
HAL Id: hal-02359928
https://hal-polytechnique.archives-ouvertes.fr/hal-02359928

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Flow field around a confined active droplet
Charlotte de Blois, Mathilde Reyssat, Sébastien Michelin, Olivier Dauchot

To cite this version:
Charlotte de Blois, Mathilde Reyssat, Sébastien Michelin, Olivier Dauchot. The Flow field around
a confined active droplet. Physical Review Fluids, American Physical Society, 2019, 4 (5),
�10.1103/PhysRevFluids.4.054001�. �hal-02359928�

https://hal-polytechnique.archives-ouvertes.fr/hal-02359928
https://hal.archives-ouvertes.fr


The flow field around a confined active droplet

Charlotte de Blois,1 Mathilde Reyssat,1 Sébastien Michelin,2 and Olivier Dauchot1
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We present here first-of-a-kind experimental measurements of the flow field around a swimming
water droplet, using confocal PIV in three dimensions. The droplet is denser than the continuous
oil phase, and swims close and parallel to the bottom wall. The measured flow field is first quan-
titatively characterized and compared to the flow field obtained for an axisymmetric swimmer in
unbounded flow. Important qualitative differences are observed, in particular the emergence of a
strong isotropic radial flow field in the planes parallel to the wall. These fundamental differences
stress the critical impact of confinement on the flow field around the swimming droplet. We then
propose an analytical formulation, based on a reduced order description of the swimming droplet
in terms of fundamental hydrodynamic singularities as well as the classical method of images. This
model is able to account exactly for the effect of the wall and provides a simplified description of
the flow field as the superposition of axisymmetric dipole and quadrupole singularities. We demon-
strate that this simplified description quantitatively captures the effect of the wall on the dipolar and
quadrupolar components of the flow field. Further including the confinement-induced asymmetry
of the concentration field responsible for the droplet’s Marangoni propulsion, our model is also able
to account for the monopolar contribution to the experimental flow field which drives the dominant
far-field signature of the droplet.

I. INTRODUCTION

Achieving artificial locomotion in a surrounding fluid at the micron-scale, in order to perform a multitude of tasks
in technical and medical applications, has become a central goal of nanoscience, at the interface of hydrodynamics,
physico-chemical engineering and soft matter [1]. One possibility is to take inspiration from the swimming strategies
adopted by micro-organisms [2, 3]. As pointed out by Purcell[4], swimming at low Reynolds number must involve
a cyclic and non-time-reciprocal motion. Examples include the rotation of bacteria’s helical flagellar bundle [5], the
actuated motion of a sperm flagellum [6] or the synchronized beating of cilia on ciliated protozoa [7]. To mimic such
complex and coordinated motion is possible, as illustrated for instance by magnetically-powered microswimmers [8, 9],
but requires highly specific design of actuated multi-component systems.

An alternative strategy consists of developing interfacial flows caused by the local interaction with the physico-
chemical properties of the swimmer’s immediate environment, such as the electric potential, temperature, or solute
content. These interactions are responsible for surface tension gradients, also called Marangoni stresses, and/or
diffusive flows within the thin interfacial region, also called phoretic flows, which can be accounted for by an apparent
slip velocity [10]. Examples include self-phoretic Janus swimmers, colloidal particles with asymmetric physico-chemical
properties over their surface [11–13], and swimming droplets, the motion of which derives from a surface tension
gradient [14–20]. Such swimming droplets present a particular interest as they can be used for transport in micro-
fluidic devices, leading to new possibilities of application [21, 22].

From a theoretical perspective, the steady state hydrodynamic flow exhibited by spherical microswimmers, sus-
pended in an unbounded medium, can be mapped onto effective hydrodynamic squirmers, the motility mechanism of
which is encoded in a slip velocity prescribed at the interface of their nearly spherical body [23, 24]. This slip velocity
determines uniquely the hydrodynamic field and associated motion of spherical bodies with [24] or without [25] axially
symmetric surface properties.

However, be it in a biological environment or in a microfluidic device, in many cases, microswimmers do not
evolve in a 3D infinite and unbounded medium [26], and several observations indeed reveal the critical importance of
confinement on the swimmer’s dynamics. Several microswimmers are attracted by the boundaries [27–29], which can
then be used to capture [30, 31], or steer the swimmer motion [32–34]. The presence of a boundary has been observed
to influence not only the motion of a single particle [35–37] but also the collective behavior and phase transitions
of swarms [38–41]. Ultimately, the interactions with boundaries can be used to harvest energy from the population
of swimmers [42]. Obtaining a reliable description of the interaction of a swimmer with a wall is thus of significant
importance. It is also a first step towards a better understanding of the interactions amongst swimmers and thereby
the emergence of collective behavior [43, 44]

For swimmers driven by mechanical surface distortions, it is reasonable to assume that hydrodynamic mechanisms
are the dominant contributor to the motion. If the mechanical surface distortions at the origin of self-propulsion are
not modified by the proximity of the wall, a squirmer description can be used with a prescribed and unaltered slip
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velocity. Even in this simplified context, solving for the exact flow around a squirmer in the presence of a wall is
in general not possible. Currently, the only exact solution is that of the flow field resulting from the motion of an
axisymmetric squirmer approaching a wall, along the wall normal direction [45]. One way out consists of describing
the squirmer as a linear combination of fundamental solutions to the Stokes equations and using the methods of
images [46] to compute the flow field in the presence of a wall. Such a strategy has been applied recently to the case
of an axisymmetric swimmer [47]. Focusing on characterizing the accuracy of the far-field approximation, the authors
show that this simplified description can be very useful, and quantitatively predictive, for describing the behavior of
a selection of swimmers close to a wall.

Considering now the case of phoretic or Marangoni swimmers, the self-generated external field, responsible for the
swimming motion, is likely to be distorted by the presence of the wall, which alters the diffusion of the physico-
chemical field. This was first illustrated in [48], before it was indeed demonstrated that in the presence of boundaries
the behavior of chemically active colloids is qualitatively different, even in the far field, from the one exhibited by
the corresponding effective squirmer [49]. Focusing on the near-wall motion, general analytical solutions for the
concentration field, velocity and rotation of the locomotor, as a function of distance and orientation of the active
cap with the surface, were obtained in the form of infinite series expansions [50]. These solutions were then used
to compute general trajectories and categorize the swimming regimes. Yet, for such expansions, the correspondence
between each term (i.e. angular mode) to a precise set of hydrodynamic singularities of increasing order is lost, in
stark contrast with the classical decomposition of the flow field generated by a spherical swimmer in unbounded
flow [25].

Experimental studies of the effect of confinement on phoretic swimmers concentrate on the kinetics of the particle
trajectories and very little is known about the actual flow field. On some occasions, it has been measured in the median
plane of the swimmer [16, 40, 51, 52], and used for qualitative discussion. Yet, a precise and quantitative description
of this flow field is critical, in particular to understand the role of hydrodynamic coupling between swimmers in setting
their collective dynamics. To our knowledge, the three-dimensional flow field around a phoretic swimmer remains
to be fully characterized experimentally, one obvious reason being that most phoretic swimmers are micron-sized
particles, for which such an analysis would require truly high resolution measurements.

Here, we take advantage of large swimming water droplets [17] to fill this gap. The water being denser than the
surrounding oil medium, the droplet swims at the bottom wall of a micro-fluidic chamber. The large size of the
droplet – typically 100µm in radius – allows us to perform PIV measurements in 3D, using confocal microscopy, of
the hydrodynamics flow around the swimmer (see Fig. 1). In each plane, the flow field is decomposed on a Legendre
basis for the angular dependance and we observe that the flow field is well described by its decomposition on the three
first modes. This allows us to fully characterize the radial dependance of the flow amplitudes along these modes. The
experimental flow field is then compared with that of an axisymmetric squirmer performing a steady motion parallel
to the wall, as obtained following the methodology introduced in [47]. While this simplified description quantitatively
captures the radial and vertical dependence of the dipolar and quadrupolar symmetries, it completely fails at capturing
the most salient feature of the experimental flow field, namely the emergence of a strong monopolar symmetry in each
plane parallel to the wall. Our results indicate that enforcing the axisymmetry of the slip velocity at the surface of
the swimmer is too strong of an assumption: the wall indeed modifies significantly the concentration field responsible
for the phoretic motion of the droplet, thereby breaking the axisymmetry of the problem. Including the active flows
pumped by the swimmer in the vertical direction, while being held by gravity, successfully captures the monopolar
symmetry of the flow field. These results call for further analytic treatment, taking into account the effect of the wall
on the concentration field. Finally, we also present and discuss the experimental flow field obtained when the droplet
is confined between two parallel walls separated by typically one droplet diameter, a situation of interest in many
micro-fluidic devices, for which an analytical treatment remains an open question.

The paper is organized as follows. Section II describes the experimental system, recalling the swimming mechanism
of the droplet and describing the PIV methods and data processing techniques – full details are provided in the
Appendix. Section III synthesizes our main experimental findings regarding the flow field around a swimming droplet
performing steady motion close and parallel to a wall (Sec. III A) and its comparison to a simplified theoretical
prediction in terms of an axisymmetric swimmer (Sec. III B). Finally Section IV describes the experimental flow
around a droplet swimming between two confining parallel walls.

II. SETTING

The experimental system consists of water droplets, with diameter a ' 100µm, swimming in a continuous oil-
surfactant phase consisting of a mono-olein solution, a nonionic surfactant, with concentration far above the critical
micellar concentration. The swimming motion of the water droplets results from the combination of two ingredi-
ents [17]. The first is intimately linked to the system being away from its physico-chemical equilibrium: at room
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FIG. 1. Experimental flow field around a water droplet swimming close and parallel to the bottom wall of a
microfluidic chamber: Left : Sketch of the reference frames used in the present work, together with the observation planes.
Middle: 3D reconstruction from the PIV analysis in planes parallel to the wall (blue plane). Right : Top view of the streamlines
of the flow field. The color code indicates the height of the plane. Only a few planes are presented for clarity.

temperature, the stable thermodynamic phase of the system is a micro-emulsion with all inverse micelles in the oil-
surfactant phase filled with water. As a result, a slow but steady flux of water takes place from the droplet to the
inverse micelles. In an unbounded medium, this in turn leads to the development of radial concentration fields of
empty and swollen micelles. The second ingredient is that this isotropic concentration field is unstable against an
infinitesimal flow disturbance. Suppose the droplet experiences a tiny displacement; the concentration field around
the droplet is no longer isotropic and concentration gradients parallel to the droplet surface appear. These gradients
in turn induce Marangoni stresses and phoretic flows. The resulting mobility is such that the droplet moves further
towards the regions of small concentration and the initial disturbance is thus amplified. For this instability to take
place, the Péclet number Pe = U∗a/D, where U∗ is the characteristic swimming speed, and D is the diffusion coeffi-
cient of the micelles, must exceed some critical value Pec = O(1). In other words, the diffusion of the micelles must
be slow enough as compared to their advection by the Marangoni and phoretic flows. This instability mechanism
first described in the context of isotropic phoretic colloids [53] was then generalized to the case of droplets, for which
Maragoni stresses are also present [17].

The droplets are produced using a c©Femtojet apparatus by injecting a single droplet of controlled size in a circular
micro-fluidic chamber of diameter 1 cm. The droplets have a diameter a ' 100µm. They are filled with a (milli-Q)
water solution of 15%wt NaCl. The continuous phase is a 25 mM mono-oleine surfactant (MO; 1-oleoylrac-glycerol,
99%, Sigma-Aldrich) solution in squalane (Sq; 99%, Sigma-Aldrich). The room temperature is kept above 25oC in
order to avoid mono-oleine crystallization. The observation chambers are made up of an UV-curing glue (Norland
Optical Adhesive No. 81, NOA). In the so-called one-wall geometry, the chamber has height 2h & 5 mm � a and is
left opened to the air. In this geometry, the droplet swims at the bottom of the chamber, far from the top free surface
since the water phase is denser than the oil phase (dSq = 0.8). In the so-called two-wall geometry, the chamber has
height 2h ' a and is closed on its top by a NOA coated glass cover slip. In this geometry, the droplet swims confined
between two walls. In both cases, the droplet, the diameter of which does not exceed the capillary length, remains
spherical.

The droplet starts swimming immediately and reaches steady motion after a few minutes, with a constant velocity
V0 ' 20µm/s, following a trajectory with a typical persistence length of a few droplet diameters. The droplet motion
parallel to the wall is tracked in the frame of the laboratory, where (x, y) denote the coordinates parallel to the bottom
wall and z the normal coordinate. The origin of the z-axis is located at the center of the droplet. In the following,
the droplet radius a/2 and velocity U0 are used as characteristic length and velocity, so that zwall = −1 denotes the
position of the bottom wall.

The flow field around the droplet is then measured using PIV. Red fluorescent colloids tracers (Fluoro-MaxTM ,
0.6 µm Red Fluorescent Polymer Microspheres, Thermo scientific) are added in the oil phase and the flow field is
acquired with a CCD camera (Andor Zyla 5.5) in successive planes parallel to the wall, separated by 5± 1µm using
confocal microscopy with a x10 objective. The acquisition frequency is 10 frames/s and the exposure time is 50 ms.
The spatial resolution parallel to the wall is 0.65µm/pixel. The relative error related to the Brownian motion of the
tracers is smaller than 10−4 and can be safely ignored.

For each experiment, 50 images of the droplet and the surrounding flow field are acquired at each z. The PIV
analysis, performed using the PIV lab [54] code on c©Matlab in each z-plane, provides us with the velocity field in
cartesian coordinates attached to the lab frame at each time step (see Appendix A). Note that we don’t have access
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to the z component of the velocity. In principle, this component could be deduced using mass conservation, but the
method is highly sensitive to experimental noise and we here choose to restrict ourselves to the analysis of the velocity
components parallel to the bottom wall.

We focus exclusively on trajectories (i) where the droplet is far from the lateral boundaries of the observation
chamber and (ii) during time windows corresponding to steady motion of the droplet along linear trajectory. This al-
lows us to average the instantaneous flow fields obtained from PIV, at each z, thereby reducing the experimental noise.

We are now in position to describe quantitatively the reconstructed flow field in the one-wall geometry as illustrated
on Fig. 1. The first step is to adopt a suitable system of coordinates. While spherical coordinates centered on the
droplet are natural to describe an axisymmetric swimmer in an unbounded domain, the presence of the wall here
calls for a description using cylindrical coordinates (ρ,θ,z) with the z-axis orthogonal to the wall and θ = 0 the
swimming direction. Recalling that we use the droplet radius as the unit length, ρ = 1 describes a cylinder around the
droplet, tangent to the median plane (z = 0). Additionally, for a steady and linear motion, the flow field conserves a
planar symmetry with respect to the vertical plane θ = 0. Exploiting this parity symmetry, the radial and azimuthal
components of the dimensionless velocity field in each plane are decomposed onto the basis of Legendre polynomials:

uρ(ρ, θ, z) =
∑
n=0

φnρ (ρ, z)Ln(ν) (1)

uθ(ρ, θ, z) =
∑
n=1

φnθ (ρ, z)L1
n(ν), (2)

where ν = cos θ. Note that the flow field is measured in the lab reference frame and the velocities are zero far from the
droplet. Ln(ν) (resp. L1

n(ν) = −
√

1− ν2L′n(ν)) are the Legendre polynomials (resp. associated Legendre polynomials
of the first kind). These Legendre polynomials form an orthogonal basis of hydrodynamic azimuthal symmetries with
φni (ρ, z) the dimensionless amplitude of the nth-multipolar symmetry for the radial (i = ρ) and azimuthal (i = θ)
components, which are obtained by the following projections:

φnρ (ρ, z) =
2n+ 1

2

∫ 1

−1
uρ(ρ, θ, z)Ln(ν)dν, (3)

φnθ (ρ, z) =
2n+ 1

2n(n+ 1)

∫ 1

−1
uθ(ρ, θ, z)L

1
n(ν)dν. (4)

III. SWIMMING CLOSE TO A WALL

A. Experimental flow field

We consider here the one-wall geometry with the water droplet performing a steady linear motion at the bottom
of the chamber, parallel to the wall. Our experimental results are summarized on Fig. 2.

Let us first concentrate on the flow field in the median plane (z = 0). The top panel of Fig. 2 displays color
coded maps of the radial and azimuthal components of the flow field, together with its decomposition onto the three
first hydrodynamic multipolar components with respectively monopolar, dipolar, and quadrupolar symmetry, and
the reconstruction of the flow field from only these three first components. One observes that the reconstructed
flow field is very similar to the original one. In the following, we shall therefore restrict our analysis to the first
three modes (n = 0, 1, 2). Second, and most remarkably, the radial component of the flow field exhibits a strong
monopolar symmetry, which actually dominates at long range. In the median plane z = 0, the cylindrical and
spherical coordinates description of the flow field are strictly equivalent, and it is well known that the flow field
around an axisymmetric swimmer in an unbounded medium includes no monopolar symmetry contribution: our
observations therefore provide a strong indication of the influence of the wall on the flow field.

The influence of the wall is further characterized by considering the flow field components in different planes parallel
to the wall (see the middle panel of Fig. 2). The flow field appears strongly asymmetric with respect to the median
plane, as could already be noticed from Fig. 1. This is particularly true for the radial component uρ, which has a
nearly dipolar symmetry close to the wall and a nearly quadrupolar one when approaching the top of the droplet.
The azimuthal component uθ conserves the same dipolar symmetry across the droplet height, but one still notices a
faster decrease of the flow intensity away from the droplet in planes closer to the wall. The complete quantitative
description of the flow field is finally provided on the bottom panel of Fig. 2, where the amplitudes of the first three
azimuthal modes are displayed as a function of the radial distance to the droplet ρ and the distance to the wall z.
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FIG. 2. Experimental flow field in the one-wall geometry – Top: uρ and uθ in the median plane (z = 0). The complete
experimental flow field (A) is shown as well as its monopolar component (B), its dipolar component (C) and its quadrupolar
component (D). The flow reconstruction from the first three components (i.e. the sum of the contributions in B, C and D) is
also shown (E). Middle: uρ (top) and uθ (bottom) for z = −0, 6, z = −0, 3, z = 0; z = 0, 3 ; z = 0, 6 (same color code as
above). Bottom: Amplitudes φnρ (ρ, z) and φnθ (ρ, z), of the first three modes (n = 0, 1, 2) as a function of the radial coordinate
ρ for different z.

In order to fully appreciate the effect of the wall, one shall compare these profiles with those of a model swimmer in
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an unbounded medium. Solving the Stokes equation, one obtains the velocity field around an axisymmetric swimmer
as an infinite sum of hydrodynamics singularities, for any given slip velocity us at the interface [23, 24]. In agreement
with our experimental observations, we limit our description of the flow field to the singularities, which contribute
to flow fields with azimuthal symmetries up to the quadrupolar order. The swimmer is thus described by the most
commonly used squirmer model, namely the superposition of a Stokes (force) dipole, ufd(r) ∼ 1/r2, a source dipole,
usd(r) ∼ 1/r3 and a source quadrupole usq(r) ∼ 1/r4. In unbounded conditions, this swimmer generates the flow
field:

u(r) = λusd(r) + ζusq(r) + κufd(r), (5)

where the dimensionless coefficients λ, ζ and κ are fixed by the slip velocity prescribed at the swimmer boundary
u(r) = U0 + us : one finds λ = 0.5 and κ = −3ζ. The flow field generated by source and force multipoles
are successively obtained from the flow field generated by a singular point source and point force. In particular
usd(r) = −∇us(r) · e, usq(r) = −∇usd(r) · e and ufd(r) = −∇uf (r) · e, with e the unit vector pointing in the
swimming direction. The corresponding amplitude profiles are then obtained by expressing the flow field in the
cylindrical system of coordinates (ρ, θ, z) and projecting it on the Legendre polynomials, Eqs. (3)–(4). The vectorial
expression of the flow fields and the analytical expressions of the amplitudes are provided in Eqs. (B4)–(B6) and
(B10)–(B14), together with their graphical representation (Figure 7). It should be noted that the source quadrupole
and the Stokes dipole, which in spherical coordinates only contribute to the quadrupolar symmetry of the flow, here
also contribute to a monopolar symmetry for the radial and azimuthal velocity components uρ(ρ, θ) and uθ(ρ, θ) when
out of the median plane.

A number of peculiar features in the radial dependence of the amplitudes should be noted when comparing the
experimental amplitude profiles, Fig. 2, with the ones obtained for the model axisymmetric squirmer in an unbounded
geometry (i.e. without taking into account the influence of the wall) as shown on Fig. 7. While for the unbounded
squirmer, the amplitude φ0ρ always presents a minimum, we observe in the experimental data that this minimum turns
into a maximum when moving towards the upper hemisphere of the droplet. Similarly, the experimental amplitude
φ1ρ displays a negative minimum in the upper part of the droplet, where the squirmer model only presents a positive

maximum; experimentally, φ1θ further presents a minimum in the upper part of the droplet while this quantity
is monotonously increasing in the squirmer case. Finally, regarding the quadrupolar symmetry, the experimental
measurements for φ2ρ appear essentially similar to that of the unbounded squirmer, but φ2θ presents a systematic
negative minimum for all z in the droplet case, while it is monotonically decreasing and positive in the case of the
unbounded squirmer. Altogether, one sees that the flow field around the droplet is, as expected, strongly affected by
the presence of the wall, and is therefore poorly accounted for by an unbounded squirmer model. It is also by far
more complex than the naive intuition one could develop from an observation limited to the median plane.

B. Comparison with a squirmer model moving parallel to a wall

Capturing theoretically the complex flow fields reported experimentally is highly non trivial. A possible strategy
would consist in solving exactly, up to numerical truncations, for the hydrodynamics and concentration fields around
the droplet in the presence of the wall [50]. This however requires the knowledge of the boundary conditions at the
boundary of the swimming body. For a Janus colloid, with an active cap of a prescribed geometry, it is already a
strong hypothesis to assume that the phoretic slip velocity is not altered by the wall-modified concentration field. In
the present case, we recall that the phoretic slip velocity and Marangoni stresses both result from a linear instability.
In other words, in the bifurcated non-linear solution describing the swimming motion, they are functions of both
the concentration and hydrodynamic fields. The interaction with the wall thus becomes a highly nonlinear problem,
which cannot be solved easily following this strategy.

In the absence of exact treatment, it is still desirable to know how far a simplified model may account for the
experimental description. With this goal in mind, we propose here an alternate and approximate model as an
axisymmetric squirmer moving parallel to the wall, and computing the associated flow field using the method of
images [47]. We stress that this description is simplified in the sense that (i) it overlooks the dynamics of the
concentration field and its impact on the hydrodynamic boundary condition at the swimmer’s surface; (ii) it is a
far-field approximation and therefore overlooks that the droplet radius and distance to the wall are comparable.
Whether it would be able to capture the complex structure of the flow field reported experimentally is therefore far
from obvious a priori.

We shall see that it is in fact able to describe surprisingly well the quadrupolar and dipolar components but fails
to explain the emergence of a strong monopolar symmetry for the components of the flow field parallel to the wall.
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The squirmer model considered is that introduced in the previous section. The presence of a no-slip infinite plane
wall imposes a vanishing flow velocity u = 0 at the wall. The methods of images followed here consists of introducing
singularities at the mirror position of the swimmer with respect to the wall, such that the flow field, obtained from
the superposition of the original and image singularities, satisfies the no slip condition at the wall exactly. Note that
the hydrodynamic image systems differ from the simple mirror image of the original singularity, as is the case in other
fields such as diffusion or electrostatics, where the field satisfies Laplace’s equation.

The appropriate singularities have been identified for a source monopole, a source dipole or a point force in the
classical work of Blake and Chwang [55]. Spagnolie and Lauga [47] recently computed the image systems of higher
order singularities including the stokes dipole. The image flow field for the source quadrupole can be obtained similarly.
The general method consists again of using the fact that derivatives of the source or force singularities produce other
higher-order singularity solutions of the Stokes equations: deriving the known images of lowest order singularities,
one obtains the images of the higher order singularities of interest u∗sd(r),u∗sq(r) and u∗fd(r). The flow field in the

FIG. 3. Model flow field in the one-wall geometry: Top: uρ and uθ in the median plane, computed from the first
singularities and their image systems, Eq. (6), using the value of κ, λ and ζ obtained from the experimental data. A: Monopolar
component generated by the original Stokes dipole and the original source quadrupole. B: Dipolar component generated by
the source dipole C: Quadrupolar component generated by the stokes dipole and the source quadrupole D: Total flow field
generated by the first singularities : sum of A, B and C. The color-scale codes for the amplitude of the velocity. Bottom:
Corresponding amplitudes φnρ (ρ, z) and φnθ (ρ, z), of the first three modes (n = 0, 1, 2) as a function of the radial coordinate ρ
for different z.
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FIG. 4. Comparison between the characteristics of the experimental (dots) and theoretical (straight lines)
velocities in the one-wall geometry: Evolution with z of the amplitude at ρ = 1 (blue), of the extremum (red) and of
the extremum’s position (green) of the monopolar component (left), the dipolar component (middle) and the quadrupolar
component (right) of the velocities uρ (top) and uθ (bottom).

presence of the wall then simply reads:

u∗(r) = λu∗sd(r) + ζu∗sq(r) + κu∗fd(r). (6)

The vectorial expressions of the so-obtained flow fields are provided in Appendix C, Eqs. (C4)–(C6). Note that these
solutions of the Stokes equations do not satisfy the boundary conditions at the interface of the droplet, so that λ, κ
and ζ are now unknown – thus acknowledging the fact that the surfactant-induced velocity condition at the interface of
the droplet is modified by the presence of the wall. This flow field can then be expressed in the cylindrical coordinate
system and projected onto the Legendre basis (see Eqs. (C13)–(C17)).

In order to compare quantitatively the experimental flow fields and the predictions of the above squirmer model, the
coefficients λ, ζ and κ are extracted from the experimental data as follows. The dipolar symmetry of the flow field arises
from the source dipole only, while the monopolar and quadrupolar symmetries of the flow field result from both the
stokes dipole and source quadrupole: λ is thus obtained by minimizing

〈
‖(∆φ1ρ)2‖ + ‖(∆φ1θ)2‖

〉
, where 〈‖∆φ‖〉 denotes

the average over the experimental realizations of the L2-norm of the difference between the amplitudes φ(ρ, z) measured
experimentally and computed analytically. Similarly κ and ζ are obtained by minimizing

〈
‖(∆φ2ρ)2‖ + ‖(∆φ2θ)2‖

〉
.

We thereby obtain λ = 0.35, ζ = −0.08 and κ = 0.34. This method is quite robust as for repeating the experiment
for different droplets of radius of 60 and 70µm, we obtain very similar values with interval ±0.05. The flow fields and
profiles are displayed on Fig. 3.

A remarkable feature is that the images of the first order singularities do induce a monopolar component even
in the median plane. This monopolar component is however much weaker than in the experimental case, and does
not contribute significantly to the reconstructed flow field at odd with the experimental observation. A closer look
at the amplitude profiles on Fig. 3 (bottom) also reveals that the monopolar component does not have the proper
dependance in z: the monopolar symmetry of the experimental flow is more pronounced in the median plane, while
it is found in this model to be dominant above the droplet.

In contrast, the dipolar and quadrupolar components of the experimentally-measured flow (Figure 2) are surpris-
ingly well described by this simple model (Figure 3), especially for the latter. The asymmetry of the flow with respect
to the median plane is properly captured, and the radial dependence of the amplitudes are also well described. This
is particularly well illustrated by the non-trivial dependence on z of the amplitude and position of the maximum of
φ2ρ(ρ, z) and of the minimum in φ2θ(ρ, z) (Figure 4). As far as the quadrupolar symmetry is concerned, the model
predictions, together with the extraction of the parameters ζ and κ from the experimental data, perfectly describes
the experimental flow field. More specifically φ2ρ has a local maximum, the position of which, varies in a non trivial

way with z, which is well captured by the model. Similarly, the amplitude and position of the local minimum of φ2θ
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are well reproduced. The amplitudes of the dipolar component are also well captured, despite some exceptions. The
magnitude of the azimuthal amplitude φ1θ is slightly underestimated by the model. Also, experimentally, φ1ρ presents
a local minimum that becomes negative close to ρ = 1 and for z > 0.7, while the model predicts a negative value at
ρ = 1 for z > 1, but no local minimum. Finally, φ1θ presents a local maximum close to ρ = 1 in experiments, that is
not predicted by the theory.

In summary, the axisymmetric squirmer model presented above predicts very well the behavior of the quadrupolar
symmetry of the experimental flow field, captures the amplitude of the dipolar components but not the details of the
amplitude profiles very close to the droplet, and fails to describe the monopolar symmetry observed experimentally.
Given the oversimplified nature of the model, it is already amazing that so many key features of the real flow are
captured. For instance the fact that the amplitude profiles very close to ρ = 1 are not so well captured can easily be
understood given that the method of images does not guarantee the boundary conditions at the swimmer interface.
The main limitation of the present description lies in its failure to describe properly the monopolar symmetry of the
flow observed in the experiments. This is all the more problematic since this contribution to the flow field is also
observed to dominate at long range and therefore is expected to control the interactions with other swimmers: when
this monopolar symmetry is present, it dominates the stokes dipole signature of the droplet, thereby rendering the
common description of microswimmers in terms of pusher/ puller inadequate.

C. Origin of the monopolar symmetry of the flow

It should first be stressed that the monopolar symmetry of the flow cannot be explained by including higher order
terms of the multipole expansion describing axisymmetric swimmers: although such terms do indeed contribute to a
monopolar symmetry of the flow when expressed in cylindrical coordinates, their radial dependence decreases faster
and faster with ρ and is therefore unable to explain a dominant monopolar symmetry at large distance. One must
therefore look for the origin of the monopolar symmetry of the flow in low-order singularities. The point source
singularity is the most natural candidate, especially given that the swimming mechanism of the droplet involves a
water flux through the swelling of the micelles in the oil phase. This flux is however of microscopic nature and much
too weak to account for a significant hydrodynamic flow.

To make further progress, one should realize that the slip velocity at the swimmer boundary is unlikely to remain
axisymmetric with respect to the direction of motion, as implicitly assumed in the squirmer description presented
above. This can be understood easily in the case of phoretic swimmers, as the concentration gradients at the surface
(and resulting slip velocity) are likely altered by the presence of the wall. In the present case, where the swimming
mechanism results from the non-linear advective coupling of the concentration and hydrodynamic fields, one expects
an even stronger effect of the wall.

The full description of the coupled hydrodynamics and concentration fields, when swimming close to a wall is
beyond the scope of the present work. Yet, as a first step in this direction, we may include a first correction to the
axisymmetric assumption resulting from an increase of the concentration near the wall, simply because of confinement
between the wall and droplet surface [56]. This in turn generates vertical concentration gradients along the surface of
the droplet, promoting its motion away from the wall [57]. The droplet being denser than the surrounding fluid, it is

FIG. 5. The monopolar symmetry : Amplitude of the monopolar component of the flow field measured experimental (left),
and computed in the case of a non axisymmetric squirmer close to a wall, for which phoretic flows develop perpendicular to
the wall, while the swimmer is held by gravity (right).
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held vertically in place by buoyancy effects, and acts as a phoretic pump in the direction orthogonal to the wall. In
this case it is no longer force-free, and a vertical point force should therefore be added. The key point to notice here is
that this singularity gives rise to a flow with a dipolar symmetry in the direction orthogonal to the wall but displays
a monopolar symmetry if observed in planes parallel to the swimming direction. We also notice that the amplitude
profiles of the monopolar components are non-monotonous. This suggests that more than one singularity should be
considered. We thus also include the source dipole perpendicular to the wall.

The flow fields produced by the vertical point force and source dipole in the presence of the wall are again computed
using the methods of images, and expressed in cylindrical coordinates (see Appendix D). The contribution of these
two singularities in planes parallel to the wall has a purely monopolar symmetry, so that they only contribute
to the amplitude φ0ρ(ρ, θ), without altering the higher-order angular amplitudes. The amplitude of the monopolar

component φ0ρ(ρ, θ) now depend on four coefficients: ζ, κ, ε and σ the magnitudes of the parallel source quadrupole,
u∗sq, the parallel stokes dipole u∗fd, the perpendicular point force u∗pf,⊥ and the perpendicular source dipole u∗sd,⊥,
respectively. κ and ζ have already been determined from the experimental data using the higher order singularities,
and thus equal to the values computed in the previous section. ε and σ are obtained by minimizing

〈
‖(∆φ0ρ)2‖

〉
. The

resulting amplitude profiles are provided on Fig. 5, together with the experimental profiles. Including the contribution
of the vertical singularities resulting from confinement of the concentration field is observed to capture very well the
key trends observed experimentally.

IV. SWIMMING BETWEEN TWO WALLS

We finally consider the two-wall geometry with the water droplet performing a steady linear motion between a top
and a bottom wall separated by typically one droplet diameter. In this case one cannot use the method of images as it
would result in an infinite set of images with respect to the two walls. Such a method is only tractable when looking
at the flow field far from the droplet in the horizontal direction [40, 44, 58]. In this double-confinement geometry,
there is therefore little hope to derive analytical expressions for the flow field close to the droplet even within very
simple approximations. Yet, as we shall see below, it remains of interest to discuss the qualitative difference with the
case of one wall confinement, from the purely experimental point of view.

The experimental results are summarized on Fig. 6, in the same way as for the one wall geometry. We first note
(top panel) that, here also, the flow field reconstructed from the decomposition on the first three hydrodynamic
multipoles conveys all the experimental signal. As in the one-wall case, the radial component of the flow field presents
a monopolar symmetry. However, this monopolar component is here small compared to the one-wall case, and does
not dominate at long range. A natural explanation is that the effect of the vertical force singularity, which dominates
at large distance in the one-wall case, is exponentially screened in the far-field in double confinement [58]. The
contribution to the flow field are thus mainly dipolar and quadrupolar symmetries.

The influence of the wall is further characterized by considering the flow field symmetries, observed at different
distances from the wall (see the middle panel of Fig. 6). The main observation is that the flow field is strongly
asymmetric with respect to the median plane (asymmetry in z), despite the approximate top-down symmetry of
the problem. This asymmetry is however not found on all modes. This is best observed on the amplitude profiles
displayed on the bottom panel. In the case of the radial component, the dipolar and quadrupolar symmetries dominate
the median plane flow, while on the contrary the monopolar symmetry dominates the flow close to the walls. This
monopolar component is positive at the bottom wall and negative at the top wall. It is thus the main contributor
to the flow field asymmetry. The azimuthal component, dominated by a dipolar symmetry, does not present such an
asymmetry in z. There is an asymmetry carried by the azimuthal quadrupolar symmetry, but the latter being very
weak, it does not affect qualitatively the flow field. Altogether the monopolar symmetry is by itself responsible for the
observed asymmetry of the flow field. Since we never observe the reverse solution with a positive, respectively negative,
monopolar symmetry at the bottom, respectively top, wall, we conclude that the symmetry is not spontaneously broken
but induced by the gravity and the density mismatch between the water droplet and the surrounding oil phase.

V. CONCLUSION

In summary, in this work, we presented first-of-a-kind measurements of the 3D flow field produced by a swimming
water droplet using PIV method and confocal microscopy in two different configurations, namely that of a droplet
swimming parallel and close to a single confining boundary (bottom wall), and that of a doubly-confined droplet
swimming between and close to two parallel walls. In the one wall case, a simplified description of the swimming
droplet was proposed as the superposition of (i) the few first axisymmetric viscous and potential singularities (and their
image system), accounting for the swimming motion along the wall and (ii) a vertical point force and source dipole
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FIG. 6. Experimental flow field in the two-walls geometry: Top: uρ and uθ in the median plane. A. Experimental flow
field. B. Monopolar component i.e projection onto L0. C. Dipolar component, i.e. projection onto L1 and L1

1. D. Quadrupolar
component, i.e. projection onto L2 and L1

2. E. Reconstruction from only the three first components, i.e. sum of B, C and D.
Middle: uρ (top) and uθ (bottom) for z = −0.6, z = −0.3, z = 0; z = 0.3 ; z = 0.6 (same color code as above). Bottom:
Amplitudes φnρ (ρ, z) and φnθ (ρ, z), of the first three modes (n = 0, 1, 2) as a function of the radial coordinate ρ for different z.
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(and their image system), accounting for the pumping flow resulting from the top-down asymmetric modification of
the chemical environment of the droplet by the confining wall. This model was observed to provide a very good
description of the flow field around the droplet, with the swimming-induced singularities (i.e. parallel to the wall)
able to reproduce accurately the quadrupolar and dipolar symmetries of the flow field, while the normal singularities
associated with the pumping flow was further able to capture the monopolar symmetry signature of the flow field
generated by the droplet. Adding this second contribution was shown to be critical to effectively capture the dominant
flow field far from the droplet, which drives its interactions with its neighbors and environment.

The surprisingly good quality of this description is rooted in the possibility of superimposing the singularities
parallel to and orthogonal to the wall, which in turn comes from the linearity of the Stokes equation. This is only
valid in the steady state, where the slip velocity at the interface of the swimmer are, by definition, constant. If one
were to solve the dynamics of the swimmer, say when approaching the wall with some angle, then the slip velocity at
the interface of the swimmer would couple to the hydrodynamics through the concentration field, making the problem
truly non linear. Solving for the swimmer trajectory using a quasi-static approximation is a promising route for future
work.

Another interesting perspective would be to consider interactions between two confined swimming droplets. One
infers from the present results that the long distance interaction between two droplets swimming at the wall is
dominated by the monopolar symmetry, which is attractive. When the interacting droplets get closer, the quadrupolar
symmetry eventually dominates so that, at short enough distance, one recovers the usual pusher/puller qualification
and resulting dynamics.

Finally, in the case of confinement between two walls, we observe an asymmetry with respect to the median plane,
and again a monopolar symmetry, which indicates that the gravity can not be neglected, as one could have thought at
first sight. The confinement, in this case, imposes that the flows pumped by the swimmer must be evacuated laterally,
inducing a recirculation at the scale of the droplet.
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Appendix A: Methods : PIV measurement and Data representation

The PIV analysis is performed using the PIV lab [54] code on c©Matlab. After pre-processing the images with
a Wiener filter (window size of 3 × 3 pixels), we use two successive paths of integration using correlation areas
of first 50 × 50 pixels and then 25 × 25 pixels, with a sliding step of 50% of the correlation area. Doing so we
obtain the velocity components Ux(x, y, z, t) and Uy(x, y, z, t) with a spatial resolution of 8µm (around 8% of the
droplet radius) for each pair of successive images. Note that the velocity component Uz is certainly non zero but
is not measured here. Note that all distances are made dimensionless using the droplet radius, and all velocities
using the droplet velocity. Let us end with stating some limitations of the experimental method. In planes other
than the median plane, the quality of the imaging is altered when the incoming light goes through the droplet.
As a result the PIV cannot be performed inside the vertical cylinder tangent to the droplet in the median plane.
Also, for distances larger than five droplet radius, the signal to noise ratio is too small to extract reliable velocity fields.

The first step of the analysis is, for each z, to average over time the successive flow fields Ux and Uy. These flow
fields are dominated by a dipolar symmetry, which is used to extract the position of the droplet center and the
direction of its instantaneous displacement and an estimate of it speed U0. We then apply a translation and a rotation
to superimpose all successive flow fields at each z and obtain their temporal average ux(x, y, z) and uy(x, y, z). From
now on, we choose the droplet radius a

2 as the unit of space, and a
2U0

as the unit of time. In the presence of a wall,
the flow around an axisymmetric swimmer is not axisymmetric and an appropriate base to describe the flow field is
the cylindrical base (ρ, θ, z), defined on Fig. 1.

For a steady and linear motion the flow field conserves a planar symmetry with respect to the plane θ = 0 defined
by the normal to the wall and the direction of motion. This parity symmetry allows us to decompose the radial uρ and
azimuthal uθ components of the dimensionless velocity field in each plane, using the basis of Legendre and associated
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Legendre polynomials of the first kind Ln(ν) and L1
n(ν) = −

√
1− ν2L′n(ν):

uρ(ρ, θ, z) =
∑
n=1

φnρ (ρ, z)Ln(ν) (A1)

uθ(ρ, θ, z) =
∑
n=1

φnθ (ρ, z)L1
n(ν) (A2)

where ν = cos(θ). Each Legendre polynomial describes an azimuthal symmetry of the flow in the planes parallel
to the wall: L0(ν) = 1 describes the monopolar symmetry, L1(ν) = ν the dipolar symmetry, and L2 = 1

2 (3ν2 − 1)
the quadrupolar symmetry. Since the Legendre polynomials form an orthogonal basis, the amplitudes φnρ,θ(ρ, z) are
obtained from the the projections:

φnρ (ρ, z) =
2n+ 1

2

∫ 1

−1
uρ(ρ, θ, z)Ln(ν)dν, (A3)

φnθ (ρ, z) =
2n+ 1

2n(n+ 1)

∫ 1

−1
uθ(ρ, θ, z)L

1
n(ν)dν. (A4)

For each z, φnρ,θ(ρ, z) describes the radial dependency of the nth azimutal symmetry of the velocity uρ,θ. These
amplitudes form the output of our experimental measurements and are represented in the main text on Fig. 2,
respectively Fig. 6, in the case of a droplet swimming above one wall, respectively between two walls.

Appendix B: Cylindrical representation of a model swimmer moving in an unbounded fluid

The flow field around an axisymmetric swimmer can be computed exactly, solving the Stokes equation [23, 24],
for any given slip velocity us at the interface. However, in agreement with our experimental observations, we limit
our description to the terms with azimuthal symmetries up to the quadrupolar order. Recalling that a swimmer is
force-free (no external force), and source-free (no net flux production at the interface), the swimmer is modeled by a
stokes dipole, responsible for the leading order in 1/r of the flow field ufd(r) ∼ 1/r2, a source dipole usd(r) ∼ 1/r3

resulting from the finite size of the swimmer and a source quadrupole, that ensures the absence of normal flux at the
interface usq(r) ∼ 1/r4. This set of singularities corresponds effectively to the first two modes of the commonly-used
squirmer model, which, in an unbounded geometry, generates the flow field:

u(r) = λusd(r) + ζusq(r) + κufd(r), (B1)

where the dimensionless coefficients λ = 1
2 , κ = −3ζ are set by the boundary condition u(r = 1) = e + us, with e the

unit vector pointing in the direction of the swimming motion. The expressions of the singularities usd(r),usq(r) and
ufd(r) are obtained from the gradients of the point source us(r) and point force uf (r) singularities:

us(r) =
r

r3
, (B2)

uf (r) =

(
e

r
+

(e · r)r

r3

)
, (B3)

usd(r) = − [∇us] · e =

(
3(r · e)r

r5
− e

r3

)
, (B4)

usq(r) = − [∇usd] · e = 3

[
5(r · e)2r

r7
− r

r5
− 2(r · e)e

r5

]
, (B5)

ufd(r) = − [∇uf ] · e = −
(

r

r3
− 3(r · e)2r

r5

)
. (B6)

We then write the singularities in the cylindrical system of coordinates (ρ, θ, z), using e = νeρ −
√

1− ν2eθ,
r = ρeρ + zez and r · e = ρν:



14

usd,ρ(ρ, ν) =

(
3ρ2

r5
− 1

r3

)
L1(ν), usd,θ(ρ, ν) = − 1

r3
L1
1(ν), (B7)

usq,ρ(ρ, ν) =

(
10ρ3

r7
− 4ρ

r5

)
L2(ν) + 5

(
ρ3

r7
− ρ

r5

)
L0(ν), usq,θ(ρ, ν) = −2ρ

r5
L1
2(ν), (B8)

ufd,ρ(ρ, ν) =
2ρ3

r5
L2(ν)−

(
ρ

r3
− ρ3

r5

)
L0(ν), ufd,θ(ρ, ν) = 0. (B9)

Note that in the median plane, in which the cylindrical and the more usual spherical coordinate are identical, (z = 0
and r = ρ), the source quadrupole and the stokes dipole contribute only to the quadrupolar symmetry of the flow.
This is not the case out of the median plane (z 6= 0), where they also generate a monopolar symmetry in the radial
velocity component uρ(ρ, ν). This is only reflecting the choice of coordinate system as the three dimensional flow field
is inherently the purely dipolar and quadrupolar axi-symmetric squirmer flow field.

Finally, we obtain the amplitude of the monopolar, dipolar and quadrupolar components, projecting onto the
Legendre polynomials, Eq. (A4):

φ0ρ(ρ) = 5ζ

(
ρ3

r7
− ρ

r5

)
− κ

(
ρ

r3
− ρ3

r5

)
, (B10)

φ1ρ(ρ) = λ

(
3ρ2

r5
− 1

r3

)
, (B11)

φ2ρ(ρ) = ζ

(
10ρ3

r7
− 4ρ

r5

)
+

2κρ3

r5
, (B12)

φ1θ(ρ) = − λ

r3
, (B13)

φ2θ(ρ) = −2ζρ

r5
. (B14)

FIG. 7. Flow field created by a squirmer in the unbounded case: amplitude of the monopolar (left), dipolar (middle)
and quadrupolar (right) components of the velocities uρ (top) and uθ (bottom), as given by Eqs. (B10)–(B14). The z-planes
are color coded according to the legend on the right; same color code as in the main text. The z > 0 and z < 0 profiles
superimpose. The coefficients λ = 1

2
and ζ = − 1

3
κ are given by the boundary condition at the interface of the droplet. κ is

free and arbitrarily set to κ = 0.3.

Figure 7 displays the radial dependence of these amplitude in different z-plane (color code). The black curves
correspond to the median plane (z = 0).
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Appendix C: Cylindrical representation of a model swimmer moving parallel to a wall

As described in the main text, we start again with the same set of singularities as for the standard squirmer model:

u∗(r) = λu∗sd(r) + ζu∗sq(r) + κu∗fd(r), (C1)

The effects of a nearby no-slip wall is taken into account by introducing the image system of each singularity used to
describe the swimmer [46], so that the total flow field satisfies the no slip condition at the wall u∗(z = 0) = 0. Such
image systems can be computed for each singularity, at any distance and a priori for any angle with the wall, although
a particular care should be taken to compute the image of singularities such as the stokes dipole, etc... [47, 55]. We
still use a set of axes centered on the sphere’s center. ez is a unit vector along the vertical axis and h is the distance
between the center of the swimmer and the wall. Image singularities are thus positioned at a point X = −hez below
the wall, and we note r the position of the observation point (where the flow is evaluated) with respect to the sphere’s
center and R = r + 2hez the position of the same point with respect to the position of the image system. For each
singularity, which leads to a velocity field ui in unbounded flow, we denote by u∗i the corresponding flow field near a
wall (i.e. including both the original singularity and the effect of its image system). This flow field is obtained for a
point source or point force as [55]:

u∗s(r) =

Original source︷︸︸︷
r

r3
+

Image source︷︸︸︷
R

R3
−

stresslet︷ ︸︸ ︷
2

(
R

R3
− 3R(R · ez)2

R5

)
+

source dipole︷ ︸︸ ︷
2h

(
ez
R3
− 3(R · ez)R

R5

)
, (C2)

u∗f (r) =

Original stokeslet︷ ︸︸ ︷
e

r
+

(e · r)r

r3
−

Image Stokeslet︷ ︸︸ ︷
e

R
− (e ·R)R

R3
+

source dipole︷ ︸︸ ︷
2h2e

R3
− 6h2(e ·R)R

R5
+

stresslet︷ ︸︸ ︷
2h(e ·R)ez

R3
+

6h(R · ez)(e ·R)R

R5
− 2h(ez ·R)e

R3
.

(C3)

In our model, the singularities used in Eq. (C1) are all parallel to the wall. The flow field generated by higher order
singularities is thus obtained by taking successive gradients of the flow field generated by a point force or point source
singularity. As an example, the flow field u∗sd, generated by the source dipole singularity usd in the presence of a
no-slip wall, is obtained by taking the gradient of the flow field u∗s, generated by a source monopole singularity and
project it on e. The methods applies iteratively to obtain the flow fields generated by higher-order singularities:

u∗sd(r) =− [∇u∗s] · e

=− e

r3
+

3(e · r)r

r5
+

e

R3
− 3(e ·R)R

R5
− 6(R · ez)(R · ez − h)

(
e

R5
− 5(R · e)R

R7

)
+

6h(R · e)ez
R5

, (C4)

u∗sq(r) =− [∇u∗sd] · e

=
15(r · e)2r

r7
− 3r

r5
− 6(r · e)e

r5
− 15(R · e)2R

R7
+

3R

R5
+

6(R · e)e

R5

+ 30h(R · ez − h)(R · ez)
(

7(R · e)2R

R9
− 2(R · e)e

R7
− R

R7

)
− 6hez

R5
+

30h(R · e)2ez
R7

, (C5)

u∗fd(r) =−
[
∇u∗f

]
· e

=− r

r3
+

3(e · r)2r

r5
+

R

R3
− 3(e ·R)2R

R5
− 6h(R · ez − h)R

R5
− 12h(R · ez − h)(e ·R)e

R5

+
30h(e ·R)2(R · ez − h)R

R7
− 2hez

R3
+

6h(R · e)2ez
R5

. (C6)

These velocity fields are then projected along the axes of the cylindrical coordinate systems, using that R =
(2h+ z)ez + ρ eρ, R · e = r · e = ρν and R · ez = 2h+ z :

u∗sd,ρ(ρ, ν) =

[
− 1

r3
+

1

R3
− 3ρ2

(
1

R5
− 1

r5

)
− 6(h+ z)(2h+ z)

(
1

R5
− 5ρ2

R7

)]
L1(ν), (C7)

u∗sd,θ(ρ, ν) =

(
− 1

r3
+

1

R3
− 6(2h+ z)(h+ z)

R5

)
L1
1(ν), (C8)
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and

u∗sq,ρ(ρ, ν) =

[
10ρ3

r7
− 4ρ

r5
− 10ρ3

R7
+

4ρ

R5
+ 20h(z + h)(z + 2h)

(
7ρ3

R9
− 2ρ

R7

)]
L2(ν)

+

[
5ρ3

r7
− 5ρ

r5
− 5ρ3

R7
+

5ρ

R5
+ 10h(z + h)(z + 2h)

(
7ρ3

R9
− 5ρ

R7

)]
L0(ν), (C9)

u∗sq,θ(ρ, ν) =

(
−2ρ

r5
+

2ρ

R5
− 20h(z + h)(z + 2h)ρ

R7

)
L1
2(ν), (C10)

u∗fd,ρ(ρ, ν) =

(
2ρ3

r5
− 2ρ3

R5
− 8h(z + h)ρ

R5
+

20hρ3(z + h)

R7

)
L2(ν)

+

[
− ρ

r3
+
ρ3

r5
+

ρ

R3
− ρ3

R5
− 10h(z + h)

(
ρ

R5
− ρ3

R7

)]
L0(ν), (C11)

u∗fd,θ(ρ, ν) = − 4h(z + h)
ρ

R5
L1
2(ν). (C12)

Finally, we obtain the amplitudes by projection onto the Legendre polynomials:

φ0∗ρ (ρ, z) =ζ

[
5ρ3

r7
− 5ρ

r5
− 5ρ3

R7
+

5ρ

R5
+ 10h(z + h)(z + 2h)

(
7ρ3

R9
− 5ρ

R7

)]
+ κ

[
− ρ

r3
+
ρ3

r5
+

ρ

R3
− ρ3

R5
− 10h(z + h)

(
ρ

R5
− ρ3

R7

)]
, (C13)

φ1∗ρ (ρ, z) =λ

[
− 1

r3
+

1

R3
− 3ρ2

(
1

R5
+

1

r5

)
− 6(h+ z)(2h+ z)

(
1

R5
− 5ρ2

R7

)]
, (C14)

φ2∗ρ (ρ, z) =ζ

[
10ρ3

r7
− 4ρ

r5
− 10ρ3

R7
+

4ρ

R5
+ 20h(z + h)(z + 2h)

(
7ρ3

R9
− 2ρ

R7

)]
+ κ

(
2ρ3

r5
− 2ρ3

R5
− 8h(z + h)ρ

R5
+

20hρ3(z + h)

R7

)
, (C15)

φ1∗θ (ρ, z) =λ

(
− 1

r3
+

1

R3
− 6(2h+ z)(h+ z)

R5

)
, (C16)

φ2∗θ (ρ, z) =ζ

(
−2ρ

r5
+

2ρ

R5
− 20h(z + h)(z + 2h)ρ

R7

)
− 4κρh(z + h)

R5
. (C17)

Appendix D: Cylindrical representation of a perpendicular point force and source dipole near a wall

No singularity parallel to the swimming direction can give rise to a monopolar symmetry of the flow in an unbounded
fluid when the swimmer is source-free, as is the case here for the water droplet (the source flow associated with the
water leaving the droplet in swollen micelles is indeed negligible on the time scale of the measurements). However,
one may notice that a dipolar flow observed in a plane perpendicular to its axis of symmetry includes a monopolar
component. Thus a source dipole or a point force singularities - that give rise to a dipolar symmetry in planes parallel
to its axis of symmetry - would give rise to a monopolar symmetry in planes parallel to the swimming direction if
perpendicular to this swimming direction.

Motivated by this observation, we therefore consider the flow field generated by a point force and source dipole
normal to the wall and their associated images, which write in vector form :

u∗pf,⊥(r) =
ez
r

+
(ez · r)r

r3
− ez
R
− (ez ·R)R

R3
− 2h2ez

R3
+

6h2(R · ez)R
R5

+
2hR

R3
− 6h(R · ez)2R

R5
, (D1)

u∗sd,⊥(r) =− ez
r3

+
3(r · ez)r

r5
+

3ez
r3
− 9(r · ez)r

r5
+
−2ez
R3

+
18(ez ·R)R

R5
+

6(R · ez)2ez
R5

− 30(ez ·R)3R

R7

− 12h(ez ·R)ez
R5

− 6
R

R5
− 10h(ez ·R)2R

R7
, (D2)
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and in cylindrical coordinates:

u∗pf,⊥,ρ(ρ, ν) =

(
ρz

r3
− ρz

R3
− 6h(z + h)(z + 2h)ρ

R5

)
L0(ν), (D3)

u∗pf,⊥,θ(ρ, ν) = 0, (D4)

u∗sd,⊥,ρ(ρ, ν) =− [∇u∗s] · e
[

3zρ

r5
− 3zρ

R5
+ 3(h+ z)

(
4ρ

R5
− 10(2h+ z)2

R7

)]
L0(ν),

u∗sd,⊥,θ(ρ, ν) =0. (D5)

The angular dependence of these two singularities is purely monopolar in this cylindrical base. If we note ε
the coefficients of the perpendicular point force, and σ the amplitude of the perpendicular source dipole, then the
amplitude of the monopolar symmetry to the flow field, taking into account all previous singularities close to a wall
is :

φ∗0(ρ, z) =ε

(
ρz

r3
− ρz

R3
− 6h(z + h)(z + 2h)ρ

R5

)
+ σ

[
3zρ

r5
− 3zρ

R5
+ 3(h+ z)

(
4ρ

R5
− 10(2h+ z)2

R7

)]
+ ζ

[
5ρ3

r7
− 5ρ

r5
− 5ρ3

R7
+

5ρ

R5
+ 10h(z + h)(z + 2h)

(
7ρ3

R9
− 5ρ

R7

)]
+ κ

[
ρ

r3
− ρ3

r5
− ρ

R3
+
ρ3

R5
+ 10h(z + h)

(
ρ

R5
− ρ3

R7

)]
. (D6)
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