊆ Sn is Q(A) Schur-positive?

Classical examples of Schur-positive sets are listed in Section 1. An example of a Schur-positive set
that does not fall in any of these cases is the set of arc permutations in Sn.

Definition 2.5 A permutation π ∈ Sn is an arc permutation if, for every 1 ≤ j ≤ n, the first j letters
in π form an interval in Zn (where the letter n is identified with zero). Denote by An the set of arc
permutations in Sn.

For example, 12543 ∈ A5, but 125436 /∈ A6, since {1, 2, 5} is an interval in Z5 but not in Z6.
Arc permutations were introduced in the study of flip graphs of polygon triangulations [2]. Some

combinatorial properties of these permutations, including their description as a union of grid classes and
their descent set distribution are studied in [6]. In particular, it follows from [6, Theorem 5] that An is a
Schur-positive set. One of the goals of this paper is to explain this result by providing a general recipe for
constructing Schur-positive subsets of Sn.
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3 Simple examples of Schur-positive grid classes
3.1 One-column grid classes
Grid classes whose matrix M consists of one column are particularly interesting because they are unions
of inverse descent classes, and thus Schur-positive. Without loss of generality, we may assume that M
is a {1,−1}-matrix. For v ∈ {1,−1}k let Gv denote the one-column grid class where the entries of v
are read from bottom to top. For convenience, we only write the signs of the entries of v. For example,
G−+ = L is the class of left-unimodal permutations, and G++ is the class of shuffles of two increasing
sequences. In general, we denote by G+k

the class of shuffles of k increasing sequences.
It is easy to see that G+k

consists of those permutations with des(π−1) ≤ k− 1, and similarly for G−k

.

Proposition 3.1 1. Q(G+k

) is the multiplicity-free sum of symmetric functions of zigzags of height at
most k. Additionally, Q(G+k

n ) =
∑
λ`n |{P ∈ SYT(λ) : |Des(P )| ≤ k − 1}| sλ.

2. Q(G−k

) is the multiplicity-free sum of symmetric functions of zigzags of width at most k. Addition-
ally, Q(G−k

n ) =
∑
λ`n |{P ∈ SYT(λ) : |Des(P )| ≥ n− k}| sλ.

We obtain a particularly simple expression when k = 2:

Q(G+2

n ) = sn +

bn2 c∑
a=1

(n− 2a+ 1)sn−a,a.

A similar argument also yields

Q(Ln) =

n−1∑
k=0

sn−k,1k .

General one-column grid classes can be expressed as unions of inverse descent classes as follows.

Proposition 3.2 For every v ∈ {+,−}k,

Gvn = Sn \
⊔

u∈{+,−}n−1

v≤u

D−1
n,Ju

=
⊔

u∈{+,−}n−1

v�u

D−1
n,Ju

,

where v ≤ u denotes that v is a subsequence of u, and Ju := {i : ui = +}. Consequently, Gvn is a
Schur-positive set.

Example. We have

G−++
5 = S5 \

(
D−1

5,{2,3} tD
−1
5,{2,4} tD

−1
5,{3,4} tD

−1
5,{1,3,4} tD

−1
5,{2,3,4}

)
.

Corollary 3.3 For every v ∈ {+,−}k,

Q(Gvn) =
∑

u∈{+,−}n−1

v�u

sZn,Ju
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Recall from [14] the Solomon descent subalgebra of C[Sn], which is spanned by the elements dn,J :=∑
π∈D−1

n,J
π ∈ C[Sn]. For v ∈ {+,−}k and n > k, let gn,v :=

∑
π∈Gv

n
π ∈ C[Sn]. Letting k = n − 1,

we get the following immediate consequence of Proposition 3.2.

Corollary 3.4 The set
{gn,v : v ∈ {+,−}n−1}

forms a basis for the Solomon descent subalgebra in C[Sn].

3.2 Colayered permutations
Another family of Schur-positive grid classes consists of the so-called colayered permutations.

Definition 3.5 The k-colayered grid class Yk is determined by the k × k identity matrix:

Yk = G


1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1

 .

Let Y =
⋃
k≥1 Yk be the set of colayered permutations with an arbitrary number of layers. Let Ykn =

Yk ∩ Sn and Yn = Y ∩ Sn.

Fig. 1 shows the 2- and 3-colayered grids.

Fig. 1: A drawing of the permutation 4532617 on the grid for L (left), and the grids for Y2 (center) and Y3 (right).

Example. We have that Y1
5 = {12345} and Y2

5 = {12345, 51234, 45123, 34512, 23451}.

Proposition 3.6 1. For every 1 ≤ k ≤ n,

Q(Ykn \ Yk−1
n ) = sn−k+1,1k−1 .

2. Q(Yn) is the Frobenius image of the character of the exterior algebra ∧V , where V is the n-
dimensional natural representation space of Sn.

Corollary 3.7 For every 1 ≤ k ≤ n, Ykn is a Schur-positive set and

Q(Ykn) = sn + sn−1,1 + sn−2,1,1 + · · ·+ sn−k+1,1k−1 .
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4 Products of Schur-positive sets
Given two subsets A,B ⊆ Sn, define its product AB to be the multiset of all permutations obtained as
πσ where π ∈ A and σ ∈ B. To denote the underlying set, without multiplicities, we write {AB}. We
call AB the multiset product and {AB} the set product of A and B.

We are interested in pairs of Schur-positive subsets A,B ⊆ Sn whose product is Schur-positive, either
as a multiset or as a set. This section contains one of our main results, Theorem 4.5.

4.1 Basic examples
In general, the product of Schur-positive subsets of Sn does not give a Schur-positive multiset or set.
For example, the subsets A = {2134, 3412, 1243} and B = {2143, 3412} in S4 are Schur-positive, but
AB = {AB} is not.

Lemma 4.1 The set product of two subsets consisting of all permutations of fixed Coxeter length is Schur-
positive.

Note, however, that the multiset product of subsets of permutations of fixed Coxeter length is not
necessarily Schur-positive. For example, the multisets {π ∈ S4 : `(π) = 1}2 and {π ∈ S5 : `(π) = 2}2
are not Schur-positive, where ` denotes the Coxeter length. The next lemma shows that conjugacy classes
behave better with respect to products.

Lemma 4.2 Multiset and set products of conjugacy classes in Sn are Schur-positive.

Conjugacy classes span the center of the group algebra C[Sn]. Inverse descent classes span the descent
subalgebra [14], from where the next result follows.

Proposition 4.3 Multiset and set products of inverse descent classes in Sn are Schur-positive.

Theorem 4.5 is a significant strengthening of Proposition 4.3 in the multiset case. An important tool is
the following result about shuffles, whose proof uses Theorem 2.2 and Prop. 2.3.

Lemma 4.4 Fix a set partition U t V = [n] with |U | = k. Let A and B be Schur-positive sets of the
symmetric groups on U and V , respectively. Then A�B is a Schur-positive set of Sn, and

Q(A�B) = Q(A)Q(B). (1)

In other words, if A is a Schur-positive set for the Sk-representation φ and B is a Schur-positive set
for the Sn−k-representation ψ, then A� B is a Schur-positive set for the induced representation (φ ⊗
ψ) ↑SnSk×Sn−k

.

4.2 Right multiplication by an inverse descent class
We use the notation {j1, . . . , jt}< to indicate that the elements of the set satisfy j1 < j2 < · · · < jt. For
J = {j1, . . . , jt}< ⊆ [n− 1], let SJ̄ denote the Young subgroup Sj1 × Sj2−j1 × · · · × Sn−jt , and let

Rn,J := {π ∈ Sn : Des(π) ⊆ J} =
⊔
I⊆J

Dn,I . (2)
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The Kronecker product of two symmetric functions f, g ∈ Λn is defined by

f ∗ g :=
∑

µ, ν, λ `n

〈f, sµ〉〈g, sν〉cµ,ν,λsλ,

where cµ,ν,λ := 〈χµ ⊗ χν , χλ〉.

Theorem 4.5 Let B ⊆ Sn be a Schur-positive set for the Sn-representation ρ. Then for every J ⊆ [n−1],
the following hold.

1. The multiset
BR−1

n,J

is a Schur-positive multiset of Sn for ρ ↓SJ̄↑
Sn .

2. The multiset
BD−1

n,J

is a Schur-positive multiset of Sn for ρ⊗SZn,J , where Zn,J is the zigzag shape as in Definition 2.1,
and SZn,J is the corresponding Specht module. Equivalently,

Q(BD−1
n,J) = Q(B) ∗ Q(D−1

n,J),

where ∗ denotes the Kronecker product.

5 Vertical and horizontal rotations
In this section we explore some applications of Theorem 4.5 with a geometric flavor.

5.1 Vertical rotations
If we choose the Schur-positive setB to be a colayered grid class, which is Schur-positive by Corollary 3.7,
a consequence of Theorem 4.5 is that YknD−1

n,J is a Schur-positive multiset of Sn for every k ≥ 1 and every
J ⊆ [n− 1].

Note that Cn = Y2
n. For A ⊆ Sn, the product CnA (resp. ACn) is the multiset of vertical (resp.

horizontal) rotations of the elements of A. The following is a consequence of Theorem 4.5.

Corollary 5.1 For every J ⊆ [n − 1], the multiset CnD−1
n,J of vertical rotations of an inverse descent

class is a Schur-positive multiset for SZn,J ↓Sn−1↑Sn .

By Proposition 3.2, every one-column grid class Gvn can be expressed as a disjoint union of inverse grid
classes. Thus, we also get the following.

Corollary 5.2 For every one-column grid class Gv and every k ≥ 1,

YknGvn

is a Schur-positive multiset of Sn.
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Taking k = 2, Corollary 5.2 implies that the multiset of vertical rotations CnGvn is Schur-positive. In
general, we do not know if the underlying set is always Schur-positive (see Conjecture 6.1).

For an arbitrary one-column grid class Gv, the set {CnGv} of its vertical rotations may not be a grid
class, but it is a union of grid classes. For example, taking the class L = G−+ of left-unimodal permu-
tations, we get that {CnLn} = An, the set of arc permutations. It is shown in [6] that arc permutations
consist of the union of two grid classes. Our approach provides a simple proof of the following result,
which is a reformulation of [6, Theorem 5].

Proposition 5.3 An is a Schur-positive set, and

Q(An) = sn + s1n +

n−2∑
k=2

sn−k,2,1k−2 + 2

n−2∑
k=1

sn−k,1k . (3)

For the particular case of v = +k, Corollary 5.2 implies that CnG+k

n is a Schur-positive multiset. The
underlying set {CnG+k

n } is the grid class Gn(Mk), where Mk is the 2 × 2k matrix whose odd rows are
(1, 0) and whose even rows are (0, 1). The grid G(M3) is drawn in Fig. 2. The main result in this section
is that Gn(Mk) is a Schur-positive set. Let us start with the case k = 2.

Fig. 2: The grids G+3

(left) and G(M3) (right).

Proposition 5.4 Gn(M2) is a Schur-positive set, and

Q(Gn(M2)) = sn + (n− 1)sn−1,1 +

bn2 c−1∑
a=2

(2n− 4a+ 2)sn−a,a +

bn−1
2 c∑

a=1

(n− 2a)sn−a−1,a,1

+

{
2sn

2 ,
n
2

for even n ≥ 4,

4sn+1
2 ,n−1

2
for odd n ≥ 5.

Using vertical rotations we can prove (see [8] for details) that, for every k ≥ 1, Q(Gn(Mk)) is sym-
metric. To prove Schur-positivity of this grid we consider horizontal rotations next.

5.2 Horizontal rotations
In this subsection we identify Sn−1 with the subset of Sn consisting of those permutations π with π(n) =
n. In particular, subsets of Sn−1 such as Dn−1,J and Rn−1,J are considered as subsets of Sn as well. We
obtain some results about horizontal rotations of these sets using bijective techniques.
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For J = {j1, . . . , jt}< ⊆ [n − 2], let Ln,J be the skew shape of size n consisting of disconnected
horizontal strips of sizes j1, j2 − j1, . . . , n− 1− jt, 1 from left to right, each strip touching the next one
in one vertex. Let T be a SYT of shape Ln,J and let T1 the entry in its upper-right box.

Example. The skew SYT

T =
4

1 3 5
2

has shape L5,{1} and T1 = 4.

Lemma 5.5 For every J ⊆ [n− 2], I ⊆ [n− 1], and 1 ≤ k ≤ n,

|{π ∈ R−1
n−1,JCn : π−1(n) = k, Des(π) = I}| = |{T ∈ SYT(Ln,J) : T1 = k, Des(T ) = I}|.

Corollary 5.6 For every J ⊆ [n− 2], R−1
n−1,JCn is a Schur-positive set for 1SJ̄

↑Sn .

The above result is the key ingredient in the proof of the following theorem.

Theorem 5.7 For every J ⊆ [n− 2], D−1
n−1,JCn is a Schur-positive set for SZn−1,J ↑Sn .

This theorem can now be used to prove that Gn(Mk) is a Schur-positive set, by first showing that this
grid is a horizontal rotation of a grid in Sn−1, namely Gn(Mk) = G+k

n−1 Cn.

Corollary 5.8 For every k ≥ 1, Q(Gn(Mk)) is symmetric and Schur-positive.

The next corollary is an enumerative consequence of Theorem 5.7. It is not hard to show that An =
CnLn−1 but An 6= Ln−1Cn (in fact, the set

⋃
n Ln−1Cn is not closed under pattern containment). Nev-

ertheless, the following equidistribution phenomenon holds, where we use the notation xD :=
∏
i∈D xi.

Corollary 5.9 ∑
π∈Ln−1Cn

xDes(π) =
∑
π∈An

xDes(π).

We end this section by stating a generalization of Theorem 5.7, which will be proved in a forthcoming
paper [7].

Theorem 5.10 If B ⊆ Sn−1 is a Schur-positive set for the Sn−1-representation ρ, then BCn is a Schur-
positive set for ρ ↑Sn .

It should be noted that an analogous statement for vertical rotation does not hold. For example,
{2143, 2413} is a Knuth class in S4, thus Schur-positive, but C5{2143, 2413} is not Schur-positive.

6 Final remarks and open problems
We have shown in Corollary 5.8 that vertically rotated one-column grid classes are Schur-positive when
all slopes have the same sign, that is, {CnGvn} is Schur-positive when v = +k or v = −k (the latter
case follows by symmetry). By Proposition 5.3, this phenomenon also holds when v = −+ or v = +−.
Computer experiments suggest that the following more general statement is true.

Conjecture 6.1 For every one-column grid class Gv, the set {CnGvn} is a Schur-positive set.
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The following conjecture suggests a far-reaching generalization of Corollary 5.9.

Conjecture 6.2 For every J ⊆ [n− 2],

Q(CnD
−1
n−1,J) = Q(D−1

n−1,JCn),

thus, by Theorem 5.7, CnD−1
n−1,J is a Schur-positive set for SZn−1,J ↑Sn .

Note that both CnD−1
n−1,J are D−1

n−1,JCn are sets (that is, elements have multiplicity one). Conjec-
ture 6.2 no longer holds when Cn is replaced by a general Schur-positive set B ⊂ Sn.

Regarding multiset products of Schur-positive sets and inverse descent classes, computer experiments
support the following conjecture.

Conjecture 6.3 Let B ⊂ Sn be Schur-positive. Then, for every J ⊆ [n− 1],

Q(D−1
n,JB) = Q(BD−1

n,J).

In particular, by Theorem 4.5, the multiset D−1
n,JB is Schur-positive.

Note that when B = Cn, the conjecture involves horizontal and vertical rotations of an inverse descent
class.

Another natural geometric operation on grids consists of stacking one grid on top of another. To avoid
ambiguity, we will only consider the case where one of the stacked grids has a single column.

Definition 6.4 (The stacking operation) For a grid class H and v ∈ {+,−}k, let Gv,H (GH,v) be the
grid class obtained by placing the grid for Gv below (atop) the one forH.

Fig. 3 shows an example of the stacking operation.

Fig. 3: The grids for GY
2,(1) (left) and G(−1),Y2

(right).

Proposition 6.5 GY2,(1) and G(−1),Y2

are Schur-positive.

Question 6.6 Let H be a Schur-positive grid and let v ∈ {+,−}k. Is the stacked grid Gv,H necessarily
Schur-positive?

Computer experiments hint for an affirmative answer.

We conclude with a natural question regarding restriction of Schur-positive grids.

Question 6.7 Let G be a grid class. Does Q(Gn) being Schur-positive imply that Q(Gn−1) is Schur-
positive?
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